1
|
Lin HYH, Liang CJ, Yang MY, Chen PL, Wang TM, Chen YH, Shih YH, Liu W, Chiu CC, Chiang CK, Lin CS, Lin HC. Critical roles of tubular mitochondrial ATP synthase dysfunction in maleic acid-induced acute kidney injury. Apoptosis 2024; 29:620-634. [PMID: 38281282 PMCID: PMC11055741 DOI: 10.1007/s10495-023-01897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 01/30/2024]
Abstract
Maleic acid (MA) induces renal tubular cell dysfunction directed to acute kidney injury (AKI). AKI is an increasing global health burden due to its association with mortality and morbidity. However, targeted therapy for AKI is lacking. Previously, we determined mitochondrial-associated proteins are MA-induced AKI affinity proteins. We hypothesized that mitochondrial dysfunction in tubular epithelial cells plays a critical role in AKI. In vivo and in vitro systems have been used to test this hypothesis. For the in vivo model, C57BL/6 mice were intraperitoneally injected with 400 mg/kg body weight MA. For the in vitro model, HK-2 human proximal tubular epithelial cells were treated with 2 mM or 5 mM MA for 24 h. AKI can be induced by administration of MA. In the mice injected with MA, the levels of blood urea nitrogen (BUN) and creatinine in the sera were significantly increased (p < 0.005). From the pathological analysis, MA-induced AKI aggravated renal tubular injuries, increased kidney injury molecule-1 (KIM-1) expression and caused renal tubular cell apoptosis. At the cellular level, mitochondrial dysfunction was found with increasing mitochondrial reactive oxygen species (ROS) (p < 0.001), uncoupled mitochondrial respiration with decreasing electron transfer system activity (p < 0.001), and decreasing ATP production (p < 0.05). Under transmission electron microscope (TEM) examination, the cristae formation of mitochondria was defective in MA-induced AKI. To unveil the potential target in mitochondria, gene expression analysis revealed a significantly lower level of ATPase6 (p < 0.001). Renal mitochondrial protein levels of ATP subunits 5A1 and 5C1 (p < 0.05) were significantly decreased, as confirmed by protein analysis. Our study demonstrated that dysfunction of mitochondria resulting from altered expression of ATP synthase in renal tubular cells is associated with MA-induced AKI. This finding provides a potential novel target to develop new strategies for better prevention and treatment of MA-induced AKI.
Collapse
Affiliation(s)
- Hugo Y-H Lin
- Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1St Road, Kaohsiung, 80708, Taiwan.
| | - Chan-Jung Liang
- Department of Oral Hygiene, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
- Grander Pharmacy, Kaohsiung, Taiwan
| | - Ming-Yu Yang
- College of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Phang-Lang Chen
- Department of Biological Chemistry, University of California, Irvine, USA
| | - Tzu-Ming Wang
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yen-Hua Chen
- School of Medicine, Doctoral Program of Clinical and Experimental Medicine, Institute of Biomedical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yao-Hsiang Shih
- Department of Anatomy, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1St Road, Kaohsiung, 80708, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, National Taiwan University, Taipei, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1St Road, Kaohsiung, 80708, Taiwan.
| | - Han-Chen Lin
- Department of Anatomy, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1St Road, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan.
| |
Collapse
|
2
|
Li H, Liu Y, Xue Z, Zhang L, Ruan X, Yang J, Fan Z, Zhao H, Cao Y, Chen G, Xu Y, Zhou L. Adamantaniline Derivatives Target ATP5B to Inhibit Translation of Hypoxia Inducible Factor-1α. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301071. [PMID: 37401167 PMCID: PMC10477886 DOI: 10.1002/advs.202301071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/26/2023] [Indexed: 07/05/2023]
Abstract
Hypoxia inducible factor-1α (HIF-1α) plays a critical role in cellular adaptation to hypoxia and it is a potential therapeutic target for anti-cancer drugs. Applying high-throughput screening, here it is found that HI-101, a small molecule containing an adamantaniline moiety, effectively reduces HIF-1α protein expression. With the compound as a hit, a probe (HI-102) is developed for target identification by affinity-based protein profiling. The catalytic β subunit of mitochondrial FO F1 -ATP synthase, ATP5B, is identified as the binding protein of HI-derivatives. Mechanistically, HI-101 promotes the binding of HIF-1α mRNA to ATP5B, thus inhibiting HIF-1α translation and the following transcriptional activity. Further modifications of HI-101 lead to HI-104, a compound with good pharmacokinetic properties, exhibiting antitumor activity in MHCC97-L mice xenograft model, and HI-105, the most potent compound with an IC50 of 26 nm. The findings provide a new strategy for further developing HIF-1α inhibitors by translational inhibition through ATP5B.
Collapse
Affiliation(s)
- Huiti Li
- Department of Medicinal ChemistrySchool of PharmacyFudan University826 Zhangheng RoadShanghai201203P. R. China
| | - Yali Liu
- Institute of Aging & Tissue RegenerationNational Key Laboratory of Cancer Systems Medicine and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043)Renji HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zian Xue
- Department of Medicinal ChemistrySchool of PharmacyFudan University826 Zhangheng RoadShanghai201203P. R. China
| | - Li Zhang
- Institute of Precision Medicinethe Ninth People's HospitalShanghai Jiao Tong University School of Medicine115 Jinzun RoadShanghai200125China
| | - Xiaoxue Ruan
- Department of Medicinal ChemistrySchool of PharmacyFudan University826 Zhangheng RoadShanghai201203P. R. China
| | - Jintong Yang
- Department of Medicinal ChemistrySchool of PharmacyFudan University826 Zhangheng RoadShanghai201203P. R. China
| | - Zhongjiao Fan
- Department of Medicinal ChemistrySchool of PharmacyFudan University826 Zhangheng RoadShanghai201203P. R. China
| | - Hongfang Zhao
- Institute of Aging & Tissue RegenerationNational Key Laboratory of Cancer Systems Medicine and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043)Renji HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yu Cao
- Institute of Precision Medicinethe Ninth People's HospitalShanghai Jiao Tong University School of Medicine115 Jinzun RoadShanghai200125China
| | - Guoqiang Chen
- Institute of Aging & Tissue RegenerationNational Key Laboratory of Cancer Systems Medicine and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043)Renji HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Ying Xu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Lu Zhou
- Department of Medicinal ChemistrySchool of PharmacyFudan University826 Zhangheng RoadShanghai201203P. R. China
| |
Collapse
|
3
|
Mitochondrial ATP synthase c-subunit leak channel triggers cell death upon loss of its F 1 subcomplex. Cell Death Differ 2022; 29:1874-1887. [PMID: 35322203 PMCID: PMC9433415 DOI: 10.1038/s41418-022-00972-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial ATP synthase is vital not only for cellular energy production but also for energy dissipation and cell death. ATP synthase c-ring was suggested to house the leak channel of mitochondrial permeability transition (mPT), which activates during excitotoxic ischemic insult. In this present study, we purified human c-ring from both eukaryotic and prokaryotic hosts to biophysically characterize its channel activity. We show that purified c-ring forms a large multi-conductance, voltage-gated ion channel that is inhibited by the addition of ATP synthase F1 subcomplex. In contrast, dissociation of F1 from FO occurs during excitotoxic neuronal death suggesting that the F1 constitutes the gate of the channel. mPT is known to dissipate the osmotic gradient across the inner membrane during cell death. We show that ATP synthase c-subunit knock down (KD) prevents the osmotic change in response to high calcium and eliminates large conductance, Ca2+ and CsA sensitive channel activity of mPT. These findings elucidate the gating mechanism of the ATP synthase c-subunit leak channel (ACLC) and suggest how ACLC opening is regulated by cell stress in a CypD-dependent manner.
Collapse
|
4
|
Courbon GM, Rubinstein JL. CryoEM Reveals the Complexity and Diversity of ATP Synthases. Front Microbiol 2022; 13:864006. [PMID: 35783400 PMCID: PMC9244403 DOI: 10.3389/fmicb.2022.864006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/30/2022] [Indexed: 11/14/2022] Open
Abstract
During respiration, adenosine triphosphate (ATP) synthases harness the electrochemical proton motive force (PMF) generated by the electron transport chain (ETC) to synthesize ATP. These macromolecular machines operate by a remarkable rotary catalytic mechanism that couples transmembrane proton translocation to rotation of a rotor subcomplex, and rotation to ATP synthesis. Initially, x-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cross-linking were the only ways to gain insights into the three-dimensional (3D) structures of ATP synthases and, in particular, provided ground-breaking insights into the soluble parts of the complex that explained the catalytic mechanism by which rotation is coupled to ATP synthesis. In contrast, early electron microscopy was limited to studying the overall shape of the assembly. However, advances in electron cryomicroscopy (cryoEM) have allowed determination of high-resolution structures, including the membrane regions of ATP synthases. These studies revealed the high-resolution structures of the remaining ATP synthase subunits and showed how these subunits work together in the intact macromolecular machine. CryoEM continues to uncover the diversity of ATP synthase structures across species and has begun to show how ATP synthases can be targeted by therapies to treat human diseases.
Collapse
Affiliation(s)
- Gautier M. Courbon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada
| | - John L. Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON, Canada
- *Correspondence: John L. Rubinstein
| |
Collapse
|
5
|
Niu L, Geyer PE, Gupta R, Santos A, Meier F, Doll S, Wewer Albrechtsen NJ, Klein S, Ortiz C, Uschner FE, Schierwagen R, Trebicka J, Mann M. Dynamic human liver proteome atlas reveals functional insights into disease pathways. Mol Syst Biol 2022; 18:e10947. [PMID: 35579278 PMCID: PMC9112488 DOI: 10.15252/msb.202210947] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Deeper understanding of liver pathophysiology would benefit from a comprehensive quantitative proteome resource at cell type resolution to predict outcome and design therapy. Here, we quantify more than 150,000 sequence-unique peptides aggregated into 10,000 proteins across total liver, the major liver cell types, time course of primary cell cultures, and liver disease states. Bioinformatic analysis reveals that half of hepatocyte protein mass is comprised of enzymes and 23% of mitochondrial proteins, twice the proportion of other liver cell types. Using primary cell cultures, we capture dynamic proteome remodeling from tissue states to cell line states, providing useful information for biological or pharmaceutical research. Our extensive data serve as spectral library to characterize a human cohort of non-alcoholic steatohepatitis and cirrhosis. Dramatic proteome changes in liver tissue include signatures of hepatic stellate cell activation resembling liver cirrhosis and providing functional insights. We built a web-based dashboard application for the interactive exploration of our resource (www.liverproteome.org).
Collapse
Affiliation(s)
- Lili Niu
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Philipp E Geyer
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
OmicEra Diagnostics GmbHPlaneggGermany
| | - Rajat Gupta
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Present address:
Pfizer Worldwide Research and DevelopmentSan DiegoCAUSA
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Center for Health Data ScienceFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
- Big Data InstituteNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Florian Meier
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Functional ProteomicsJena University HospitalJenaGermany
| | - Sophia Doll
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
OmicEra Diagnostics GmbHPlaneggGermany
| | - Nicolai J Wewer Albrechtsen
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical BiochemistryRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Sabine Klein
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
| | - Cristina Ortiz
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
| | - Frank E Uschner
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
| | - Robert Schierwagen
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
| | - Jonel Trebicka
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
- European Foundation for the Study of Chronic Failure, EFCLIFBarcelonaSpain
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
6
|
Challenges in targeting mycobacterial ATP synthase: The known and beyond. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
He J, Cui Z, Zhu Y. The role of caveolae in endothelial dysfunction. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:78-91. [PMID: 37724072 PMCID: PMC10388784 DOI: 10.1515/mr-2021-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/03/2021] [Indexed: 09/20/2023]
Abstract
Caveolae, the specialized cell-surface plasma membrane invaginations which are abundant in endothelial cells, play critical roles in regulating various cellular processes, including cholesterol homeostasis, nitric oxide production, and signal transduction. Endothelial caveolae serve as a membrane platform for compartmentalization, modulation, and integration of signal events associated with endothelial nitric oxide synthase, ATP synthase β, and integrins, which are involved in the regulation of endothelial dysfunction and related cardiovascular diseases, such as atherosclerosis and hypertension. Furthermore, these dynamic microdomains on cell membrane are modulated by various extracellular stimuli, including cholesterol and flow shear stress. In this brief review, we summarize the critical roles of caveolae in the orchestration of endothelial function based on recent findings as well as our work over the past two decades.
Collapse
Affiliation(s)
- Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin300070, China
| | - Zhen Cui
- Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin300070, China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin300070, China
| |
Collapse
|
8
|
Li F, Yang A, Hu Z, Lin S, Deng Y, Tang YZ. Probing the Energetic Metabolism of Resting Cysts under Different Conditions from Molecular and Physiological Perspectives in the Harmful Algal Blooms-Forming Dinoflagellate Scrippsiella trochoidea. Int J Mol Sci 2021; 22:7325. [PMID: 34298944 PMCID: PMC8307125 DOI: 10.3390/ijms22147325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/02/2023] Open
Abstract
Energetic metabolism is essential in maintaining the viability of all organisms. Resting cysts play important roles in the ecology of dinoflagellates, particularly for harmful algal blooms (HABs)-causative species. However, the energetic metabolism underlying the germination potency maintenance of resting cysts of dinoflagellate have been extremely scarce in studies from physiological and, particularly, molecular perspectives. Therefore, we used the cosmopolitan Scrippsiella trochoidea as a representative of HABs-forming and cyst-producing dinoflagellates in this work to obtain novel insights into the molecular mechanisms, regulating the energetic metabolism in dinoflagellate resting cysts, under different physical condition. As the starting step, we established a cDNA subtractive library via suppression subtractive hybridization (SSH) technology, from which we screened an incomplete sequence for the β subunit of ATP synthase gene (β-F1-ATPase), a key indicator for the status of cell's energetic metabolism. The full-length cDNA of β-F1-ATPase gene from S.trochoidea (Stβ-F1-ATPase) was then obtained via rapid amplification of cDNA ends (RACE) (Accession: MZ343333). Our real-time qPCR detections, in vegetative cells and resting cysts treated with different physical conditions, revealed that (1) the expression of Stβ-F1-ATPase in resting cysts was generally much lower than that in vegetative cells, and (2) the Stβ-F1-ATPase expressions in the resting cysts under darkness, lowered temperature, and anoxia, and during an extended duration of dormancy, were significantly lower than that in cysts under the condition normally used for culture-maintaining (a 12 h light:12 h dark cycle, 21 °C, aerobic, and newly harvested). Our detections of the viability (via Neutral Red staining) and cellular ATP content of resting cysts, at the conditions corresponding to the abovementioned treatments, showed that both the viability and ATP content decreased rapidly within 12 h and then maintained at low levels within the 4-day experimentation under all the three conditions applied (4 °C, darkness, and anoxia), which are well in accordance with the measurements of the transcription of Stβ-F1-ATPase. These results demonstrated that the energy consumption of resting cysts reaches a low, but somehow stable, level within a short time period and is lower at low temperature, darkness, and anoxia than that at ambient temperature. Our work provides an important basis for explaining that resting cysts survive long-term darkness and low temperature in marine sediments from molecular and physiological levels.
Collapse
Affiliation(s)
- Fengting Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.L.); (A.Y.); (Z.H.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aoao Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.L.); (A.Y.); (Z.H.); (S.L.)
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.L.); (A.Y.); (Z.H.); (S.L.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Siheng Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.L.); (A.Y.); (Z.H.); (S.L.)
| | - Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.L.); (A.Y.); (Z.H.); (S.L.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.L.); (A.Y.); (Z.H.); (S.L.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
9
|
Schlesinger D, Elsässer SJ. Revisiting sORFs: overcoming challenges to identify and characterize functional microproteins. FEBS J 2021; 289:53-74. [PMID: 33595896 DOI: 10.1111/febs.15769] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/17/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
Short ORFs (sORFs), that is, occurrences of a start and stop codon within 100 codons or less, can be found in organisms of all domains of life, outnumbering annotated protein-coding ORFs by orders of magnitude. Even though functional proteins smaller than 100 amino acids are known, the coding potential of sORFs has often been overlooked, as it is not trivial to predict and test for functionality within the large number of sORFs. Recent advances in ribosome profiling and mass spectrometry approaches, together with refined bioinformatic predictions, have enabled a huge leap forward in this field and identified thousands of likely coding sORFs. A relatively low number of small proteins or microproteins produced from these sORFs have been characterized so far on the molecular, structural, and/or mechanistic level. These however display versatile and, in some cases, essential cellular functions, allowing for the exciting possibility that many more, previously unknown small proteins might be encoded in the genome, waiting to be discovered. This review will give an overview of the steadily growing microprotein field, focusing on eukaryotic small proteins. We will discuss emerging themes in the molecular action of microproteins, as well as advances and challenges in microprotein identification and characterization.
Collapse
Affiliation(s)
- Dörte Schlesinger
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Simon J Elsässer
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Lafranchi L, Schlesinger D, Kimler KJ, Elsässer SJ. Universal Single-Residue Terminal Labels for Fluorescent Live Cell Imaging of Microproteins. J Am Chem Soc 2020; 142:20080-20087. [PMID: 33175524 DOI: 10.1021/jacs.0c09574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genetically encoded fluorescent tags for visualization of proteins in living cells add six to several hundred amino acids to the protein of interest. While suitable for most proteins, common tags easily match and exceed the size of microproteins of 60 amino acids or less. The added molecular weight and structure of such fluorescent tag may thus significantly affect in vivo biophysical and biochemical properties of microproteins. Here, we develop single-residue terminal labeling (STELLA) tags that introduce a single noncanonical amino acid either at the N- or C-terminus of a protein or microprotein of interest for subsequent specific fluorescent labeling. Efficient terminal noncanonical amino acid mutagenesis is achieved using a precursor tag that is tracelessly cleaved. Subsequent selective bioorthogonal reaction with a cell-permeable organic dye enables live cell imaging of microproteins with minimal perturbation of their native sequence. The use of terminal residues for labeling provides a universally applicable and easily scalable strategy, which avoids alteration of the core sequence of the microprotein.
Collapse
Affiliation(s)
- Lorenzo Lafranchi
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Karolinska Institutet, Stockholm, 17165, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Dörte Schlesinger
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Karolinska Institutet, Stockholm, 17165, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Kyle J Kimler
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Karolinska Institutet, Stockholm, 17165, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Simon J Elsässer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Karolinska Institutet, Stockholm, 17165, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, 17165, Sweden
| |
Collapse
|
11
|
ATP Synthase Subunit Epsilon Overexpression Promotes Metastasis by Modulating AMPK Signaling to Induce Epithelial-to-Mesenchymal Transition and Is a Poor Prognostic Marker in Colorectal Cancer Patients. J Clin Med 2019; 8:jcm8071070. [PMID: 31330880 PMCID: PMC6678251 DOI: 10.3390/jcm8071070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 01/04/2023] Open
Abstract
Metastasis remains the major cause of death from colon cancer. We intend to identify differentially expressed genes that are associated with the metastatic process and prognosis in colon cancer. ATP synthase epsilon subunit (ATP5E) gene was found to encode the mitochondrial F0F1 ATP synthase subunit epsilon that was overexpressed in tumor cells compared to their normal counterparts, while other genes encoding the ATP synthase subunit were repressed in public microarray datasets. CRC cells in which ATP5E was silenced showed markedly reduced invasive and migratory abilities. ATP5E inhibition significantly reduced the incidence of distant metastasis in a mouse xenograft model. Mechanistically, increased ATP5E expression resulted in a prominent reduction in E-cadherin and an increase in Snail expression. Our data also showed that an elevated ATP5E level in metastatic colon cancer samples was significantly associated with the AMPK-AKT-hypoxia-inducible factor-1α (HIF1α) signaling axis; silencing ATP5E led to the degradation of HIF1α under hypoxia through AMPK-AKT signaling. Our findings suggest that elevated ATP5E expression could serve as a marker of distant metastasis and a poor prognosis in colon cancer, and ATP5E functions via modulating AMPK-AKT-HIF1α signaling.
Collapse
|
12
|
Guo L, Carraro M, Carrer A, Minervini G, Urbani A, Masgras I, Tosatto SCE, Szabò I, Bernardi P, Lippe G. Arg-8 of yeast subunit e contributes to the stability of F-ATP synthase dimers and to the generation of the full-conductance mitochondrial megachannel. J Biol Chem 2019; 294:10987-10997. [PMID: 31160339 DOI: 10.1074/jbc.ra119.008775] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/29/2019] [Indexed: 01/08/2023] Open
Abstract
The mitochondrial F-ATP synthase is a complex molecular motor arranged in V-shaped dimers that is responsible for most cellular ATP synthesis in aerobic conditions. In the yeast F-ATP synthase, subunits e and g of the FO sector constitute a lateral domain, which is required for dimer stability and cristae formation. Here, by using site-directed mutagenesis, we identified Arg-8 of subunit e as a critical residue in mediating interactions between subunits e and g, most likely through an interaction with Glu-83 of subunit g. Consistent with this hypothesis, (i) the substitution of Arg-8 in subunit e (eArg-8) with Ala or Glu or of Glu-83 in subunit g (gGlu-83) with Ala or Lys destabilized the digitonin-extracted F-ATP synthase, resulting in decreased dimer formation as revealed by blue-native electrophoresis; and (ii) simultaneous substitution of eArg-8 with Glu and of gGlu-83 with Lys rescued digitonin-stable F-ATP synthase dimers. When tested in lipid bilayers for generation of Ca2+-dependent channels, WT dimers displayed the high-conductance channel activity expected for the mitochondrial megachannel/permeability transition pore, whereas dimers obtained at low digitonin concentrations from the Arg-8 variants displayed currents of strikingly small conductance. Remarkably, double replacement of eArg-8 with Glu and of gGlu-83 with Lys restored high-conductance channels indistinguishable from those seen in WT enzymes. These findings suggest that the interaction of subunit e with subunit g is important for generation of the full-conductance megachannel from F-ATP synthase.
Collapse
Affiliation(s)
- Lishu Guo
- Departments of Biomedical Sciences and
| | | | | | | | | | | | - Silvio C E Tosatto
- Departments of Biomedical Sciences and; Consiglio Nazionale delle Ricerche Institute of Neuroscience, 35131 Padova, Italy, and
| | - Ildikò Szabò
- Consiglio Nazionale delle Ricerche Institute of Neuroscience, 35131 Padova, Italy, and; Biology, University of Padova, 35131 Padova, Italy
| | - Paolo Bernardi
- Departments of Biomedical Sciences and; Consiglio Nazionale delle Ricerche Institute of Neuroscience, 35131 Padova, Italy, and.
| | - Giovanna Lippe
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy.
| |
Collapse
|
13
|
Gahura O, Šubrtová K, Váchová H, Panicucci B, Fearnley IM, Harbour ME, Walker JE, Zíková A. The F 1 -ATPase from Trypanosoma brucei is elaborated by three copies of an additional p18-subunit. FEBS J 2018; 285:614-628. [PMID: 29247468 DOI: 10.1111/febs.14364] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/16/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023]
Abstract
The F-ATPases (also called the F1 Fo -ATPases or ATP synthases) are multi-subunit membrane-bound molecular machines that produce ATP in bacteria and in eukaryotic mitochondria and chloroplasts. The structures and enzymic mechanisms of their F1 -catalytic domains are highly conserved in all species investigated hitherto. However, there is evidence that the F-ATPases from the group of protozoa known as Euglenozoa have novel features. Therefore, we have isolated pure and active F1 -ATPase from the euglenozoan parasite, Trypanosoma brucei, and characterized it. All of the usual eukaryotic subunits (α, β, γ, δ, and ε) were present in the enzyme, and, in addition, two unique features were detected. First, each of the three α-subunits in the F1 -domain has been cleaved by proteolysis in vivo at two sites eight residues apart, producing two assembled fragments. Second, the T. brucei F1 -ATPase has an additional subunit, called p18, present in three copies per complex. Suppression of expression of p18 affected in vitro growth of both the insect and infectious mammalian forms of T. brucei. It also reduced the levels of monomeric and multimeric F-ATPase complexes and diminished the in vivo hydrolytic activity of the enzyme significantly. These observations imply that p18 plays a role in the assembly of the F1 domain. These unique features of the F1 -ATPase extend the list of special characteristics of the F-ATPase from T. brucei, and also, demonstrate that the architecture of the F1 -ATPase complex is not strictly conserved in eukaryotes.
Collapse
Affiliation(s)
- Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Karolína Šubrtová
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Hana Váchová
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Ian M Fearnley
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Michael E Harbour
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - John E Walker
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
14
|
Suzuki T, Iida N, Suzuki J, Watanabe Y, Endo T, Hisabori T, Yoshida M. Expression of mammalian mitochondrial F 1-ATPase in Escherichia coli depends on two chaperone factors, AF1 and AF2. FEBS Open Bio 2016; 6:1267-1272. [PMID: 28203526 PMCID: PMC5302055 DOI: 10.1002/2211-5463.12143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 11/06/2022] Open
Abstract
F1‐ATPase (F1) is a multisubunit water‐soluble domain of FoF1‐ATP synthase and is a rotary enzyme by itself. Earlier genetic studies using yeast suggested that two factors, Atp11p and Atp12p, contribute to F1 assembly. Here, we show that their mammalian counterparts, AF1 and AF2, are essential and sufficient for efficient production of recombinant bovine mitochondrial F1 in Escherichia coli cells. Intactness of the function and conformation of the E. coli‐expressed bovine F1 was verified by rotation analysis and crystallization. This expression system opens a way for the previously unattempted mutation study of mammalian mitochondrial F1.
Collapse
Affiliation(s)
- Toshiharu Suzuki
- Faculty of Science and Engineering Waseda University Tokyo Japan; Department of Molecular Bioscience Kyoto-Sangyo University Kyoto Japan; Chemical Resources Laboratory Tokyo Institute of Technology Yokohama Japan; Present address: Department of Applied Chemistry School of Engineering The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Naoya Iida
- Faculty of Science and Engineering Waseda University Tokyo Japan
| | - Junko Suzuki
- Department of Molecular Bioscience Kyoto-Sangyo University Kyoto Japan
| | - Yasunori Watanabe
- Department of Molecular Bioscience Kyoto-Sangyo University Kyoto Japan
| | - Toshiya Endo
- Department of Molecular Bioscience Kyoto-Sangyo University Kyoto Japan
| | - Toru Hisabori
- Chemical Resources Laboratory Tokyo Institute of Technology Yokohama Japan
| | - Masasuke Yoshida
- Department of Molecular Bioscience Kyoto-Sangyo University Kyoto Japan
| |
Collapse
|
15
|
Zühlke D, Dörries K, Bernhardt J, Maaß S, Muntel J, Liebscher V, Pané-Farré J, Riedel K, Lalk M, Völker U, Engelmann S, Becher D, Fuchs S, Hecker M. Costs of life - Dynamics of the protein inventory of Staphylococcus aureus during anaerobiosis. Sci Rep 2016; 6:28172. [PMID: 27344979 PMCID: PMC4921807 DOI: 10.1038/srep28172] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/31/2016] [Indexed: 01/19/2023] Open
Abstract
Absolute protein quantification was applied to follow the dynamics of the cytoplasmic proteome of Staphylococcus aureus in response to long-term oxygen starvation. For 1,168 proteins, the majority of all expressed proteins, molecule numbers per cell have been determined to monitor the cellular investments in single branches of bacterial life for the first time. In the presence of glucose the anaerobic protein pattern is characterized by increased amounts of glycolytic and fermentative enzymes such as Eno, GapA1, Ldh1, and PflB. Interestingly, the ferritin-like protein FtnA belongs to the most abundant proteins during anaerobic growth. Depletion of glucose finally leads to an accumulation of different enzymes such as ArcB1, ArcB2, and ArcC2 involved in arginine deiminase pathway. Concentrations of 29 exo- and 78 endometabolites were comparatively assessed and have been integrated to the metabolic networks. Here we provide an almost complete picture on the response to oxygen starvation, from signal transduction pathways to gene expression pattern, from metabolic reorganization after oxygen depletion to beginning cell death and lysis after glucose exhaustion. This experimental approach can be considered as a proof of principle how to combine cell physiology with quantitative proteomics for a new dimension in understanding simple life processes as an entity.
Collapse
Affiliation(s)
- Daniela Zühlke
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, F.-L.-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | - Kirsten Dörries
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald, Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
| | - Jörg Bernhardt
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, F.-L.-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | - Sandra Maaß
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, F.-L.-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | - Jan Muntel
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, F.-L.-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | - Volkmar Liebscher
- Department of Mathematics and Informatics, Ernst-Moritz-Arndt-University Greifswald, Walther-Rathenau-Strasse 47, D-17487 Greifswald, Germany
| | - Jan Pané-Farré
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, F.-L.-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, F.-L.-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | - Michael Lalk
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald, Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt-University Greifswald, F.-L.-Jahn-Strasse 15 a, D-17487 Greifswald, Germany
| | - Susanne Engelmann
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, F.-L.-Jahn-Strasse 15, D-17487 Greifswald, Germany.,Institute of Microbiology, Technical University Braunschweig, Inhoffenstrasse 7, D-38124 Braunschweig, Germany.,Helmholtz Institute for Infection Research, Microbial Proteomics, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Dörte Becher
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, F.-L.-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | - Stephan Fuchs
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, F.-L.-Jahn-Strasse 15, D-17487 Greifswald, Germany.,Robert Koch Institute, FG13 Nosocomial Pathogens and Antibiotic Resistance, Burgstrasse 37, D-38855 Wernigerode, Germany
| | - Michael Hecker
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, F.-L.-Jahn-Strasse 15, D-17487 Greifswald, Germany
| |
Collapse
|
16
|
Mohanty S, Jobichen C, Chichili VPR, Velázquez-Campoy A, Low BC, Hogue CWV, Sivaraman J. Structural Basis for a Unique ATP Synthase Core Complex from Nanoarcheaum equitans. J Biol Chem 2015; 290:27280-27296. [PMID: 26370083 DOI: 10.1074/jbc.m115.677492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 11/06/2022] Open
Abstract
ATP synthesis is a critical and universal life process carried out by ATP synthases. Whereas eukaryotic and prokaryotic ATP synthases are well characterized, archaeal ATP synthases are relatively poorly understood. The hyperthermophilic archaeal parasite, Nanoarcheaum equitans, lacks several subunits of the ATP synthase and is suspected to be energetically dependent on its host, Ignicoccus hospitalis. This suggests that this ATP synthase might be a rudimentary machine. Here, we report the crystal structures and biophysical studies of the regulatory subunit, NeqB, the apo-NeqAB, and NeqAB in complex with nucleotides, ADP, and adenylyl-imidodiphosphate (non-hydrolysable analog of ATP). NeqB is ∼20 amino acids shorter at its C terminus than its homologs, but this does not impede its binding with NeqA to form the complex. The heterodimeric NeqAB complex assumes a closed, rigid conformation irrespective of nucleotide binding; this differs from its homologs, which require conformational changes for catalytic activity. Thus, although N. equitans possesses an ATP synthase core A3B3 hexameric complex, it might not function as a bona fide ATP synthase.
Collapse
Affiliation(s)
- Soumya Mohanty
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | - Adrián Velázquez-Campoy
- the Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint-Unit Institute of Physical Chemistry "Rocasolano (IQFR)-Spanish National Research Council (CSIC)-BIFI, and Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza and Fundacion ARAID, Government of Aragon, 50018 Zaragoza, Spain
| | - Boon Chuan Low
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore,; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
| | - Christopher W V Hogue
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore,; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore,.
| |
Collapse
|
17
|
Abstract
Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.
Collapse
Affiliation(s)
- Wolfgang Junge
- Department of Biophysics, Universität Osnabrück, DE-49069 Osnabrück, Germany;
| | | |
Collapse
|
18
|
Suzuki T, Tanaka K, Wakabayashi C, Saita EI, Yoshida M. Chemomechanical coupling of human mitochondrial F1-ATPase motor. Nat Chem Biol 2014; 10:930-6. [PMID: 25242551 DOI: 10.1038/nchembio.1635] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/08/2014] [Indexed: 11/09/2022]
Abstract
The rotary motor enzyme F1-ATPase (F1) is a catalytic subcomplex of FoF1-ATP synthase that produces most of the ATP in respiring cells. Chemomechanical coupling has been studied extensively for bacterial F1 but very little for mitochondrial F1. Here we report ATP-driven rotation of human mitochondrial F1. A rotor-shaft γ-subunit in the stator α3β3 ring rotates 120° per ATP with three catalytic steps: ATP binding to one β-subunit at 0°, inorganic phosphate (Pi) release from another β-subunit at 65° and ATP hydrolysis on the third β-subunit at 90°. Rotation is often interrupted at 90° by persistent ADP binding and is stalled at 65° by a specific inhibitor azide. A mitochondrial endogenous inhibitor for FoF1-ATP synthase, IF1, blocks rotation at 90°. These features differ from those of bacterial F1, in which both ATP hydrolysis and Pi release occur at around 80°, demonstrating that chemomechanical coupling angles of the γ-subunit are tuned during evolution.
Collapse
Affiliation(s)
- Toshiharu Suzuki
- 1] Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan. [2] ATP Synthesis Regulation Project, International Research Project (ICORP), Japan Science and Technology Corporation (JST), Miraikan, Koto-ku, Tokyo, Japan. [3] Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Yokohama, Japan
| | - Kazumi Tanaka
- 1] ATP Synthesis Regulation Project, International Research Project (ICORP), Japan Science and Technology Corporation (JST), Miraikan, Koto-ku, Tokyo, Japan. [2] Department of Molecular Bioscience, Kyoto-Sangyo University, Kamigamomotoyama, Kyoto, Japan
| | - Chiaki Wakabayashi
- ATP Synthesis Regulation Project, International Research Project (ICORP), Japan Science and Technology Corporation (JST), Miraikan, Koto-ku, Tokyo, Japan
| | - Ei-ichiro Saita
- 1] ATP Synthesis Regulation Project, International Research Project (ICORP), Japan Science and Technology Corporation (JST), Miraikan, Koto-ku, Tokyo, Japan. [2] Department of Molecular Bioscience, Kyoto-Sangyo University, Kamigamomotoyama, Kyoto, Japan
| | - Masasuke Yoshida
- 1] Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan. [2] ATP Synthesis Regulation Project, International Research Project (ICORP), Japan Science and Technology Corporation (JST), Miraikan, Koto-ku, Tokyo, Japan. [3] Department of Molecular Bioscience, Kyoto-Sangyo University, Kamigamomotoyama, Kyoto, Japan
| |
Collapse
|
19
|
Serrano P, Geralt M, Mohanty B, Wüthrich K. NMR structures of α-proteobacterial ATPase-regulating ζ-subunits. J Mol Biol 2014; 426:2547-53. [PMID: 24838125 DOI: 10.1016/j.jmb.2014.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/27/2022]
Abstract
NMR structures of ζ-subunits, which are recently discovered α-proteobacterial F1F0-ATPase-regulatory proteins representing a Pfam protein family of 246 sequences from 219 species (PF07345), exhibit a four-helix bundle, which is different from all other known F1F0-ATPase inhibitors. Chemical shift mapping reveals a conserved ADP/ATP binding site in ζ-subunit, which mediates long-range conformational changes related to function, as revealed by the structure of the Paracoccus denitrificans ζ-subunit in complex with ADP. These structural data suggest a new mechanism of F1F0-ATPase regulation in α-proteobacteria.
Collapse
Affiliation(s)
- Pedro Serrano
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Joint Center for Structural Genomics (http://www.jcsg.org.), La Jolla, CA 92037, USA.
| | - Michael Geralt
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Joint Center for Structural Genomics (http://www.jcsg.org.), La Jolla, CA 92037, USA
| | - Biswaranjan Mohanty
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Joint Center for Structural Genomics (http://www.jcsg.org.), La Jolla, CA 92037, USA
| | - Kurt Wüthrich
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Joint Center for Structural Genomics (http://www.jcsg.org.), La Jolla, CA 92037, USA
| |
Collapse
|
20
|
Päncic PG, Kowallik KV, Strotmann H. Characterization of CF1from the DiatomOdontella sinensis. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1990.tb00161.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Klink R, Lüttge U. Electron-Microscopic Demonstration of a “Head and Stalk” Structure of the Leaf Vacuolar ATPase inMesembryanthemum crystallinumL. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1991.tb00207.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Ducluzeau AL, Schoepp-Cothenet B, Baymann F, Russell MJ, Nitschke W. Free energy conversion in the LUCA: Quo vadis? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:982-8. [PMID: 24361840 DOI: 10.1016/j.bbabio.2013.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/08/2013] [Accepted: 12/12/2013] [Indexed: 11/30/2022]
Abstract
Living entities are unimaginable without means to harvest free energy from the environment, that is, without bioenergetics. The quest to understand the bioenergetic ways of early life therefore is one of the crucial elements to understand the emergence of life on our planet. Over the last few years, several mutually exclusive scenarios for primordial bioenergetics have been put forward, all of which are based on some sort of empirical observation, a remarkable step forward from the previous, essentially untestable, ab initio models. We here try to present and compare these scenarios while at the same time discuss their respective empirical weaknesses. The goal of this article is to harness crucial new expertise from the entire field by stimulating a larger part of the bioenergetics community to become involved in "origin-of-energy-metabolism" research. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Anne-Lise Ducluzeau
- Beadle Center, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, NE 68588-0660, USA
| | - Barbara Schoepp-Cothenet
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/AMU, FR3479, F-13402 Marseille Cedex 20, France
| | - Frauke Baymann
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/AMU, FR3479, F-13402 Marseille Cedex 20, France
| | - Michael J Russell
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099, USA
| | - Wolfgang Nitschke
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/AMU, FR3479, F-13402 Marseille Cedex 20, France.
| |
Collapse
|
23
|
Robinson GC, Bason JV, Montgomery MG, Fearnley IM, Mueller DM, Leslie AGW, Walker JE. The structure of F₁-ATPase from Saccharomyces cerevisiae inhibited by its regulatory protein IF₁. Open Biol 2013; 3:120164. [PMID: 23407639 PMCID: PMC3603450 DOI: 10.1098/rsob.120164] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/21/2013] [Indexed: 11/29/2022] Open
Abstract
The structure of F₁-ATPase from Saccharomyces cerevisiae inhibited by the yeast IF₁ has been determined at 2.5 Å resolution. The inhibitory region of IF₁ from residues 1 to 36 is entrapped between the C-terminal domains of the α(DP)- and β(DP)-subunits in one of the three catalytic interfaces of the enzyme. Although the structure of the inhibited complex is similar to that of the bovine-inhibited complex, there are significant differences between the structures of the inhibitors and their detailed interactions with F₁-ATPase. However, the most significant difference is in the nucleotide occupancy of the catalytic β(E)-subunits. The nucleotide binding site in β(E)-subunit in the yeast complex contains an ADP molecule without an accompanying magnesium ion, whereas it is unoccupied in the bovine complex. Thus, the structure provides further evidence of sequential product release, with the phosphate and the magnesium ion released before the ADP molecule.
Collapse
Affiliation(s)
- Graham C. Robinson
- The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | - John V. Bason
- The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | - Martin G. Montgomery
- The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | - Ian M. Fearnley
- The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | - David M. Mueller
- Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Andrew G. W. Leslie
- The Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - John E. Walker
- The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
24
|
Coupling factor 6 enhances the spontaneous microaggregation of platelets by decreasing cytosolic cAMP irrespective of antiplatelet therapy. Hypertens Res 2013; 36:520-7. [PMID: 23388886 DOI: 10.1038/hr.2012.231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The spontaneous microaggregation of platelets (SMAPs) is a marker for the prognosis of patients with cardiovascular diseases. Coupling factor 6 (CF6) binds to the plasma membrane ATP synthase and functions as a pro-atherogenic molecule in the cardiovascular system. However, the role of CF6 in SMAPs and stroke remains unknown. In 650 consecutive patients, including those with acute-onset stroke, and 20 control subjects, platelet-rich plasma (PRP) was obtained, and SMAP was measured using a laser light-scattering aggregometer. The cytosolic cyclic adenosine monophosphate (cAMP) concentration in platelets was measured using an enzyme-linked immunosorbent assay. CF6 increased SMAPs in patients and control subjects to a similar degree by binding to the α- and β-subunits of ATP synthase and inducing intracellular acidosis. It was abolished by PRP pretreatment with antibodies against CF6, and the α- or β-subunit of the plasma membrane ATP synthase, and the ATP synthase inhibitor efrapeptin. CF6 increased SMAPs in patient groups with and without antiplatelet therapy to a similar degree, and no difference was found among the subgroups taking aspirin, thienopyridine or cilostazol. The cytosolic cAMP concentration in platelets was decreased by CF6 in the presence of the direct adenylate cyclase activator forskolin. Pretreatment of PRP with the Gs activator cholera toxin blocked the decrease, whereas the Gi inactivator pertussis toxin and cilostazol had no influence. The CF6-induced acceleration of SMAPs was suppressed by cholera toxin but not by cilostazol or pertussis toxin. CF6 enhanced SMAPs by decreasing cytosolic cAMP. Because it was observed irrespective of antiplatelet agents, CF6 appears to be a novel target for antiplatelet therapy.
Collapse
|
25
|
Abstract
The ATP synthases are multiprotein complexes found in the energy-transducing membranes of bacteria, chloroplasts and mitochondria. They employ a transmembrane protonmotive force, Δp, as a source of energy to drive a mechanical rotary mechanism that leads to the chemical synthesis of ATP from ADP and Pi. Their overall architecture, organization and mechanistic principles are mostly well established, but other features are less well understood. For example, ATP synthases from bacteria, mitochondria and chloroplasts differ in the mechanisms of regulation of their activity, and the molecular bases of these different mechanisms and their physiological roles are only just beginning to emerge. Another crucial feature lacking a molecular description is how rotation driven by Δp is generated, and how rotation transmits energy into the catalytic sites of the enzyme to produce the stepping action during rotation. One surprising and incompletely explained deduction based on the symmetries of c-rings in the rotor of the enzyme is that the amount of energy required by the ATP synthase to make an ATP molecule does not have a universal value. ATP synthases from multicellular organisms require the least energy, whereas the energy required to make an ATP molecule in unicellular organisms and chloroplasts is higher, and a range of values has been calculated. Finally, evidence is growing for other roles of ATP synthases in the inner membranes of mitochondria. Here the enzymes form supermolecular complexes, possibly with specific lipids, and these complexes probably contribute to, or even determine, the formation of the cristae.
Collapse
|
26
|
White MY, Edwards AVG, Cordwell SJ, Van Eyk JE. Mitochondria: A mirror into cellular dysfunction in heart disease. Proteomics Clin Appl 2012; 2:845-61. [PMID: 21136884 DOI: 10.1002/prca.200780135] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiovascular (CV) disease is the single most significant cause of morbidity and mortality worldwide. The emerging global impact of CV disease means that the goals of early diagnosis and a wider range of treatment options are now increasingly pertinent. As such, there is a greater need to understand the molecular mechanisms involved and potential targets for intervention. Mitochondrial function is important for physiological maintenance of the cell, and when this function is altered, the cell can begin to suffer. Given the broad range and significant impacts of the cellular processes regulated by the mitochondria, it becomes important to understand the roles of the proteins associated with this organelle. Proteomic investigations of the mitochondria are hampered by the intrinsic properties of the organelle, including hydrophobic mitochondrial membranes; high proportion of basic proteins (pI greater than 8.0); and the relative dynamic range issues of the mitochondria. For these reasons, many proteomic studies investigate the mitochondria as a discrete subproteome. Once this has been achieved, the alterations that result in functional changes with CV disease can be observed. Those alterations that lead to changes in mitochondrial function, signaling and morphology, which have significant implications for the cardiomyocyte in the development of CV disease, are discussed.
Collapse
Affiliation(s)
- Melanie Y White
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales, Australia; Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
27
|
Hou WR, Hou YL, Ding X, Wang T. cDNA, genomic sequence cloning and overexpression of giant panda (Ailuropoda melanoleuca) mitochondrial ATP synthase ATP5G1. GENETICS AND MOLECULAR RESEARCH 2012; 11:3164-74. [PMID: 23007995 DOI: 10.4238/2012.september.3.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The ATP5G1 gene is one of the three genes that encode mitochondrial ATP synthase subunit c of the proton channel. We cloned the cDNA and determined the genomic sequence of the ATP5G1 gene from the giant panda (Ailuropoda melanoleuca) using RT-PCR technology and touchdown-PCR, respectively. The cloned cDNA fragment contains an open reading frame of 411 bp encoding 136 amino acids; the length of the genomic sequence is of 1838 bp, containing three exons and two introns. Alignment analysis revealed that the nucleotide sequence and the deduced protein sequence are highly conserved compared to Homo sapiens, Mus musculus, Rattus norvegicus, Bos taurus, and Sus scrofa. The homologies for nucleotide sequences of the giant panda ATP5G1 to those of these species are 93.92, 92.21, 92.46, 93.67, and 92.46%, respectively, and the homologies for amino acid sequences are 90.44, 95.59, 93.38, 94.12, and 91.91%, respectively. Topology prediction showed that there is one protein kinase C phosphorylation site, one casein kinase II phosphorylation site, five N-myristoylation sites, and one ATP synthase c subunit signature in the ATP5G1 protein of the giant panda. The cDNA of ATP5G1 was transfected into Escherichia coli, and the ATP5G1 fused with the N-terminally GST-tagged protein gave rise to accumulation of an expected 40-kDa polypeptide, which had the characteristics of the predicted protein.
Collapse
Affiliation(s)
- W-R Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, College of Life Science, China West Normal University, P.R. China.
| | | | | | | |
Collapse
|
28
|
Overexpression of coupling factor 6 attenuates exercise-induced physiological cardiac hypertrophy by inhibiting PI3K/Akt signaling in mice. J Hypertens 2012; 30:778-86. [DOI: 10.1097/hjh.0b013e3283505101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Izumiyama K, Osanai T, Sagara S, Yamamoto Y, Itoh T, Sukekawa T, Nishizaki F, Magota K, Okumura K. Estrogen attenuates coupling factor 6-induced salt-sensitive hypertension and cardiac systolic dysfunction in mice. Hypertens Res 2012; 35:539-46. [PMID: 22258022 DOI: 10.1038/hr.2011.232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In male coupling factor 6 (CF6)-overexpressing transgenic (TG) mice, a high-salt diet induces hypertension and cardiac systolic dysfunction with excessive reactive oxygen species generation. However, the role of gender in CF6-mediated pathophysiology is unknown. We investigated the effects of ovariectomy and estrogen replacement on hypertension, cardiac dysfunction and Rac1 activity, which activates radical generation and the mineralocorticoid receptor, in female TG mice. Fifteen-week-old male and female TG and wild-type (WT) mice were fed a normal- or high-salt diet for 60 weeks. Systolic and diastolic blood pressures were higher in the TG mice fed a high-salt diet than in those fed a normal-salt diet at 20-60 weeks in males but only at 60 weeks in females. The blood pressure elevation under high-salt diet conditions was concomitant with a decrease in left ventricular fractional shortening. In the WT mice, neither blood pressure nor cardiac systolic function was influenced by a high-salt diet. In the female TG mice, bilateral ovariectomy induced hypertension with cardiac systolic dysfunction 8 weeks after the initiation of a high-salt diet. The ratios of Rac1 bound to guanosine triphosphate (Rac1-GTP) to total Rac1 in the heart and kidneys were increased in the ovariectomized TG mice, and estrogen replacement abolished the CF6-mediated pathophysiology induced under the high-salt diet conditions. The overexpression of CF6 induced salt-sensitive hypertension, complicated by systolic cardiac dysfunction, but its onset was delayed in females. Estrogen has an important role in the regulation of CF6-mediated pathophysiology, presumably via the downregulation of Rac1.
Collapse
Affiliation(s)
- Kei Izumiyama
- Department of Cardiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kegyarikova KA, Zharova TV, Vinogradov AD. Paracoccus denitrificans proton-translocating ATPase: kinetics of oxidative phosphorylation. BIOCHEMISTRY (MOSCOW) 2011; 75:1264-71. [PMID: 21166644 DOI: 10.1134/s0006297910100081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The initial rates of ATP synthesis catalyzed by tightly coupled Paracoccus denitrificans plasma membrane were measured. The reaction rate was hyperbolically dependent on the substrates, ADP and inorganic phosphate (P(i)). Apparent K(m) values for ADP and P(i) were 7-11 and 60-120 µM, respectively, at saturating concentration of the second substrate (pH 8.0, saturating Mg²(+)). These values were dependent on coupling efficiency. The substrate binding in the ATP synthesis reaction proceeds randomly: K(m) value for a given substrate was independent of the concentration of the other one. A decrease of electrochemical proton gradient by the addition of malonate (when succinate served as the respiratory substrate) or by a decrease of steady-state level of NADH (when NADH served as the respiratory substrate) resulted in a proportional decrease of the maximal rates and apparent K(m) values for ADP and P(i) (double substitution, ping-pong mechanism). The kinetic scheme for ATP synthesis was compared with that described previously for the proton-translocating ATP hydrolysis catalyzed by the same enzyme preparation (T. V. Zharova and A. D. Vinogradov (2006) Biochemistry, 45, 14552-14558).
Collapse
Affiliation(s)
- K A Kegyarikova
- Department of Biochemistry, Lomonosov Moscow State University, Russia
| | | | | |
Collapse
|
31
|
Martinez-Cruz O, Garcia-Carreño F, Robles-Romo A, Varela-Romero A, Muhlia-Almazan A. Catalytic subunits atpα and atpβ from the Pacific white shrimp Litopenaeus vannamei F(O)F (1) ATP-synthase complex: cDNA sequences, phylogenies, and mRNA quantification during hypoxia. J Bioenerg Biomembr 2011; 43:119-33. [PMID: 21384180 DOI: 10.1007/s10863-011-9340-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/08/2010] [Indexed: 01/13/2023]
Abstract
In the mitochondrial F(O)F(1) ATP-synthase/ATPase complex, subunits α and β are part of the extrinsic portion that catalyses ATP synthesis. Since there are no reports about genes and proteins from these subunits in crustaceans, we analyzed the cDNA sequences of both subunits in the whiteleg shrimp Litopenaeus vannamei and their phylogenetic relationships. We also investigated the effect of hypoxia on shrimp by measuring changes in the mRNA amounts of atpα and atpβ. Our results confirmed highly conserved regions for both subunits and underlined unique features among others. The ATPβ deduced protein of shrimp was less conserved in size and sequence than ATPα. The relative mRNA amounts of atpα and atpβ changed in shrimp pleopods; hypoxia at 1.5 mg/L caused an increase in atpβ transcripts and a subsequent decrease when shrimp were re-oxygenated. Results confirm that changes in the mRNAs of the ATP-synthase subunits are part of the mechanisms allowing shrimp to deal with the metabolic adjustment displayed to tolerate hypoxia.
Collapse
Affiliation(s)
- Oliviert Martinez-Cruz
- Molecular Biology Laboratory, Centro de Investigacion en Alimentacion y Desarrollo (CIAD), Hermosillo, Sonora, Mexico
| | | | | | | | | |
Collapse
|
32
|
Ashitate T, Osanai T, Tanaka M, Magota K, Echizen T, Izumiyama K, Yokoyama H, Shibutani S, Hanada K, Tomita H, Okumura K. Overexpression of coupling factor 6 causes cardiac dysfunction under high-salt diet in mice. J Hypertens 2010; 28:2243-51. [DOI: 10.1097/hjh.0b013e32833dfcbe] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Cano-Estrada A, Vázquez-Acevedo M, Villavicencio-Queijeiro A, Figueroa-Martínez F, Miranda-Astudillo H, Cordeiro Y, Mignaco JA, Foguel D, Cardol P, Lapaille M, Remacle C, Wilkens S, González-Halphen D. Subunit–subunit interactions and overall topology of the dimeric mitochondrial ATP synthase of Polytomella sp. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1439-48. [DOI: 10.1016/j.bbabio.2010.02.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 02/15/2010] [Accepted: 02/22/2010] [Indexed: 01/12/2023]
|
34
|
Havlícková V, Kaplanová V, Nůsková H, Drahota Z, Houstek J. Knockdown of F1 epsilon subunit decreases mitochondrial content of ATP synthase and leads to accumulation of subunit c. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:1124-9. [PMID: 20026007 DOI: 10.1016/j.bbabio.2009.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/11/2009] [Accepted: 12/13/2009] [Indexed: 10/20/2022]
Abstract
The subunit epsilon of mitochondrial ATP synthase is the only F1 subunit without a homolog in bacteria and chloroplasts and represents the least characterized F1 subunit of the mammalian enzyme. Silencing of the ATP5E gene in HEK293 cells resulted in downregulation of the activity and content of the mitochondrial ATP synthase complex and of ADP-stimulated respiration to approximately 40% of the control. The decreased content of the epsilon subunit was paralleled by a decrease in the F1 subunits alpha and beta and in the Fo subunits a and d while the content of the subunit c was not affected. The subunit c was present in the full-size ATP synthase complex and in subcomplexes of 200-400 kDa that neither contained the F1 subunits, nor the Fo subunits. The results indicate that the epsilon subunit is essential for the assembly of F1 and plays an important role in the incorporation of the hydrophobic subunit c into the F1-c oligomer rotor of the mitochondrial ATP synthase complex.
Collapse
Affiliation(s)
- Vendula Havlícková
- Department of Bioenergetics, Institute of Physiology and Centre for Applied Genomics, Academy of Sciences of the Czech Republic, 142 20 Prague
| | | | | | | | | |
Collapse
|
35
|
Giorgio V, Bisetto E, Franca R, Harris DA, Passamonti S, Lippe G. The ectopic F(O)F(1) ATP synthase of rat liver is modulated in acute cholestasis by the inhibitor protein IF1. J Bioenerg Biomembr 2010; 42:117-23. [PMID: 20180002 DOI: 10.1007/s10863-010-9270-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 01/12/2010] [Indexed: 02/07/2023]
Abstract
Rat liver plasma membranes contain F(O)F(1) complexes (ecto-F(O)F(1)) displaying a similar molecular weight to the mitochondrial F(O)F(1) ATP synthase, as evidenced by Blue Native PAGE. Their ATPase activity was stably reduced in short-term extra-hepatic cholestasis. Immunoblotting and immunoprecipitation analyses demonstrated that the reduction in activity was not due to a decreased expression of ecto-F(O)F(1) complexes, but to an increased level of an inhibitory protein, ecto-IF(1), bound to ecto-F(O)F(1). Since cholestasis down regulates the hepatic uptake of HDL-cholesterol, and ecto-F(O)F(1) has been shown to mediate SR-BI-independent hepatic uptake of HDL-cholesterol, these findings provide support to the hypothesis that ecto-F(O)F(1) contributes to the fine control of reverse cholesterol transport, in parallel with SR-BI. No activity change of the mitochondrial F(O)F(1) ATP synthase (m-F(O)F(1)), or any variation of its association with m-IF(1) was observed in cholestasis, indicating that ecto-IF(1) expression level is modulated independently from that of ecto-F(O)F(1), m-IF(1) and m-F(O)F(1).
Collapse
Affiliation(s)
- Valentina Giorgio
- Department of Biomedical Sciences and Technologies, University of Udine, p.le Kolbe 4, I-33100, Udine, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Stelzer AC, Frazee RW, Van Huis C, Cleary J, Opipari AW, Glick GD, Al-Hashimi HM. NMR studies of an immunomodulatory benzodiazepine binding to its molecular target on the mitochondrial F1F0-ATPase. Biopolymers 2010; 93:85-92. [DOI: 10.1002/bip.21306] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Kagawa Y. ATP synthase: from single molecule to human bioenergetics. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:667-93. [PMID: 20689227 PMCID: PMC3066536 DOI: 10.2183/pjab.86.667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/30/2010] [Indexed: 05/20/2023]
Abstract
ATP synthase (F(o)F(1)) consists of an ATP-driven motor (F(1)) and a H(+)-driven motor (F(o)), which rotate in opposite directions. F(o)F(1) reconstituted into a lipid membrane is capable of ATP synthesis driven by H(+) flux. As the basic structures of F(1) (alpha(3)beta(3)gammadeltaepsilon) and F(o) (ab(2)c(10)) are ubiquitous, stable thermophilic F(o)F(1) (TF(o)F(1)) has been used to elucidate molecular mechanisms, while human F(1)F(o) (HF(1)F(o)) has been used to study biomedical significance. Among F(1)s, only thermophilic F(1) (TF(1)) can be analyzed simultaneously by reconstitution, crystallography, mutagenesis and nanotechnology for torque-driven ATP synthesis using elastic coupling mechanisms. In contrast to the single operon of TF(o)F(1), HF(o)F(1) is encoded by both nuclear DNA with introns and mitochondrial DNA. The regulatory mechanism, tissue specificity and physiopathology of HF(o)F(1) were elucidated by proteomics, RNA interference, cytoplasts and transgenic mice. The ATP synthesized daily by HF(o)F(1) is in the order of tens of kilograms, and is primarily controlled by the brain in response to fluctuations in activity.
Collapse
|
38
|
Carroll J, Fearnley IM, Wang Q, Walker JE. Measurement of the molecular masses of hydrophilic and hydrophobic subunits of ATP synthase and complex I in a single experiment. Anal Biochem 2009; 395:249-55. [DOI: 10.1016/j.ab.2009.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/05/2009] [Accepted: 08/05/2009] [Indexed: 02/04/2023]
|
39
|
Jaroszewski L, Li Z, Krishna SS, Bakolitsa C, Wooley J, Deacon AM, Wilson IA, Godzik A. Exploration of uncharted regions of the protein universe. PLoS Biol 2009; 7:e1000205. [PMID: 19787035 PMCID: PMC2744874 DOI: 10.1371/journal.pbio.1000205] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 08/19/2009] [Indexed: 12/02/2022] Open
Abstract
Determination of first protein structures, from hundreds of families of unknown function, have shown that divergence, rather than novelty, is the dominant force that shapes the evolution of the protein universe. The genome projects have unearthed an enormous diversity of genes of unknown function that are still awaiting biological and biochemical characterization. These genes, as most others, can be grouped into families based on sequence similarity. The PFAM database currently contains over 2,200 such families, referred to as domains of unknown function (DUF). In a coordinated effort, the four large-scale centers of the NIH Protein Structure Initiative have determined the first three-dimensional structures for more than 250 of these DUF families. Analysis of the first 248 reveals that about two thirds of the DUF families likely represent very divergent branches of already known and well-characterized families, which allows hypotheses to be formulated about their biological function. The remainder can be formally categorized as new folds, although about one third of these show significant substructure similarity to previously characterized folds. These results infer that, despite the enormous increase in the number and the diversity of new genes being uncovered, the fold space of the proteins they encode is gradually becoming saturated. The previously unexplored sectors of the protein universe appear to be primarily shaped by extreme diversification of known protein families, which then enables organisms to evolve new functions and adapt to particular niches and habitats. Notwithstanding, these DUF families still constitute the richest source for discovery of the remaining protein folds and topologies. More than 40% of known proteins lack any annotation within public databases and are usually referred to as hypothetical proteins despite most of them being real and many being evolutionarily conserved and thus expected to play important biological roles. Determination of the three-dimensional structures of representatives of more than 240 families of protein domains of unknown function by the Protein Structure Initiative has provided a unique sample of regions of the protein universe that, until this systematic effort, were completely uncharacterized. Analysis of these structures reveals that most of the 240 families can be considered as remote homologs of already known protein families. Such distant evolutionary links can sometimes be predicted by current state-of-the-art sequence comparison tools, but structural analysis has led to the first hypotheses about biological functions for many of these uncharacterized proteins, and serves as a starting point for experimental studies. The rapid pace of discovery of such relationships appears to suggest that the protein universe is made up of a relatively small and stable number of ‘extended neighborhoods’ that bring together distantly related protein families. Thus, the vast uncharacterized part of protein universe, called by some “the dark matter of protein space”, may consist mainly of highly divergent homologs. Continued structural characterization of these previously under-investigated regions of the protein universe should further help unravel the patterns and rules that led to such divergence in the evolution of protein structure and function.
Collapse
Affiliation(s)
- Lukasz Jaroszewski
- Joint Center for Structural Genomics, Bioinformatics Core, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Zhanwen Li
- Joint Center for Molecular Modeling, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - S. Sri Krishna
- Joint Center for Structural Genomics, Bioinformatics Core, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Constantina Bakolitsa
- Joint Center for Structural Genomics, Bioinformatics Core, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - John Wooley
- Joint Center for Structural Genomics, Bioinformatics Core, Center for Research in Biological Systems, University of California San Diego, La Jolla, California, United States of America
| | - Ashley M. Deacon
- Joint Center for Structural Genomics, Structure Determination Core, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, United States of America
| | - Ian A. Wilson
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, California, United States of America
| | - Adam Godzik
- Joint Center for Structural Genomics, Bioinformatics Core, Burnham Institute for Medical Research, La Jolla, California, United States of America
- Joint Center for Molecular Modeling, Burnham Institute for Medical Research, La Jolla, California, United States of America
- Joint Center for Structural Genomics, Bioinformatics Core, Center for Research in Biological Systems, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Neither helix in the coiled coil region of the axle of F1-ATPase plays a significant role in torque production. Biophys J 2008; 95:4837-44. [PMID: 18708468 PMCID: PMC2576389 DOI: 10.1529/biophysj.108.140061] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
F1-ATPase is an ATP-driven rotary molecular motor in which the central γ-subunit rotates inside the cylinder made of α3β3 subunits. The amino and carboxy termini of the γ-subunit form the axle, an α-helical coiled coil that deeply penetrates the stator cylinder. We previously truncated the axle step by step, starting with the longer carboxy terminus and then cutting both termini at the same levels, resulting in a slower yet considerably powerful rotation. Here we examine the role of each helix by truncating only the carboxy terminus by 25–40 amino-acid residues. Longer truncation impaired the stability of the motor complex severely: 40 deletions failed to yield rotating the complex. Up to 36 deletions, however, the mutants produced an apparent torque at nearly half of the wild-type torque, independent of truncation length. Time-averaged rotary speeds were low because of load-dependent stumbling at 120° intervals, even with saturating ATP. Comparison with our previous work indicates that half the normal torque is produced at the orifice of the stator. The very tip of the carboxy terminus adds the other half, whereas neither helix in the middle of the axle contributes much to torque generation and the rapid progress of catalysis. None of the residues of the entire axle played a specific decisive role in rotation.
Collapse
|
41
|
Rak M, Zeng X, Brière JJ, Tzagoloff A. Assembly of F0 in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:108-16. [PMID: 18672007 DOI: 10.1016/j.bbamcr.2008.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/26/2008] [Accepted: 07/01/2008] [Indexed: 11/30/2022]
Abstract
Respiratory deficient mutants of Saccharomyces cerevisiae have been instrumental in identifying an increasing number of nuclear gene products that promote pre- and post-translational steps of the pathway responsible for biogenesis of the mitochondrial ATP synthase. In this article we have attempted to marshal current information about the functions of such accessory factors and the roles they play in expression and assembly of the mitochondrially encoded subunits of the ATP synthase. We also discuss evidence that the ATP synthase may be built up from three separate modules corresponding to the F1 ATPase, the stator and F0.
Collapse
Affiliation(s)
- Malgorzata Rak
- Department of Biological Sciences, Columbia University New York, NY 10027, USA
| | | | | | | |
Collapse
|
42
|
David P, Baron R. Section Review: Oncologic, Endocrine & Metabolic: The vacuolar H+-ATPase: A potential target for drug development in bone diseases. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.8.725] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Furuike S, Hossain MD, Maki Y, Adachi K, Suzuki T, Kohori A, Itoh H, Yoshida M, Kinosita K. Axle-less F1-ATPase rotates in the correct direction. Science 2008; 319:955-8. [PMID: 18276891 DOI: 10.1126/science.1151343] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
F1-adenosine triphosphatase (ATPase) is an ATP-driven rotary molecular motor in which the central gamma subunit rotates inside a cylinder made of three alpha and three beta subunits alternately arranged. The rotor shaft, an antiparallel alpha-helical coiled coil of the amino and carboxyl termini of the gamma subunit, deeply penetrates the central cavity of the stator cylinder. We truncated the shaft step by step until the remaining rotor head would be outside the cavity and simply sat on the concave entrance of the stator orifice. All truncation mutants rotated in the correct direction, implying torque generation, although the average rotary speeds were low and short mutants exhibited moments of irregular motion. Neither a fixed pivot nor a rigid axle was needed for rotation of F1-ATPase.
Collapse
Affiliation(s)
- Shou Furuike
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lopez-Campistrous A, Hao L, Xiang W, Ton D, Semchuk P, Sander J, Ellison MJ, Fernandez-Patron C. Mitochondrial dysfunction in the hypertensive rat brain: respiratory complexes exhibit assembly defects in hypertension. Hypertension 2008; 51:412-9. [PMID: 18172056 DOI: 10.1161/hypertensionaha.107.102285] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The central nervous system plays a critical role in the normal control of arterial blood pressure and in its elevation in virtually all forms of hypertension. Mitochondrial dysfunction has been increasingly associated with the development of hypertension. Therefore, we examined whether mitochondrial dysfunction occurs in the brain in hypertension and characterized it at the molecular scale. Mitochondria from whole brain and brain stem from 12-week-old spontaneously hypertensive rats with elevated blood pressure (190+/-5 mm Hg) were compared against those from age-matched normotensive (134+/-7 mm Hg) Wistar Kyoto rats (n=4 in each group). Global differential analysis using 2D electrophoresis followed by tandem mass spectrometry-based protein identification suggested a downregulation of enzymes involved in cellular energetics in hypertension. Targeted differential analysis of mitochondrial respiratory complexes using the classical blue-native SDS-PAGE/Western method and a complementary combination of sucrose-gradient ultracentrifugation/tandem mass spectrometry revealed previously unknown assembly defects in complexes I, III, IV, and V in hypertension. Interestingly, targeted examination of the brain stem, a regulator of cardiovascular homeostasis and systemic blood pressure, further showed the occurrence of mitochondrial complex I dysfunction, elevated reactive oxygen species production, decreased ATP synthesis, and impaired respiration in hypertension. Our findings suggest that in already-hypertensive spontaneously hypertensive rats, the brain respiratory complexes exhibit previously unknown assembly defects. These defects impair the function of the mitochondrial respiratory chain. This mitochondrial dysfunction localizes to the brain stem and is, therefore, likely to contribute to the development, as well as to pathophysiological complications, of hypertension.
Collapse
Affiliation(s)
- Ana Lopez-Campistrous
- Department of Biochemistry, Institute for Biomolecular Design, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Devenish RJ, Prescott M, Rodgers AJW. The structure and function of mitochondrial F1F0-ATP synthases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:1-58. [PMID: 18544496 DOI: 10.1016/s1937-6448(08)00601-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We review recent advances in understanding of the structure of the F(1)F(0)-ATP synthase of the mitochondrial inner membrane (mtATPase). A significant achievement has been the determination of the structure of the principal peripheral or stator stalk components bringing us closer to achieving the Holy Grail of a complete 3D structure for the complex. A major focus of the field in recent years has been to understand the physiological significance of dimers or other oligomer forms of mtATPase recoverable from membranes and their relationship to the structure of the cristae of the inner mitochondrial membrane. In addition, the association of mtATPase with other membrane proteins has been described and suggests that further levels of functional organization need to be considered. Many reports in recent years have concerned the location and function of ATP synthase complexes or its component subunits on the external surface of the plasma membrane. We consider whether the evidence supports complete complexes being located on the cell surface, the biogenesis of such complexes, and aspects of function especially related to the structure of mtATPase.
Collapse
Affiliation(s)
- Rodney J Devenish
- Department of Biochemistry and Molecular Biology, and ARC Centre of Excellence in Microbial Structural and Functional Genomics, Monash University, Clayton Campus, Victoria, 3800, Australia
| | | | | |
Collapse
|
46
|
Gledhill JR, Montgomery MG, Leslie AGW, Walker JE. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc Natl Acad Sci U S A 2007; 104:13632-7. [PMID: 17698806 PMCID: PMC1948022 DOI: 10.1073/pnas.0706290104] [Citation(s) in RCA: 291] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Indexed: 12/31/2022] Open
Abstract
The structures of F(1)-ATPase from bovine heart mitochondria inhibited with the dietary phytopolyphenol, resveratrol, and with the related polyphenols quercetin and piceatannol have been determined at 2.3-, 2.4- and 2.7-A resolution, respectively. The inhibitors bind to a common site in the inside surface of an annulus made from loops in the three alpha- and three beta-subunits beneath the "crown" of beta-strands in their N-terminal domains. This region of F(1)-ATPase forms a bearing to allow the rotation of the tip of the gamma-subunit inside the annulus during catalysis. The binding site is a hydrophobic pocket between the C-terminal tip of the gamma-subunit and the beta(TP) subunit, and the inhibitors are bound via H-bonds mostly to their hydroxyl moieties mediated by bound water molecules and by hydrophobic interactions. There are no equivalent sites between the gamma-subunit and either the beta(DP) or the beta(E) subunit. The inhibitors probably prevent both the synthetic and hydrolytic activities of the enzyme by blocking both senses of rotation of the gamma-subunit. The beneficial effects of dietary resveratrol may derive in part by preventing mitochondrial ATP synthesis in tumor cells, thereby inducing apoptosis.
Collapse
Affiliation(s)
- Jonathan R. Gledhill
- *Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom; and
| | - Martin G. Montgomery
- *Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom; and
| | - Andrew G. W. Leslie
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - John E. Walker
- *Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom; and
| |
Collapse
|
47
|
Chang HJ, Lee MR, Hong SH, Yoo BC, Shin YK, Jeong JY, Lim SB, Choi HS, Jeong SY, Park JG. Identification of mitochondrial FoF1-ATP synthase involved in liver metastasis of colorectal cancer. Cancer Sci 2007; 98:1184-91. [PMID: 17559425 PMCID: PMC11159599 DOI: 10.1111/j.1349-7006.2007.00527.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Liver metastasis is a major cause of poor survival of colorectal cancer patients. In order to identify the proteins associated with liver metastasis in colorectal cancer, we carried out two-dimensional gel electrophoresis-based comparative proteomic analysis of normal colon mucosa, primary colon cancer tissue and corresponding metastatic tumor tissue in liver. The proteins identified were further validated by immunohistochemical analysis of 67 quadruplet samples of normal colon primary colorectal cancer and normal liver-synchronous liver metastasis, and 251 colorectal cancers as well as in vitro invasion assay of the human colon cancer cell line, SNU-81. From proteomic assessment, the mitochondrial FoF1-ATP synthase (ATP synthase) alpha-subunit was identified as a protein that is upregulated in liver metastasis compared with the primary tumor. Immunohistochemical analyses confirmed a significant increase in the expression of ATP synthase alpha- and d-subunits in synchronous liver metastasis compared with primary tumor and normal mucosa, respectively. ATP synthase alpha- and d-subunits were overexpressed in 197 (78.5%) and 190 (75.7%), respectively, of the 251 colorectal cancers. The alpha- and d-subunits were significantly associated with liver metastasis (P < 0.05) as well as low histological grade (P < 0.0001). The d-subunit also correlated with venous invasion (P = 0.026) and distant metastasis (P = 0.032). In stage III cancers, d-subunit expression was independently associated with poor survival (P = 0.017). Furthermore, transfection of small interfering RNA targeted to ATP synthase alpha- and d-subunits resulted in decreased in vitro invasiveness of the human colon cancer cell line. Our overall findings demonstrate that increased ATP synthase is associated with liver metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Hee Jin Chang
- Research Institute and Hospital, National Cancer Center, 809 Madu 1-dong, Ilsandong-gu, Goyan-si, Gyeonggi-do 410-769, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kramarova TV, Shabalina IG, Andersson U, Westerberg R, Carlberg I, Houstek J, Nedergaard J, Cannon B. Mitochondrial ATP synthase levels in brown adipose tissue are governed by the c-Fo subunit P1 isoform. FASEB J 2007; 22:55-63. [PMID: 17666453 DOI: 10.1096/fj.07-8581com] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the significance of mitochondrial ATP synthase for mammalian metabolism, the regulation of the amount of ATP synthase in mammalian systems is not understood. As brown adipose tissue mitochondria contain very low amounts of ATP synthase, relative to respiratory chain components, they constitute a physiological system that allows for examination of the control of ATP synthase assembly. To examine the role of the expression of the P1-isoform of the c-Fo subunit in the biogenesis of ATP synthase, we made transgenic mice that express the P1-c subunit isoform under the promoter of the brown adipose tissue-specific protein UCP1. In the resulting UCP1p1 transgenic mice, total P1-c subunit mRNA levels were increased; mRNA levels of other F1Fo-ATPase subunits were unchanged. In isolated brown-fat mitochondria, protein levels of the total c-Fo subunit were increased. Remarkably, protein levels of ATP synthase subunits that are part of the F1-ATPase complex were also increased, as was the entire Complex V. Increased ATPase and ATP synthase activities demonstrated an increased functional activity of the F1Fo-ATPase. Thus, the levels of the c-Fo subunit P1-isoform are crucial for defining the final content of the ATP synthase in brown adipose tissue. The level of c-Fo subunit may be a determining factor for F1Fo-ATPase assembly in all higher eukaryotes.
Collapse
Affiliation(s)
- Tatiana V Kramarova
- The Wenner-Gren Institute, The Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen R, Runswick MJ, Carroll J, Fearnley IM, Walker JE. Association of two proteolipids of unknown function with ATP synthase from bovine heart mitochondria. FEBS Lett 2007; 581:3145-8. [PMID: 17570365 DOI: 10.1016/j.febslet.2007.05.079] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 05/29/2007] [Accepted: 05/30/2007] [Indexed: 11/27/2022]
Abstract
ATP synthase, or F-ATPase, purified from bovine heart mitochondria in the absence of phospholipids is an assembly of 16 different subunits. In the presence of exogenous phospholipids, two additional hydrophobic proteins, a 6.8kDa proteolipid and diabetes associated protein in insulin sensitive tissue (DAPIT), were associated with the purified complex, with DAPIT at sub-stoichiometric levels. Both proteins are conserved in vertebrates and invertebrates, but not in fungi, and prokaryotic F-ATPases do not contain orthologues of either of them. Therefore, their roles are likely to be peripheral to the synthesis of ATP.
Collapse
Affiliation(s)
- Ruming Chen
- Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge, UK
| | | | | | | | | |
Collapse
|
50
|
Carbajo RJ, Kellas FA, Yang JC, Runswick MJ, Montgomery MG, Walker JE, Neuhaus D. How the N-terminal Domain of the OSCP Subunit of Bovine F1Fo-ATP Synthase Interacts with the N-terminal Region of an Alpha Subunit. J Mol Biol 2007; 368:310-8. [PMID: 17355883 DOI: 10.1016/j.jmb.2007.02.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/13/2007] [Accepted: 02/15/2007] [Indexed: 11/23/2022]
Abstract
The peripheral stalk of ATP synthase acts as a stator holding the alpha(3)beta(3) catalytic subcomplex and the membrane subunit a against the torque of the rotating central stalk and attached c ring. In bovine mitochondria, the N-terminal domain of the oligomycin sensitivity conferral protein (OSCP-NT; residues 1-120) anchors one end of the peripheral stalk to the N-terminal tails of one or more alpha subunits of the F(1) subcomplex. Here, we present an NMR characterisation of the interaction between OSCP-NT and a peptide corresponding to residues 1-25 of the alpha-subunit of bovine F(1)-ATPase. The interaction site contains adjoining hydrophobic surfaces of helices 1 and 5 of OSCP-NT binding to hydrophobic side-chains of the alpha-peptide.
Collapse
|