1
|
Chiuppesi F, Salazar MD, Contreras H, Nguyen VH, Martinez J, Park Y, Nguyen J, Kha M, Iniguez A, Zhou Q, Kaltcheva T, Levytskyy R, Ebelt ND, Kang TH, Wu X, Rogers TF, Manuel ER, Shostak Y, Diamond DJ, Wussow F. Development of a multi-antigenic SARS-CoV-2 vaccine candidate using a synthetic poxvirus platform. Nat Commun 2020; 11:6121. [PMID: 33257686 PMCID: PMC7705736 DOI: 10.1038/s41467-020-19819-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Modified Vaccinia Ankara (MVA) is a highly attenuated poxvirus vector that is widely used to develop vaccines for infectious diseases and cancer. We demonstrate the construction of a vaccine platform based on a unique three-plasmid system to efficiently generate recombinant MVA vectors from chemically synthesized DNA. In response to the ongoing global pandemic caused by SARS coronavirus-2 (SARS-CoV-2), we use this vaccine platform to rapidly produce fully synthetic MVA (sMVA) vectors co-expressing SARS-CoV-2 spike and nucleocapsid antigens, two immunodominant antigens implicated in protective immunity. We show that mice immunized with these sMVA vectors develop robust SARS-CoV-2 antigen-specific humoral and cellular immune responses, including potent neutralizing antibodies. These results demonstrate the potential of a vaccine platform based on synthetic DNA to efficiently generate recombinant MVA vectors and to rapidly develop a multi-antigenic poxvirus-based SARS-CoV-2 vaccine candidate.
Collapse
Affiliation(s)
- Flavia Chiuppesi
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Marcela d'Alincourt Salazar
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Heidi Contreras
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Vu H Nguyen
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Joy Martinez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yoonsuh Park
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Jenny Nguyen
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Mindy Kha
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Angelina Iniguez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Qiao Zhou
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Teodora Kaltcheva
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Roman Levytskyy
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Nancy D Ebelt
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Tae Hyuk Kang
- Integrative Genomics Core, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Thomas F Rogers
- Division of Infectious Diseases and Global Public Health, University of California San Diego, School of Medicine, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Scripps Research, Department of Immunology and Microbiology, 10550N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Edwin R Manuel
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Yuriy Shostak
- Research Business Development, City of Hope, Duarte, CA, 91010, USA
| | - Don J Diamond
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| | - Felix Wussow
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
2
|
Chiuppesi F, Salazar MD, Contreras H, Nguyen V, Martinez J, Park S, Nguyen J, Kha M, Iniguez A, Zhou Q, Kaltcheva T, Levytskyy R, Ebelt N, Kang T, Wu X, Rogers T, Manuel E, Shostak Y, Diamond D, Wussow F. Development of a Multi-Antigenic SARS-CoV-2 Vaccine Using a Synthetic Poxvirus Platform. RESEARCH SQUARE 2020:rs.3.rs-40198. [PMID: 32702732 PMCID: PMC7373143 DOI: 10.21203/rs.3.rs-40198/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Modified Vaccinia Ankara (MVA) is a highly attenuated poxvirus vector that is widely used to develop vaccines for infectious diseases and cancer. We developed a novel vaccine platform based on a unique three-plasmid system to efficiently generate recombinant MVA vectors from chemically synthesized DNA. In response to the ongoing global pandemic caused by SARS coronavirus-2 (SARS-CoV-2), we used this novel vaccine platform to rapidly produce fully synthetic MVA (sMVA) vectors co-expressing SARS-CoV-2 spike and nucleocapsid antigens, two immunodominant antigens implicated in protective immunity. Mice immunized with these sMVA vectors developed robust SARS-CoV-2 antigen-specific humoral and cellular immune responses, including potent neutralizing antibodies. These results demonstrate the potential of a novel vaccine platform based on synthetic DNA to efficiently generate recombinant MVA vectors and to rapidly develop a multi-antigenic poxvirus-based SARS-CoV-2 vaccine candidate.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Tae Kang
- Beckman Research Institute of City of Hope
| | - Xiwei Wu
- Beckman Research Institute of City of Hope
| | | | | | | | | | | |
Collapse
|
3
|
Chiuppesi F, Salazar MD, Contreras H, Nguyen VH, Martinez J, Park S, Nguyen J, Kha M, Iniguez A, Zhou Q, Kaltcheva T, Levytskyy R, Ebelt ND, Kang TH, Wu X, Rogers T, Manuel ER, Shostak Y, Diamond DJ, Wussow F. Development of a Synthetic Poxvirus-Based SARS-CoV-2 Vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.01.183236. [PMID: 32637957 PMCID: PMC7337387 DOI: 10.1101/2020.07.01.183236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Modified Vaccinia Ankara (MVA) is a highly attenuated poxvirus vector that is widely used to develop vaccines for infectious diseases and cancer. We developed a novel vaccine platform based on a unique three-plasmid system to efficiently generate recombinant MVA vectors from chemically synthesized DNA. In response to the ongoing global pandemic caused by SARS coronavirus-2 (SARS-CoV-2), we used this novel vaccine platform to rapidly produce fully synthetic MVA (sMVA) vectors co-expressing SARS-CoV-2 spike and nucleocapsid antigens, two immunodominant antigens implicated in protective immunity. Mice immunized with these sMVA vectors developed robust SARS-CoV-2 antigen-specific humoral and cellular immune responses, including potent neutralizing antibodies. These results demonstrate the potential of a novel vaccine platform based on synthetic DNA to efficiently generate recombinant MVA vectors and to rapidly develop a multi-antigenic poxvirus-based SARS-CoV-2 vaccine candidate.
Collapse
Affiliation(s)
- Flavia Chiuppesi
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | | | - Heidi Contreras
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Vu H Nguyen
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Joy Martinez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Soojin Park
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Jenny Nguyen
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Mindy Kha
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Angelina Iniguez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Qiao Zhou
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Teodora Kaltcheva
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Roman Levytskyy
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Nancy D Ebelt
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte CA 91010, USA
| | - Tae Hyuk Kang
- Department of Genomic core facility, Beckman Research Institute of the City of Hope, Duarte CA 91010, USA
| | - Xiwei Wu
- Department of Genomic core facility, Beckman Research Institute of the City of Hope, Duarte CA 91010, USA
| | - Thomas Rogers
- University of California San Diego, School of Medicine, Division of Infectious Diseases and Global Public Health, 9500 Gilman Dr, La Jolla, CA 92093; Scripps Research, Department of Immunology and Microbiology, 10550 N Torrey Pines Rd, La Jolla, CA 92037
| | - Edwin R Manuel
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte CA 91010, USA
| | - Yuriy Shostak
- Research Business Development, City of Hope, Duarte CA 91010, USA
| | - Don J Diamond
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Felix Wussow
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte CA 91010, USA
| |
Collapse
|
4
|
Li H, Hwang Y, Perry K, Bushman F, Van Duyne GD. Structure and Metal Binding Properties of a Poxvirus Resolvase. J Biol Chem 2016; 291:11094-104. [PMID: 27013661 DOI: 10.1074/jbc.m115.709139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Indexed: 11/06/2022] Open
Abstract
Poxviruses replicate their linear genomes by forming concatemers that must be resolved into monomeric units to produce new virions. A viral resolvase cleaves DNA four-way junctions extruded at the concatemer junctions to produce monomeric genomes. This cleavage reaction is required for viral replication, so the resolvase is an attractive target for small molecule inhibitors. To provide a platform for understanding resolvase mechanism and designing inhibitors, we have determined the crystal structure of the canarypox virus (CPV) resolvase. CPV resolvase is dimer of RNase H superfamily domains related to Escherichia coli RuvC, with an active site lined by highly conserved acidic residues that bind metal ions. There are several intriguing structural differences between resolvase and RuvC, and a model of the CPV resolvase·Holliday junction complex provides insights into the consequences of these differences, including a plausible explanation for the weak sequence specificity exhibited by the poxvirus enzymes. The model also explains why the poxvirus resolvases are more promiscuous than RuvC, cleaving a variety of branched, bulged, and flap-containing substrates. Based on the unique active site structure observed for CPV resolvase, we have carried out a series of experiments to test divalent ion usage and preferences. We find that the two resolvase metal binding sites have different preferences for Mg(2+) versus Mn(2+) Optimal resolvase activity is maintained with 5 μm Mn(2+) and 100 μm Mg(2+), concentrations that are well below those required for either metal alone. Together, our findings provide biochemical insights and structural models that will facilitate studying poxvirus replication and the search for efficient poxvirus inhibitors.
Collapse
Affiliation(s)
- Huiguang Li
- From the Department of Biochemistry & Biophysics, the Graduate Group in Biochemistry and Molecular Biophysics, and
| | - Young Hwang
- the Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kay Perry
- the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, and the Argonne National Laboratory, Argonne, Illinois 60439
| | - Frederic Bushman
- the Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,
| | | |
Collapse
|
5
|
Mapping vaccinia virus DNA replication origins at nucleotide level by deep sequencing. Proc Natl Acad Sci U S A 2015; 112:10908-13. [PMID: 26286988 DOI: 10.1073/pnas.1514809112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poxviruses reproduce in the host cytoplasm and encode most or all of the enzymes and factors needed for expression and synthesis of their double-stranded DNA genomes. Nevertheless, the mode of poxvirus DNA replication and the nature and location of the replication origins remain unknown. A current but unsubstantiated model posits only leading strand synthesis starting at a nick near one covalently closed end of the genome and continuing around the other end to generate a concatemer that is subsequently resolved into unit genomes. The existence of specific origins has been questioned because any plasmid can replicate in cells infected by vaccinia virus (VACV), the prototype poxvirus. We applied directional deep sequencing of short single-stranded DNA fragments enriched for RNA-primed nascent strands isolated from the cytoplasm of VACV-infected cells to pinpoint replication origins. The origins were identified as the switching points of the fragment directions, which correspond to the transition from continuous to discontinuous DNA synthesis. Origins containing a prominent initiation point mapped to a sequence within the hairpin loop at one end of the VACV genome and to the same sequence within the concatemeric junction of replication intermediates. These findings support a model for poxvirus genome replication that involves leading and lagging strand synthesis and is consistent with the requirements for primase and ligase activities as well as earlier electron microscopic and biochemical studies implicating a replication origin at the end of the VACV genome.
Collapse
|
6
|
Abstract
Poxviruses are large, enveloped viruses that replicate in the cytoplasm and encode proteins for DNA replication and gene expression. Hairpin ends link the two strands of the linear, double-stranded DNA genome. Viral proteins involved in DNA synthesis include a 117-kDa polymerase, a helicase-primase, a uracil DNA glycosylase, a processivity factor, a single-stranded DNA-binding protein, a protein kinase, and a DNA ligase. A viral FEN1 family protein participates in double-strand break repair. The DNA is replicated as long concatemers that are resolved by a viral Holliday junction endonuclease.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
7
|
Hendrickson RC, Wang C, Hatcher EL, Lefkowitz EJ. Orthopoxvirus genome evolution: the role of gene loss. Viruses 2010; 2:1933-1967. [PMID: 21994715 PMCID: PMC3185746 DOI: 10.3390/v2091933] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/25/2010] [Accepted: 09/01/2010] [Indexed: 12/26/2022] Open
Abstract
Poxviruses are highly successful pathogens, known to infect a variety of hosts. The family Poxviridae includes Variola virus, the causative agent of smallpox, which has been eradicated as a public health threat but could potentially reemerge as a bioterrorist threat. The risk scenario includes other animal poxviruses and genetically engineered manipulations of poxviruses. Studies of orthologous gene sets have established the evolutionary relationships of members within the Poxviridae family. It is not clear, however, how variations between family members arose in the past, an important issue in understanding how these viruses may vary and possibly produce future threats. Using a newly developed poxvirus-specific tool, we predicted accurate gene sets for viruses with completely sequenced genomes in the genus Orthopoxvirus. Employing sensitive sequence comparison techniques together with comparison of syntenic gene maps, we established the relationships between all viral gene sets. These techniques allowed us to unambiguously identify the gene loss/gain events that have occurred over the course of orthopoxvirus evolution. It is clear that for all existing Orthopoxvirus species, no individual species has acquired protein-coding genes unique to that species. All existing species contain genes that are all present in members of the species Cowpox virus and that cowpox virus strains contain every gene present in any other orthopoxvirus strain. These results support a theory of reductive evolution in which the reduction in size of the core gene set of a putative ancestral virus played a critical role in speciation and confining any newly emerging virus species to a particular environmental (host or tissue) niche.
Collapse
Affiliation(s)
- Robert Curtis Hendrickson
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276/11, 845 19th St S, Birmingham, AL 35222, USA; E-Mails: (R.C.H.); (E.L.H.)
| | - Chunlin Wang
- Stanford Genome Technology Center, Stanford University, 855 California Ave, Palo Alto, CA 94304, USA; E-Mail:
| | - Eneida L. Hatcher
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276/11, 845 19th St S, Birmingham, AL 35222, USA; E-Mails: (R.C.H.); (E.L.H.)
| | - Elliot J. Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276/11, 845 19th St S, Birmingham, AL 35222, USA; E-Mails: (R.C.H.); (E.L.H.)
| |
Collapse
|
8
|
The E6 protein from vaccinia virus is required for the formation of immature virions. Virology 2010; 399:201-11. [PMID: 20116821 DOI: 10.1016/j.virol.2010.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/04/2010] [Accepted: 01/07/2010] [Indexed: 11/22/2022]
Abstract
An IPTG-inducible mutant in the E6R gene of vaccinia virus was used to study the role of the E6 virion core protein in viral replication. In the absence of the inducer, the mutant exhibited a normal pattern DNA replication, concatemer resolution and late gene expression, but it showed an inhibition of virion structural protein processing it failed to produce infectious particles. Electron microscopic analysis showed that in the absence of IPTG viral morphogenesis was arrested before IV formation: crescents, aberrant or empty IV-like structures, and large aggregated virosomes were observed throughout the cytoplasm. The addition of IPTG to release a 12-h block showed that virus infectious particles could be formed in the absence of de novo DNA synthesis. Our observations show that in the absence of E6 the association of viroplasm with viral membrane crescents is impaired.
Collapse
|
9
|
Cidofovir inhibits genome encapsidation and affects morphogenesis during the replication of vaccinia virus. J Virol 2009; 83:11477-90. [PMID: 19726515 DOI: 10.1128/jvi.01061-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cidofovir (CDV) is one of the most effective antiorthopoxvirus drugs, and it is widely accepted that viral DNA replication is the main target of its activity. In the present study, we report a detailed analysis of CDV effects on the replicative cycles of distinct vaccinia virus (VACV) strains: Cantagalo virus, VACV-IOC, and VACV-WR. We show that despite the approximately 90% inhibition of production of virus progeny, virus DNA accumulation was reduced only 30%, and late gene expression and genome resolution were unaltered. The level of proteolytic cleavage of the major core proteins was diminished in CDV-treated cells. Electron microscopic analysis of virus-infected cells in the presence of CDV revealed reductions as great as 3.5-fold in the number of mature forms of virus particles, along with a 3.2-fold increase in the number of spherical immature particles. A detailed analysis of purified virions recovered from CDV-treated cells demonstrated the accumulation of unprocessed p4a and p4b and nearly 67% inhibition of DNA encapsidation. However, these effects of CDV on virus morphogenesis resulted from a primary effect on virus DNA synthesis, which led to later defects in genome encapsidation and virus assembly. Analysis of virus DNA by atomic force microscopy revealed that viral cytoplasmic DNA synthesized in the presence of CDV had an altered structure, forming aggregates with increased strand overlapping not observed in the absence of the drug. These aberrant DNA aggregations were not encapsidated into virus particles.
Collapse
|
10
|
Abstract
Poxviruses are large enveloped viruses that replicate in the cytoplasm of vertebrate or invertebrate cells. At least six virus-encoded proteins are required for synthesis and processing of the double-stranded DNA genome of vaccinia virus, the prototype member of the family. One of these proteins, D5, is an NTPase that contains an N-terminal archaeoeukaryotic primase domain and a C-terminal superfamily III helicase domain. Here we report that individual conserved aspartic acid residues in the predicted primase active site were required for in vivo complementation of infectious virus formation as well as genome and plasmid replication. Furthermore, purified recombinant D5 protein synthesized oligoribonucleotides in vitro. Incorporation of label from [alpha-(32)P]CTP or [alpha-(32)P]UTP into a RNase-sensitive and DNase-resistant product was demonstrated by using single-stranded circular bacteriophage DNA templates and depended on ATP or GTP and a divalent cation. Mutagenesis studies showed that the primase and NTPase activities of the recombinant D5 protein could be independently inactivated. Highly conserved orthologs of D5 are present in all poxviruses that have been sequenced, and more diverged orthologs are found in members of all other families of nucleocytoplasmic large DNA viruses. These viral primases may have roles in initiation of DNA replication or lagging-strand synthesis and represent potential therapeutic targets.
Collapse
|
11
|
Culyba MJ, Minkah N, Hwang Y, Benhamou OMJ, Bushman FD. DNA branch nuclease activity of vaccinia A22 resolvase. J Biol Chem 2007; 282:34644-52. [PMID: 17890227 DOI: 10.1074/jbc.m705322200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication, recombination, and repair can result in formation of diverse branched DNA structures. Many large DNA viruses are known to encode DNA branch nucleases, but several of the expected activities have not previously been found among poxvirus enzymes. Vaccinia encodes an enzyme, A22 resolvase, which is known to be active on four-stranded DNA junctions (Holliday junctions) or Holliday junction-like structures containing three of the four strands. Here we report that A22 resolvase in fact has a much wider substrate specificity than previously appreciated. A22 resolvase cleaves Y-junctions, single-stranded DNA flaps, transitions from double strands to unpaired single strands ("splayed duplexes"), and DNA bulges in vitro. We also report site-directed mutagenesis studies of candidate active site residues. The results identify the likely active site and support a model in which a single active site is responsible for cleavage on Holliday junctions and splayed duplexes. Lastly, we describe possible roles for the A22 resolvase DNA-branch nuclease activity in DNA replication and repair.
Collapse
Affiliation(s)
- Matthew J Culyba
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076, USA
| | | | | | | | | |
Collapse
|
12
|
Culyba MJ, Harrison JE, Hwang Y, Bushman FD. DNA cleavage by the A22R resolvase of vaccinia virus. Virology 2006; 352:466-76. [PMID: 16781759 DOI: 10.1016/j.virol.2006.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 04/21/2006] [Accepted: 05/06/2006] [Indexed: 11/16/2022]
Abstract
Vaccinia virus encodes an enzyme, A22R, required during DNA replication for cleaving viral DNA concatamers to yield unit-length viral genomes. The concatamer junctions contain inverted repeat sequences that can be extruded as cruciforms, yielding Holliday junctions. Previous work indicated that A22R can cleave Holliday junctions in vitro. To investigate the mechanism of action of A22R, we have optimized reaction conditions and characterized the sequence specificity of cleavage. We found that addition of 20% dimethylsulfoxide boosted product formation six-fold, resulting in improved sensitivity of cleavage assays. To analyze cleavage specificity, we took advantage of mobile Holliday junctions, in which branch migration allowed sampling of many DNA sequences. We found that A22R weakly favors cleavage at the sequence 5'-(G/C) downward arrow(A/T)-3', and so is much less sequence specific than its Escherichia coli relative, RuvC. Analysis of the reaction products revealed that A22R cleaves to leave a 3' hydroxyl at the cleaved phosphodiester bond.
Collapse
Affiliation(s)
- Matthew J Culyba
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | | | | | | |
Collapse
|
13
|
Eckert D, Williams O, Meseda CA, Merchlinsky M. Vaccinia virus nicking-joining enzyme is encoded by K4L (VACWR035). J Virol 2006; 79:15084-90. [PMID: 16306579 PMCID: PMC1316005 DOI: 10.1128/jvi.79.24.15084-15090.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus encodes an enzyme with DNA modifying activity that cleaves and inefficiently cross-links cruciformic DNA. This enzyme is contained within the virion, expressed at late times postinfection, and processes DNA in an energy-independent, Mg2+ ion-independent manner. Viral nuclease activity was measured in extracts from cells infected with well-defined viral mutants. Since some viral extracts lacked nuclease activity, the gene encoding the activity was postulated to be one of the open reading frames absent in the viruses lacking activity. Inducible expression of each candidate open reading frame revealed that only the gene VACWR035, or K4L, was required for nuclease activity. A recombinant virus missing only the open reading frame for K4L lacked nuclease activity. Extracts from a recombinant virus expressing K4L linked to a FLAG polypeptide were able to cleave and cross-link cruciformic DNA. There were no significant differences between the virus lacking K4L and wild-type vaccinia virus WR with respect to infectivity, growth characteristics, or processing of viral replicative intermediate DNA, including both telomeric and cross-linked forms. Purification of the K4L FLAG polypeptide expressed in bacteria yielded protein containing nicking-joining activity, implying that K4L is the only vaccinia virus protein required for the nicking-joining enzymatic activity.
Collapse
Affiliation(s)
- Dawn Eckert
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, HFM-457, 1401 Rockville Pike, Rockville, MD 20852-1448, USA
| | | | | | | |
Collapse
|
14
|
Garcia AD, Otero J, Lebowitz J, Schuck P, Moss B. Quaternary structure and cleavage specificity of a poxvirus holliday junction resolvase. J Biol Chem 2006; 281:11618-26. [PMID: 16513635 DOI: 10.1074/jbc.m600182200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, poxviruses were found to encode a protein with signature motifs present in the RuvC family of Holliday junction (HJ) resolvases, which have a key role in homologous recombination in bacteria. The vaccinia virus homolog A22 specifically cleaved synthetic HJ DNA in vitro and was required for the in vivo resolution of viral DNA concatemers into unit-length genomes with hairpin telomeres. It was of interest to further characterize a poxvirus resolvase in view of the low sequence similarity with RuvC, the absence of virus-encoded RuvA and RuvB to interact with, and the different functions of the viral and bacterial resolvases. Because purified A22 aggregated severely, studies were carried out with maltose-binding protein fused to A22 as well as to RuvC. Using gel filtration, chemical cross-linking, analytical ultracentrifugation, and light scattering, we demonstrated that A22 and RuvC are homodimers in solution. Furthermore, the dimeric form of the resolvase associated with HJ DNA, presumably facilitating the symmetrical cleavage of such structures. Like RuvC, A22 symmetrically cleaved fixed HJ junctions as well as junctions allowing strand mobility. Unlike RuvC and other members of the family, however, the poxvirus enzyme exhibited little cleavage sequence specificity. Structural and enzymatic similarities of poxvirus, bacterial, and fungal mitochondrial HJ resolvases are consistent with their predicted evolutionary relationship based on sequence analysis. The absence of a homologous resolvase in mammalian cells makes these microbial enzymes excellent potential therapeutic targets.
Collapse
Affiliation(s)
- Alonzo D Garcia
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
15
|
Kato SEM, Strahl AL, Moussatche N, Condit RC. Temperature-sensitive mutants in the vaccinia virus 4b virion structural protein assemble malformed, transcriptionally inactive intracellular mature virions. Virology 2005; 330:127-46. [PMID: 15527840 DOI: 10.1016/j.virol.2004.08.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 07/30/2004] [Accepted: 08/20/2004] [Indexed: 11/23/2022]
Abstract
Two noncomplementing vaccinia virus temperature-sensitive mutants, Cts8 and Cts26, were mapped to the A3L gene, which encodes the major virion structural protein, 4b. The two ts mutants display normal patterns of gene expression, DNA replication, telomere resolution, and protein processing during infection. Morphogenesis during mutant infections is normal through formation of immature virions with nucleoids (IVN) but appears to be defective in the transition from IVN to intracellular mature virus (IMV). In mutant infections, aberrant particles that have the appearance of malformed IMV accumulate. The mutant particles are wrapped in Golgi-derived membranes and exported from cells. Purified mutant particles are indistinguishable from wt particles in protein and DNA composition; however, they are defective in a permeabilized-virion-directed transcription reaction despite containing significant (Cts8) or even normal (Cts26) levels of specific transcription enzymes. These results indicate that the 4b protein is required for proper metamorphosis of IMV from IVN and that proper organization of the IMV structure is required to produce a transcriptionally active virion particle.
Collapse
Affiliation(s)
- Sayuri E M Kato
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
16
|
da Fonseca FG, Weisberg AS, Caeiro MF, Moss B. Vaccinia virus mutants with alanine substitutions in the conserved G5R gene fail to initiate morphogenesis at the nonpermissive temperature. J Virol 2004; 78:10238-48. [PMID: 15367589 PMCID: PMC516429 DOI: 10.1128/jvi.78.19.10238-10248.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The initial characterization of the product of the vaccinia virus G5R gene, which is conserved in all poxviruses sequenced to date, is described. The G5 protein was detected in the core fraction of purified virions, and transcription and translation of the G5R open reading frame occurred early in infection, independently of DNA replication. Attempts to delete the G5R gene and isolate a replication-competent virus were unsuccessful, suggesting that G5R encodes an essential function. We engineered vaccinia virus mutants with clusters of charged amino acids changed to alanines and determined that several were unable to replicate at 40 degrees C but grew well at 37 degrees C. At the nonpermissive temperature, viral gene expression and DNA replication and processing were unperturbed. However, tyrosine phosphorylation and proteolytic cleavage of the A17 membrane protein and proteolytic cleavage of core proteins were inhibited at 40 degrees C, suggesting an assembly defect. The cytoplasm of cells that had been infected at the nonpermissive temperature contained large granular areas devoid of cellular organelles or virus structures except for occasional short crescent-shaped membranes and electron-dense lacy structures. The temperature-sensitive phenotype of the G5R mutants closely resembled the phenotypes of vaccinia virus mutants carrying conditionally lethal F10R protein kinase and H5R mutations. F10, although required for phosphorylation of A17 and viral membrane formation, was synthesized by the G5R mutants under nonpermissive conditions. An intriguing possibility is that G5 participates in the formation of viral membranes, a poorly understood event in poxvirus assembly.
Collapse
Affiliation(s)
- Flavio G da Fonseca
- Laboratory of Viral Diseases, National Institutes of Health, 4 Center Dr., MSC 0445, Bethesda, MD 20892-0445, USA
| | | | | | | |
Collapse
|
17
|
Unger B, Traktman P. Vaccinia virus morphogenesis: a13 phosphoprotein is required for assembly of mature virions. J Virol 2004; 78:8885-901. [PMID: 15280497 PMCID: PMC479082 DOI: 10.1128/jvi.78.16.8885-8901.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 70-amino-acid A13L protein is a component of the vaccinia virus membrane. We demonstrate here that the protein is expressed at late times of infection, undergoes phosphorylation at a serine residue(s), and becomes encapsidated in a monomeric form. Phosphorylation is dependent on Ser40, which lies within the proline-rich motif SPPP. Because phosphorylation of the A13 protein is only minimally affected by disruption of the viral F10 kinase or H1 phosphatase, a cellular kinase is likely to be involved. We generated an inducible recombinant in which A13 protein expression is dependent upon the inclusion of tetracycline in the culture medium. Repression of the A13L protein spares the biochemical progression of the viral life cycle but arrests virion morphogenesis. Virion assembly progresses through the formation of immature virions (IVs); however, these virions do not acquire nucleoids, and DNA crystalloids accumulate in the cytoplasm. Further development into intracellular mature virions is blocked, causing a 1,000-fold decrease in the infectious virus yield relative to that obtained in the presence of the inducer. We also determined that the temperature-sensitive phenotype of the viral mutant Cts40 is due to a nucleotide transition within the A13L gene that causes a Thr(48)-->Ile substitution. This substitution disrupts the function of the A13 protein but does not cause thermolability of the protein; at the nonpermissive temperature, virion morphogenesis arrests at the stage of IV formation. The A13L protein, therefore, is part of a newly recognized group of membrane proteins that are dispensable for the early biogenesis of the virion membrane but are essential for virion maturation.
Collapse
Affiliation(s)
- Bethany Unger
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Rd., BSB-273, Milwaukee, WI 53226, USA
| | | |
Collapse
|
18
|
Grubisha O, Traktman P. Genetic analysis of the vaccinia virus I6 telomere-binding protein uncovers a key role in genome encapsidation. J Virol 2003; 77:10929-42. [PMID: 14512543 PMCID: PMC225002 DOI: 10.1128/jvi.77.20.10929-10942.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The linear, double-stranded DNA genome of vaccinia virus contains covalently closed hairpin termini. These hairpin termini comprise a terminal loop and an A+T-rich duplex stem that has 12 extrahelical bases. DeMasi et al. have shown previously that proteins present in infected cells and in virions form distinct complexes with the telomeric hairpins and that these interactions require the extrahelical bases. The vaccinia virus I6 protein was identified as the protein showing the greatest specificity and affinity for interaction with the viral hairpins (J. DeMasi, S. Du, D. Lennon, and P. Traktman, J. Virol. 75:10090-10105, 2001). To gain insight into the role of I6 in vivo, we generated eight recombinant viruses bearing altered alleles of I6 in which clusters of charged amino acids were changed to alanine residues. One allele (temperature-sensitive I6-12 [tsI6-12]) conferred a tight ts phenotype and was used to examine the stage(s) of the viral life cycle that was affected at the nonpermissive temperature. Gene expression, DNA replication, and genome resolution proceeded normally in this mutant. However, proteolytic processing of structural proteins, which accompanies virus maturation, was incomplete. Electron microscopic studies confirmed a severe block in morphogenesis in which immature, but no mature, virions were observed. Instead, aberrant spherical virions and large crystalloids were seen. When purified, these aberrant virions were found to have normal protein content but to be devoid of viral DNA. We propose that the binding of I6 to viral telomeres directs genome encapsidation into the virus particle.
Collapse
Affiliation(s)
- Olivera Grubisha
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
19
|
Domi A, Moss B. Cloning the vaccinia virus genome as a bacterial artificial chromosome in Escherichia coli and recovery of infectious virus in mammalian cells. Proc Natl Acad Sci U S A 2002; 99:12415-20. [PMID: 12196634 PMCID: PMC129459 DOI: 10.1073/pnas.192420599] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to manipulate the vaccinia virus (VAC) genome, as a plasmid in bacteria, would greatly facilitate genetic studies and provide a powerful alternative method of making recombinant viruses. VAC, like other poxviruses, has a linear, double-stranded DNA genome with covalently closed hairpin ends that are resolved from transient head-to-head and tail-to-tail concatemers during replication in the cytoplasm of infected cells. Our strategy to construct a nearly 200,000-bp VAC-bacterial artificial chromosome (BAC) was based on circularization of head-to-tail concatemers of VAC DNA. Cells were infected with a recombinant VAC containing inserted sequences for plasmid replication and maintenance in Escherichia coli; DNA concatemer resolution was inhibited leading to formation and accumulation of head-to-tail concatemers, in addition to the usual head-to-head and tail-to-tail forms; the concatemers were circularized by homologous or Cre-loxP-mediated recombination; and E. coli were transformed with DNA from the infected cell lysates. Stable plasmids containing the entire VAC genome, with an intact concatemer junction sequence, were identified. Rescue of infectious VAC was consistently achieved by transfecting the VAC-BAC plasmids into mammalian cells that were infected with a helper nonreplicating fowlpox virus.
Collapse
Affiliation(s)
- Arban Domi
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0445, USA
| | | |
Collapse
|
20
|
Damaso CRA, Oliveira MF, Massarani SM, Moussatché N. Azathioprine inhibits vaccinia virus replication in both BSC-40 and RAG cell lines acting on different stages of virus cycle. Virology 2002; 300:79-91. [PMID: 12202208 DOI: 10.1006/viro.2002.1534] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the present study we demonstrate that azathioprine (AZA) inhibits vaccinia virus (VV) replication in both BSC-40 and RAG cell lines, acting on different stages of virus cycle. In BSC-40 cells, early protein synthesis was not significantly affected, but late gene expression was severely impaired. In RAG cells all stages of gene expression were completed during synchronous infection in the presence of the drug. The onset of DNA replication was not affected in RAG cells, but a severe inhibition was observed in BSC-40 cells. Electron microscopic analysis of VV-infected RAG cells treated with AZA revealed brick-shaped particles presenting abnormal definition of the internal structure. Purified virions from AZA-treated RAG cells presented several modifications of the protein content, a lesser amount of DNA, and a lower PFU:particle ratio. Our results suggest that in VV-infected RAG cells AZA interfered with virus morphogenesis, whereas in BSC-40 cells the replicative cycle was inhibited at the DNA replication stage.
Collapse
Affiliation(s)
- Clarissa R A Damaso
- Laboratório de Biologia Molecular de Vi;rus, Instituto de Biofi;sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
21
|
DeMasi J, Du S, Lennon D, Traktman P. Vaccinia virus telomeres: interaction with the viral I1, I6, and K4 proteins. J Virol 2001; 75:10090-105. [PMID: 11581377 PMCID: PMC114583 DOI: 10.1128/jvi.75.21.10090-10105.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 192-kb linear DNA genome of vaccinia virus has covalently closed hairpin termini that are extremely AT rich and contain 12 extrahelical bases. Vaccinia virus telomeres have previously been implicated in the initiation of viral genome replication; therefore, we sought to determine whether the telomeres form specific protein-DNA complexes. Using an electrophoretic mobility shift assay, we found that extracts prepared from virions and from the cytoplasm of infected cells contain telomere binding activity. Four shifted complexes were detected using hairpin probes representing the viral termini, two of which represent an interaction with the "flip" isoform and two with the "flop" isoform. All of the specificity for protein binding lies within the terminal 65-bp hairpin sequence. Viral hairpins lacking extrahelical bases cannot form the shifted complexes, suggesting that DNA structure is crucial for complex formation. Using an affinity purification protocol, we purified the proteins responsible for hairpin-protein complex formation. The vaccinia virus I1 protein was identified as being necessary and sufficient for the formation of the upper doublet of shifted complexes, and the vaccinia virus I6 protein was shown to form the lower doublet of shifted complexes. Competition and challenge experiments confirmed that the previously uncharacterized I6 protein binds tightly and with great specificity to the hairpin form of the viral telomeric sequence. Incubation of viral hairpins with extracts from infected cells also generates a smaller DNA fragment that is likely to reflect specific nicking at the apex of the hairpin; we show that the vaccinia virus K4 protein is necessary and sufficient for this reaction. We hypothesize that these telomere binding proteins may play a role in the initiation of vaccinia virus genome replication and/or genome encapsidation.
Collapse
Affiliation(s)
- J DeMasi
- Program in Molecular Biology, Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
22
|
Garcia AD, Moss B. Repression of vaccinia virus Holliday junction resolvase inhibits processing of viral DNA into unit-length genomes. J Virol 2001; 75:6460-71. [PMID: 11413313 PMCID: PMC114369 DOI: 10.1128/jvi.75.14.6460-6471.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus A22R gene encodes a protein that is homologous to the bacterial enzyme RuvC and specifically cleaves and resolves four-way DNA Holliday junctions into linear duplex products. To investigate the role of the vaccinia virus Holliday junction resolvase during an infection, we constructed two recombinant viruses: vA22-HA, which has a short C-terminal epitope tag appended to the A22R open reading frame, and vA22i, in which the original A22R gene is deleted and replaced by an inducible copy. Polyacrylamide gel electrophoresis and Western blot analysis of extracts and purified virions from cells infected with vA22-HA revealed that the resolvase was expressed after the onset of DNA replication and incorporated into virion cores. vA22i exhibited a conditional replication defect. In the absence of an inducer, (i) viral protein synthesis was unaffected, (ii) late-stage viral DNA replication was reduced, (iii) most of the newly synthesized viral DNA remained in a branched or concatemeric form that caused it to be trapped at the application site during pulsed-field gel electrophoresis, (iv) cleavage of concatemer junctions was inhibited, and (v) virion morphogenesis was arrested at an immature stage. These data indicated multiple roles for the vaccinia virus Holliday junction resolvase in the replication and processing of viral DNA into unit-length genomes.
Collapse
Affiliation(s)
- A D Garcia
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Dr., MSC 0445, Bethesda, MD 20892-0445, USA
| | | |
Collapse
|
23
|
Garcia AD, Aravind L, Koonin EV, Moss B. Bacterial-type DNA holliday junction resolvases in eukaryotic viruses. Proc Natl Acad Sci U S A 2000; 97:8926-31. [PMID: 10890916 PMCID: PMC16798 DOI: 10.1073/pnas.150238697] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homologous DNA recombination promotes genetic diversity and the maintenance of genome integrity, yet no enzymes with specificity for the Holliday junction (HJ)-a key DNA recombination intermediate-have been purified and characterized from metazoa or their viruses. Here we identify critical structural elements of RuvC, a bacterial HJ resolvase, in uncharacterized open reading frames from poxviruses and an iridovirus. The putative vaccinia virus resolvase was expressed as a recombinant protein, affinity purified, and shown to specifically bind and cleave a synthetic HJ to yield nicked duplex molecules. Mutation of either of two conserved acidic amino acids abrogated the catalytic activity of the A22R protein without affecting HJ binding. The presence of bacterial-type enzymes in metazoan viruses raises evolutionary questions.
Collapse
Affiliation(s)
- A D Garcia
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
24
|
Williams O, Wolffe EJ, Weisberg AS, Merchlinsky M. Vaccinia virus WR gene A5L is required for morphogenesis of mature virions. J Virol 1999; 73:4590-9. [PMID: 10233918 PMCID: PMC112500 DOI: 10.1128/jvi.73.6.4590-4599.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus WR A5L open reading frame (corresponding to open reading frame A4L in vaccinia virus Copenhagen) encodes an immunodominant late protein found in the core of the vaccinia virion. To investigate the role of this protein in vaccinia virus replication, we have constructed a recombinant virus, vA5Li, in which the endogenous gene has been deleted and an inducible copy of the A5 gene dependent on isopropyl-beta-D-thiogalactopyranoside (IPTG) for expression has been inserted into the genome. In the absence of inducer, the yield of infectious virus was dramatically reduced. However, DNA synthesis and processing, viral protein expression (except for A5), and early stages in virion formation were indistinguishable from the analogous steps in a normal infection. Electron microscopy revealed that the major vaccinia virus structural form present in cells infected with vA5Li in the absence of inducer was immature virions. Viral particles were purified from vA5Li-infected cells in the presence and absence of inducer. Both particles contained viral DNA and the full complement of viral proteins, except for A5, which was missing from particles prepared in the absence of inducer. The particles prepared in the presence of IPTG were more infectious than those prepared in its absence. The A5 protein appears to be required for the immature virion to form the brick-shaped intracellular mature virion.
Collapse
Affiliation(s)
- O Williams
- Laboratory of Viral Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland 20852, USA
| | | | | | | |
Collapse
|
25
|
Palaniyar N, Gerasimopoulos E, Evans DH. Shope fibroma virus DNA topoisomerase catalyses holliday junction resolution and hairpin formation in vitro. J Mol Biol 1999; 287:9-20. [PMID: 10074403 DOI: 10.1006/jmbi.1999.2586] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The telomeres of poxviral chromosomes comprise covalently closed hairpin structures bearing mismatched bases. These hairpins are formed as concatemeric replication intermediates and are processed into mature, unit-length genomes. The structural transitions and enzymes involved in telomere resolution are poorly understood. Here we show that the type I topoisomerase of Shope fibroma virus (SFV) can promote a recombination reaction which converts cloned SFV replication intermediates into hairpin-ended molecules resembling mature poxviral telomeres. Recombinant SFV topoisomerase linearised a palindromic plasmid bearing 1.5 kb of DNA encoding the SFV concatemer junction, at a site near the centre of inverted-repeat symmetry. Most of these linear reaction products bore hairpin tips as judged by denaturing gel electrophoresis. The resolution reaction required palindromic SFV DNA sequences and was inhibited by compounds which block branch migration (MgCl2) or poxviral topoisomerases. The resolution reaction was also slow, needed substantial quantities of topoisomerase, and required that the palindrome be extruded in a cruciform configuration. DNA cleavage experiments identified a pair of suitably oriented topoisomerase recognition sites, 90 bases from the centre of the cloned SFV terminal inverted repeat, which may mark the resolution site. These data suggest a resolution scheme in which branch migration of a Holliday junction through a site occupied by covalently bound topoisomerase molecules, could lead to telomere resolution.
Collapse
Affiliation(s)
- N Palaniyar
- The Department of Molecular Biology & Genetics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | |
Collapse
|
26
|
Cue D, Feiss M. Termination of packaging of the bacteriophage lambda chromosome: cosQ is required for nicking the bottom strand of cosN. J Mol Biol 1998; 280:11-29. [PMID: 9653028 DOI: 10.1006/jmbi.1998.1841] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Termination of packaging of the lambda chromosome involves completion of translocation of the DNA into the head shell, and conversion of the translocation complex into a cleavage complex. The cleavage reaction introduces staggered nicks into the downstream cosN to generate the right cohesive end of the chromosome. cosQ, a site adjacent to cosN, was found to be required for nicking the bottom strand of cosN; bottom strand nicking was also sequence-specific for bps at the nick site. Nicking of the top strand of cosN (cosNL) was stimulated by cosQ, but fidelity and efficiency of cosNL nicking were largely dictated by other cos subsites (i.e. cosB and I2). Aberrant top-strand cleavage within cosQ was observed in the absence of I2, and nicking at a site 8 nt 5' to the normal cosNL nick site occurred in the absence of cosB. The presence of cosQ was found to be insufficient to arrest DNA translocation in vivo, indicating that cosQ, per se, is not a packaging stop signal. A model is presented in which the role of cosQ is to depolarize the asymmetric arrangement of terminase protomers in the translocation complex so that protomers are configured to match the 2-fold rotational symmetry of cosN.
Collapse
Affiliation(s)
- D Cue
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
27
|
Klemperer N, Ward J, Evans E, Traktman P. The vaccinia virus I1 protein is essential for the assembly of mature virions. J Virol 1997; 71:9285-94. [PMID: 9371587 PMCID: PMC230231 DOI: 10.1128/jvi.71.12.9285-9294.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The product of the vaccinia virus I1 gene was characterized biochemically and genetically. This 35-kDa protein is conserved in diverse members of the poxvirus family but shows no homology to nonviral proteins. We show that recombinant I1 binds to both single-stranded and double-stranded DNA in a sequence-nonspecific manner in an electrophoretic mobility shift assay. The protein is expressed at late times during infection, and approximately 700 copies are encapsidated within the virion core. To determine the role of the I1 protein during the viral life cycle, a inducible viral recombinant in which the I1 gene was placed under the regulation of the Escherichia coli lac operator/repressor was constructed. In the absence of isopropyl-beta-D-thiogalactopyranoside, plaque formation was abolished and yields of infectious, intracellular virus were dramatically reduced. Although all phases of gene expression and DNA replication proceeded normally during nonpermissive infections, no mature virions were produced. Electron microscopic analysis confirmed the absence of mature virion assembly but revealed that apparently normal immature virions accumulated. Thus, I1 is an encapsidated DNA-binding protein required for the latest stages of vaccinia virion morphogenesis.
Collapse
Affiliation(s)
- N Klemperer
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | |
Collapse
|
28
|
Sekiguchi J, Shuman S. Novobiocin inhibits vaccinia virus replication by blocking virus assembly. Virology 1997; 235:129-37. [PMID: 9300044 DOI: 10.1006/viro.1997.8684] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Novobiocin inhibits the replication of vaccinia virus in cultured BSC40 cells. All classes of viral proteins were synthesized during synchronous infection in the presence of drug. The onset of DNA replication was delayed slightly, yet the extent of DNA replication in the presence of novobiocin was comparable to that of a control infection. A delay in the temporal transition to late viral protein synthesis was in keeping with the effects on DNA replication. Although the precursor forms of the major viral structural proteins were synthesized normally at late times, the proteolytic processing of these polypeptides was inhibited, which suggested an impediment to virus assembly. Electron microscopy revealed that novobiocin blocked virus morphogenesis at an early stage. Conversion of the concatemeric DNA replication intermediates into hairpin telomeres occurred in the presence of novobiocin, confirming that telomere resolution was not coupled to virus assembly. Novobiocin is the latest addition to a class of antipoxviral agents, which includes rifampin and IMCBH, that arrest morphogenesis.
Collapse
Affiliation(s)
- J Sekiguchi
- Program in Molecular Biology, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
29
|
Zhang Y, Ahn BY, Moss B. Targeting of a multicomponent transcription apparatus into assembling vaccinia virus particles requires RAP94, an RNA polymerase-associated protein. J Virol 1994; 68:1360-70. [PMID: 8107201 PMCID: PMC236590 DOI: 10.1128/jvi.68.3.1360-1370.1994] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
When expression of the vaccinia virus gene encoding RAP94 (a protein that is associated with the viral multisubunit RNA polymerase and confers transcriptional specificity for early promoters) was repressed, the infectious virus yield was reduced by more than 99%. Nevertheless, intermediate- and late-stage viral gene expression and formation of ultrastructurally mature, membrane-enveloped virions occurred under the nonpermissive conditions. The RAP94-deficient particles contained the viral genome, structural proteins, early transcription factor, and certain enzymes but, unlike normal virions, had low or undetectable amounts of the viral RNA polymerase, capping enzyme/termination factor, poly(A) polymerase, DNA-dependent ATPase, RNA helicase, and topoisomerase. The presence of these viral enzymes in the cytoplasm indicated that RAP94 is required for targeting a complex of functionally related proteins involved in the biosynthesis of mRNA.
Collapse
Affiliation(s)
- Y Zhang
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | | | |
Collapse
|
30
|
Stuart D, Ellison K, Graham K, McFadden G. In vitro resolution of poxvirus replicative intermediates into linear minichromosomes with hairpin termini by a virally induced Holliday junction endonuclease. J Virol 1992; 66:1551-63. [PMID: 1738203 PMCID: PMC240881 DOI: 10.1128/jvi.66.3.1551-1563.1992] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Available evidence suggests that one or more late viral gene products are involved in processing poxvirus replicative intermediates into mature progeny hairpin-terminated genomes. Cloned versions of the Shope fibroma virus (SFV) replicated telomere in the inverted repeat configuration were used as substrates to assay lysates from poxvirus-infected cells for protein fractions that participate in the resolution of the circular substrate plasmid into a linear minichromosome with viral hairpin termini. An activity in a crude protein fraction obtained from vaccinia virus-infected cells at late times during the replicative cycle was capable of accurately resolving all poxviral inverted repeat replicative intermediates tested. The resolved linear products are identical to the products of in vivo resolution and possessed symmetrical nicks which mapped at the borders of the inverted repeat sequence. Strand-specific nicks were also identified, which mapped within the telomere resolution target sequence known to be required for telomere resolution in vivo. The resolving activity that we have identified is specific to virus-infected cells at late times during replication and cleaves cloned poxviral telomeric substrates in a fashion expected of a classic Holliday junction-resolving enzyme in addition to possessing a telomere resolution target-specific nicking activity. Although a Holliday junction-resolving activity would also be expected to play a role in the recombination induced by poxvirus infection, the appearance of the activity described here only after the commencement of viral late protein synthesis suggests that it functions strictly at late times. Other non-viral Holliday junction analogs can also be cleaved by this extract, suggesting that this component of the resolution activity may also play a role in other viral processes that require cleavage of a branched DNA structure. Thus, we have identified a poxviral activity that may be a part of a protein complex which resolves concatemeric replicative intermediates of viral DNA as well as participate in general recombination late during infection.
Collapse
Affiliation(s)
- D Stuart
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
31
|
Cotmore SF, Tattersall P. In vivo resolution of circular plasmids containing concatemer junction fragments from minute virus of mice DNA and their subsequent replication as linear molecules. J Virol 1992; 66:420-31. [PMID: 1530771 PMCID: PMC238302 DOI: 10.1128/jvi.66.1.420-431.1992] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During replication of their linear, single-stranded DNA genomes, parvoviruses generate a series of concatemeric duplex intermediates. We have cloned, into Escherichia coli plasmids, junction fragments from these palindromic concatemers of minute virus of mice DNA spanning both the right end-to-right end (viral 5' to 5') and left end-to-left end (viral 3' to 3') fusions. When mouse cells were transfected with these circular plasmids and superinfected with minute virus of mice, the viral junctions were resolved and the plasmids replicated as linear chromosomes with vector DNA in their centers and viral DNA at their termini. Resolution did not occur when the concatemer joint was replaced by a different palindromic sequence or when the transfected cells were not superinfected, indicating the presence of latent origins of replication which could only be activated by a viral trans-acting factor(s). Moreover, the products of resolution and replication from the two termini were characteristically different. Analysis of individual terminal fragments showed that viral 5' (right-end) sequences were resolved predominantly into "extended" structures with covalently associated copies of the virally encoded NS-1 polypeptide, while bridges derived from the 3' (left) end resolved into both NS-1-associated extended termini and lower-molecular-weight "turn-around" forms in which the two DNA strands were covalently continuous. This pattern of resolution exactly coincides with that seen at the two termini of replicative-form intermediates in normal virus infections. These results demonstrate that the bridge structures are authentic substrates for resolution and indicate that the frequency with which extended versus turn-around forms of each terminus are generated is an intrinsic property of the telomere.
Collapse
Affiliation(s)
- S F Cotmore
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
32
|
Shuman S. Recombination mediated by vaccinia virus DNA topoisomerase I in Escherichia coli is sequence specific. Proc Natl Acad Sci U S A 1991; 88:10104-8. [PMID: 1658796 PMCID: PMC52876 DOI: 10.1073/pnas.88.22.10104] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Specialized type I topoisomerases catalyze DNA strand transfer during site-specific recombination in prokaryotes and fungi. As a rule, the site specificity of these systems is determined by the DNA binding and cleavage preference of the topoisomerase per se. The Mr 32,000 topoisomerase I encoded by vaccinia virus (a member of the eukaryotic family of "general" type I enzymes) is also selective in its interaction with DNA; binding and cleavage occur in vitro at a pentameric motif 5'-(C or T)CCTT in duplex DNA. Expression of vaccinia virus DNA topoisomerase I in a lambda lysogen of Escherichia coli promotes int-independent excisive recombination of the prophage. To address whether the topoisomerase directly catalyzes DNA strand transfer in vivo, the recombination junctions of plaque-purified progeny phage were cloned and sequenced. In five of six distinct excision events examined, a topoisomerase cleavage sequence is present in one strand of the DNA duplex of both recombining partners. Recombination entails no duplication, insertion, or deletion of nucleotides at the crossover points, consistent with excision via conservative strand exchange at sites of topoisomerase cleavage. Three of these five recombination events are distinguished by the presence of direct repeats at the parental half-sites that extend beyond the pentameric cleavage motif, suggesting that sequence homology may facilitate excision. The data are consistent with a model in which vaccinia topoisomerase catalyzes reciprocal strand transfer, leading to the formation of a nonmigrating Holliday junction, the resolution of which can lead to excisive recombination.
Collapse
Affiliation(s)
- S Shuman
- Program in Molecular Biology, Sloan-Kettering Institute, New York, NY 10021
| |
Collapse
|
33
|
Carpenter MS, DeLange AM. A temperature-sensitive lesion in the small subunit of the vaccinia virus-encoded mRNA capping enzyme causes a defect in viral telomere resolution. J Virol 1991; 65:4042-50. [PMID: 1649315 PMCID: PMC248835 DOI: 10.1128/jvi.65.8.4042-4050.1991] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Using pulsed-field gel electrophoresis, we demonstrated that the temperature-sensitive (ts) conditional lethal mutant ts9383 is, at the nonpermissive temperature, defective in the resolution of concatemeric replicative intermediate DNA to linear 185-kb monomeric DNA genomes. The resolution defect was shown to be the result of a partial failure of the mutant virus to convert the replicated form of the viral telomere to hairpin termini. In contrast to other mutants of this phenotype, pulse-labeling of viral proteins at various times postinfection revealed no obvious difference in the quantity or temporal appearance of members of the late class of polypeptides. Using the marker rescue technique, we localized the ts lesion in ts9383 to an approximately 1-kb region within the HindIII D fragment. Both the ts phenotype and the resolution defect were shown to be caused by a single-base C----T point mutation resulting in the conversion of the amino acid proline to serine in codon 23 of open reading frame D12. This gene encodes a 33-kDa polypeptide which is known to be the small subunit of the virus-encoded mRNA capping enzyme (E. G. Niles, G. J. Lee-Chen, S. Shuman, B. Moss, and S. S. Broyles, Virology 172:513-522, 1989). The data are consistent with a role for this capping enzyme subunit during poxviral telomere resolution.
Collapse
Affiliation(s)
- M S Carpenter
- Department of Human Genetics, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
34
|
Hu FQ, Pickup DJ. Transcription of the terminal loop region of vaccinia virus DNA is initiated from the telomere sequences directing DNA resolution. Virology 1991; 181:716-20. [PMID: 2014645 DOI: 10.1016/0042-6822(91)90905-q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The telomeres of vaccinia virus DNA are transcribed at late times after infection. Analysis of cDNAs of RNA transcripts of the terminal loop region of the viral DNA shows that both inverted and complementary forms of the terminal loop region are transcribed. These late RNAs, which contain 5' poly(A) sequences, do not appear to encode any proteins. The transcriptional start sites for most of these RNAs are within the sequences that direct the resolution of concatemeric DNA replication intermediates (M. Merchlinsky and B. Moss, 1989, J. Virol. 63, 4354-4361). This suggests that the process of DNA resolution may involve transcription initiated from the telomere sequences required for resolution.
Collapse
Affiliation(s)
- F Q Hu
- Department of Microbiology and Immunology, Duke University Medical Center, Duke University, Durham, North Carolina 27710
| | | |
Collapse
|
35
|
Abstract
The DNA double helix exhibits local sequence-dependent polymorphism at the level of the single base pair and dinucleotide step. Curvature of the DNA molecule occurs in DNA regions with a specific type of nucleotide sequence periodicities. Negative supercoiling induces in vitro local nucleotide sequence-dependent DNA structures such as cruciforms, left-handed DNA, multistranded structures, etc. Techniques based on chemical probes have been proposed that make it possible to study DNA local structures in cells. Recent results suggest that the local DNA structures observed in vitro exist in the cell, but their occurrence and structural details are dependent on the DNA superhelical density in the cell and can be related to some cellular processes.
Collapse
Affiliation(s)
- E Palecek
- Max-Planck Institut für Biophysikalische Chemie, Göttingen, BRD
| |
Collapse
|
36
|
Mutational analysis of the resolution sequence of vaccinia virus DNA: essential sequence consists of two separate AT-rich regions highly conserved among poxviruses. J Virol 1990; 64:5029-35. [PMID: 2398534 PMCID: PMC247994 DOI: 10.1128/jvi.64.10.5029-5035.1990] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In replicative forms of vaccinia virus DNA, the unit genomes are connected by palindromic junction fragments that are resolved into mature viral genomes with hairpin termini. Bacterial plasmids containing the junction fragment for vaccinia virus or Shope fibroma virus were converted into linear minichromosomes of vector sequence flanked by poxvirus hairpin loops after transfection into infected cells. Analysis of a series of symmetrical deletion mutations demonstrated that in vaccinia virus the presence of the DNA sequence ATTTAGTGTCTAGAAAAAAA on both sides of the apical segment of the concatemer junction is crucial for resolution. To determine the precise architecture of the resolution site, a series of site-directed mutations within this tract of nucleotides were made and the relative contribution of each nucleotide to the efficaciousness of resolution was determined. The nucleotide sequence necessary for the resolution of the vaccinia virus concatemer junction, (A/T)TTT(A/G)N7-9AAAAAAA, is highly conserved among poxviruses and found proximal to the hairpin loop in the genomes of members of the Leporipoxvirus, Avipoxvirus, and Capripoxvirus genera.
Collapse
|
37
|
Merchlinsky M. Resolution of poxvirus telomeres: processing of vaccinia virus concatemer junctions by conservative strand exchange. J Virol 1990; 64:3437-46. [PMID: 2352329 PMCID: PMC249602 DOI: 10.1128/jvi.64.7.3437-3446.1990] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The replication of vaccinia virus proceeds through concatemeric intermediates which are resolved into unit-length DNA. In vaccinia virus-infected cells, plasmids containing the vaccinia virus DNA junction fragment that connects concatemers are resolved into linear minichromosomes of vector DNA flanked by hairpin loops. Resolution requires two copies of a specific nucleotide sequence conserved among poxviruses and found proximal to the hairpin loop. This study demonstrates that orientation of each sequence with respect to the other as well as to the axis of symmetry is critical for resolution, the processing of plasmids containing heterologous pairs of resolution sites is influenced by mismatched nucleotides between the sites, and the vaccinia virus hairpin in the linear minichromosome is a heteroduplex composed of DNA from each strand of the concatemer junction. A model incorporating site-specific recombination and orientated branch migration is proposed to account for resolution of the vaccinia virus concatemer junction.
Collapse
Affiliation(s)
- M Merchlinsky
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| |
Collapse
|
38
|
Abstract
The telomeres of orthopoxvirus DNAs consists largely of short repeated sequences organized into at least two separate sets. Although the sequence composition of the orthopoxvirus telomeres is highly conserved, these regions do not appear to encode any proteins. At late times during infection, the telomeres of vaccinia virus are transcribed. A promoter in the region between the two sets of repeats directs transcription towards the hairpin-loop end of the viral DNA. This promoter resembles the promoters of other poxvirus late genes, and directs the synthesis of RNAs whose structure is consistent with the presence of 5' poly(A) sequences typical of late RNAs. The lengths of these late transcripts suggest that some transcription extends through the hairpin-loop region. This might occur either when the genome is in a monomeric form or when the genome is in the concatemeric form of the DNA replication intermediate. The function of late transcription of the telomeres is unclear, but similar transcription of the telomeres of vaccinia virus, cowpox virus, and raccoonpox virus suggests that such transcription may have a role in viral replication.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chick Embryo
- Cloning, Molecular
- DNA, Viral/genetics
- Genes, Viral
- L Cells
- Mice
- Molecular Sequence Data
- Nucleic Acid Conformation
- Nucleic Acid Hybridization
- Oligonucleotide Probes
- Plasmids
- Poxviridae/genetics
- Poxviridae/physiology
- Promoter Regions, Genetic
- RNA Probes
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Restriction Mapping
- Sequence Homology, Nucleic Acid
- Single-Strand Specific DNA and RNA Endonucleases
- Transcription, Genetic
Collapse
Affiliation(s)
- B L Parsons
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
39
|
Abstract
We have developed an assay for a key step in the replication of adeno-associated virus (AAV) DNA. We demonstrate the covalently joined ends of linear AAV DNA can be resolved in vitro to the open duplex configuration. Only extracts prepared from human cells that have been infected with both adenovirus and AAV are capable of carrying out the reaction. The reaction is initiated by a site-specific and strand-specific endonucleolytic cut at a terminal resolution site near the end of the AAV terminal palindrome. During resolution the orientation of the terminal palindrome is inverted, and the 3' viral strand is extended by DNA synthesis. The size of the newly synthesized 3' strand is nearly identical to that found in viral particles. These observations provide direct biochemical evidence for an essential step in the model for AAV DNA replication.
Collapse
Affiliation(s)
- R O Snyder
- Department of Microbiology, SUNY Stony Brook Medical School 11794
| | | | | |
Collapse
|
40
|
Affiliation(s)
- A M DeLange
- Department of Human Genetics, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
41
|
Affiliation(s)
- B Moss
- Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
42
|
Affiliation(s)
- P Traktman
- Department of Cell Biology, Cornell University Medical College, New York, NY 10021
| |
Collapse
|
43
|
Merchlinsky M, Moss B. Nucleotide sequence required for resolution of the concatemer junction of vaccinia virus DNA. J Virol 1989; 63:4354-61. [PMID: 2778879 PMCID: PMC251052 DOI: 10.1128/jvi.63.10.4354-4361.1989] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mature form of the vaccinia virus genome consists of a linear, 185,000-base-pair (bp) DNA molecule with a 10,000-bp inverted terminal repetition and incompletely base-paired 104-nucleotide hairpin loops connecting the two strands at each end. In concatemeric forms of intracellular vaccinia virus DNA, the inverted terminal repetitions of adjacent genomes form an imperfect palindrome. The apex of this palindrome corresponds in sequence to the double-stranded form of the hairpin loop. Circular plasmids containing palindromic concatemer junction fragments of 250 bp or longer are converted into linear minichromosomes with hairpin ends when they are transfected into vaccinia virus-infected cells, providing a model system with which to study the resolution process. To distinguish between sequence-specific and structural requirements for resolution, plasmids with symmetrical insertions, deletions, and oligonucleotide-directed mutations within the concatemer junction were constructed. A sequence (ATTTAGTGTCTAGAAAAAAA) located on both sides of the apex segment was found to be critical for resolution. Resolution was more efficient when additional nucleotides, TGTG, followed the run of A residues. Both the location and sequence of the proposed resolution signal are highly conserved among poxviruses.
Collapse
Affiliation(s)
- M Merchlinsky
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|
44
|
Merchlinsky M, Moss B. Resolution of vaccinia virus DNA concatemer junctions requires late-gene expression. J Virol 1989; 63:1595-603. [PMID: 2926864 PMCID: PMC248399 DOI: 10.1128/jvi.63.4.1595-1603.1989] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Vaccinia virus replicates in the cytoplasm of infected cells, generating transient replicative intermediates containing the DNA for the terminal sequences as concatemeric junctions. The processing of the terminal sequences for a series of vaccinia virus conditional lethal mutants at the nonpermissive temperature was analyzed by restriction enzyme digestion and Southern blot hybridization of DNA isolated from infected cells. Three phenotypes were observed: DNA replication negative (Rep-), DNA replication positive but concatemer resolution negative (Rep+ Res-), and DNA replication positive and concatemer resolution positive (Rep+ Res+). Interestingly, all six Rep+ Res- mutants from separate complementation groups were defective in late protein synthesis. Isatin beta-thiosemicarbazone, a drug that blocks late protein synthesis, also prevented resolution of concatemers. Orthogonal field gel electrophoresis of the DNA generated by the late defective mutants revealed a distribution of linear genome multimers. The multimers were processed into mature monomers after a shift to the permissive temperature in the presence of cytosine arabinoside for all the Rep+ Res- mutants except ts22, an irreversible mutant which cleaves RNA late in infection (R.F. Pacha and R.C. Condit, J. Virol. 56:395-403, 1985). Genome formation can be divided into two stages: DNA replication, which generates concatemers, and resolution, which processes concatemers into monomers with hairpin termini. Early viral genes are required for the former, and late viral genes are required for the latter.
Collapse
Affiliation(s)
- M Merchlinsky
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|
45
|
Affiliation(s)
- R T Hay
- Department of Biochemistry and Microbiology, University of St. Andrews, Fife, U.K
| | | |
Collapse
|
46
|
|