1
|
Peyret H, Shah SN, Meshcheriakova Y, Saunders K, Lomonossoff GP. How do RNA viruses select which RNA to package? The plant virus experience. Virology 2025; 604:110435. [PMID: 39893746 DOI: 10.1016/j.virol.2025.110435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
The process whereby viral RNA is specifically selected for packaging within viral particles has been extensively studied over many years. As a result, two broad hypotheses have emerged to explain this specificity, though these are not mutually exclusive. The first proposes that the viral RNA contains specific sequences or "packaging signals" that enable it to be recognised from a mixture of RNAs within an infected cell. The second suggests that there is a functional coupling between RNA replication and packaging that leads to only replicating, viral RNA being packaged. This review is aimed at analysing the evidence for the two hypotheses from both in vitro and in vivo studies on positive-strand RNA plant viruses. Overall, it seems probable that the selectivity of packaging results from replication of the viral RNAs rather than the presence of any specific RNA sequence. However, it is also likely that the presence of packaging signals with high affinity for the viral coat protein is involved in the efficient incorporation of RNA into particles, thereby favouring the correct assembly of fully formed and infectious particles.
Collapse
Affiliation(s)
- Hadrien Peyret
- University of Nottingham, School of Biosciences, Division of Crop and Plant Sciences. Sutton Bonington, Loughborough, LE12 5RD, UK
| | - Sachin N Shah
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Yulia Meshcheriakova
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Keith Saunders
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - George P Lomonossoff
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
| |
Collapse
|
2
|
Vaidya AJ, Solomon KV. Surface Functionalization of Rod-Shaped Viral Particles for Biomedical Applications. ACS APPLIED BIO MATERIALS 2022; 5:1980-1989. [PMID: 35148077 DOI: 10.1021/acsabm.1c01204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While synthetic nanoparticles play a very important role in modern medicine, concerns regarding toxicity, sustainability, stability, and dispersity are drawing increasing attention to naturally derived alternatives. Rod-shaped plant viruses and virus-like particles (VLPs) are biological nanoparticles with powerful advantages such as biocompatibility, tunable size and aspect ratio, monodispersity, and multivalency. These properties facilitate controlled biodistribution and tissue targeting for powerful applications in medicine. Ongoing research efforts focus on functionalizing or otherwise engineering these structures for a myriad of applications, including vaccines, imaging, and drug delivery. These include chemical and biological strategies for conjugation to small molecule chemical dyes, drugs, metals, polymers, peptides, proteins, carbohydrates, and nucleic acids. Many strategies are available and vary greatly in efficiency, modularity, selectivity, and simplicity. This review provides a comprehensive summary of VLP functionalization approaches while highlighting biomedically relevant examples. Limitations of current strategies and opportunities for further advancement will also be discussed.
Collapse
Affiliation(s)
- Akash J Vaidya
- Department of Chemical & Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, Delaware 19716, United States
| | - Kevin V Solomon
- Department of Chemical & Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, Delaware 19716, United States
| |
Collapse
|
3
|
Wege C, Koch C. From stars to stripes: RNA-directed shaping of plant viral protein templates-structural synthetic virology for smart biohybrid nanostructures. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1591. [PMID: 31631528 DOI: 10.1002/wnan.1591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/04/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
The self-assembly of viral building blocks bears exciting prospects for fabricating new types of bionanoparticles with multivalent protein shells. These enable a spatially controlled immobilization of functionalities at highest surface densities-an increasing demand worldwide for applications from vaccination to tissue engineering, biocatalysis, and sensing. Certain plant viruses hold particular promise because they are sustainably available, biodegradable, nonpathogenic for mammals, and amenable to in vitro self-organization of virus-like particles. This offers great opportunities for their redesign into novel "green" carrier systems by spatial and structural synthetic biology approaches, as worked out here for the robust nanotubular tobacco mosaic virus (TMV) as prime example. Natural TMV of 300 x 18 nm is built from more than 2,100 identical coat proteins (CPs) helically arranged around a 6,395 nucleotides ssRNA. In vitro, TMV-like particles (TLPs) may self-assemble also from modified CPs and RNAs if the latter contain an Origin of Assembly structure, which initiates a bidirectional encapsidation. By way of tailored RNA, the process can be reprogrammed to yield uncommon shapes such as branched nanoobjects. The nonsymmetric mechanism also proceeds on 3'-terminally immobilized RNA and can integrate distinct CP types in blends or serially. Other emerging plant virus-deduced systems include the usually isometric cowpea chlorotic mottle virus (CCMV) with further strikingly altered structures up to "cherrybombs" with protruding nucleic acids. Cartoon strips and pictorial descriptions of major RNA-based strategies induct the reader into a rare field of nanoconstruction that can give rise to utile soft-matter architectures for complex tasks. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Claudia Koch
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Lomonossoff GP, Wege C. TMV Particles: The Journey From Fundamental Studies to Bionanotechnology Applications. Adv Virus Res 2018; 102:149-176. [PMID: 30266172 PMCID: PMC7112118 DOI: 10.1016/bs.aivir.2018.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ever since its initial characterization in the 19th century, tobacco mosaic virus (TMV) has played a prominent role in the development of modern virology and molecular biology. In particular, research on the three-dimensional structure of the virus particles and the mechanism by which these assemble from their constituent protein and RNA components has made TMV a paradigm for our current view of the morphogenesis of self-assembling structures, including viral particles. More recently, this knowledge has been applied to the development of novel reagents and structures for applications in biomedicine and bionanotechnology. In this article, we review how fundamental science has led to TMV being at the vanguard of these new technologies.
Collapse
Affiliation(s)
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
5
|
Altintoprak K, Seidenstücker A, Krolla-Sidenstein P, Plettl A, Jeske H, Gliemann H, Wege C. RNA-stabilized protein nanorings: high-precision adapters for biohybrid design. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2017. [DOI: 10.1680/jbibn.16.00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Klara Altintoprak
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | | | - Peter Krolla-Sidenstein
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Alfred Plettl
- Institute of Solid State Physics, University of Ulm, Ulm, Germany
| | - Holger Jeske
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Hartmut Gliemann
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
6
|
Zhou Y, Kearney CM. Chimeric Flock House virus protein A with endoplasmic reticulum-targeting domain enhances viral replication and virus-like particle trans-encapsidation in plants. Virology 2017; 507:151-160. [PMID: 28437636 DOI: 10.1016/j.virol.2017.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
Flock House virus (FHV) RNA can be trans-encapsidated, entirely in planta, by tobacco mosaic virus coat protein to form virus-like particles (VLPs). Vaccination with these VLPs leads to strong antigen expression in mice and immune-activation. We hypothesize that creating an additional cellular site for replication and/or trans-encapsidation might significantly improve the final output of trans-encapsidated product. FHV protein A was engineered to target the endoplasmic reticulum (ER) via a heterologous tobacco etch virus ER-targeting domain, and was expressed in cis or in trans relative to the replicating FHV RNA1. A strong increase in marker gene expression in plants was noted when ER-targeted protein A was supplied in trans. RNA fluorescence in situ hybridization revealed RNA1 replication in both the mitochondria and ER, and total RNA1 accumulation was increased. In support of our hypothesis, VLP yield was increased significantly by the addition of this single genetic component to the inoculum.
Collapse
Affiliation(s)
- Yiyang Zhou
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA.
| | - Christopher M Kearney
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA; Department of Biology, Baylor University, Waco, TX, USA
| |
Collapse
|
7
|
Saunders K, Lomonossoff GP. In Planta Synthesis of Designer-Length Tobacco Mosaic Virus-Based Nano-Rods That Can Be Used to Fabricate Nano-Wires. FRONTIERS IN PLANT SCIENCE 2017; 8:1335. [PMID: 28878782 PMCID: PMC5572394 DOI: 10.3389/fpls.2017.01335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/17/2017] [Indexed: 05/11/2023]
Abstract
We have utilized plant-based transient expression to produce tobacco mosaic virus (TMV)-based nano-rods of predetermined lengths. This is achieved by expressing RNAs containing the TMV origin of assembly sequence (OAS) and the sequence of the TMV coat protein either on the same RNA molecule or on two separate constructs. We show that the length of the resulting nano-rods is dependent upon the length of the RNA that possesses the OAS element. By expressing a version of the TMV coat protein that incorporates a metal-binding peptide at its C-terminus in the presence of RNA containing the OAS we have been able to produce nano-rods of predetermined length that are coated with cobalt-platinum. These nano-rods have the properties of defined-length nano-wires that make them ideal for many developing bionanotechnological processes.
Collapse
|
8
|
Schneider A, Eber FJ, Wenz NL, Altintoprak K, Jeske H, Eiben S, Wege C. Dynamic DNA-controlled "stop-and-go" assembly of well-defined protein domains on RNA-scaffolded TMV-like nanotubes. NANOSCALE 2016; 8:19853-19866. [PMID: 27878174 DOI: 10.1039/c6nr03897b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A DNA-based approach allows external control over the self-assembly process of tobacco mosaic virus (TMV)-like ribonucleoprotein nanotubes: their growth from viral coat protein (CP) subunits on five distinct RNA scaffolds containing the TMV origin of assembly (OAs) could be temporarily blocked by a stopper DNA oligomer hybridized downstream (3') of the OAs. At two upstream (5') sites tested, simple hybridization was not sufficient for stable stalling, which correlates with previous findings on a non-symmetric assembly of TMV. The growth of DNA-arrested particles could be restarted efficiently by displacement of the stopper via its toehold by using a release DNA oligomer, even after storage for twelve days. This novel strategy for growing proteinaceous tubes under tight kinetic and spatial control combines RNA guidance and its site-specific but reversible interruption by DNA blocking elements. As three of the RNA scaffolds contained long heterologous non-TMV sequence portions that included the stopping sites, this method is applicable to all RNAs amenable to TMV CP encapsidation, albeit with variable efficiency most likely depending on the scaffolds' secondary structures. The use of two distinct, selectively addressable CP variants during the serial assembly stages finally enabled an externally configured fabrication of nanotubes with highly defined subdomains. The "stop-and-go" strategy thus might pave the way towards production routines of TMV-like particles with variable aspect ratios from a single RNA scaffold, and of nanotubes with two or even more adjacent protein domains of tightly pre-defined lengths.
Collapse
Affiliation(s)
- Angela Schneider
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Fabian J Eber
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Nana L Wenz
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Klara Altintoprak
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Holger Jeske
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Sabine Eiben
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| |
Collapse
|
9
|
Koch C, Eber FJ, Azucena C, Förste A, Walheim S, Schimmel T, Bittner AM, Jeske H, Gliemann H, Eiben S, Geiger FC, Wege C. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:613-29. [PMID: 27335751 PMCID: PMC4901926 DOI: 10.3762/bjnano.7.54] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/03/2016] [Indexed: 05/22/2023]
Abstract
The rod-shaped nanoparticles of the widespread plant pathogen tobacco mosaic virus (TMV) have been a matter of intense debates and cutting-edge research for more than a hundred years. During the late 19th century, their behavior in filtration tests applied to the agent causing the 'plant mosaic disease' eventually led to the discrimination of viruses from bacteria. Thereafter, they promoted the development of biophysical cornerstone techniques such as electron microscopy and ultracentrifugation. Since the 1950s, the robust, helically arranged nucleoprotein complexes consisting of a single RNA and more than 2100 identical coat protein subunits have enabled molecular studies which have pioneered the understanding of viral replication and self-assembly, and elucidated major aspects of virus-host interplay, which can lead to agronomically relevant diseases. However, during the last decades, TMV has acquired a new reputation as a well-defined high-yield nanotemplate with multivalent protein surfaces, allowing for an ordered high-density presentation of multiple active molecules or synthetic compounds. Amino acid side chains exposed on the viral coat may be tailored genetically or biochemically to meet the demands for selective conjugation reactions, or to directly engineer novel functionality on TMV-derived nanosticks. The natural TMV size (length: 300 nm) in combination with functional ligands such as peptides, enzymes, dyes, drugs or inorganic materials is advantageous for applications ranging from biomedical imaging and therapy approaches over surface enlargement of battery electrodes to the immobilization of enzymes. TMV building blocks are also amenable to external control of in vitro assembly and re-organization into technically expedient new shapes or arrays, which bears a unique potential for the development of 'smart' functional 3D structures. Among those, materials designed for enzyme-based biodetection layouts, which are routinely applied, e.g., for monitoring blood sugar concentrations, might profit particularly from the presence of TMV rods: Their surfaces were recently shown to stabilize enzymatic activities upon repeated consecutive uses and over several weeks. This review gives the reader a ride through strikingly diverse achievements obtained with TMV-based particles, compares them to the progress with related viruses, and focuses on latest results revealing special advantages for enzyme-based biosensing formats, which might be of high interest for diagnostics employing 'systems-on-a-chip'.
Collapse
Affiliation(s)
- Claudia Koch
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Fabian J Eber
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Carlos Azucena
- Institute of Functional Interfaces (IFG), Chemistry of Oxidic and Organic Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Karlsruhe, D-76344, Germany
| | - Alexander Förste
- Institute of Nanotechnology (INT) and Karlsruhe Institute of Applied Physics (IAP) and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), INT: Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany, and IAP/CFN: Wolfgang-Gaede-Straße 1, Karlsruhe, D-76131 Germany
| | - Stefan Walheim
- Institute of Nanotechnology (INT) and Karlsruhe Institute of Applied Physics (IAP) and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), INT: Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany, and IAP/CFN: Wolfgang-Gaede-Straße 1, Karlsruhe, D-76131 Germany
| | - Thomas Schimmel
- Institute of Nanotechnology (INT) and Karlsruhe Institute of Applied Physics (IAP) and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), INT: Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany, and IAP/CFN: Wolfgang-Gaede-Straße 1, Karlsruhe, D-76131 Germany
| | - Alexander M Bittner
- CIC Nanogune, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastián, Spain, and Ikerbasque, Maria Díaz de Haro 3, E-48013 Bilbao, Spain
| | - Holger Jeske
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Hartmut Gliemann
- Institute of Functional Interfaces (IFG), Chemistry of Oxidic and Organic Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Karlsruhe, D-76344, Germany
| | - Sabine Eiben
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Fania C Geiger
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| |
Collapse
|
10
|
Eber FJ, Eiben S, Jeske H, Wege C. RNA-controlled assembly of tobacco mosaic virus-derived complex structures: from nanoboomerangs to tetrapods. NANOSCALE 2015; 7:344-55. [PMID: 25407780 DOI: 10.1039/c4nr05434b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The in vitro assembly of artificial nanotubular nucleoprotein shapes based on tobacco mosaic virus-(TMV-)-derived building blocks yielded different spatial organizations of viral coat protein subunits on genetically engineered RNA molecules, containing two or multiple TMV origins of assembly (OAs). The growth of kinked nanoboomerangs as well as of branched multipods was determined by the encapsidated RNAs. A largely simultaneous initiation at two origins and subsequent bidirectional tube elongation could be visualized by transmission electron microscopy of intermediates and final products. Collision of the nascent tubes' ends produced angular particles with well-defined arm lengths. RNAs with three to five OAs generated branched multipods with a maximum of four arms. The potential of such an RNA-directed self-assembly of uncommon nanotubular architectures for the fabrication of complex multivalent nanotemplates used in functional hybrid materials is discussed.
Collapse
Affiliation(s)
- Fabian J Eber
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany.
| | | | | | | |
Collapse
|
11
|
Eiben S, Stitz N, Eber F, Wagner J, Atanasova P, Bill J, Wege C, Jeske H. Tailoring the surface properties of tobacco mosaic virions by the integration of bacterially expressed mutant coat protein. Virus Res 2014; 180:92-6. [DOI: 10.1016/j.virusres.2013.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 12/19/2022]
|
12
|
Kadri A, Wege C, Jeske H. In vivo self-assembly of TMV-like particles in yeast and bacteria for nanotechnological applications. J Virol Methods 2013; 189:328-40. [DOI: 10.1016/j.jviromet.2013.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 12/16/2022]
|
13
|
Abstract
Proteins are the work-horses of life and excute the essential processes involved in the growth and repair of cells. These roles include all aspects of cell signalling, metabolism and repair that allow living things to exist. They are not only chemical catalysts and machine components, they are also structural components of the cell or organism, capable of self-organisation into strong supramolecular cages, fibres and meshes. How proteins are encoded genetically and how they are sythesised in vivo is now well understood, and for an increasing number of proteins, the relationship between structure and function is known in exquisite detail. The next challenge in bionanoscience is to adapt useful protein systems to build new functional structures. Well-defined natural structures with potential useful shapes are a good starting point. With this in mind, in this chapter we discuss the properties of natural and artificial protein channels, nanotubes and cages with regard to recent progress and potential future applications. Chemistries for attaching together different proteins to form superstructures are considered as well as the difficulties associated with designing complex protein structures ab initio.
Collapse
Affiliation(s)
- Jonathan G. Heddle
- Heddle Initiative Research Unit RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Jeremy R. H. Tame
- Protein Design Laboratory Yokohama City University 1-7—29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
14
|
Bruckman MA, Liu J, Koley G, Li Y, Benicewicz B, Niu Z, Wang Q. Tobacco mosaic virus based thin film sensor for detection of volatile organic compounds. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm00634c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Bruckman MA, Kaur G, Lee LA, Xie F, Sepulveda J, Breitenkamp R, Zhang X, Joralemon M, Russell TP, Emrick T, Wang Q. Surface Modification of Tobacco Mosaic Virus with “Click” Chemistry. Chembiochem 2008; 9:519-23. [DOI: 10.1002/cbic.200700559] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Garcia BH, Goodman RM. Use of surface plasmon resonance imaging to study viral RNA:protein interactions. J Virol Methods 2008; 147:18-25. [PMID: 17875327 DOI: 10.1016/j.jviromet.2007.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 05/16/2007] [Accepted: 08/01/2007] [Indexed: 11/29/2022]
Abstract
Surface plasmon resonance imaging (SPRi) is an emerging microarray technology that is label-free, rapid and extremely flexible. Here the capabilities of SPRi are demonstrated in results of proof-of-concept experiments detailing a method for studying viral genomic RNA:protein interactions in array format. The principal RNA is the well-characterized origin of assembly (OAS) containing region of Tobacco mosaic virus (TMV) RNA, whereas the principal protein is the primary subunit for TMV virion assembly, the 20S capsid protein aggregate. DNA probes complementary to TMV and non-TMV RNA fragments were covalently attached to a thin gold layer deposited on glass. These DNA probes were used to discreetly capture in vitro transcribed TMV and Red clover necrotic mosaic virus (RCNMV) RNA2 (used as a negative control for the subsequent protein binding). The 4S TMV capsid protein monomers were isolated from TMV particles purified from infected plants of Nicotiana tabacum L. and were induced to form 20S stacked disc aggregates. These 20S stacked disc aggregates were then injected onto the array containing the RNA fragments captured by the DNA probes immobilized on the microarray surface. The discrete and preferential binding of the 20S stacked disc aggregates to the array locations containing the TMV OAS RNA sequence was observed. The results demonstrate that SPRi can be used to monitor binding of large RNA molecules to immobilized DNA capture probes which can then be used to monitor the subsequent binding of complex protein structures to the RNA molecules in a single real-time, label-free microarray experiment. The results further demonstrate that SPRi can distinguish between RNA species that have or do not have an origin of assembly sequence specific for a particular viral capsid protein or protein complex. The broader implications of these results in virology research are found in other systems where the research goals include characterizing the specificity and kinetics of viral or host protein or protein complex interactions with viral nucleic acids.
Collapse
Affiliation(s)
- Bradley H Garcia
- Department of Plant Pathology, University of Wisconsin-Madison, USA
| | | |
Collapse
|
17
|
Culver JN. Tobacco mosaic virus assembly and disassembly: determinants in pathogenicity and resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2002; 40:287-308. [PMID: 12147762 DOI: 10.1146/annurev.phyto.40.120301.102400] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The structural proteins of plant viruses have evolved to self-associate into complex macromolecules that are centrally involved in virus biology. In this review, the structural and biophysical properties of the Tobacco mosaic virus (TMV) coat protein (CP) are addressed in relation to its role in host resistance and disease development. TMV CP affects the display of several specific virus and host responses, including cross-protection, systemic virus movement, hypersensitive disease resistance, and symptom development. Studies indicate that the three-dimensional structure of CP is critical to the control of these responses, either directly through specific structural motifs or indirectly via alterations in CP assembly. Thus, both the structure and assembly of the TMV CP function as determinants in the induction of disease and resistance responses.
Collapse
Affiliation(s)
- James N Culver
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, College Park 20742, USA.
| |
Collapse
|
18
|
Butler PJ. Self-assembly of tobacco mosaic virus: the role of an intermediate aggregate in generating both specificity and speed. Philos Trans R Soc Lond B Biol Sci 1999; 354:537-50. [PMID: 10212933 PMCID: PMC1692540 DOI: 10.1098/rstb.1999.0405] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The tobacco mosaic virus (TMV) particle was the first macromolecular structure to be shown to self-assemble in vitro, allowing detailed studies of the mechanism. Nucleation of TMV self-assembly is by the binding of a specific stem-loop of the single-stranded viral RNA into the central hole of a two-ring sub-assembly of the coat protein, known as the 'disk'. Binding of the loop onto its specific binding site, between the two rings of the disk, leads to melting of the stem so more RNA is available to bind. The interaction of the RNA with the protein subunits in the disk cause this to dislocate into a proto-helix, rearranging the protein subunits in such a way that the axial gap between the rings at inner radii closes, entrapping the RNA. Assembly starts at an internal site on TMV RNA, about 1 kb from its 3'-terminus, and the elongation in the two directions is different. Elongation of the nucleated rods towards the 5'-terminus occurs on a 'travelling loop' of the RNA and, predominantly, still uses the disk sub-assembly of protein subunits, consequently incorporating approximately 100 further nucleotides as each disk is added, while elongation towards the 3'-terminus uses smaller protein aggregates and does not show this 'quantized' incorporation.
Collapse
Affiliation(s)
- P J Butler
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
19
|
Hazelton PR, Coombs KM. The reovirus mutant tsA279 L2 gene is associated with generation of a spikeless core particle: implications for capsid assembly. J Virol 1999; 73:2298-308. [PMID: 9971813 PMCID: PMC104475 DOI: 10.1128/jvi.73.3.2298-2308.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/1998] [Accepted: 11/23/1998] [Indexed: 11/20/2022] Open
Abstract
Previous studies which used intertypic reassortants of the wild-type reovirus serotype 1 Lang and the temperature-sensitive (ts) serotype 3 mutant clone tsA279 identified two ts lesions; one lesion, in the M2 gene segment, was associated with defective transmembrane transport of restrictively assembled virions (P. R. Hazelton and K. M. Coombs, Virology 207:46-58, 1995). In the present study we show that the second lesion, in the L2 gene segment, which encodes the lambda2 protein, is associated with the accumulation of a core-like particle defective for the lambda2 pentameric spike. Physicochemical, biochemical, and immunological studies showed that these structures were deficient for genomic double-stranded RNA, the core spike protein lambda2, and the minor core protein micro2. Core particles with the lambda2 spike structure accumulated after temperature shift-down from a restrictive to a permissive temperature in the presence of cycloheximide. These data suggest the spike-deficient, core-like particle is an assembly intermediate in reovirus morphogenesis. The existence of this naturally occurring primary core structure suggests that the core proteins lambda1, lambda3, and sigma2 interact to initiate the process of virion capsid assembly through a dodecahedral mechanism. The next step in the proposed capsid assembly model would be the association of the minor core protein mu2, either preceding or collateral to the condensation of the lambda2 pentameric spike at the apices of the primary core structure. The assembly pathway of the reovirus double capsid is further elaborated when these observations are combined with structures identified in other studies.
Collapse
Affiliation(s)
- P R Hazelton
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W3
| | | |
Collapse
|
20
|
Abstract
Viruses have developed successful strategies for propagation at the expense of their host cells. Efficient gene expression, genome multiplication, and invasion of the host are enabled by virus-encoded genetic elements, many of which are well characterized. Sequences derived from plant DNA and RNA viruses can be used to control expression of other genes in vivo. The main groups of plant virus genetic elements useful in genetic engineering are reviewed, including the signals for DNA-dependent and RNA-dependent RNA synthesis, sequences on the virus mRNAs that enable translational control, and sequences that control processing and intracellular sorting of virus proteins. Use of plant viruses as extrachromosomal expression vectors is also discussed, along with the issue of their stability.
Collapse
Affiliation(s)
- A R Mushegian
- Department of Plant Pathology, University of Kentucky, Lexington 40546-0091, USA
| | | |
Collapse
|
21
|
Wilson TM, McNicol JW. A conserved, precise RNA encapsidation pattern in Tobamovirus particles. Arch Virol 1995; 140:1677-85. [PMID: 7487499 DOI: 10.1007/bf01322541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The bidirectional RNA encapsidation pathway in nine sequenced Type 1 Tobamovirus genomes will result in RNA-coat protein assembly, up to and including the first transcribed G, adjacent to the 5'-cap structure (m7 Gppp). This precision is highly conserved, despite wide interstrain variations in the absolute position of the phase-determining core of the origin-of-assembly sequence (Gxx)n and in overall genome length (6311-6507 nts). A Type 2 Tobamovirus genome did not comply with this pattern. All genomes had a statistically significant bias for G at every third (or 3n) position, resulting in a preponderance of GNN codons and hence a high Val, Ala, Gly, Asp, Glu content, at least in the large (126/183 kDa) and amino-coterminal replicase protein genes. Contrary to predictions from the X-ray fibre diffraction structure of tobacco mosaic virus (TMV, U1 strain), only one (pepper mild mottle virus) of the nine Type 1 Tobamoviruses positioned the preferred G-repeat in the most favourable (5') position of the trinucleotide binding site on each coat protein (CP) subunit. In all but one of the eight remaining Type 1 Tobamovirus genomes, G would predominate in the CP 3'-site. The significance of these observations for TMV particle assembly, disassembly and host cell interactions are discussed.
Collapse
Affiliation(s)
- T M Wilson
- Department of Virology, Scottish Crop Research Institute, Invergowrie, Dundee, U.K
| | | |
Collapse
|
22
|
Hwang DJ, Roberts IM, Wilson TM. Expression of tobacco mosaic virus coat protein and assembly of pseudovirus particles in Escherichia coli. Proc Natl Acad Sci U S A 1994; 91:9067-71. [PMID: 8090770 PMCID: PMC44748 DOI: 10.1073/pnas.91.19.9067] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The bidirectional self-assembly of tobacco mosaic virus (TMV, common or U1 strain) has been studied extensively in vitro. Foreign single-stranded RNA molecules containing the TMV origin-of-assembly sequence (OAS, 75-432 nt in length) are also packaged by TMV coat protein (CP) in vitro to form helical pseudovirus particles. To study virus assembly in vivo requires an easily manipulated model system, independent of replication in plants. The TMV assembly machinery also provides a convenient means to protect and recover chimeric gene transcripts of almost any length or sequence for a variety of applications. Native TMV CP expressed in and purified from Escherichia coli formed nonhelical, stacked aggregates after dialysis into pH 5 buffer and was inactive for in vitro assembly with TMV RNA. U1 CP derivatives in which the second amino acid was changed from Ser to Ala or Pro, nonacetylated N termini found in two natural strains of the virus, failed to remediate these anomalous properties. However, in vivo coexpression of CP and single-stranded RNAs (up to approximately 2 kb) containing the TMV OAS gave high yields of helical pseudovirus particles of the predicted length (up to 7.4 +/- 1.4 micrograms/mg of total bacterial protein). If the OAS-containing RNA was first recruited into bacterial polyribosomes, elongation of pseudovirus assembly was blocked. In vivo, E. coli expression of a full-length cDNA clone of the TMV genome (6.4 kb) resulted in high, immunodetectable levels of CP and assembly of sufficient intact genomic RNA to initiate systemic infection of susceptible tobacco plants.
Collapse
Affiliation(s)
- D J Hwang
- AgBiotech Center, Cook College, Rutgers University, New Brunswick, NJ 08903
| | | | | |
Collapse
|
23
|
Hwang DJ, Roberts IM, Wilson TM. Assembly of tobacco mosaic virus and TMV-like pseudovirus particles in Escherichia coli. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 1994; 9:543-58. [PMID: 7518274 DOI: 10.1007/978-3-7091-9326-6_52] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
High-level expression of plant viral proteins, including coat protein (CP), is possible in Escherichia coli. Native tobacco mosaic virus (TMV) CP expressed in E. coli remains soluble but has a non-acetylated N-terminal Ser residue and following extraction, is unable to package TMV RNA in vitro under standard assembly conditions. Changing the Ser to Ala or Pro by PCR-mutagenesis did not confer assembly competence in vitro, despite these being non-acetylated N-termini present in two natural strains of TMV. All TMV CPs made in E. coli formed stacked cylindrical aggregates in vitro at pH 5.0 and failed to be immunogold-labelled using a mouse monoclonal antibody specific for helically assembled TMV CP. TMV self-assembly has been studied extensively in vitro, and an origin of assembly sequence (OAS) mapped internally on the 6.4 kb ssRNA genome. Pseudovirus particles can be assembled mono- or bi-directionally in vitro using virus-derived CP and chimeric ssRNAs containing the cognate TMV OAS, but otherwise of unlimited length and sequence. Studies on plant virus assembly in vivo would be facilitated by a model system amenable to site-directed mutagenesis and rapid recovery of progeny particles. When chimeric transcripts containing the TMV OAS were co-expressed with TMV CP in vivo for 2-18 h, helical TMV-like ribonucleoprotein particles of the predicted length were formed in high yield (up to 7.4 micrograms/mg total bacterial protein). In addition to providing a rapid, inexpensive and convenient system to produce, protect and recover chimeric gene transcripts of any length or sequence, this E. coli system also offers a rapid approach for studying the molecular requirements for plant virus "self-assembly" in vivo. Transcription of a full-length cDNA clone of TMV RNA also resulted in high levels of CP expression and assembly of sufficient intact genomic RNA to initiate virus infection of susceptible tobacco plants.
Collapse
Affiliation(s)
- D J Hwang
- AgBiotech Center, Cook College, Rutgers University, New Brunswick, New Jersey
| | | | | |
Collapse
|
24
|
Butler PJ, Bloomer AC, Finch JT. Direct visualization of the structure of the "20 S" aggregate of coat protein of tobacco mosaic virus. The "disk" is the major structure at pH 7.0 and the Proto-helix at lower pH. J Mol Biol 1992; 224:381-94. [PMID: 1560458 DOI: 10.1016/0022-2836(92)91002-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have employed the rapid-freeze technique to prepare specimens for electron microscopy of a coat protein solution of tobacco mosaic virus at equilibrium at pH 7.0 and 6.8, ionic strength 0.1 M and 20 degrees C. The former are the conditions for the most rapid assembly of the virus from its isolated protein and RNA. At both pH values, the equilibrium mixture contains approximately 80% of a "20 S" aggregate and 20% of a "4 S" aggregate (the so-called A-protein). The specimens were prepared either totally unstained or positively stained with methyl mercury nitrate, which binds to an amino acid residue (Cys27) internally located within the subunit, which we show not to affect the virus assembly. The images in the electron microscope are compatible only with the major structure for the "20 S" aggregate at pH 7.0 containing two rings of subunits and these aggregates display the same binding contacts as those seen between the aggregate that forms the asymmetric unit in the crystal, which has been shown by X-ray crystallography to be a disk containing two rings, each of 17 subunits, oriented in the same direction. In contrast, the images from specimens prepared at pH 6.8 show the major structure to be a proto-helix at this slightly lower pH, demonstrating that the technique of cryo-electron microscopy is capable of distinguishing between these aggregates of tobacco mosaic virus coat protein. The main structure in solution at pH 7.0 must therefore be very similar to that in the crystal, although slight differences could occur and there are probably other, minor, components in a mixture of species sedimenting around 20 S under these conditions. The equilibrium between aggregates is extremely sensitive to conditions, with a drop of 0.2 pH unit tipping the disk to proto-helix ratio from approximately 10:1 at pH 7.0 to 1:10 at pH 6.8. This direct determination of the structure of the "20 S" aggregate in solution, under conditions for virus assembly, contradicts some recent speculation that it must be helical, and establishes that, at pH 7.0, it is in fact predominantly a two-layer disk as it had been modelled before.
Collapse
Affiliation(s)
- P J Butler
- MRC Laboratory of Molecular Biology, Cambridge, England
| | | | | |
Collapse
|
25
|
Heaphy S, Finch JT, Gait MJ, Karn J, Singh M. Human immunodeficiency virus type 1 regulator of virion expression, rev, forms nucleoprotein filaments after binding to a purine-rich "bubble" located within the rev-responsive region of viral mRNAs. Proc Natl Acad Sci U S A 1991; 88:7366-70. [PMID: 1871141 PMCID: PMC52296 DOI: 10.1073/pnas.88.16.7366] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The human immunodeficiency virus type 1 rev protein binds with high affinity (Kd less than 1-3 nM) to a purine-rich "bubble" containing bulged GG and GUA residues on either side of a double-helical RNA stem-loop located toward the 5' end of rev-response element RNA. High-affinity rev binding is maintained when the bubble is placed in heterologous stem-loop structures, but rev binding is reduced when either the bulged residues or flanking base pairs in the stem are altered. Rev binding to the purine-rich bubble nucleates assembly of long filamentous ribonucleoprotein structures containing polymers of rev bound to flanking RNA sequences. It is proposed that rev regulates human immunodeficiency virus RNA expression by selectively packaging viral transcripts carrying the rev-response element sequence into rod-like nucleoprotein complexes that block splicing of the packaged mRNAs.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Gene Products, rev/metabolism
- Gene Products, rev/ultrastructure
- HIV-1/genetics
- HIV-1/metabolism
- Kinetics
- Microscopy, Electron
- Models, Structural
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Protein Binding
- Purines
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/ultrastructure
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA, Viral/ultrastructure
- Ribonucleoproteins/ultrastructure
- Virion/genetics
- Virion/metabolism
- rev Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- S Heaphy
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|