1
|
Azrin NAM, Ali MSM, Rahman RNZRA, Oslan SN, Noor NDM. Versatility of subtilisin: A review on structure, characteristics, and applications. Biotechnol Appl Biochem 2022; 69:2599-2616. [PMID: 35019178 DOI: 10.1002/bab.2309] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022]
Abstract
Due to its thermostability and high pH compatibility, subtilisin is most known for its role as an additive for detergents in which it is categorized as a serine protease according to MEROPS database. Subtilisin is typically isolated from various bacterial species of the Bacillus genus such as Bacillus subtilis, B. amyloliquefaciens, B. licheniformis, and various other organisms. It is composed of 268-275 amino acid residues and is initially secreted in the precursor form, preprosubtilisin, which is composed of 29-residues signal peptide, 77-residues propeptide, and 275-residues active subtilisin. Subtilisin is known for the presence of high and low affinity calcium binding sites in its structure. Native subtilisin has general properties of thermostability, tolerance to neutral to high pH, broad specificity, and calcium-dependent stability, which contribute to the versatility of subtilisin applicability. Through protein engineering and immobilization technologies, many variants of subtilisin have been generated, which increase the applicability of subtilisin in various industries including detergent, food processing and packaging, synthesis of inhibitory peptides, therapeutic, and waste management applications.
Collapse
Affiliation(s)
- Nur Aliyah Mohd Azrin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
2
|
Draft Genome Sequence of Thermoactinomyces vulgaris Strain AGRTWHS02, Isolated from Pasture Soil of a Sheep Dairy Farm in New Zealand. Microbiol Resour Announc 2022; 11:e0007622. [PMID: 35293824 PMCID: PMC9022557 DOI: 10.1128/mra.00076-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermoactinomyces species are heat-resistant spore-forming bacteria that are capable of producing proteases. Here, we report the draft genome sequence of a new Thermoactinomyces vulgaris strain, AGRTWHS02, with a strong proteolytic activity, which was isolated from a sheep dairy farm environment in New Zealand. The genome is 2.56 Mbp, with a GC content of 47.9%.
Collapse
|
3
|
Ding Y, Yang Y, Ren Y, Xia J, Liu F, Li Y, Tang XF, Tang B. Extracellular Production, Characterization, and Engineering of a Polyextremotolerant Subtilisin-Like Protease From Feather-Degrading Thermoactinomyces vulgaris Strain CDF. Front Microbiol 2020; 11:605771. [PMID: 33408708 PMCID: PMC7779483 DOI: 10.3389/fmicb.2020.605771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/26/2020] [Indexed: 01/18/2023] Open
Abstract
Here, the gene encoding a subtilisin-like protease (protease Als) was cloned from Thermoactinomyces vulgaris strain CDF and expressed in Escherichia coli. The recombinant enzyme was released into the culture medium of E. coli as a mature form (mAls). Purified mAls displayed optimal activity at 60–70°C and pH 10.0 using azo-casein as the substrate, and showed a half-life of 13.8 h at 70°C. Moreover, the activity of thermostable mAls was comparable to or higher than those of mesophilic subtilisin Carlsberg and proteinase K at low temperatures (10–30°C). Protease Als was also stable in several organic solvents and showed high compatibility with commercial laundry detergents. Notably, mAls exhibited approximately 100% of its activity at 3 M NaCl, and showed enhanced thermostability with the increase of NaCl concentration up to 3 M. Protease Als possesses an excess of solvent-accessible acidic amino acid residues, which may account for the high halotolerance of the enzyme. Compared with homologous protease C2 from the same strain, protease Als exhibits substantially lower activity toward insoluble keratin substrates but efficiently hydrolyzes soluble keratin released from chicken feathers. Additionally, direct substitution of the substrate-binding site of protease Als with that of protease C2 improves its activity against insoluble keratin substrates. By virtue of its polyextremotolerant attribute and kerationolytic capacity, protease Als may find broad applications in various industries such as laundry detergents, food processing, non-aqueous biocatalysis, and feather processing.
Collapse
Affiliation(s)
- Yidi Ding
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yong Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuxia Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jingying Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Feng Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Feng Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China
| |
Collapse
|
4
|
Insights into the Maturation of Pernisine, a Subtilisin-Like Protease from the Hyperthermophilic Archaeon Aeropyrum pernix. Appl Environ Microbiol 2020; 86:AEM.00971-20. [PMID: 32561587 DOI: 10.1128/aem.00971-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022] Open
Abstract
Pernisine is a subtilisin-like protease that was originally identified in the hyperthermophilic archaeon Aeropyrum pernix, which lives in extreme marine environments. Pernisine shows exceptional stability and activity due to the high-temperature conditions experienced by A. pernix Pernisine is of interest for industrial purposes, as it is one of the few proteases that has demonstrated prion-degrading activity. Like other extracellular subtilisins, pernisine is synthesized in its inactive pro-form (pro-pernisine), which needs to undergo maturation to become proteolytically active. The maturation processes of mesophilic subtilisins have been investigated in detail; however, less is known about the maturation of their thermophilic homologs, such as pernisine. Here, we show that the structure of pro-pernisine is disordered in the absence of Ca2+ ions. In contrast to the mesophilic subtilisins, pro-pernisine requires Ca2+ ions to adopt the conformation suitable for its subsequent maturation. In addition to several Ca2+-binding sites that have been conserved from the thermostable Tk-subtilisin, pernisine has an additional insertion sequence with a Ca2+-binding motif. We demonstrate the importance of this insertion for efficient folding and stabilization of pernisine during its maturation. Moreover, analysis of the pernisine propeptide explains the high-temperature requirement for pro-pernisine maturation. Of note, the propeptide inhibits the pernisine catalytic domain more potently at high temperatures. After dissociation, the propeptide is destabilized at high temperatures only, which leads to its degradation and finally to pernisine activation. Our data provide new insights into and understanding of the thermostable subtilisin autoactivation mechanism.IMPORTANCE Enzymes from thermophilic organisms are of particular importance for use in industrial applications, due to their exceptional stability and activity. Pernisine, from the hyperthermophilic archaeon Aeropyrum pernix, is a proteolytic enzyme that can degrade infective prion proteins and thus has a potential use for disinfection of prion-contaminated surfaces. Like other subtilisin-like proteases, pernisine needs to mature through an autocatalytic process to become an active protease. In the present study, we address the maturation of pernisine and show that the process is regulated specifically at high temperatures by the propeptide. Furthermore, we demonstrate the importance of a unique Ca2+-binding insertion for stabilization of mature pernisine. Our results provide a novel understanding of thermostable subtilisin autoactivation, which might advance the development of these enzymes for commercial use.
Collapse
|
5
|
Catalytic activity and stabilization of phenyl-modified glucose oxidase at high hydrostatic pressure. Enzyme Microb Technol 2020; 137:109538. [DOI: 10.1016/j.enzmictec.2020.109538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 11/21/2022]
|
6
|
Sang P, Liu SQ, Yang LQ. New Insight into Mechanisms of Protein Adaptation to High Temperatures: A Comparative Molecular Dynamics Simulation Study of Thermophilic and Mesophilic Subtilisin-Like Serine Proteases. Int J Mol Sci 2020; 21:E3128. [PMID: 32354206 PMCID: PMC7247438 DOI: 10.3390/ijms21093128] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022] Open
Abstract
In high-temperature environments, thermophilic proteins must possess enhanced thermal stability in order to maintain their normal biological functions. However, the physicochemical basis of the structural stability of thermophilic proteins at high temperatures remains elusive. In this study, we performed comparative molecular dynamics simulations on thermophilic serine protease (THM) and its homologous mesophilic counterpart (PRK). The comparative analyses of dynamic structural and geometrical properties suggested that THM adopted a more compact conformation and exhibited more intramolecular interactions and lower global flexibility than PRK, which could be in favor of its thermal stability in high-temperature environments. Comparison between protein solvent interactions and the hydrophobicity of these two forms of serine proteases showed that THM had more burial of nonpolar areas, and less protein solvent hydrogen bonds (HBs), indicating that solvent entropy maximization and mobility may play a significant role in THM's adaption to high temperature environments. The constructed funnel-like free energy landscape (FEL) revealed that, in comparison to PRK, THM had a relatively flat and narrow free energy surface, and a lower minimum free energy level, suggesting that the thermophilic form had lower conformational diversity and flexibility. Combining the FEL theory and our simulation results, we conclude that the solvent (entropy force) plays a significant role in protein adaption at high temperatures.
Collapse
Affiliation(s)
- Peng Sang
- College of Agriculture and Biological Science, Dali University, Dali 671000, China;
| | - Shu-Qun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650000, China
| | - Li-Quan Yang
- College of Agriculture and Biological Science, Dali University, Dali 671000, China;
| |
Collapse
|
7
|
Denesyuk AI, Permyakov SE, Johnson MS, Denessiouk K, Permyakov EA. System Approach for Building of Calcium-Binding Sites in Proteins. Biomolecules 2020; 10:biom10040588. [PMID: 32290360 PMCID: PMC7226230 DOI: 10.3390/biom10040588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022] Open
Abstract
We introduce five new local metal cation (first of all, Ca2+) recognition units in proteins: Clampn,(n−2), Clampn,(n−1), Clampn,n, Clampn,(n+1) and Clampn,(n+2). In these units, the backbone oxygen atom of a residue in position “n” of an amino acid sequence and side-chain oxygen atom of a residue in position “n + i” (i = −2 to +2) directly interact with a metal cation. An analysis of the known “Ca2+-bound niches” in proteins has shown that a system approach based on the simultaneous use of the Clamp units and earlier proposed One-Residue (OR)/Three-Residue (TR) units significantly improves the results of constructing metal cation-binding sites in proteins.
Collapse
Affiliation(s)
- Alexander I. Denesyuk
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (S.E.P.); (E.A.P.)
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku 20520, Finland; (M.S.J.); (K.D.)
- Correspondence: ; Tel.: +358-2-215-4006
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (S.E.P.); (E.A.P.)
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku 20520, Finland; (M.S.J.); (K.D.)
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku 20520, Finland; (M.S.J.); (K.D.)
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, Turku 20520, Finland
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (S.E.P.); (E.A.P.)
| |
Collapse
|
8
|
Complete Genome Sequence of Thermoactinomyces vulgaris Strain CDF, a Thermophilic Bacterium Capable of Degrading Chicken Feathers. Microbiol Resour Announc 2019; 8:8/28/e00530-19. [PMID: 31296681 PMCID: PMC6624764 DOI: 10.1128/mra.00530-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermoactinomyces vulgaris strain CDF was isolated from soil and shown to have the ability to degrade chicken feathers at high temperatures. Here, we report the complete genome sequence of this bacterium, which is 2,595,509 bp long with 2,642 predicted genes and an average G+C content of 48.14%. Thermoactinomyces vulgaris strain CDF was isolated from soil and shown to have the ability to degrade chicken feathers at high temperatures. Here, we report the complete genome sequence of this bacterium, which is 2,595,509 bp long with 2,642 predicted genes and an average G+C content of 48.14%.
Collapse
|
9
|
Óskarsson KR, Kristjánsson MM. Improved expression, purification and characterization of VPR, a cold active subtilisin-like serine proteinase and the effects of calcium on expression and stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:152-162. [PMID: 30502512 DOI: 10.1016/j.bbapap.2018.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 01/21/2023]
Abstract
Cloning into a pET 11a vector, followed by high-level expression of the cold adapted subtilase, VPR, utilizing the rhamnose titratable T7 system of Lemo21, resulted in a dramatic increase of soluble protein compared to the older system used. Expression optimization clearly shows the importance of calcium in the medium after induction, both for stability of the proteinase and cell health. Characterization of the purified enzyme obtained in a redesigned purification protocol which removed apparent RNA contaminants, resulted in a significantly higher value for kcat than previously reported. The new recombinant protein exhibited slightly lower stability against thermal denaturation and thermal inactivation. Our results also indicate that two of the calcium binding sites have apparent binding constants in the mM range. Binding of calcium to the weaker of those two sites only affects resistance of the enzyme against irreversible thermal inactivation. Differential scanning calorimetry revealed a non-two-state denaturation process, with indication of presence of intermediates caused by unfolding of calcium binding motifs.
Collapse
Affiliation(s)
- Kristinn R Óskarsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Magnús M Kristjánsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
10
|
Oda M, Yamagami Y, Inaba S, Oida T, Yamamoto M, Kitajima S, Kawai F. Enzymatic hydrolysis of PET: functional roles of three Ca2+ ions bound to a cutinase-like enzyme, Cut190*, and its engineering for improved activity. Appl Microbiol Biotechnol 2018; 102:10067-10077. [DOI: 10.1007/s00253-018-9374-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/21/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
|
11
|
Molecular Basis for Modulation of Metabotropic Glutamate Receptors and Their Drug Actions by Extracellular Ca 2. Int J Mol Sci 2017; 18:ijms18030672. [PMID: 28335551 PMCID: PMC5372683 DOI: 10.3390/ijms18030672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 12/24/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) associated with the slow phase of the glutamatergic signaling pathway in neurons of the central nervous system have gained importance as drug targets for chronic neurodegenerative diseases. While extracellular Ca2+ was reported to exhibit direct activation and modulation via an allosteric site, the identification of those binding sites was challenged by weak binding. Herein, we review the discovery of extracellular Ca2+ in regulation of mGluRs, summarize the recent developments in probing Ca2+ binding and its co-regulation of the receptor based on structural and biochemical analysis, and discuss the molecular basis for Ca2+ to regulate various classes of drug action as well as its importance as an allosteric modulator in mGluRs.
Collapse
|
12
|
Autocatalytic activation of a thermostable glutamyl endopeptidase capable of hydrolyzing proteins at high temperatures. Appl Microbiol Biotechnol 2016; 100:10429-10441. [PMID: 27377749 DOI: 10.1007/s00253-016-7697-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 01/27/2023]
Abstract
Glutamyl endopeptidases (GSEs) specifically hydrolyze peptide bonds formed by α-carboxyl groups of Glu and Asp residues. We cloned the gene for a thermophilic GSE (designated TS-GSE) from Thermoactinomyces sp. CDF. A proform of TS-GSE that contained a 61-amino acid N-terminal propeptide and a 218-amino acid mature domain was produced in Escherichia coli. We found that the proform possessed two processing sites and was capable of autocatalytic activation via multiple pathways. The N-terminal propeptide could be autoprocessed at the Glu-1-Ser1 bond to directly generate the mature enzyme. It could also be autoprocessed at the Glu-12-Lys-11 bond to yield an intermediate, which was then converted into the mature form after removal of the remaining part of the propeptide. The segment surrounding the two processing sites was flexible, which allowed the proform and the intermediate form to be trans-processed into the mature form by either active TS-GSE or heterogeneous proteases. Deletion analysis revealed that the N-terminal propeptide is important for the correct folding and maturation of TS-GSE. The propeptide, even its last 11-amino acid peptide segment, could inhibit the activity of its cognate mature domain. The mature TS-GSE displayed a temperature optimum of 85 °C and retained approximately 90 % of its original activity after incubation at 70 °C for 6 h, representing the most thermostable GSE reported to date. Mutational analysis suggested that the disulfide bonds Cys32-Cys48 and Cys180-Cys183 cumulatively contributed to the thermostability of TS-GSE.
Collapse
|
13
|
Improved catalytic efficiency, thermophilicity, anti-salt and detergent tolerance of keratinase KerSMD by partially truncation of PPC domain. Sci Rep 2016; 6:27953. [PMID: 27298079 PMCID: PMC4906391 DOI: 10.1038/srep27953] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 05/27/2016] [Indexed: 11/25/2022] Open
Abstract
The keratinase from Stenotrophomonas maltophilia (KerSMD) is known for its high activity and pH stability in keratin degradation. However, catalytic efficiency and detergent tolerability need to be improved in order to be used for industrial application. In this work, we obtained several keratinase variants with enhanced catalytic efficiency, thermophilicity, and anti-salt and detergent tolerability by partially truncating the PPC domain of KerSMD. The variants all showed improved catalytic efficiency to synthetic substrate AAPF, with the V355 variant having the highest kcat /Km value of 143.6 s−1 mM−1. The truncation of keratinase had little effect on alkaline stability but obviously decreased collagenase activity, developing its potential application in leather treatment. The variants V380, V370, and V355 were thermophilic, with a 1.7-fold enhancement of keratinlytic activity at 60 °C when compared to the wild type. The entire truncation of PPC domain obtained the variant V355 with improved tolerance to alkalinity, salt, chaotropic agents, and detergents. The V355 variant showed more than a 40% improvement in activity under 15% (w/v) NaCl or 4% (w/v) SDS solution, showing excellent stability under harsh washing and unhairing conditions. Our work investigated how protein engineering affects the function of PPC domain of KerSMD.
Collapse
|
14
|
Zhou H, Yong J, Gao H, Yuan Z, Yang W, Tian Y, Wu Y. Loops Adjacent to Catalytic Region and Molecular Stability of Man1312. Appl Biochem Biotechnol 2016; 180:122-35. [PMID: 27193255 DOI: 10.1007/s12010-016-2087-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Hemicelluloses are the second major polysaccharides in nature and can be converted to ethanol product by a variety of enzymes including mannanases. Mannanase is an important enzyme that hydrolyses mannose-containing polysaccharides which are abundant in plants. An optimized mannanase could help to improve conversion process and make the technology efficiently and competitively. In this work, the effects of loops adjacent to active region on enzymic properties of Man1312 were investigated. Loop 6 and 10 are two loops neighboring to Man1312 catalytic region, and deletion mutagenesis and residue substitution were performed on both loops. Deletion on sites S145, Q148, N244, and S255 and substitution on sites N146, S147, S156, and T157 gave significant increased stability to enzyme. The quadruplet mutant ManD4I4 combined all the mutations and had higher optimal temperature and T m value by 5 and 4 °C than Man1312, respectively. From our data, we are able to conclude the loops of enzymes are important to design mutagenesis and obtain improved properties, especially the loops neighboring to catalytic region from tertiary structure. In our experiment, residue deletion and substitution on loops neighboring to catalytic region made significant improvement on enzyme properties.
Collapse
Affiliation(s)
- Haiyan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jie Yong
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Han Gao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Zhihui Yuan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Wenjiao Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yun Tian
- Key Lab of Agricultural Biochemistry and Biotransformation, Hunan Agricultural University, Changsha, 410128, China
| | - Yongyao Wu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
15
|
Wang L, Cheng G, Ren Y, Dai Z, Zhao ZS, Liu F, Li S, Wei Y, Xiong J, Tang XF, Tang B. Degradation of intact chicken feathers by Thermoactinomyces sp. CDF and characterization of its keratinolytic protease. Appl Microbiol Biotechnol 2014; 99:3949-59. [PMID: 25412577 DOI: 10.1007/s00253-014-6207-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/20/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
Abstract
Thermoactinomyces is known for its resistance to extreme environmental conditions and its ability to digest a wide range of hard-to-degrade compounds. Here, Thermoactinomyces sp. strain CDF isolated from soil was found to completely degrade intact chicken feathers at 55 °C, with the resulting degradation products sufficient to support growth as the primary source of both carbon and nitrogen. Although feathers were not essential for the expression of keratinase, the use of this substrate led to a further 50-300 % increase in enzyme production level under different nutrition conditions, with extracellular keratinolytic activity reaching its highest level (∼400 U/mL) during the late-log phase. Full degradation of feathers required the presence of living cells, which are thought to supply reducing agents necessary for the cleavage of keratin disulfide bonds. Direct contact between the hyphae and substrate may enhance the reducing power and protease concentrations present in the local microenvironment, thereby facilitating keratin degradation. The gene encoding the major keratinolytic protease (protease C2) of strain CDF was cloned, revealing an amino acid sequence identical to that of subtilisin-like E79 protease from Thermoactinomyces sp. E79, albeit with significant differences in the upstream flanking region. Exogenous expression of protease C2 in Escherichia coli resulted in the production of inclusion bodies with proteolytic activity, which could be solubilized to an alkaline solution to produce mature protease C2. Purified protease C2 was able to efficiently hydrolyze α- and β-keratins at 60-80 °C and pH 11.0, representing a promising candidate for enzymatic processing of hard-to-degrade proteins such as keratinous wastes.
Collapse
Affiliation(s)
- Liyuan Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The malaria parasite egress protease SUB1 is a calcium-dependent redox switch subtilisin. Nat Commun 2014; 5:3726. [PMID: 24785947 PMCID: PMC4024747 DOI: 10.1038/ncomms4726] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/25/2014] [Indexed: 11/08/2022] Open
Abstract
Malaria is caused by a protozoan parasite that replicates within an intraerythrocytic parasitophorous vacuole. Release (egress) of malaria merozoites from the host erythrocyte is a highly regulated and calcium-dependent event that is critical for disease progression. Minutes before egress, an essential parasite serine protease called SUB1 is discharged into the parasitophorous vacuole, where it proteolytically processes a subset of parasite proteins that play indispensable roles in egress and invasion. Here we report the first crystallographic structure of Plasmodium falciparum SUB1 at 2.25 Å, in complex with its cognate prodomain. The structure highlights the basis of the calcium dependence of SUB1, as well as its unusual requirement for interactions with substrate residues on both prime and non-prime sides of the scissile bond. Importantly, the structure also reveals the presence of a solvent-exposed redox-sensitive disulphide bridge, unique among the subtilisin family, that likely acts as a regulator of protease activity in the parasite.
Collapse
|
17
|
Zeng J, Gao X, Dai Z, Tang B, Tang XF. Effects of metal ions on stability and activity of hyperthermophilic pyrolysin and further stabilization of this enzyme by modification of a Ca2+-binding site. Appl Environ Microbiol 2014; 80:2763-72. [PMID: 24561589 PMCID: PMC3993279 DOI: 10.1128/aem.00006-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/16/2014] [Indexed: 11/20/2022] Open
Abstract
Pyrolysin is an extracellular subtilase produced by the marine hyperthermophilic archaeon Pyrococcus furiosus. This enzyme functions at high temperatures in seawater, but little is known about the effects of metal ions on the properties of pyrolysin. Here, we report that the supplementation of Na(+), Ca(2+), or Mg(2+) salts at concentrations similar to those in seawater destabilizes recombinant pyrolysin but leads to an increase in enzyme activity. The destabilizing effect of metal ions on pyrolysin appears to be related to the disturbance of surface electrostatic interactions of the enzyme. In addition, mutational analysis of two predicted high-affinity Ca(2+)-binding sites (Ca1 and Ca2) revealed that the binding of Ca(2+) is important for the stabilization of this enzyme. Interestingly, Asn substitutions at residues Asp818 and Asp820 of the Ca2 site, which is located in the C-terminal extension of pyrolysin, resulted in improvements in both enzyme thermostability and activity without affecting Ca(2+)-binding affinity. These effects were most likely due to the elimination of unfavorable electrostatic repulsion at the Ca2 site. Together, these results suggest that metal ions play important roles in modulating the stability and activity of pyrolysin.
Collapse
Affiliation(s)
- Jing Zeng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaowei Gao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zheng Dai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China
| | - Xiao-Feng Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China
| |
Collapse
|
18
|
Wagner JM, Evans TJ, Chen J, Zhu H, Houben ENG, Bitter W, Korotkov KV. Understanding specificity of the mycosin proteases in ESX/type VII secretion by structural and functional analysis. J Struct Biol 2013; 184:115-28. [PMID: 24113528 DOI: 10.1016/j.jsb.2013.09.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 11/28/2022]
Abstract
Mycobacteria use specialized ESX secretion systems to transport proteins across their cell membranes in order to manipulate their environment. In pathogenic Mycobacterium tuberculosis there are five paralogous ESX secretion systems, named ESX-1 through ESX-5. Each system includes a subtilisin-like protease (mycosin or MycP) as a core component essential for secretion. Here we report crystal structures of MycP1 and MycP3, the mycosins expressed by the ESX-1 and ESX-3 systems, respectively. In both mycosins the putative propeptide wraps around the catalytic domain and does not occlude the active site. The extensive contacts between the putative propeptide and catalytic domain, which include a disulfide bond, suggest that the N-terminal extension is an integral part of the active mycosin. The catalytic residues of MycP1 and MycP3 are located in a deep active site groove in contrast with an exposed active site in majority of subtilisins. We show that MycP1 specifically cleaves ESX-1 secretion-associated protein B (EspB) in vitro at residues Ala358 and Ala386. We also systematically characterize the specificity of MycP1 using peptide libraries, and show that it has evolved a narrow specificity relative to other subtilisins. Finally, comparison of the MycP1 and MycP3 structures suggest that both enzymes have stringent and different specificity profiles that result from the structurally distinct active site pockets, which could explain the system specific functioning of these proteases.
Collapse
Affiliation(s)
- Jonathan M Wagner
- Department of Molecular & Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Jørgensen CM, Madsen SM, Vrang A, Hansen OC, Johnsen MG. Recombinant expression of Laceyella sacchari thermitase in Lactococcus lactis. Protein Expr Purif 2013; 92:148-55. [PMID: 24084004 DOI: 10.1016/j.pep.2013.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 11/18/2022]
Abstract
Thermitase (EC 3.4.21.66) is a thermostable endo-protease with the ability to convert various food relevant substrates into low-molecular weight peptides. A thermitase produced by Laceyella sacchari strain DSM43353 was found to have a mature amino acid sequence nearly identical to that of the original thermitase isolated from Thermoactinomyces vulgaris. The DSM43353 thermitase gene sequence contains a pro-peptide including parts of an I9 inhibitor motif. Expression of the thermitase gene in the Lactococcus lactis P170 expression system allowed secretion of stable thermitase in an auto-induced fermentation setup at 30°C. Thermitase accumulated in the culture supernatant during batch fermentations and was easily activated at 50°C or by prolonged dialysis. The activation step resulted in an almost complete degradation of endogenous L. lactis host proteins present in the supernatant. Mature activated product was stable at 50°C and functional at pH values between pH 6 and pH 11, suggesting that substrate hydrolysis can be performed over a broad range of pH values. The L. lactis based P170 expression system is a simple and safe system for obtaining food compatible thermitase in the range of 100 mg/L.
Collapse
|
20
|
Boone CD, Gill S, Tu C, Silverman DN, McKenna R. Structural, catalytic and stabilizing consequences of aromatic cluster variants in human carbonic anhydrase II. Arch Biochem Biophys 2013; 539:31-7. [PMID: 24036123 DOI: 10.1016/j.abb.2013.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 11/24/2022]
Abstract
The presence of aromatic clusters has been found to be an integral feature of many proteins isolated from thermophilic microorganisms. Residues found in aromatic cluster interact via π-π or C-H⋯π bonds between the phenyl rings, which are among the weakest interactions involved in protein stability. The lone aromatic cluster in human carbonic anhydrase II (HCA II) is centered on F226 with the surrounding aromatics F66, F95 and W97 located 12 Å posterior the active site; a location which could facilitate proper protein folding and active site construction. The role of F226 in the structure, catalytic activity and thermostability of HCA II was investigated via site-directed mutagenesis of three variants (F226I/L/W) into this position. The measured catalytic rates of the F226 variants via (18)O-mass spectrometry were identical to the native enzyme, but differential scanning calorimetry studies revealed a 3-4 K decrease in their denaturing temperature. X-ray crystallographic analysis suggests that the structural basis of this destabilization is via disruption and/or removal of weak C-H⋯π interactions between F226 to F66, F95 and W97. This study emphasizes the importance of the delicate arrangement of these weak interactions among aromatic clusters in overall protein stability.
Collapse
Affiliation(s)
- Christopher D Boone
- Biochemistry & Molecular Biology, University of Florida, P.O. Box 100245, Gainesville, FL 32610, United States
| | | | | | | | | |
Collapse
|
21
|
Proteolysin, a novel highly thermostable and cosolvent-compatible protease from the thermophilic bacterium Coprothermobacter proteolyticus. Appl Environ Microbiol 2013; 79:5625-32. [PMID: 23851086 DOI: 10.1128/aem.01479-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Through genome mining, we identified a gene encoding a putative serine protease of the thermitase subgroup of subtilases (EC 3.4.21.66) in the thermophilic bacterium Coprothermobacter proteolyticus. The gene was functionally expressed in Escherichia coli, and the enzyme, which we called proteolysin, was purified to near homogeneity from crude cell lysate by a single heat treatment step. Proteolysin has a broad pH tolerance and is active at temperatures of up to 80°C. In addition, the enzyme shows good activity and stability in the presence of organic solvents, detergents, and dithiothreitol, and it remains active in 6 M guanidinium hydrochloride. Based on its stability and activity profile, proteolysin can be an excellent candidate for applications where resistance to harsh process conditions is required.
Collapse
|
22
|
Laskar A, Rodger EJ, Chatterjee A, Mandal C. Modeling and structural analysis of PA clan serine proteases. BMC Res Notes 2012; 5:256. [PMID: 22624962 PMCID: PMC3434108 DOI: 10.1186/1756-0500-5-256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 05/11/2012] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Serine proteases account for over a third of all known proteolytic enzymes; they are involved in a variety of physiological processes and are classified into clans sharing structural homology. The PA clan of endopeptidases is the most abundant and over two thirds of this clan is comprised of the S1 family of serine proteases, which bear the archetypal trypsin fold and have a catalytic triad in the order Histidine, Aspartate, Serine. These proteases have been studied in depth and many three dimensional structures have been experimentally determined. However, these structures mostly consist of bacterial and animal proteases, with a small number of plant and fungal proteases and as yet no structures have been determined for protozoa or archaea. The core structure and active site geometry of these proteases is of interest for many applications. This study investigated the structural properties of different S1 family serine proteases from a diverse range of taxa using molecular modeling techniques. RESULTS Our predicted models from protozoa, archaea, fungi and plants were combined with the experimentally determined structures of 16 S1 family members and used for analysis of the catalytic core. Amino acid sequences were submitted to SWISS-MODEL for homology-based structure prediction or the LOOPP server for threading-based structure prediction. Predicted models were refined using INSIGHT II and SCRWL and validated against experimental structures. Investigation of secondary structures and electrostatic surface potential was performed using MOLMOL. The structural geometry of the catalytic core shows clear deviations between taxa, but the relative positions of the catalytic triad residues were conserved. Some highly conserved residues potentially contributing to the stability of the structural core were identified. Evolutionary divergence was also exhibited by large variation in secondary structure features outside the core, differences in overall amino acid distribution, and unique surface electrostatic potential patterns between species. CONCLUSIONS Encompassing a wide range of taxa, our structural analysis provides an evolutionary perspective on S1 family serine proteases. Focusing on the common core containing the catalytic site of the enzyme, this analysis is beneficial for future molecular modeling strategies and structural analysis of serine protease models.
Collapse
Affiliation(s)
- Aparna Laskar
- Indian Institute of Chemical Biology (CSIR Unit, Government of India), Kolkata, West Bengal, India.
| | | | | | | |
Collapse
|
23
|
Jones DD. Recombining low homology, functionally rich regions of bacterial subtilisins by combinatorial fragment exchange. PLoS One 2011; 6:e24319. [PMID: 21915310 PMCID: PMC3168465 DOI: 10.1371/journal.pone.0024319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/08/2011] [Indexed: 11/19/2022] Open
Abstract
Combinatorial fragment exchange was utilised to recombine key structural and functional low homology regions of bacilli subtilisins to generate new active hybrid proteases with altered substrate profiles. Up to six different regions comprising mostly of loop residues from the commercially important subtilisin Savinase were exchanged with the structurally equivalent regions of six other subtilisins. The six additional subtilisins derive from diverse origins and included thermophilic and intracellular subtilisins as well as other academically and commercially relevant subtilisins. Savinase was largely tolerant to fragment exchange; rational replacement of all six regions with 5 of 6 donating subtilisin sequences preserved activity, albeit reduced compared to Savinase. A combinatorial approach was used to generate hybrid Savinase variants in which the sequences derived from all seven subtilisins at each region were recombined to generate new region combinations. Variants with different substrate profiles and with greater apparent activity compared to Savinase and the rational fragment exchange variants were generated with the substrate profile exhibited by variants dependent on the sequence combination at each region.
Collapse
Affiliation(s)
- D Dafydd Jones
- School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
24
|
Tiberti M, Papaleo E. Dynamic properties of extremophilic subtilisin-like serine-proteases. J Struct Biol 2011; 174:69-83. [DOI: 10.1016/j.jsb.2011.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 12/19/2010] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
25
|
Jones GDD, Le Pla RC, Farmer PB. Phosphotriester adducts (PTEs): DNA's overlooked lesion. Mutagenesis 2009; 25:3-16. [DOI: 10.1093/mutage/gep038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Cheng G, Zhao P, Tang XF, Tang B. Identification and characterization of a novel spore-associated subtilase from Thermoactinomyces sp. CDF. MICROBIOLOGY-SGM 2009; 155:3661-3672. [PMID: 19696109 DOI: 10.1099/mic.0.031336-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A gene encoding a spore-associated subtilase, designated protease CDF, was cloned from Thermoactinomyces sp. CDF and expressed in Escherichia coli. The enzyme gene is translated as a proform consisting of a 94 aa propeptide and a 283 aa mature protease domain. Phylogenetic analysis revealed that this enzyme belonged to the subtilisin family, but could not be grouped into any of its six known subfamilies. The mature protease CDF has an unusually high content of charged residues, which are mainly distributed on the enzyme surface. The recombinant proform of protease CDF formed inclusion bodies, but could be efficiently converted to the mature enzyme when the inclusion bodies were dissolved in alkaline buffers. The proform underwent a two-step maturation process, wherein the N-terminal part (85 residues) of the propeptide was autoprocessed intramolecularly, and the remaining 9-residue peptide was further processed intermolecularly. Protease CDF exhibited optimal proteolytic activity at 50-55 degrees C and pH 10.5-11.0. The enzyme was stable under high-pH conditions (pH 11.0-12.0), and NaCl could stabilize the enzyme at lower pH values. In addition, the enzyme was not dependent on calcium for either maturation or stability. By immunoblot analysis, protease CDF was found to be associated with spores, and could be extracted from the spores with 2 M KCl and alkaline buffers without damaging the coat layer, demonstrating that the protease CDF is located on the surface of the spore coat.
Collapse
Affiliation(s)
- Guyue Cheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Peiwei Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xiao-Feng Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
27
|
Fazelinia H, Cirino PC, Maranas CD. OptGraft: A computational procedure for transferring a binding site onto an existing protein scaffold. Protein Sci 2009; 18:180-95. [PMID: 19177362 DOI: 10.1002/pro.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the many challenging tasks of protein design is the introduction of a completely new function into an existing protein scaffold. In this study, we introduce a new computational procedure OptGraft for placing a novel binding pocket onto a protein structure so as its geometry is minimally perturbed. This is accomplished by introducing a two-level procedure where we first identify where are the most appropriate locations to graft the new binding pocket into the protein fold by minimizing the departure from a set of geometric restraints using mixed-integer linear optimization. On identifying the suitable locations that can accommodate the new binding pocket, CHARMM energy calculations are employed to identify what mutations in the neighboring residues, if any, are needed to ensure that the minimum energy conformation of the binding pocket conserves the desired geometry. This computational framework is benchmarked against the results available in the literature for engineering a copper binding site into thioredoxin protein. Subsequently, OptGraft is used to guide the transfer of a calcium-binding pocket from thermitase protein (PDB: 1thm) into the first domain of CD2 protein (PDB:1hng). Experimental characterization of three de novo redesigned proteins with grafted calcium-binding centers demonstrated that they all exhibit high affinities for terbium (Kd) approximately 22, 38, and 55 microM) and can selectively bind calcium over magnesium.
Collapse
Affiliation(s)
- Hossein Fazelinia
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 , USA
| | | | | |
Collapse
|
28
|
Almog O, González A, Godin N, de Leeuw M, Mekel MJ, Klein D, Braun S, Shoham G, Walter RL. The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state. Proteins 2009; 74:489-96. [PMID: 18655058 DOI: 10.1002/prot.22175] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We determine and compare the crystal structure of two proteases belonging to the subtilisin superfamily: S41, a cold-adapted serine protease produced by Antarctic bacilli, at 1.4 A resolution and Sph, a mesophilic serine protease produced by Bacillus sphaericus, at 0.8 A resolution. The purpose of this comparison was to find out whether multiple calcium ion binding is a molecular factor responsible for the adaptation of S41 to extreme low temperatures. We find that these two subtilisins have the same subtilisin fold with a root mean square between the two structures of 0.54 A. The final models for S41 and Sph include a calcium-loaded state of five ions bound to each of these two subtilisin molecules. None of these calcium-binding sites correlate with the high affinity known binding site (site A) found for other subtilisins. Structural analysis of the five calcium-binding sites found in these two crystal structures indicate that three of the binding sites have two side chains of an acidic residue coordinating the calcium ion, whereas the other two binding sites have either a main-chain carbonyl, or only one acidic residue side chain coordinating the calcium ion. Thus, we conclude that three of the sites are of high affinity toward calcium ions, whereas the other two are of low affinity. Because Sph is a mesophilic subtilisin and S41 is a psychrophilic subtilisin, but both crystal structures were found to bind five calcium ions, we suggest that multiple calcium ion binding is not responsible for the adaptation of S41 to low temperatures.
Collapse
Affiliation(s)
- Orna Almog
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University, Beer Sheva 84105, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fu Y, Pastushok L, Xiao W. DNA damage-induced gene expression inSaccharomyces cerevisiae. FEMS Microbiol Rev 2008; 32:908-26. [DOI: 10.1111/j.1574-6976.2008.00126.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
30
|
Papisova AI, Semenova SA, Kislitsyn IA, Rudenskaia GN. [Characteristics of substrate hydrolysis by endopeptidases from the hepatopancreas of the king crab]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 34:479-86. [PMID: 18695720 DOI: 10.1134/s1068162008040067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Kinetic parameters of hydrolysis of peptide and protein substrates by psychrophilic endopeptidases from hepatopancreas of the king crab Paralithodes camtschaticus (PC), in particular, by trypsin, collagenolytic protease, and metalloprotease, were measured at different temperatures. The PC trypsin was shown to hydrolyze Bz-Arg-pNA in the temperature range studied (4-37 degrees C) 19 times more effectively than bovine trypsin. The rate constants of hydrolysis of Glp-Ala-Ala-Leu-pNA by the PC collagenolytic protease increased approximately by one order of magnitude along with temperature decrease, while Km decreased by 3.5 times. The effective values of Km for the hydrolysis of azocasein by the metalloprotease insignificantly depend on temperature. We proposed that electrostatic interactions of negative charges around the cavity of active site are critical for the effective hydrolysis of substrates by endopeptidases of the PC hepatopancreas.
Collapse
|
31
|
Almog O, Kogan A, Leeuw MD, Gdalevsky GY, Cohen-Luria R, Parola AH. Structural insights into cold inactivation of tryptophanase and cold adaptation of subtilisin S41. Biopolymers 2008; 89:354-9. [PMID: 17937401 DOI: 10.1002/bip.20866] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A wide variety of enzymes can undergo a reversible loss of activity at low temperature, a process that is termed cold inactivation. This phenomenon is found in oligomeric enzymes such as tryptophanase (Trpase) and other pyridoxal phosphate dependent enzymes. On the other hand, cold-adapted, or psychrophilic enzymes, isolated from organisms able to thrive in permanently cold environments, have optimal activity at low temperature, which is associated with low thermal stability. Since cold inactivation may be considered "contradictory" to cold adaptation, we have looked into the amino acid sequences and the crystal structures of two families of enzymes, subtilisin and tryptophanase. Two cold adapted subtilisins, S41 and subtilisin-like protease from Vibrio, were compared to a mesophilic and a thermophilic subtilisins, as well as to four PLP-dependent enzymes in order to understand the specific surface residues, specific interactions, or any other molecular features that may be responsible for the differences in their tolerance to cold temperatures. The comparison between the psychrophilic and the mesophilic subtilisins revealed that the cold adapted subtilisins have a high content of acidic residues mainly found on their surface, making it charged. The analysis of the Trpases showed that they have a high content of hydrophobic residues on their surface. Thus, we suggest that the negatively charged residues on the surface of the subtilisins may be responsible for their cold adaptation, whereas the hydrophobic residues on the surface of monomeric Trpase molecules are responsible for the tetrameric assembly, and may account for their cold inactivation and dissociation.
Collapse
Affiliation(s)
- Orna Almog
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel.
| | | | | | | | | | | |
Collapse
|
32
|
Characterizing structural features of cuticle-degrading proteases from fungi by molecular modeling. BMC STRUCTURAL BIOLOGY 2007; 7:33. [PMID: 17511867 PMCID: PMC1890553 DOI: 10.1186/1472-6807-7-33] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 05/18/2007] [Indexed: 11/10/2022]
Abstract
Background Serine proteases secreted by nematode and insect pathogenic fungi are bio-control agents which have commercial potential for developing into effective bio-pesticides. A thorough understanding of the structural and functional features of these proteases would significantly assist with targeting the design of efficient bio-control agents. Results Structural models of serine proteases PR1 from entomophagous fungus, Ver112 and VCP1 from nematophagous fungi, have been modeled using the homology modeling technique based on the crystal coordinate of the proteinase K. In combination with multiple sequence alignment, these models suggest one similar calcium-binding site and two common disulfide bridges in the three cuticle-degrading enzymes. In addition, the predicted models of the three cuticle-degrading enzymes present an essentially identical backbone topology and similar geometric properties with the exception of a limited number of sites exhibiting relatively large local conformational differences only in some surface loops and the N-, C termini. However, they differ from each other in the electrostatic surface potential, in hydrophobicity and size of the S4 substrate-binding pocket, and in the number and distribution of hydrogen bonds and salt bridges within regions that are part of or in close proximity to the S2-loop. Conclusion These differences likely lead to variations in substrate specificity and catalytic efficiency among the three enzymes. Amino acid polymorphisms in cuticle-degrading enzymes were discussed with respect to functional effects and host preference. It is hoped that these structural models would provide a further basis for exploitation of these serine proteases from pathogenic fungi as effective bio-control agents.
Collapse
|
33
|
Huang Y, Zhou Y, Yang W, Butters R, Lee HW, Li S, Castiblanco A, Brown EM, Yang JJ. Identification and dissection of Ca(2+)-binding sites in the extracellular domain of Ca(2+)-sensing receptor. J Biol Chem 2007; 282:19000-10. [PMID: 17478419 PMCID: PMC2867057 DOI: 10.1074/jbc.m701096200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ca(2+)-sensing receptors (CaSRs) represent a class of receptors that respond to changes in the extracellular Ca(2+) concentration ([Ca(2+)](o)) and activate multiple signaling pathways. A major barrier to advancing our understanding of the role of Ca(2+) in regulating CaSRs is the lack of adequate information about their Ca(2+)-binding locations, which is largely hindered by the lack of a solved three-dimensional structure and rapid off rates due to low Ca(2+)-binding affinities. In this paper, we have reported the identification of three potential Ca(2+)-binding sites in a modeled CaSR structure using computational algorithms based on the geometric description and surface electrostatic potentials. Mutation of the predicted ligand residues in the full-length CaSR caused abnormal responses to [Ca(2+)](o), similar to those observed with naturally occurring activating or inactivating mutations of the CaR, supporting the essential role of these predicted Ca(2+)-binding sites in the sensing capability of the CaSR. In addition, to probe the intrinsic Ca(2+)-binding properties of the predicted sequences, we engineered two predicted continuous Ca(2+)-binding sequences individually into a scaffold protein provided by a non-Ca(2+)-binding protein, CD2. We report herein the estimation of the metal-binding affinities of these predicted sites in the CaSR by monitoring aromatic-sensitized Tb(3+) fluorescence energy transfer. Removing the predicted Ca(2+)-binding ligands resulted in the loss of or significantly weakened cation binding. The potential Ca(2+)-binding residues were shown to be involved in Ca(2+)/Ln(3+) binding by high resolution NMR and site-directed mutagenesis, further validating our prediction of Ca(2+)-binding sites within the extracellular domain of the CaSR.
Collapse
MESH Headings
- Algorithms
- Animals
- Binding Sites/physiology
- Calcium/metabolism
- Cell Line
- Extracellular Space/metabolism
- Humans
- Kidney/cytology
- Mice
- Models, Chemical
- Mutagenesis, Site-Directed
- Nuclear Magnetic Resonance, Biomolecular
- Protein Engineering
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Receptors, Calcium-Sensing/chemistry
- Receptors, Calcium-Sensing/genetics
- Receptors, Calcium-Sensing/metabolism
- Receptors, Metabotropic Glutamate/chemistry
- Receptors, Metabotropic Glutamate/metabolism
Collapse
Affiliation(s)
- Yun Huang
- Department of Chemistry, Center for Biotechnology and Drug Design Georgia State University, Atlanta, Georgia 30303
| | - Yubin Zhou
- Department of Chemistry, Center for Biotechnology and Drug Design Georgia State University, Atlanta, Georgia 30303
| | - Wei Yang
- Department of Chemistry, Center for Biotechnology and Drug Design Georgia State University, Atlanta, Georgia 30303
| | - Robert Butters
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Hsiau-Wei Lee
- Department of Chemistry, Center for Biotechnology and Drug Design Georgia State University, Atlanta, Georgia 30303
| | - Shunyi Li
- Department of Chemistry, Center for Biotechnology and Drug Design Georgia State University, Atlanta, Georgia 30303
| | - Adriana Castiblanco
- Department of Chemistry, Center for Biotechnology and Drug Design Georgia State University, Atlanta, Georgia 30303
| | - Edward M. Brown
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Jenny J. Yang
- Department of Chemistry, Center for Biotechnology and Drug Design Georgia State University, Atlanta, Georgia 30303
- To whom correspondence should be addressed: Dept. of Chemistry, Georgia State University, University Plaza, Atlanta, GA 30303. Tel.: 404-651-4620; Fax: 404-651-2751;
| |
Collapse
|
34
|
Bian Y, Liang X, Fang N, Tang XF, Tang B, Shen P, Peng Z. The roles of surface loop insertions and disulfide bond in the stabilization of thermophilic WF146 protease. FEBS Lett 2006; 580:6007-14. [PMID: 17052711 DOI: 10.1016/j.febslet.2006.09.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 09/15/2006] [Accepted: 09/30/2006] [Indexed: 10/24/2022]
Abstract
Thermophilic WF146 protease possesses four surface loop insertions and a disulfide bond, resembling its psychrophilic (subtilisins S41 and S39) and mesophilic (subtilisins SSII and sphericase) homologs. Deletion of the insertion 3 (positions 193-197) or insertion 4 (positions 210-221) of WF146 protease resulted in a significant decrease of the enzyme stability. In addition, substitution of the residues Pro211 and Ala212 or residue Glu221 which localized in the vicinity of a Ca(2+) binding site of the enzyme by the corresponding residues in subtilisin S41 remarkably reduced the half-life of the enzyme at 70 degrees C, suggesting that the three residues contributed to the thermostability of the enzyme, probably by enhancing the affinity of enzyme to Ca(2+). In the presence of dithiothreitol, the WF146 protease suffered excessive autolysis, indicating that the Cys52-Cys65 disulfide bond played a critical role in stabilizing the WF146 protease against autolysis. The autolytic cleavage sites of the WF146 protease were identified to locate between residues Asn63-Gly64 and Cys65-Ala66 by N-terminal amino acid analysis of the autolytic product. It was noticed that the effect of the autolytic cleavage at Asn63-Gly64 could be compensated by the disulfide bond Cys52-Cys65 under non-reducing condition, and the disulfide bond cross-linked autolytic product remained active. The apparent stabilization effect of the disulfide bond Cys52-Cys65 in the WF146 protease might provide a rational basis for improving the stability of subtilase against autolysis by protein engineering.
Collapse
Affiliation(s)
- Yan Bian
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Fukada K, Inoue T, Shiraishi H. A posttranslationally regulated protease, VheA, is involved in the liberation of juveniles from parental spheroids in Volvox carteri. THE PLANT CELL 2006; 18:2554-66. [PMID: 17028206 PMCID: PMC1626617 DOI: 10.1105/tpc.106.041343] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The lineage of volvocine algae includes unicellular Chlamydomonas and multicellular Volvox in addition to their colonial relatives intermediate in size and cell number. In an asexual life cycle, daughter cells of Chlamydomonas hatch from parental cell walls soon after cell division, while Volvox juveniles are released from parental spheroids after the completion of various developmental events required for the survival of multicellular juveniles. Thus, heterochronic change in the timing of hatching is considered to have played an important role in the evolution of multicellularity in volvocine algae. To study the hatching process in Volvox carteri, we purified a 125-kD Volvox hatching enzyme (VheA) from a culture medium with enzymatic activity to degrade the parental spheroids. The coding region of vheA contains a prodomain with a transmembrane segment, a subtilisin-like Ser protease domain, and a functionally unknown domain, although purified 125-kD VheA does not contain a prodomain. While 143-kD VheA with a prodomain is synthesized long before the hatching stage, 125-kD VheA is released into the culture medium during hatching due to cleavage processing at the site between the prodomain and the subtilisin-like Ser protease domain, indicating that posttranslational regulation is involved in the determination of the timing of hatching.
Collapse
Affiliation(s)
- Kazutake Fukada
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
36
|
Pulido M, Saito K, Tanaka SI, Koga Y, Morikawa M, Takano K, Kanaya S. Ca2+-dependent maturation of subtilisin from a hyperthermophilic archaeon, Thermococcus kodakaraensis: the propeptide is a potent inhibitor of the mature domain but is not required for its folding. Appl Environ Microbiol 2006; 72:4154-62. [PMID: 16751527 PMCID: PMC1489632 DOI: 10.1128/aem.02696-05] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subtilisin from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 is a member of the subtilisin family. T. kodakaraensis subtilisin in a proform (T. kodakaraensis pro-subtilisin), as well as its propeptide (T. kodakaraensis propeptide) and mature domain (T. kodakaraensis mat-subtilisin), were independently overproduced in E. coli, purified, and biochemically characterized. T. kodakaraensis pro-subtilisin was inactive in the absence of Ca2+ but was activated upon autoprocessing and degradation of propeptide in the presence of Ca2+ at 80 degrees C. This maturation process was completed within 30 min at 80 degrees C but was bound at an intermediate stage, in which the propeptide is autoprocessed from the mature domain (T. kodakaraensis mat-subtilisin*) but forms an inactive complex with T. kodakaraensis mat-subtilisin*, at lower temperatures. At 80 degrees C, approximately 30% of T. kodakaraensis pro-subtilisin was autoprocessed into T. kodakaraensis propeptide and T. kodakaraensis mat-subtilisin*, and the other 70% was completely degraded to small fragments. Likewise, T. kodakaraensis mat-subtilisin was inactive in the absence of Ca2+ but was activated upon incubation with Ca2+ at 80 degrees C. The kinetic parameters and stability of the resultant activated protein were nearly identical to those of T. kodakaraensis mat-subtilisin*, indicating that T. kodakaraensis mat-subtilisin does not require T. kodakaraensis propeptide for folding. However, only approximately 5% of T. kodakaraensis mat-subtilisin was converted to an active form, and the other part was completely degraded to small fragments. T. kodakaraensis propeptide was shown to be a potent inhibitor of T. kodakaraensis mat-subtilisin* and noncompetitively inhibited its activity with a Ki of 25 +/- 3.0 nM at 20 degrees C. T. kodakaraensis propeptide may be required to prevent the degradation of the T. kodakaraensis mat-subtilisin molecules that are activated later by those that are activated earlier.
Collapse
Affiliation(s)
- Marian Pulido
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Larsen AN, Moe E, Helland R, Gjellesvik DR, Willassen NP. Characterization of a recombinantly expressed proteinase K-like enzyme from a psychrotrophic Serratia sp. FEBS J 2006; 273:47-60. [PMID: 16367747 DOI: 10.1111/j.1742-4658.2005.05044.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The gene encoding a peptidase that belongs to the proteinase K family of serine peptidases has been identified from a psychrotrophic Serratia sp., and cloned and expressed in Escherichia coli. The gene has 1890 base pairs and encodes a precursor protein of 629 amino acids with a theoretical molecular mass of 65.5 kDa. Sequence analysis suggests that the peptidase consists of a prepro region, a catalytic domain and two C-terminal domains. The enzyme is recombinantly expressed as an active approximately 56 kDa peptidase and includes both C-terminal domains. Purified enzyme is converted to the approximately 34 kDa form by autolytic cleavage when incubated at 50 degrees C for 30 min, but retains full activity. In the present work, the Serratia peptidase (SPRK) is compared with the family representative proteinase K (PRK) from Tritirachium album Limber. Both enzymes show a relatively high thermal stability and a broad pH stability profile. SPRK possess superior stability towards SDS at 50 degrees C compared to PRK. On the other hand, SPRK is considerably more labile to removal of calcium ions. The activity profiles against temperature and pH differ for the two enzymes. SPRK shows both a broader pH optimum as well as a higher temperature optimum than PRK. Analysis of the catalytic properties of SPRK and PRK using the synthetic peptide succinyl-Ala-Ala-Pro-Phe-pNA as substrate showed that SPRK possesses a 3.5-4.5-fold higher kcat at the temperature range 12-37 degrees C, but a fivefold higher Km results in a slightly lower catalytic efficiency (kcat/Km) of SPRK compared to PRK.
Collapse
Affiliation(s)
- Atle Noralf Larsen
- Department of Molecular Biotechnology, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, Norway
| | | | | | | | | |
Collapse
|
38
|
Helland R, Larsen AN, Smalås AO, Willassen NP. The 1.8 A crystal structure of a proteinase K-like enzyme from a psychrotroph Serratia species. FEBS J 2006; 273:61-71. [PMID: 16367748 DOI: 10.1111/j.1742-4658.2005.05040.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Proteins from organisms living in extreme conditions are of particular interest because of their potential for being templates for redesign of enzymes both in biotechnological and other industries. The crystal structure of a proteinase K-like enzyme from a psychrotroph Serratia species has been solved to 1.8 A. The structure has been compared with the structures of proteinase K from Tritirachium album Limber and Vibrio sp. PA44 in order to reveal structural explanations for differences in biophysical properties. The Serratia peptidase shares around 40 and 64% identity with the Tritirachium and Vibrio peptidases, respectively. The fold of the three enzymes is essentially identical, with minor exceptions in surface loops. One calcium binding site is found in the Serratia peptidase, in contrast to the Tritirachium and Vibrio peptidases which have two and three, respectively. A disulfide bridge close to the S2 site in the Serratia and Vibrio peptidases, an extensive hydrogen bond network in a tight loop close to the substrate binding site in the Serratia peptidase and different amino acid sequences in the S4 sites are expected to cause different substrate specificity in the three enzymes. The more negative surface potential of the Serratia peptidase, along with a disulfide bridge close to the S2 binding site of a substrate, is also expected to contribute to the overall lower binding affinity observed for the Serratia peptidase. Clear electron density for a tripeptide, probably a proteolysis product, was found in the S' sites of the substrate binding cleft.
Collapse
Affiliation(s)
- Ronny Helland
- Norwegian Structural Biology Centre, Faculty of Science, University of Tromsø, Tromsø, Norway.
| | | | | | | |
Collapse
|
39
|
Segal D, Eisenstein M. The effect of resolution-dependent global shape modifications on rigid-body protein-protein docking. Proteins 2005; 59:580-91. [PMID: 15778956 DOI: 10.1002/prot.20432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Docking unbound molecules presents a challenge in the case where no prior biological or bioinformatic knowledge exists. This is mainly due to differences between the structures of the molecules when in a complex and in the free state. Presumably, these differences interfere with the ability of protein-protein docking algorithms, which rely on a dominant shape descriptor, to identify the correct solution and rank it higher than false solutions. In this study we verify the notion that small discords in the molecular fit can be eliminated by using appropriately designed low-resolution shape descriptors, thereby improving the docking results. We exploit the inherent gradual resolution dependency of Fourier transforms and formulate a resolution-dependent shape descriptor by truncating selected Fourier transform terms. Thus, different levels of shape modification are attained, affecting the degree of detail in the depiction of the molecular surface. We applied the modified descriptor to a selection of 23 protein-protein systems, using the unbound structures where possible. The docking results obtained with the new geometric descriptor were considerably superior to former results, improving the ranks of nearly correct solutions for 17 systems. Unification of the results of scans in which different resolutions were employed further improved the ranks of nearly correct solutions to less than 100 for 12 of the 23 systems and less than 300 for 20 systems. The new geometric descriptor can be combined with other descriptors, which typify the electrostatic or hydrophobic character of the molecular surface, and with external experimental or bioinformatic data.
Collapse
Affiliation(s)
- Dadi Segal
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
40
|
Arnórsdóttir J, Kristjánsson MM, Ficner R. Crystal structure of a subtilisin-like serine proteinase from a psychrotrophic Vibrio species reveals structural aspects of cold adaptation. FEBS J 2005; 272:832-45. [PMID: 15670163 DOI: 10.1111/j.1742-4658.2005.04523.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of a subtilisin-like serine proteinase from the psychrotrophic marine bacterium, Vibrio sp. PA-44, was solved by means of molecular replacement and refined at 1.84 A. This is the first structure of a cold-adapted subtilase to be determined and its elucidation facilitates examination of the molecular principles underlying temperature adaptation in enzymes. The cold-adapted Vibrio proteinase was compared with known three-dimensional structures of homologous enzymes of meso- and thermophilic origin, proteinase K and thermitase, to which it has high structural resemblance. The main structural features emerging as plausible determinants of temperature adaptation in the enzymes compared involve the character of their exposed and buried surfaces, which may be related to temperature-dependent variation in the physical properties of water. Thus, the hydrophobic effect is found to play a significant role in the structural stability of the meso- and thermophile enzymes, whereas the cold-adapted enzyme has more of its apolar surface exposed. In addition, the cold-adapted Vibrio proteinase is distinguished from the more stable enzymes by its strong anionic character arising from the high occurrence of uncompensated negatively charged residues at its surface. Interestingly, both the cold-adapted and thermophile proteinases differ from the mesophile enzyme in having more extensive hydrogen- and ion pair interactions in their structures; this supports suggestions of a dual role of electrostatic interactions in the adaptation of enzymes to both high and low temperatures. The Vibrio proteinase has three calcium ions associated with its structure, one of which is in a calcium-binding site not described in other subtilases.
Collapse
Affiliation(s)
- Jóhanna Arnórsdóttir
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Georg-August Universität Göttingen, Germany
| | | | | |
Collapse
|
41
|
Cuff AL, Martin ACR. Analysis of void volumes in proteins and application to stability of the p53 tumour suppressor protein. J Mol Biol 2005; 344:1199-209. [PMID: 15561139 DOI: 10.1016/j.jmb.2004.10.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 09/24/2004] [Accepted: 10/12/2004] [Indexed: 10/26/2022]
Abstract
We have developed a new method for the analysis of voids in proteins (defined as empty cavities not accessible to solvent). This method combines analysis of individual discrete voids with analysis of packing quality. While these are different aspects of the same effect, they have traditionally been analysed using different approaches. The method has been applied to the calculation of total void volume and maximum void size in a non-redundant set of protein domains and has been used to examine correlations between thermal stability and void size. The tumour-suppressor protein p53 has then been compared with the non-redundant data set to determine whether its low thermal stability results from poor packing. We found that p53 has average packing, but the detrimental effects of some previously unexplained mutations to p53 observed in cancer can be explained by the creation of unusually large voids.
Collapse
Affiliation(s)
- Alison L Cuff
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, P.O. Box 228, Reading RG6 6AJ, UK
| | | |
Collapse
|
42
|
Lee CH, Jung JW, Yee A, Arrowsmith CH, Lee W. Solution structure of a novel calcium binding protein, MTH1880, from Methanobacterium thermoautotrophicum. Protein Sci 2004; 13:1148-54. [PMID: 15044740 PMCID: PMC2280053 DOI: 10.1110/ps.03472104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
MTH1880 is a hypothetical protein from Methanobacterium thermoautotrophicum, a target organism of structural genomics. The solution structure determined by NMR spectroscopy demonstrates a typical alpha + beta-fold found in many proteins with different functions. The molecular surface of the protein reveals a small, highly acidic pocket comprising loop B (Asp36, Asp37, Asp38), the end of beta2 (Glu39), and loop D (Ser57, Ser58, Ser61), indicating that the protein would have a possible cation binding site. The NMR resonances of several amino acids within the acidic binding pocket in MTH1880, shifted upon addition of calcium ion. This calcium binding motif and overall topology of MTH1880 differ from those of other calcium binding proteins. MTH1880 did not show a calcium-induced conformational change typical of calcium sensor proteins. Therefore, we propose that the MTH1880 protein contains a novel motif for calcium-specific binding, and may function as a calcium buffering protein.
Collapse
Affiliation(s)
- Chang-Hun Lee
- Department of Biochemistry, College of Science, Yonsei University, 134 Seodaemoon-Gu, Shinchondong, Seoul, Korea 120-749
| | | | | | | | | |
Collapse
|
43
|
Lee DY, Kim KA, Yu YG, Kim KS. Substitution of aspartic acid with glutamic acid increases the unfolding transition temperature of a protein. Biochem Biophys Res Commun 2004; 320:900-6. [PMID: 15240133 DOI: 10.1016/j.bbrc.2004.06.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Indexed: 11/17/2022]
Abstract
Proteins from thermophiles are more stable than those from mesophiles. Several factors have been suggested as causes for this greater stability, but no general rule has been found. The amino acid composition of thermophile proteins indicates that the content of polar amino acids such as Asn, Gln, Ser, and Thr is lower, and that of charged amino acids such as Arg, Glu, and Lys is higher than in mesophile proteins. Among charged amino acids, however, the content of Asp is even lower in thermophile proteins than in mesophile proteins. To investigate the reasons for the lower occurrence of Asp compared to Glu in thermophile proteins, Glu was substituted with Asp in a hyperthermophile protein, MjTRX, and Asp was substituted with Glu in a mesophile protein, ETRX. Each substitution of Glu with Asp decreased the Tm of MjTRX by about 2 degrees C, while each substitution of Asp with Glu increased the Tm of ETRX by about 1.5 degrees C. The change of Tm destabilizes the MjTRX by 0.55 kcal/mol and stabilizes the ETRX by 0.45 kcal/mol in free energy.
Collapse
Affiliation(s)
- Duck Yeon Lee
- Biomedical Research Center, Korea Institute of Science and Technology, Cheongyang Box 131, Seoul 130-650, Republic of Korea
| | | | | | | |
Collapse
|
44
|
Abstract
Formation of hydrophobic contacts across a newly formed interface is energetically favorable. Based on this observation we developed a geometric-hydrophobic docking algorithm that estimates quantitatively the hydrophobic complementarity at protein-protein interfaces. Each molecule to be docked is represented as a grid of complex numbers, storing information regarding the shape of the molecule in the real part and information regarding the hydropathy of the surface in the imaginary part. The grid representations are correlated using fast Fourier transformations. The algorithm is used to compare the extent of hydrophobic complementarity in oligomers (represented by D2 tetramers) and in hetero-dimers of soluble proteins (complexes). We also test the implication of hydrophobic complementarity in distinguishing correct from false docking solutions. We find that hydrophobic complementarity at the interface exists in oligomers and in complexes, and in both groups the extent of such complementarity depends on the size of the interface. Thus, the non-polar portions of large interfaces are more often juxtaposed than non-polar portions of small interfaces. Next we find that hydrophobic complementarity helps to point out correct docking solutions. In oligomers it significantly improves the ranks of nearly correct reassembled and modeled tetramers. Combining geometric, electrostatic and hydrophobic complementarity for complexes gives excellent results, ranking a nearly correct solution < 10 for 5 of 23 tested systems, < 100 for 8 systems and < 1000 for 19 systems.
Collapse
Affiliation(s)
- Alexander Berchanski
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
45
|
Wu J, Bian Y, Tang B, Chen X, Shen P, Peng Z. Cloning and analysis of WF146 protease, a novel thermophilic subtilisin-like protease with four inserted surface loops. FEMS Microbiol Lett 2004; 230:251-8. [PMID: 14757247 DOI: 10.1016/s0378-1097(03)00914-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cloning and sequencing of the gene encoding WF146 protease, an extracellular subtilisin-like protease from the thermophile Bacillus sp. WF146, revealed that the WF146 protease was translated as a 416-amino acid precursor consisting of a putative 18-amino acid signal peptide, a 10-kDa N-terminal propeptide and a 32-kDa mature protease region. The mature WF146 protease shares a high degree of amino acid sequence identity with two psychrophilic subtilisins, S41 (68.2%) and S39 (65.4%), and a mesophilic subtilisin, SSII (67.1%). Significantly, these closely related proteases adapted to different temperatures all had four inserted surface loops not found in other subtilisins. However, unlike those of S41, S39 and SSII, the inserted loops of the WF146 protease possessed stabilizing features, such as the introduction of Pro residues into the loop regions. Interestingly, the WF146 protease contained five of the seven mutations previously found in a hyperstable variant of subtilisin S41 obtained by directed evolution. The proform of WF146 protease (pro-WF146 protease) was overexpressed in Escherichia coli in an inactive soluble form. After heat treatment, the 42-kDa pro-WF146 protease converted to a 32-kDa active mature form by processing the N-terminal propeptide. The purified mature WF146 protease hydrolyzed casein with an optimum temperature of 85 degrees C, and lost activity with a half-life of 30 min at 80 degrees C in the presence of 10 mM CaCl2.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Biotechnology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | |
Collapse
|
46
|
Almog O, González A, Klein D, Greenblatt HM, Braun S, Shoham G. The 0.93Å Crystal Structure of Sphericase: A Calcium-loaded Serine Protease from Bacillus sphaericus. J Mol Biol 2003; 332:1071-82. [PMID: 14499610 DOI: 10.1016/j.jmb.2003.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously isolated sphericase (Sph), an extracellular mesophilic serine protease produced by Bacillus sphaericus. The Sph amino acid sequence is highly homologous to two cold-adapted subtilisins from Antarctic bacilli S39 and S41 (76% and 74% identity, respectively). Sph is calcium-dependent, 310 amino acid residues long and has optimal activity at pH 10.0. S41 and S39 have not as yet been structurally analysed. In the present work, we determined the crystal structure of Sph by the Eu/multiwavelength anomalous diffraction method. The structure was extended to 0.93A resolution and refined to a crystallographic R-factor of 9.7%. The final model included all 310 amino acid residues, one disulfide bond, 679 water molecules and five calcium ions. Although Sph is a mesophilic subtilisin, its amino acid sequence is similar to that of the psychrophilic subtilisins, which suggests that the crystal structure of these subtilisins is very similar. The presence of five calcium ions bound to a subtilisin molecule, as found here for Sph, has not been reported for the subtilisin superfamily. None of these calcium-binding sites correlates with the well-known high-affinity calcium-binding site (site I or site A), and only one site has been described previously. This calcium-binding pattern suggests that a reduction in the flexibility of the surface loops of Sph by calcium binding may be responsible for its adaptation to mesophilic organisms.
Collapse
Affiliation(s)
- Orna Almog
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University, Beer Sheva, 84105, Israel.
| | | | | | | | | | | |
Collapse
|
47
|
Improvement of thermostability of cold-active serine alkaline protease from the psychrotrophic bacterium Shewanella sp. strain Ac10 by rational mutagenesis. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1381-1177(03)00012-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Arnórsdottir J, Smáradóttir RB, Magnússon OT, Thorbjarnardóttir SH, Eggertsson G, Kristjánsson MM. Characterization of a cloned subtilisin-like serine proteinase from a psychrotrophic Vibrio species. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5536-46. [PMID: 12423352 DOI: 10.1046/j.1432-1033.2002.03259.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene encoding a subtilisin-like serine proteinase in the psychrotrophic Vibrio sp. PA44 has been successfully cloned, sequenced and expressed in Escherichia coli. The gene is 1593 basepairs and encodes a precursor protein of 530 amino acid residues with a calculated molecular mass of 55.7 kDa. The enzyme is isolated, however, as an active 40.6-kDa proteinase, without a 139 amino acid residue N-terminal prosequence. Under mild conditions the enzyme undergoes a further autocatalytic cleavage to give a 29.7-kDa proteinase that retains full enzymatic activity. The deduced amino acid sequence of the enzyme has high homology to proteinases of the proteinase K family of subtilisin-like proteinases. With respect to the enzyme characteristics compared in this study the properties of the wild-type and recombinant proteinases are the same. Sequence analysis revealed that especially with respect to the thermophilic homologues, aqualysin I from Thermus aquaticus and a proteinase from Thermus strain Rt41A, the cold-adapted Vibrio-proteinase has a higher content of polar/uncharged amino acids, as well as aspartate residues. The thermophilic enzymes had a higher content of arginines, and relatively higher number of hydrophobic amino acids and a higher aliphatic index. These factors may contribute to the adaptation of these proteinases to different temperature conditions.
Collapse
Affiliation(s)
- Jóhanna Arnórsdottir
- Institute of Biology, University of Iceland; and Department of Biochemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | |
Collapse
|
49
|
Yang W, Lee HW, Hellinga H, Yang JJ. Structural analysis, identification, and design of calcium-binding sites in proteins. Proteins 2002; 47:344-56. [PMID: 11948788 DOI: 10.1002/prot.10093] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Assigning proteins with functions based on the 3-D structure requires high-speed techniques to make a systematic survey of protein structures. Calcium regulates many biological systems by binding numerous proteins in different biological environments. Despite the great diversity in the composition of ligand residues and bond angles and lengths of calcium-binding sites, our structural analysis of 11 calcium-binding sites in different classes of proteins has shown that common local structural parameters can be used to identify and design calcium-binding proteins. Natural calcium-binding sites in both EF-hand proteins and non-EF-hand proteins can be described with the smallest deviation from the geometry of an ideal pentagonal bipyramid. Further, two different magnesium-binding sites in parvalbumin and calbindin(D9K) can also be identified using an octahedral geometry. Using the established method, we have designed de novo calcium-binding sites into the scaffold of non-calcium-binding proteins CD2 and Rop. Our results suggest that it is possible to identify calcium- and magnesium-binding sites in proteins and design de novo metal-binding sites.
Collapse
Affiliation(s)
- Wei Yang
- Department of Biology Drug Design, Georgia State University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
50
|
Tsodikov OV, Record MT, Sergeev YV. Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. J Comput Chem 2002; 23:600-9. [PMID: 11939594 DOI: 10.1002/jcc.10061] [Citation(s) in RCA: 331] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
New computer programs, SurfRace and FastSurf, perform fast calculations of the solvent accessible and molecular (solvent excluded) surface areas of macromolecules. Program SurfRace also calculates the areas of cavities inaccessible from the outside. We introduce the definition of average curvature of molecular surface and calculate average molecular surface curvatures for each atom in a structure. All surface area and curvature calculations are analytic and therefore yield exact values of these quantities. High calculation speed of this software is achieved primarily by avoiding computationally expensive mathematical procedures wherever possible and by efficient handling of surface data structures. The programs are written initially in the language C for PCs running Windows 2000/98/NT, but their code is portable to other platforms with only minor changes in input-output procedures. The algorithm is robust and does not ignore either multiplicity or degeneracy of atomic overlaps. Fast, memory-efficient and robust execution make this software attractive for applications both in computationally expensive energy minimization algorithms, such as docking or molecular dynamics simulations, and in stand-alone surface area and curvature calculations.
Collapse
Affiliation(s)
- Oleg V Tsodikov
- Department of Chemistry, University of Wisconsin-Madison, 53706, USA.
| | | | | |
Collapse
|