1
|
Boffa MB, Koschinsky ML. Lipoprotein(a) and cardiovascular disease. Biochem J 2024; 481:1277-1296. [PMID: 39302109 PMCID: PMC11555715 DOI: 10.1042/bcj20240037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Elevated plasma levels of lipoprotein(a) (Lp(a)) are a prevalent, independent, and causal risk factor for atherosclerotic cardiovascular disease and calcific aortic valve disease. Lp(a) consists of a lipoprotein particle resembling low density lipoprotein and the covalently-attached glycoprotein apolipoprotein(a) (apo(a)). Novel therapeutics that specifically and potently lower Lp(a) levels are currently in advanced stages of clinical development, including in large, phase 3 cardiovascular outcomes trials. However, fundamental unanswered questions remain concerning some key aspects of Lp(a) biosynthesis and catabolism as well as the true pathogenic mechanisms of the particle. In this review, we describe the salient biochemical features of Lp(a) and apo(a) and how they underlie the disease-causing potential of Lp(a), the factors that determine plasma Lp(a) concentrations, and the mechanism of action of Lp(a)-lowering drugs.
Collapse
Affiliation(s)
- Michael B. Boffa
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Marlys L. Koschinsky
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Ma X, Liu B, Yang J, Hu K. Solution structure, dynamics and function investigation of Kringle domain of human receptor tyrosine kinase-like orphan receptor 1. J Biomol Struct Dyn 2019; 38:2229-2239. [PMID: 31232192 DOI: 10.1080/07391102.2019.1635914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) has been recently proposed as a potential target for cancer treatment. It was suggested that monoclonal antibodies (mAb) against the Kringle (KNG) domain of ROR1 could induce apoptosis of chronic lymphocytic leukemia cells. Here, we reported the determination of the solution structure of human ROR1-KNG (hROR1-KNG), investigation of its dynamic properties and potential binding interface by NMR spectroscopy. The obtained NMR structure of hROR1-KNG exhibits an open form at Asn47-His50 and shows obvious differences from other canonical KNGs at the corresponding lysine binding site, which implies that hROR1-KNG may interact with some non-canonical ligands. Dynamics analysis of hROR1-KNG reveal a faster local motion around the α-turn and 310-helix, which may provide flexibility to protect the proximal hydrophobic core in solution or facilitate the binding of other molecules. The intermediate-to-slow conformational exchange of Cys77-Ile79 may influence the conformation determination of disulfide bond Cys53-Cys77. Binding interface of hROR1-KNG for mAb R11 was analyzed and compared with the epitope for the functional mAbs. Previous study implies that hROR1-KNG may be involved in mediating the heterooligomerization between ROR1 and ROR2 in vivo. However, apparently, no direct interaction between hROR1-KNG and hROR2-KNG was observed from chemical shift perturbation experiment. Our work lays foundation to further functional study on interactions of hROR1-KNG with other biological relevant partners.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bin Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jiahui Yang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Kaifeng Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, People's Republic of China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
3
|
El Hefnawi MM, Hasan ME, Mahmoud A, Khidr YA, El Behaidy WH, El-Absawy ESA, Hemeida AA. Prediction and Analysis of Three-Dimensional Structure of the p7- Transactivated Protein1 of Hepatitis C Virus. Infect Disord Drug Targets 2019; 19:55-66. [PMID: 29243584 DOI: 10.2174/1871526518666171215123214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/07/2017] [Accepted: 06/11/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND The p7-transactivated protein1 of Hepatitis C virus is a small integral membrane protein of 127 amino acids, which is crucial for assembly and release of infectious virions. Ab initio or comparative modelling, is an essential tool to solve the problem of protein structure prediction and to comprehend the physicochemical fundamental of how proteins fold in nature. RESULTS Only one domain (1-127) of p7-transactivated protein1 has been predicted using the systematic in silico approach, ThreaDom. I-TASSER was ranked as the best server for full-length 3-D protein structural predictions of p7-transactivated protein1 where the benchmarked scoring system such as C-score, TM-score, RMSD and Z-score are used to obtain quantitative assessments of the I-TASSER models. Scanning protein motif databases, along with secondary and surface accessibility predictions integrated with post translational modification sites (PTMs) prediction revealed functional and protein binding motifs. Three protein binding motifs (two Asp/Glutamnse, CTNNB1- bd_N) with high sequence conservation and two PTMs prediction: Camp_phospho_site and Myristyl site were predicted using BLOCKS and PROSITE scan. These motifs and PTMs were related to the function of p7-transactivated protein1 protein in inducing ion channel/pore and release of infectious virions. Using SCOP, only one hit matched protein sequence at 71-120 was classified as small proteins and FYVE/PHD zinc finger superfamily. CONCLUSION Integrating this information about the p7-transactivated protein1 with SCOP and CATH annotations of the templates facilitates the assignment of structure-function/ evolution relationships to the known and the newly determined protein structures.
Collapse
Affiliation(s)
- Mahmoud M El Hefnawi
- Informatics and Systems Department, Division of Engineering Research Sciences, the National Research Centre, Giza, Egypt
| | - Mohamed E Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat, Egypt
| | - Amal Mahmoud
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat, Egypt.,Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Damam, Saudi Arabia
| | - Yehia A Khidr
- Plant Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat, Egypt
| | | | - El-Sayed A El-Absawy
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat, Egypt
| | - Alaa A Hemeida
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat, Egypt
| |
Collapse
|
4
|
Rawther T, Tabet F. Biology, pathophysiology and current therapies that affect lipoprotein (a) levels. J Mol Cell Cardiol 2019; 131:1-11. [DOI: 10.1016/j.yjmcc.2019.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/22/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022]
|
5
|
Rabieian R, Boshtam M, Zareei M, Kouhpayeh S, Masoudifar A, Mirzaei H. Plasminogen Activator Inhibitor Type-1 as a Regulator of Fibrosis. J Cell Biochem 2017; 119:17-27. [PMID: 28520219 DOI: 10.1002/jcb.26146] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Abstract
Fibrosis is known as a frequent and irreversible pathological condition which is associated with organ failure. Tissue fibrosis is a central process in a variety of chronic progressive diseases such as diabetes, hypertension, and persistent inflammation. This state could contribute to chronic injury and the initiation of tissue repair. Fibrotic disorders represent abnormal wound healing with defective matrix turnover and clearance that lead to excessive accumulation of extracellular matrix components. A variety of identified growth factors, cytokines, and persistently activated myofibroblasts have critical roles in the pathogenesis of fibrosis. Irrespective of etiology, the transforming growth factor-β pathway is the major driver of fibrotic response. Plasminogen activator inhibitor-1 (PAI-1) is a crucial downstream target of this pathway. Transforming growth factor-β positively regulates PAI-1 gene expression via two main pathways including Smad-mediated canonical and non-canonical pathways. Overexpression of PAI-1 reduces extracellular matrix degradation via perturbing the plasminogen activation system. Indeed, elevated PAI-1 levels inhibit proteolytic activity of tissue plasminogen activator and urokinase plasminogen activator which could contribute to a variety of inflammatory elements in the injury site and to excessive matrix deposition. This review summarizes the current knowledge of critical pathways that regulate PAI-1 gene expression and suggests effective approaches for the treatment of fibrotic disease. J. Cell. Biochem. 119: 17-27, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Reyhaneh Rabieian
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Zareei
- Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran
| | - Shirin Kouhpayeh
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Partial purification and identification of a metalloproteinase with anticoagulant activity from Rhizostoma pulmo (Barrel Jellyfish). Toxicon 2017; 132:29-39. [DOI: 10.1016/j.toxicon.2017.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 11/22/2022]
|
7
|
Abstract
When preparing for oral surgery, patients taking anticoagulants usually should not discontinue their medication because of the risk of a thromboembolic event. The therapeutic effect of many anticoagulants is not readily measured, so preoperatively, the surgeon cannot know the true risk for postoperative hemorrhage. The risk of a thromboembolic event usually outweighs the concerns of controlling postoperative hemorrhage. Hemophilia patients are also at risk for postoperative bleeding. Single extractions probably do not pose a serious risk for postoperative hemorrhage. However, when a mucogingival flap is raised in these patients, there may be prolonged bleeding. Surgical sponges saturated with aqueous tranexamic acid solution and compressed onto the bleeding site with biting pressure may stop bleeding. Bleeding was stopped in the case example presented here after three 10-minute compressions over 30 minutes in a patient taking aspirin and clopidogrel for a previous thromboembolic event and a metal coronary stent. The clot formed is very fragile and is prone to bleeding, so it should not be disturbed. This technique needs to be studied for efficacy.
Collapse
|
8
|
Association between human prothrombin variant (T165M) and kidney stone disease. PLoS One 2012; 7:e45533. [PMID: 23029076 PMCID: PMC3446884 DOI: 10.1371/journal.pone.0045533] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/20/2012] [Indexed: 11/23/2022] Open
Abstract
We previously reported the association between prothrombin (F2), encoding a stone inhibitor protein - urinary prothrombin fragment 1 (UPTF1), and the risk of kidney stone disease in Northeastern Thai patients. To identify specific F2 variation responsible for the kidney stone risk, we conducted sequencing analysis of this gene in a group of the patients with kidney stone disease. Five intronic SNPs (rs2070850, rs2070852, rs1799867, rs2282687, and rs3136516) and one exonic non-synonymous single nucleotide polymorphism (nsSNP; rs5896) were found. The five intronic SNPs have no functional change as predicted by computer programs while the nsSNP rs5896 (c.494 C>T) located in exon 6 results in a substitution of threonine (T) by methionine (M) at the position 165 (T165M). The nsSNP rs5896 was subsequently genotyped in 209 patients and 216 control subjects. Genotypic and allelic frequencies of this nsSNP were analyzed for their association with kidney stone disease. The frequency of CC genotype of rs5896 was significantly lower in the patient group (13.4%) than that in the control group (22.2%) (P = 0.017, OR 0.54, 95% CI 0.32–0.90), and the frequency of C allele was significantly lower in the patient group (36.1%) than that in the control group (45.6%) (P = 0.005, OR 0.68, 95% CI 0.51–0.89). The significant differences of genotype and allele frequencies were maintained only in the female group (P = 0.033 and 0.003, respectively). The effect of amino-acid change on UPTF1 structure was also examined by homologous modeling and in silico mutagenesis. T165 is conserved and T165M substitution will affect hydrogen bond formation with E180. In conclusion, our results indicate that prothrombin variant (T165M) is associated with kidney stone risk in the Northeastern Thai female patients.
Collapse
|
9
|
Christen MT, Frank P, Schaller J, Llinás M. Human Plasminogen Kringle 3: Solution Structure, Functional Insights, Phylogenetic Landscape,. Biochemistry 2010; 49:7131-50. [DOI: 10.1021/bi100687f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martin T. Christen
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Pascal Frank
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | - Johann Schaller
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | - Miguel Llinás
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
10
|
Leach AR. A Survey of Methods for Searching the Conformational Space of Small and Medium-Sized Molecules. REVIEWS IN COMPUTATIONAL CHEMISTRY 2007. [DOI: 10.1002/9780470125793.ch1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Maderegger B, Bermel W, Hrzenjak A, Kostner GM, Sterk H. Solution structure of human apolipoprotein(a) kringle IV type 6. Biochemistry 2002; 41:660-8. [PMID: 11781107 DOI: 10.1021/bi011430k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of apo(a) KIVT6 was investigated by two- and three-dimensional homo- and heteronuclear NMR spectroscopy. The solution structure of apo(a) KIVT6 contains only a small amount of regular secondary structure elements, comprising a short piece of antiparallel beta-sheet formed by residues Trp62-Tyr64 and Trp72-Tyr74, a short piece of parallel beta-sheet formed by the residues Cys1-Tyr2 and Thr78-Gln79, and a small 3(10)-helix within residues Thr38-Tyr40. The backbone as well as the side chains are arranged in a way similar to those of apo(a) KIVT7, apo(a) KIVT10, and plasminogen K4. We determined additionally the K(d) value of 0.31 +/- 0.04 mM for the binding of epsilon-aminocaproic acid (EACA) to apo(a) KIVT6 and mapped the binding region on apo(a) KIVT6 by means of chemical shift perturbation. This lysine binding activity, which was reported to occur within apo(a) KIVT5-8, is functionally different from the lysine binding activity found for apo(a) KIVT10.
Collapse
Affiliation(s)
- Bernhard Maderegger
- Institute of Chemistry, Karl Franzens University Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | | | | | | | | |
Collapse
|
12
|
Ozhogina OA, Trexler M, Bányai L, Llinás M, Patthy L. Origin of fibronectin type II (FN2) modules: structural analyses of distantly-related members of the kringle family idey the kringle domain of neurotrypsin as a potential link between FN2 domains and kringles. Protein Sci 2001; 10:2114-22. [PMID: 11567102 PMCID: PMC2374232 DOI: 10.1110/ps.15801] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Analysis of complete genome sequences has made it clear that fibronectin type II (FN2) modules are present only in the vertebrate lineage, raising intriguing questions about the origin of this module type. Kringle domains display many similarities to FN2 domains; therefore it was suggested previously that they are highly divergent descendants of the same ancestral protein-fold. Since kringles are present in arthropodes, nematodes, and invertebrate chordates as well as in vertebrates, it is suggested that the FN2 domain arose in the vertebrate lineage through major structural modification of the more ancestral kringle fold. To explore this structural transition, in the present work we compare key structural features of two highly divergent kringle domains (the kringle of Caenorhabditis elegans Ror receptor tyrosine kinase and the kringle of rat neurotrypsin) with those of plasminogen kringles and FN2 domains. Our NMR conformation fingerprinting analysis indicates that characteristic (1)H-NMR markers of kringle or FN2 native folding, such as the dispersion of Trp aromatic connectivities and shifts of the Leu(46)/Thr(16) methyl signals, both decrease in the order kringles > neurotrypsin kringle > FN2 domains. These results suggest that the neurotrypsin kringle may represent an intermediate form between typical kringles and FN2 domains.
Collapse
Affiliation(s)
- O A Ozhogina
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | |
Collapse
|
13
|
Peisach E, Wang J, de los Santos T, Reich E, Ringe D. Crystal structure of the proenzyme domain of plasminogen. Biochemistry 1999; 38:11180-8. [PMID: 10460175 DOI: 10.1021/bi991130r] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have solved the X-ray crystal structure of the proenzyme form of the catalytic domain of plasminogen, with the nonessential mutations M585Q, V673M, and M788L, to 2.0 A resolution. The structure presents an inactive protease characterized by Asp740 (chymotrypsinogen 194) hydrogen bonded to His586 (chymotrypsinogen 40), preventing proper formation of the oxyanion hole and S1 specificity pocket. In addition, the catalytic triad residues are misplaced relative to the active conformation adopted by serine proteases in the chymotrypsin family. Finally, a unique form of zymogen inactivation is observed, characterized by a "foot-in-mouth" mechanism in which Trp761 (chymotrypsinogen 215) is folded into the S1 specificity pocket preventing substrate binding.
Collapse
Affiliation(s)
- E Peisach
- Program in Biophysics and Structural Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | | | | | |
Collapse
|
14
|
Chang Y, Mochalkin I, McCance SG, Cheng B, Tulinsky A, Castellino FJ. Structure and ligand binding determinants of the recombinant kringle 5 domain of human plasminogen. Biochemistry 1998; 37:3258-71. [PMID: 9521645 DOI: 10.1021/bi972284e] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The X-ray crystal structure of the recombinant (r) kringle 5 domain of human plasminogen (K5HPg) has been solved by molecular replacement methods using K1HPg as a model and refined at 1.7 A resolution to an R factor of 16.6%. The asymmetric unit of K5HPg is composed of two molecules related by a noncrystallographic 2-fold rotation axis approximately parallel to the z-direction. The lysine binding site (LBS) is defined by the regions His33-Thr37, Pro54-Val58, Pro61-Tyr64, and Leu71-Tyr74 and is occupied in the apo-form by water molecules. A unique feature of the LBS of apo-K5HPg is the substitution by Leu71 for the basic amino acid, arginine, that in other kringle polypeptides forms the donor cationic center for the carboxylate group of omega-amino acid ligands. While wild-type (wt) r-K5HPg interacted weakly with these types of ligands, replacement by site-directed mutagenesis of Leu71 by arginine led to substantially increased affinity of the ligands for the LBS of K5HPg. As a result, binding of omega-amino acids to this mutant kringle (r-K5HPg[L71R]) was restored to levels displayed by the companion much stronger affinity HPg kringles, K1HPg and K4HPg. Correspondingly, alkylamine binding to r-K5HPg[L71R] was considerably attenuated from that shown by wtr-K5HPg. Thus, employing a rational design strategy based on the crystal structure of K5HPg, successful remodeling of the LBS has been accomplished, and has resulted in the conversion of a weak ligand binding kringle to one that possesses an affinity for omega-amino acids that is similar to K1HPg and K4HPg.
Collapse
Affiliation(s)
- Y Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556, USA
| | | | | | | | | | | |
Collapse
|
15
|
Marti DN, Hu CK, An SS, von Haller P, Schaller J, Llinás M. Ligand preferences of kringle 2 and homologous domains of human plasminogen: canvassing weak, intermediate, and high-affinity binding sites by 1H-NMR. Biochemistry 1997; 36:11591-604. [PMID: 9305949 DOI: 10.1021/bi971316v] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interaction of various small aliphatic and aromatic ionic ligands with the human plasminogen (HPg) recombinant kringle 2 (r-K2) domain has been investigated by 1H-NMR spectroscopy at 500 MHz. The results are compared against ligand-binding properties of the homologous, lysine-binding HPg kringle 1 (K1), kringle 4 (K4), and kringle 5 (K5). The investigated ligands include the omega-aminocarboxylic acids 4-aminobutyric acid (4-ABA), 5-aminopentanoic acid (5-APA), 6-aminohexanoic acid (6-AHA), 7-aminoheptanoic acid (7-AHA), lysine and arginine derivatives with free and blocked alpha-amino and/or carboxylate groups, and a number of cyclic analogs, zwitterions of similar size such as trans-(aminomethyl)cyclohexanecarboxylic acid (AMCHA) and p-benzylaminesulfonic acid (BASA), and the nonzwitterions benzylamine and benzamidine. Equilibrium association constant (Ka) values were determined from 1H-NMR ligand titration profiles. Among the aliphatic linear ligands, 5-APA (Ka approximately 3.4 mM-1) shows the strongest interaction with r-K2 followed by 6-AHA (Ka approximately 2.3 mM-1), 7-AHA (Ka approximately 0.45 mM-1), and 4-ABA (Ka approximately 0.22 mM-1). In contrast, r-K1, K4, and K5 exhibit a preference for 6-AHA (Ka approximately 74.2, 21.0, and 10.6 mM-1, respectively), a ligand approximately 1.14 A longer than 5-APA. Mutations R220G and E221D increase the affinity of r-K2 for these ligands but leave the selectivity profile essentially unaffected: 5-APA > 6-AHA > 7-AHA > 4-ABA (Ka approximately 6.5, 3.9, 1.8, and 0.74 mM-1, respectively). We find that, while r-K2 definitely interacts with Nalpha-acetyl-L-lysine and L-lysine (Ka approximately 0.96 and 0.68 mM-1, respectively), the affinity for analogs carrying a blocked carboxylate group is relatively weak (Ka approximately 0.1 mM-1). We also investigated the interaction of r-K2 with L-arginine (Ka approximately 0.31 mM-1) and its derivatives Nalpha-acetyl-L-arginine (Ka approximately 0.55 mM-1), Nalpha-acetyl-L-arginine methyl ester (Ka approximately 0.07 mM-1), and L-arginine methyl ester (Ka approximately 0.03 mM-1). Zwitterionic gamma-guanidinobutyric acid, containing one less methylene group than arginine, exhibits a Ka of approximately 0.28 mM-1. The affinity of r-K2 for lysine and arginine derivatives suggests that K2 could play a role in intermolecular as well as intramolecular interactions of HPg. As is the case for the HPg K1, K4, and K5, among the tested ligands, AMCHA is the one which interacts most firmly with r-K2 (Ka approximately 7.3 mM-1) while the aromatic ligands BASA, benzylamine, and benzamidine exhibit Ka values of approximately 4.0, approximately 0.04, and approximately 0.03 mM-1, respectively. The relative stability of these interactions indicates a strict requirement for both cationic and anionic polar groups in the ligand, whereas the presence of a lipophilic aromatic group seems to be of lesser consequence. Ligand-induced shifts of r-K2 (1)H-NMR signals and two-dimensional nuclear Overhauser effect (NOESY) experiments in the presence of 6-AHA reveal direct involvement of residues Tyr36, Trp62, Phe64, and Trp72 (kringle residue numbering convention) in ligand binding. Starting from the X-ray crystallographic structure of HPg K4 and the intermolecular 1H-NMR NOE data, two models of the K2 lysine binding site complexed to 6-AHA have been derived which differ mainly in the extent of electrostatic pairing between the K2 Arg56 and Glu57 side chains. Competition between these two conformations in equilibrium may account for the relatively lesser affinity of the K2 domain for zwitterionic lysine-type ligands.
Collapse
Affiliation(s)
- D N Marti
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
16
|
Chang Y, Zajicek J, Castellino FJ. Role of tryptophan-63 of the kringle 2 domain of tissue-type plasminogen activator in its thermal stability, folding, and ligand binding properties. Biochemistry 1997; 36:7652-63. [PMID: 9201906 DOI: 10.1021/bi970197g] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Conservative (F and Y) and radical (H and S) mutations have been engineered at a rigidly conserved aromatic residue, W63, of the isolated recombinant kringle 2 domain of tissue-type plasminogen activator (r-K2tPA), an amino acid residue predicted from the X-ray crystal structure to be important in the ligand binding properties of this isolated protein domain. The variants were expressed in Pichia pastoris cells. The binding constants of epsilon-aminocaproic acid (EACA), 7-aminoheptanoic acid (7-AHpA), and trans-(aminomethyl)cyclohexanecarboxylic acid (AMCHA) to each of these mutant polypeptides were determined by titrations of the alterations in intrinsic fluorescence of the variant kringles with the ligands. As compared to wild-type r-K2tPA, increases in the Kd (dissociation) values of approximately 15-fold and 20-200-fold were found for the W63F and W63Y mutants, respectively, toward these three ligands. Neither the W63H nor the W63S variant interacted with these same ligands. Differential scanning calorimetric analyses were also performed on each of the peptides to determine whether the alterations affected the conformational stability of wtr-K2tPA. The data demonstrated that all of these mutants were thermally destabilized, possessing temperatures of maximum heat capacity (Tm) values that were 12-20 degrees C lower than that of wtr-K2tPA. Addition of EACA resulted in increases (approximately 12 degrees C) in the Tm values of r-[W63F]-K2tPA and r-[W63Y]K2tPA, a result showing that EACA stabilized the native conformations adopted by these kringle domains. As expected from its greatly diminished binding to r-[W63H]K2tPA and r-[W63S]-K2tPA, high concentrations of EACA had little effect on the Tm of thermal denaturation of these latter mutants. 1H-NMR analysis of the two aromatic mutant kringles was employed to assess their overall comparative folding properties. The high upfield chemical shifts (-0.98 ppm) of the CH3(delta') protons of L47, a major signal of proper kringle folding, were slightly lowered to -0.83 to -0.86 ppm in the cases of all of the mutants. This is due to alterations in the W25-L47 side-chain spatial orientations, possibly the result of slight conformational alterations that affect the distance relationships of these two amino acid side chains. Assignments of nearly all of the protons of the aromatic residues in the W63F and W63Y mutants were accomplished, and few additional differences from their wild-type counterpart were noted. Reactivities of the mutants against four different monoclonal antibodies directed to wtr-K2tPA revealed the possibility that some small local conformational alterations might have resulted from the residues that have replaced the W63. We conclude that W63 possesses an important direct role in the ligand binding properties of r-K2tPA. This residue also contributes significantly to the stability of the native conformation of this kringle domain and perhaps to maintenance of local conformations.
Collapse
Affiliation(s)
- Y Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
17
|
Söhndel S, Hu CK, Marti D, Affolter M, Schaller J, Llinás M, Rickli EE. Recombinant gene expression and 1H NMR characteristics of the kringle (2 + 3) supermodule: spectroscopic/functional individuality of plasminogen kringle domains. Biochemistry 1996; 35:2357-64. [PMID: 8652577 DOI: 10.1021/bi9520949] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The plasminogen kringle 2 (K2HPg) and kringle 3 (K3HPg) modules occur in tandem within the polypeptide segment that affords the heavy chain of plasmin. The K2HPg and K3HPg are unique among the plasminogen kringle domains in that they also are linked to each other via the Cys169-Cys297 (Cys4 of K2HPg to Cys43 of K3HPg, kringle numbering convention) disulfide bridge, thus generating a K2HPg-K3HPg "supermodule". The kringle (2 + 3) sequence of human plasminogen (r-EE[K2HPgK3HPg]DS) was expressed in Escherichia coli, using an expression vector containing the phage T5 promoter/operator N250PSN250P29 and the codons for an N-terminal hexahistidine tag to ensure the isolation of the recombinant protein by affinity chromatography on Ni(2+)-nitrilotriacetic acid/agarose under denaturing and reducing conditions. Kringle (2 + 3) was refolded in the presence of glutathione redox buffer. By taking advantage of the lysine affinity of kringle 2, the protein was purified by affinity chromatography on lysine-Bio-Gel. Recombinant kringle (2 + 3) was identified by amino acid composition, N-terminal sequence and mass determination. The 1H NMR spectrum shows that the intact r-K2HPgK3HPg is properly folded. By reference to spectra of the individual kringles, r-K2HPg and r-K3HPg, resonances of the K2HPg and K3HPg components in the spectrum of the intact r-K2HPgK3HPg can be readily distinguished. The strictly conserved Leu46 residue (kringle residue number convention) yields delta-methyl signals that are characteristic for K2HPg and K3HPg, exhibiting chemical shifts of -0.87 and -0.94 ppm, respectively, which are distinct from those of K1HPg, K4HPg, and K5HPg, (-1.04 to -1.05 ppm). Thus, the high-field Leu46 signals from K2HPg and K3HPg are well resolved from those of other kringles and can be identified unambiguously in spectra of the K1HPgK2HPgK3HPg elastolytic fragment of plasminogen as well as in spectra of Glu-plasminogen. Overall, r-K2HPgK3HPg exhibits broader resonance line widths than does the K1HPg component, consistent with a lesser mobility of the K2HPgK3HPg segment within the K1HPgK2HPgK3HPg fragment, a reflection of the extra structural constraint imposed by the disulfide bridge linking K2HPg to K3HPg. The ligand 6-aminohexanoic acid (6-AHA), which is known to interact with r-K2HPg but not with r-K3HPg, selectively perturbs K2 aromatic signals in the intact r-K2HPgK3HPg spectrum while leaving K3 resonances largely unaffected. Association constant (K(a)) values for 6-AHA determined from 1H NMR ligand titration experiments yield K(a) approximately 2.2 +/- 0.3 mM(-1) for the intact r-K2HPgK3HPg, comparable to K(a) approximately 2.3 +/- 0.2 mM(-1) determined for the isolated r-K2HPg, which demonstrates that the interactions of 6-AHA with the K2HPg ligand-binding site are not significantly affected by the neighboring K3HPg domain within the intact r-K2HPgK3HPg supermodule.
Collapse
Affiliation(s)
- S Söhndel
- Institut für Biochemie, Universität Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
18
|
Rodríguez P, Fuentes D, Muñoz E, Rivero D, Orta D, Alburquerque S, Perez S, Besada V, Herrera L. The streptokinase domain responsible for plasminogen binding. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0268-9499(94)90016-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Rejante MR, Llinás M. Solution structure of the epsilon-aminohexanoic acid complex of human plasminogen kringle 1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 221:939-49. [PMID: 8181476 DOI: 10.1111/j.1432-1033.1994.tb18809.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The solution structure of the human plasminogen kringle 1 domain complexed to the antifibrinolytic drug 6-aminohexanoic acid (epsilon Ahx) was obtained on the basis of 1H-NMR spectroscopic data and dynamical simulated annealing calculations. Two sets of structures were derived starting from (a) random coil conformations and (b) the (mutated) crystallographic structure of the homologous prothrombin kringle 1. The two sets display essentially the same backbone folding (pairwise root-mean-square deviation, 0.15 nm) indicating that, regardless of the initial structure, the data is sufficient to locate a conformation corresponding to an essentially unique energy minimum. The conformations of residues connected to prolines were localized to energetically preferred regions of the Ramachandran map. The Pro30 peptide bond is proposed to be cis. The ligand-binding site of the kringle 1 is a shallow cavity composed of Pro33, Phe36, Trp62, Tyr64, Tyr72 and Tyr74. Doubly charged anionic and cationic centers configured by the side chains of Asp55 and Asp57, and Arg34 and Arg71, respectively, contribute to anchoring the zwitterionic epsilon Ahx molecule at the binding site. The ligand exhibits closer contacts with the kringle anionic centers (approximately 0.35 nm average O...H distance between the Asp55/Asp57 carboxylate and ligand amino groups) than with the cationic ones (approximately 0.52 nm closest O...H distances between the ligand carboxylate and the Arg34/Arg71 guanidino groups). The epsilon Ahx hydrocarbon chain rests flanked by Pro33, Tyr64, Tyr72 and Tyr74 on one side and Phe36 on the other. Dipolar (Overhauser) connectivities indicate that the ligand aliphatic moiety establishes close contacts with the Phe36 and Trp62 aromatic rings. The computed structure suggests that the epsilon Ahx molecule adopts a kinked conformation when complexed to kringle 1, effectively shortening its dipole length to approximately 0.65 nm.
Collapse
Affiliation(s)
- M R Rejante
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213-3890
| | | |
Collapse
|
20
|
Rejante MR, Llinás M. 1H-NMR assignments and secondary structure of human plasminogen kringle 1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 221:927-37. [PMID: 8181475 DOI: 10.1111/j.1432-1033.1994.tb18808.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The 1H-NMR spectrum of the kringle 1 domain of human plasminogen complexed with 6-aminohexanoic acid, an antifibrinolytic drug, has been assigned. Elements of secondary structure have been identified on the basis of sequential, medium and long-range dipolar interactions, back-bone amide spin-spin couplings (3JHN-H alpha) and 1H-2H exchange rates. The kringle contains scarcely any repetitive secondary structure: eight reverse turns and two short beta-sheets. These comprise 40% and 12% of the domain, respectively. No alpha-helix was found. An aromatic cluster formed by His31, Phe36, Trp62, Phe64, Tyr72 and Tyr74 is indicated by several inter-residue Overhauser connectivities. Contacts between the methyl groups of Leu46 and the side chains of Phe36, Trp62 and Trp25 are observed. A second hydrophobic cluster formed by Tyr9, Ile77 and Leu78 is also indicated. A comparison of secondary structure elements among plasminogen kringles 1 and 4 and tissue-type plasminogen activator kringle 2 suggests that there is variability in the position and number of reverse turns on going from one kringle to another; however, the beta-sheets are conserved among the homologs.
Collapse
Affiliation(s)
- M R Rejante
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213-3890
| | | |
Collapse
|
21
|
Marti D, Schaller J, Ochensberger B, Rickli EE. Expression, purification and characterization of the recombinant kringle 2 and kringle 3 domains of human plasminogen and analysis of their binding affinity for omega-aminocarboxylic acids. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:455-62. [PMID: 8307012 DOI: 10.1111/j.1432-1033.1994.tb19959.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The kringle 2 (E161T/C162S/EEE[K2HPg/C169S]TT) and the kringle 3 (TYQ[K3HPg]DS) domains of human plasminogen (HPg) were expressed in Escherichia coli in an expression vector with the phage T5 promotor/operator element N250PSN250P29 and the cDNA sequence for a hexahistidine tail to facilitate the isolation of the recombinant protein. A coagulation factor Xa (FXa)-sensitive cleavage site was introduced to remove the N-terminal histidine tag. In r-K2, mutations E161T and C162S were introduced to enhance the FXa cleavage yield and C169S to replace the cysteine residue, participating in the inter-kringle disulfide bridge between kringles 2 and 3. Recombinant proteins were isolated by affinity chromatography on Ni(2+)-nitrilotriacetic acid/agarose and refolded under denaturing and reducing conditions followed by a non-denaturing and oxidising environment. The free thiol group in position 297 in r-K3 was selectively alkylated with iodoacetamide. The hexahistidine tail was successfully removed with FXa. The N-terminal sequence, the amino acid composition and the molecular mass analyses are in agreement with the expected data. The correct arrangement of the disulfide bonds was verified by sequence analysis of the corresponding thermolytic and subtilisin fragments. r-K2 exhibits weak binding to lysine-Bio-Gel. The weak binding affinity of r-K2 for omega-aminocarboxylic acids is confirmed by intrinsic fluorescence titration with 6-aminohexanoic acid (NH2C5COOH) indicating a Kd of approximately 401 microM. In contrast, r-K3 seems to be devoid of a binding affinity for omega-aminocarboxylic acids. Considering earlier determined Kd values of kringle 1, kringle 4 and kringle 5, the binding affinity of HPg kringle domains for NH2C5COOH is proposed to decrease in the following order, kringle 1 > kringle 4 > kringle 5 > kringle 2 > kringle 3.
Collapse
Affiliation(s)
- D Marti
- Institute of Biochemistry, University of Berne, Switzerland
| | | | | | | |
Collapse
|
22
|
Cox M, Schaller J, Boelens R, Kaptein R, Rickli E, Llinás M. Kringle solution structures via NMR: two-dimensional 1H-NMR analysis of horse plasminogen kringle 4. Chem Phys Lipids 1994; 67-68:43-58. [PMID: 8187244 DOI: 10.1016/0009-3084(94)90123-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The kringle 4 domain of equine plasminogen (ePgn/K4), a close variant of the human homolog (hPgn/K4), contains residues, such as Trp32, which also appear in human apolipoprotein(a) kringle 4-type modules. The ePgn/K4 was investigated as a complex with epsilon-aminocaproic acid, an antifibrinolytic drug, by two-dimensional 1H-NMR spectroscopy at 500 MHz. Secondary structure elements were recognized from sequential medium and long-range dipolar (proton Overhauser) interactions, as well as from the identification of resonances originating from backbone amide protons with slow 1H-2H exchange in 2H2O. Antiparallel beta-sheets, consisting of strands 52-53, 61-65 and 71-75, were identified. Additionally, the segments 14-16 and 20-22 were found to assume characteristic interstrand antiparallel (beta-sheet-like) H-bond pairing. Four type I turns could be identified in strands 6-9, 16-19, 24-27 and 67-70. Ten structures were generated using distance geometry methods, followed by dynamic simulated annealing calculations. The root mean squares deviation of the distances was 2.79 A for all atoms and 1.81 A for backbone atoms only. Hydrogen bridges, involving side chain hydroxyl groups, were identified for Thr16 and Thr65. As observed for the hPgn/K4, the three-dimensional structure of the ePgn/K4 is mainly defined by two antiparallel beta-sheets, 14-16/20-22 and 62-66/71-75, which are oriented perpendicular to each other. Adjacent to these is a hydrophobic pocket, formed by Trp62, Tyr64, Trp72 and Phe74, whose side chains contribute a lipophilic component to the exposed lysine binding site surface. In contrast to the Trp25, Trp62 and Trp72 residues, conserved in the human and equine homologs, the spectrum of the Trp32 side chain reveals an unrestrained, solvent-exposed indole ring.
Collapse
Affiliation(s)
- M Cox
- Bijvoet Centre for Biomolecular Research, University of Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
de Vos AM, Ultsch MH, Kelley RF, Padmanabhan K, Tulinsky A, Westbrook ML, Kossiakoff AA. Crystal structure of the kringle 2 domain of tissue plasminogen activator at 2.4-A resolution. Biochemistry 1992; 31:270-9. [PMID: 1310033 DOI: 10.1021/bi00116a037] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The crystal structure of the kringle 2 domain of tissue plasminogen activator was determined and refined at a resolution of 2.43 A. The overall fold of the molecule is similar to that of prothrombin kringle 1 and plasminogen kringle 4; however, there are differences in the lysine binding pocket, and two looping regions, which include insertions in kringle 2, take on very different conformations. Based on a comparison of the overall structural homology between kringle 2 and kringle 4, a new sequence alignment for kringle domains is proposed that results in a division of kringle domains into two groups, consistent with their proposed evolutionary relation. The crystal structure shows a strong interaction between a lysine residue of one molecule and the lysine/fibrin binding pocket of a noncrystallographically related neighbor. This interaction represents a good model of a bound protein ligand and is the first such ligand that has been observed in a kringle binding pocket. The structure shows an intricate network of interactions both among the binding pocket residues and between binding pocket residues and the lysine ligand. A lysine side chain is identified as the positively charged group positioned to interact with the carboxylate of lysine and lysine analogue ligands. In addition, a chloride ion is located in the kringle-kringle interface and contributes to the observed interaction between kringle molecules.
Collapse
Affiliation(s)
- A M de Vos
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California 94080
| | | | | | | | | | | | | |
Collapse
|
24
|
Wishart DS, Sykes BD, Richards FM. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 1991; 222:311-33. [PMID: 1960729 DOI: 10.1016/0022-2836(91)90214-q] [Citation(s) in RCA: 1503] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An analysis of the 1H nuclear magnetic resonance chemical shift assignments and secondary structure designations for over 70 proteins has revealed some very strong and unexpected relationships. Similar studies, performed on smaller databases, for 13C and 15N chemical shifts reveal equally strong correlations to protein secondary structure. Among the more interesting results to emerge from this work is the finding that all 20 naturally occurring amino acids experience a mean alpha-1H upfield shift of 0.39 parts per million (from the random coil value) when placed in a helical configuration. In a like manner, the alpha-1H chemical shift is found to move downfield by an average of 0.37 parts per million when the residue is placed in a beta-strand or extended configuration. Similar changes are also found for amide 1H, carbonyl 13C, alpha-13C and amide 15N chemical shifts. Other relationships between chemical shift and protein conformation are also uncovered; in particular, a correlation between helix dipole effects and amide proton chemical shifts as well as a relationship between alpha-proton chemical shifts and main-chain flexibility. Additionally, useful relationships between alpha-proton chemical shifts and backbone dihedral angles as well as correlations between amide proton chemical shifts and hydrogen bond effects are demonstrated.
Collapse
Affiliation(s)
- D S Wishart
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | | | | |
Collapse
|
25
|
Mulichak AM, Tulinsky A, Ravichandran KG. Crystal and molecular structure of human plasminogen kringle 4 refined at 1.9-A resolution. Biochemistry 1991; 30:10576-88. [PMID: 1657148 DOI: 10.1021/bi00107a029] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The crystal structure of human plasminogen kringle 4 (PGK4) has been solved by molecular replacement using the bovine prothrombin kringle 1 (PTK1) structure as a model and refined by restrained least-squares methods to an R factor of 14.2% at 1.9-A resolution. The K4 structure is similar to that of PTK1, and an insertion of one residue at position 59 of the latter has minimal effect on the protein folding. The PGK4 structure is highly stabilized by an internal hydrophobic core and an extensive hydrogen-bonding network. Features new to this kringle include a cis peptide bond at Pro30 and the presence of two alternate, perpendicular, and equally occupied orientations for the Cys75 side chain. The K4 lysine-binding site consists of a hydrophobic trough formed by the Trp62 and Trp72 indole rings, with anionic (Asp55/Asp57) and cationic (Lys35/Arg71) charge pairs at either end. With the adjacent Asp5 and Arg32 residues, these result in triply charged anionic and cationic clusters (pH of crystals at 6.0), which, in addition to the unusually high accessibility of the Trp72 side chain, serve as an obvious marker of the binding site on the K4 surface. A complex intermolecular interaction occurs between the binding sites of symmetry-related molecules involving a highly ordered sulfate anion of solvation in which the Arg32 side chain of a neighboring kringle occupies the binding site.
Collapse
Affiliation(s)
- A M Mulichak
- Department of Chemistry, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
26
|
Affiliation(s)
- J Henkin
- Abbott Laboratories, Thrombolytics Venture Discovery Group, Abbott Park, IL 60064-3500
| | | | | |
Collapse
|
27
|
Seshadri TP, Tulinsky A, Skrzypczak-Jankun E, Park CH. Structure of bovine prothrombin fragment 1 refined at 2.25 A resolution. J Mol Biol 1991; 220:481-94. [PMID: 1856869 DOI: 10.1016/0022-2836(91)90025-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The structure of bovine prothrombin fragment 1 has been refined at 2.25 A resolution using high resolution measurements made with the synchrotron beam at CHESS. The synchrotron data were collected photographically by oscillation methods (R-merge = 0.08). These were combined with lower order diffractometer data for refinement purposes. The structure was refined using restrained least-squares methods with the program PROLSQ to a crystallographic R-value of 0.175. The structure includes 105 water molecules with occupancies of greater than 0.6. The first 35 residues (Ala1-Leu35) of the N-terminal gamma-carboxy glutamic acid-domain (Ala1-Cys48) of fragment 1 are disordered as are two carbohydrate chains of Mr approximately 5000; the latter two combine to render 40% of the structure disordered. The folding of the kringle of fragment 1 is related to the close intramolecular contact between the inner loop disulfide groups. Half of the conserved sequence of the kringle forms an inner core surrounding these disulfide groups. The remainder of the sequence conservation is associated with the many turns of the main chain. The Pro95 residue of the kringle has a cis conformation and Tyr74 is ordered in fragment 1, although nuclear magnetic resonance studies indicate that the comparable residue of plasminogen kringle 4 has two positions. Surface accessibility calculations indicate that none of the disulfide groups of fragment 1 is accessible to solvent.
Collapse
Affiliation(s)
- T P Seshadri
- Department of Chemistry, Michigan State University, East Lansing 48824-1322
| | | | | | | |
Collapse
|
28
|
Byeon IJ, Kelley RF, Llinás M. Kringle-2 domain of the tissue-type plasminogen activator. 1H-NMR assignments and secondary structure. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:155-65. [PMID: 1901789 DOI: 10.1111/j.1432-1033.1991.tb15894.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A recombinant 90-residue polypeptide fragment containing the three-loop kringle-2 domain of human tissue-type plasminogen activator (t-PA) has been studied by two-dimensional 1H-NMR spectroscopy at 500 MHz. Complete sequence-specific resonance assignments were derived. Overall, the kringle exhibits a compact, folded conformation with more than 50% of the residues in irregular structures. Elements of secondary structure were identified from sequential, medium- and long-range dipolar (Overhauser) interproton interactions. These identifications were corroborated by analysis of spin-spin scalar 3J alpha N splittings and identification of backbone amide NH protons exhibiting retarded 1H/2H exchange in 2H2O. Three antiparallel beta-sheets and six tight turns were located. In addition, one short alpha-helical region was found in the Ser43-Ala44-Gln44a-Ala44b-Leu44c-Gly45+ ++ segment; this region contains three-residue insertions unique to the t-PA and urokinase kringles. Although the secondary structure of the t-PA kringle 2 in solution is in overall agreement with that observed in the crystallographic structure of the prothrombin kringle 1 [Tulinsky, A., Park, C.H. & Skrzypczak-Jankun, E. (1988) J. Mol. Biol. 202, 885-901], the alpha-helical segment and other details of the secondary structure differ somewhat from the prothrombin homolog.
Collapse
Affiliation(s)
- I J Byeon
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3890
| | | | | |
Collapse
|
29
|
Saito T, Wormald MR, Williams RJ. Some structural features of the iron-uptake regulation protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:29-38. [PMID: 1849822 DOI: 10.1111/j.1432-1033.1991.tb15878.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An extensive proton nuclear magnetic resonance study of the iron-uptake regulation protein (Fur) from Escherichia coli has been made. Considerable difficulties were experienced in the NMR experiments in 1H2O which may be due unfavourable proton exchange rates in the pH range greater than 6.2, where the protein is soluble. Even in 2H2O, the two-dimensional NMR spectra were not easily interpreted due to widely differing line widths, as a result of the protein side-chains having very differing mobilities. Despite these problems, virtually all the 20 aromatic amino acids have been assigned. Small regions of the protein core were assigned by taking advantage of the approximately 20 non-exchanging peptide-NH resonances in 2H2O. Using two-dimensional J-correlated, homonuclear Hartmann-Hahn and NOE spectroscopies, we have been able to give some assignments in which there is considerable confidence for about one third of the amino acids. Taking advantages of two series of probe experiments, using Mn(II) and a spin label, together with longer range NOE data and result from structure predictions and CD data, we have put forward a tentative fold for the protein which is seen to have a relatively rigid series of interior strands and more flexible exterior strands, many of which are likely to be helical. The Mn(II) probe experiments have also allowed us to define the Fe(II) binding site.
Collapse
Affiliation(s)
- T Saito
- Inorganic Chemistry Laboratory, University of Oxford, UK
| | | | | |
Collapse
|
30
|
Abstract
The NMR spectrum of miniplasminogen (V443-plasminogen) under conditions of acidic pH reveals a subset of particularly well-resolved resonances whose chemical shift values are closely similar to those of isolated kringle 5. The temperature dependence of the spectrum indicates that this set of resonances disappears in a single cooperative unfolding transition appropriate for kringle 5, whilst other broader resonances from the protease domain persist to higher temperature. These results provide evidence for significant structural and motional independence of the kringle and protease domains in spite of the short linker between these domains. The NMR spectrum of Glu1-plasminogen is closely similar to that of miniplasminogen under the same conditions. This suggests that the domain independence observed in miniplasminogen is maintained in the intact molecule.
Collapse
Affiliation(s)
- A J Teuten
- Oxford Centre for Molecular Sciences, University of Oxford, UK
| | | | | |
Collapse
|
31
|
Pastore A, Atkinson RA, Saudek V, Williams RJ. Topological mirror images in protein structure computation: an underestimated problem. Proteins 1991; 10:22-32. [PMID: 1648217 DOI: 10.1002/prot.340100104] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
When calculating three-dimensional structures from NMR data, alternative solutions with very large RMS deviation can be obtained. Sometimes local or global inversions of the protein folding can be observed. We call these different solutions topological mirror images, as they keep the correct amino acid chirality. They are observed when the number of restraints is insufficient and represent different solutions from the same scalar information. Therefore they are common in small peptides where the NMR data are often limited and the secondary structure is not very well defined. They can also be observed in large molecules in regions of higher flexibility. In our experience the observation of topological mirror images is independent of the efficiency of sampling of the algorithm used. We present four examples of proteins with different size and folding. We also discuss ways to distinguish among the different solutions.
Collapse
Affiliation(s)
- A Pastore
- European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| | | | | | | |
Collapse
|
32
|
Abstract
As the database of protein sequences grows it is becoming apparent that many proteins are constructed from relatively few modular units that appear many times. Determination of the three-dimensional structure of such modules by NMR has been possible due to their production in relatively large quantities by recombinant DNA techniques. The knowledge gained about the structure of individual modules can then be used to predict their properties in a variety of intact proteins.
Collapse
Affiliation(s)
- M Baron
- Department of Biochemistry, University of Oxford, UK
| | | | | |
Collapse
|
33
|
Abstract
Now that some protein X-ray structures have been proved to contain major errors, the question of the precision of 3-dimensional structures is taken seriously by crystallographers and NMR spectroscopists. Errors which cannot be avoided during model building in electron density maps, should correct themselves during crystallographic refinement, and the precision of the refined model should reach 0.15 to 0.25 A depending on the resolution of the data. Independent estimates based on homologous protein structures confirm that better than 0.5 A precision is commonly achieved, at least for C alpha and main chain atoms. The precision of NMR structures is less easily evaluated, but it should be better than 2 A when a sufficient number of NOE distance constraints are available. One may deplore the fact that not all published structures meet these standards, but possible errors should not be an excuse for not depositing atomic co-ordinates in data banks.
Collapse
Affiliation(s)
- J Janin
- Laboratoire de Biologie Physicochimique, UA 1131, Université Paris-Sud, Orsay, France
| |
Collapse
|
34
|
|