1
|
Biophysical reviews 'meet the editor series'-Jeremy R. H. Tame. Biophys Rev 2021; 13:295-301. [PMID: 34178167 DOI: 10.1007/s12551-021-00798-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 10/21/2022] Open
|
2
|
Kovalevsky A, Chatake T, Shibayama N, Park SY, Ishikawa T, Mustyakimov M, Fisher SZ, Langan P, Morimoto Y. Protonation states of histidine and other key residues in deoxy normal human adult hemoglobin by neutron protein crystallography. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:1144-52. [PMID: 21041929 PMCID: PMC2967419 DOI: 10.1107/s0907444910025448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 06/28/2010] [Indexed: 11/10/2022]
Abstract
The protonation states of the histidine residues key to the function of deoxy (T-state) human hemoglobin have been investigated using neutron protein crystallography. These residues can reversibly bind protons, thereby regulating the oxygen affinity of hemoglobin. By examining the OMIT F(o)-F(c) and 2F(o)-F(c) neutron scattering maps, the protonation states of 35 of the 38 His residues were directly determined. The remaining three residues were found to be disordered. Surprisingly, seven pairs of His residues from equivalent α or β chains, αHis20, αHis50, αHis58, αHis89, βHis63, βHis143 and βHis146, have different protonation states. The protonation of distal His residues in the α(1)β(1) heterodimer and the protonation of αHis103 in both subunits demonstrates that these residues may participate in buffering hydrogen ions and may influence the oxygen binding. The observed protonation states of His residues are compared with their ΔpK(a) between the deoxy and oxy states. Examination of inter-subunit interfaces provided evidence for interactions that are essential for the stability of the deoxy tertiary structure.
Collapse
Affiliation(s)
- Andrey Kovalevsky
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Reeder BJ. The redox activity of hemoglobins: from physiologic functions to pathologic mechanisms. Antioxid Redox Signal 2010; 13:1087-123. [PMID: 20170402 DOI: 10.1089/ars.2009.2974] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pentacoordinate respiratory hemoproteins such as hemoglobin and myoglobin have evolved to supply cells with oxygen. However, these respiratory heme proteins are also known to function as redox enzymes, reacting with compounds such as nitric oxide and peroxides. The recent discoveries of hexacoordinate hemoglobins in vertebrates and nonsymbiotic plants suggest that the redox activity of globins is inherent to the molecule. The uncontrolled formation of radical species resulting from such redox chemistry on respiratory hemoproteins can lead to oxidative damage and cellular toxicity. In this review, we examine the functions of various globins and the mechanisms by which these globins act as redox enzymes under physiologic conditions. Evidence that redox reactions also occur under disease conditions, leading to pathologic complications, also is examined, focusing on recent discoveries showing that the ferryl oxidation state of these hemoproteins is present in these disease states in vivo. In addition, we review the latest advances in the understanding of globin redox mechanisms and how they might affect cellular signaling pathways and how they might be controlled therapeutically or, in the case of hemoglobin-based blood substitutes, through rational design.
Collapse
Affiliation(s)
- Brandon J Reeder
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, England.
| |
Collapse
|
4
|
Reeder BJ, Grey M, Silaghi-Dumitrescu RL, Svistunenko DA, Bülow L, Cooper CE, Wilson MT. Tyrosine residues as redox cofactors in human hemoglobin: implications for engineering nontoxic blood substitutes. J Biol Chem 2008; 283:30780-7. [PMID: 18728007 DOI: 10.1074/jbc.m804709200] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Respiratory proteins such as myoglobin and hemoglobin can, under oxidative conditions, form ferryl heme iron and protein-based free radicals. Ferryl myoglobin can safely be returned to the ferric oxidation state by electron donation from exogenous reductants via a mechanism that involves two distinct pathways. In addition to direct transfer between the electron donor and ferryl heme edge, there is a second pathway that involves "through-protein" electron transfer via a tyrosine residue (tyrosine 103, sperm whale myoglobin). Here we show that the heterogeneous subunits of human hemoglobin, the alpha and beta chains, display significantly different kinetics for ferryl reduction by exogenous reductants. By using selected hemoglobin mutants, we show that the alpha chain possesses two electron transfer pathways, similar to myoglobin. Furthermore, tyrosine 42 is shown to be a critical component of the high affinity, through-protein electron transfer pathway. We also show that the beta chain of hemoglobin, lacking the homologous tyrosine, does not possess this through-protein electron transfer pathway. However, such a pathway can be engineered into the protein by mutation of a specific phenylalanine residue to a tyrosine. High affinity through-protein electron transfer pathways, whether native or engineered, enhance the kinetics of ferryl removal by reductants, particularly at low reductant concentrations. Ferryl iron has been suggested to be a major cause of the oxidative toxicity of hemoglobin-based blood substitutes. Engineering hemoglobin with enhanced rates of ferryl removal, as we show here, is therefore likely to result in molecules better suited for in vivo oxygen delivery.
Collapse
Affiliation(s)
- Brandon J Reeder
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
| | | | | | | | | | | | | |
Collapse
|
5
|
Préhu C, Riou J, Wajcman H. Hb Barika [alpha42(C7)Tyr-->His (alpha2)] leads to an alpha+ -Thalassemia-like syndrome. Hemoglobin 2007; 31:17-22. [PMID: 17365001 DOI: 10.1080/03630260601056833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In human deoxyhemoglobin (deoxyHb), the hydrogen bond between Aspbeta99(G1) and Tyralpha42(C7), located in the alpha1beta2 interface, is crucial for the stability of the T structure. All the variants that could arise from a single point mutation affecting codon beta99 have already been observed, leading always to erythrocytosis. Conversely, up to now, Hb Barika is the only example found in a patient in whom the alpha42 is mutated. From a biochemical point of view, for theoretical reasons, this substitution has already been extensively studied on recombinant hemoglobin (rHb). In the patient, Hb Barika is expressed at a level lower than expected for an alpha2 gene variant and leads to an alpha+-thalassemic-like syndrome.
Collapse
Affiliation(s)
- Claude Préhu
- INSERM U654 and Service de Biochimie, Hôpital Henri Mondor AP-HP, Créteil, France
| | | | | |
Collapse
|
6
|
Nagao S, Hirai Y, Kawano S, Imai K, Suzuki A, Yamamoto Y. Heme orientational disorder in human adult hemoglobin reconstituted with a ring fluorinated heme and its functional consequences. Biochem Biophys Res Commun 2007; 354:681-5. [PMID: 17258177 DOI: 10.1016/j.bbrc.2007.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 01/04/2007] [Indexed: 11/22/2022]
Abstract
A ring fluorinated heme, 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2-fluoro-7,12,18-trimethyl-porphyrinatoiron(III), has been incorporated into human adult hemoglobin (Hb A). The heme orientational disorder in the individual subunits of the protein has been readily characterized using (19)F NMR and the O(2) binding properties of the protein have been evaluated through the oxygen equilibrium analysis. The equilibrated orientations of hemes in alpha- and beta- subunits of the reconstituted protein were found to be almost completely opposite to each other, and hence were largely different from those of the native and the previously reported reconstituted proteins [T. Jue, G.N. La Mar, Heme orientational heterogeneity in deuterohemin-reconstituted horse and human hemoglobin characterized by proton nuclear magnetic resonance spectroscopy, Biochem. Biophys. Res. Commun. 119 (1984) 640-645]. Despite the large difference in the degree of the heme orientational disorder in the subunits of the proteins, the O(2) affinity and the cooperativity of the protein reconstituted with 2-MF were similar to those of the proteins reconstituted with a series of hemes chemically modified at the heme 3- and 8-positions [K. Kawabe, K. Imaizumi, Z. Yoshida, K. Imai, I. Tyuma, Studies on reconstituted myoglobins and hemoglobins II. Role of the heme side chains in the oxygenation of hemoglobin, J. Biochem. 92 (1982) 1713-1722], whose O(2) affinity and cooperativity were higher and lower, respectively, relative to those of native protein. These results indicated that the heme orientational disorder could exert little effect, if any, on the O(2) affinity properties of Hb A. This finding provides new insights into structure-function relationship of Hb A.
Collapse
Affiliation(s)
- Satoshi Nagao
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Vasseur-Godbillon C, Marden MC, Giordano P, Wajcman H, Baudin-Creuza V. Impaired binding of AHSP to α chain variants: Hb Groene Hart illustrates a mechanism leading to unstable hemoglobins with α thalassemic like syndrome. Blood Cells Mol Dis 2006; 37:173-9. [PMID: 17052927 DOI: 10.1016/j.bcmd.2006.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 09/13/2006] [Accepted: 09/13/2006] [Indexed: 11/15/2022]
Abstract
Alpha hemoglobin stabilizing protein (AHSP) is a small protein of 102 residues induced by GATA-1, Oct-1- and EKLF. It is synthesized at a high level in the red blood cell precursors and acts as a chaperone protecting the alpha hemoglobin (alpha-Hb) chains against precipitation. AHSP and alpha-Hb form a heterodimer complex. In the absence of AHSP, alpha-Hb oxidizes and precipitates within the erythrocyte precursors of the bone marrow leading to apoptosis and defective erythropoiesis. In vitro the binding of AHSP to ferrous alpha-Hb accelerates oxidation of the heme iron in alpha-Hb, but the complex is more resistant to protein unfolding. AHSP could act as a modulating factor in beta-thalassemia. Recent studies showed more severe thalassemic syndromes in patients with decreased levels of AHSP and in one patient who carried a structurally abnormal AHSP. Some alpha-Hb variants with structural abnormality located in the contact area between alpha-Hb and AHSP exhibit an instability and a thalassemic like syndrome. We suggest that this could result from a disturbed interaction between alpha-Hb variants and AHSP. To study this interaction, we constructed the pGEX-alpha-AHSP vector that co-expressed human alpha-Hb and AHSP. Using this approach, we investigated the alpha42 (C7), alpha104 (G11) and alpha119 (H2) sites, where variants with some thalassemic features have been described. Results obtained with recombinant Groene Hart alpha-Hb and Diamant alpha-Hb, in which proline 119 is replaced by a serine and a leucine, respectively, showed clearly an impaired interaction with AHSP. In contrast, the alpha mutants at the sites 42 and 104 exhibit a normal interaction with AHSP. The CO rebinding kinetics of the AHSP/alpha-Hb(42mutant) complexes were similar to those previously obtained with the AHSP/alpha-Hb(WT) complex, which shows a modified rate that is intermediate to the classical Hb allosteric states.
Collapse
|
8
|
Abstract
Transforming growth factor-beta is a pleiotropic growth factor that has enthralled many investigators for approximately two decades. In addition to many reports that have clarified the basic mechanism of transforming growth factor-beta signal transduction, numerous laboratories have published on the clinical implication/application of transforming growth factor-beta . To name a few, dysregulation of transforming growth factor-beta signaling plays a role in carcinogenesis, autoimmunity, angiogenesis, and wound healing. In this report, we will review these clinical implications of transforming growth factor-beta .
Collapse
Affiliation(s)
- Isaac Yi Kim
- Department of Urology, University of California at Irvine, Orange, CA 92868, USA
| | | | | |
Collapse
|
9
|
Kavanaugh JS, Rogers PH, Arnone A, Hui HL, Wierzba A, DeYoung A, Kwiatkowski LD, Noble RW, Juszczak LJ, Peterson ES, Friedman JM. Intersubunit interactions associated with Tyr42 alpha stabilize the quaternary-T tetramer but are not major quaternary constraints in deoxyhemoglobin. Biochemistry 2005; 44:3806-20. [PMID: 15751957 DOI: 10.1021/bi0484670] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous mutational studies on Tyr42alpha variants as well as the current studies on the mutant hemoglobin alphaY42A show that the intersubunit interactions associated with Tyr42alpha significantly stabilize the alpha1beta2 interface of the quaternary-T deoxyhemoglobin tetramer. However, crystallographic studies, UV and visible resonance Raman spectroscopy, CO combination kinetic measurements, and oxygen binding measurements on alphaY42A show that the intersubunit interactions formed by Tyr42alpha have only a modest influence on the structural properties and ligand affinity of the deoxyhemoglobin tetramer. Therefore, the alpha1beta2 interface interactions associated with Tyr42alpha do not contribute significantly to the quaternary constraints that are responsible for the low oxygen affinity of deoxyhemoglobin. The slight increase in the ligand affinity of deoxy alphaY42A correlates with small, mutation-induced structural changes that perturb the environment of Trp37beta, a critical region of the quaternary-T alpha1beta2 interface that has been shown to be the major source of quaternary constraint in deoxyhemoglobin.
Collapse
Affiliation(s)
- Jeffrey S Kavanaugh
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Choi JW, Lee JH, Lee KH, Lee HW, Sohn JH, Yoon JH, Yeh BI, Park SK, Lee KJ, Kim HW. Characteristic of Aromatic Amino Acid Substitution at α96 of Hemoglobin. BMB Rep 2005; 38:115-9. [PMID: 15715956 DOI: 10.5483/bmbrep.2005.38.1.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replacement of valine by tryptophan or tyrosine at position alpha96 of the alpha chain (alpha96Val), located in the alpha(1)beta(2) subunit interface of hemoglobin leads to low oxygen affinity hemoglobin, and has been suggested to be due to the extra stability introduced by an aromatic amino acid at the alpha96 position. The characteristic of aromatic amino acid substitution at the alpha96 of hemoglobin has been further investigated by producing double mutant r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp). r Hb (alpha42Tyr --> Phe) is known to exhibit almost no cooperativity in binding oxygen, and possesses high oxygen affinity due to the disruption of the hydrogen bond between alpha42Tyr and beta99Asp in thealpha(1)beta(2) subunit interface of deoxy Hb A. The second mutation, alpha96Val -->Trp, may compensate the functional defects of r Hb (alpha42Tyr --> Phe), if the stability due to the introduction of trypophan at the alpha 96 position is strong enough to overcome the defect of r Hb (alpha42Tyr --> Phe). Double mutant r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp) exhibited almost no cooperativity in binding oxygen and possessed high oxygen affinity, similarly to that of r Hb (alpha42Tyr --> Phe). (1)H NMR spectroscopic data of r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp) also showed a very unstable deoxy-quaternary structure. The present investigation has demonstrated that the presence of the crucible hydrogen bond between alpha 42Tyr and beta 99Asp is essential for the novel oxygen binding properties of deoxy Hb (alpha96Val --> Trp) .
Collapse
|
11
|
Abdulmalik O, Safo MK, Lerner NB, Ochotorena J, Daikhin E, Lakka V, Santacroce R, Abraham DJ, Asakura T. Characterization of hemoglobin bassett (alpha94Asp-->Ala), a variant with very low oxygen affinity. Am J Hematol 2004; 77:268-76. [PMID: 15495251 DOI: 10.1002/ajh.20184] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hemoglobin (Hb) Bassett, an abnormal Hb variant with a markedly reduced oxygen affinity, was discovered in a Caucasian (Anglo-Saxon) male child who experienced episodes of cyanosis. Cation-exchange and reversed-phase (RP) high-performance liquid chromatography (HPLC) showed that the patient has an abnormal Hb, with a mutation in the alpha-globin. Tryptic peptide digest of the abnormal alpha-globin with subsequent HPLC analysis revealed abnormal elution of the alpha-T11 peptide. Further studies with Edman sequencing and electrospray mass spectrometry of tryptic peptide alpha-T11, as well as structural analysis by X-ray crystallography revealed an Asp-->Ala substitution at the alpha94 (G1) position, a match for Hb Bassett. Detailed functional studies showed that this Hb variant had a markedly reduced oxygen affinity (P(50) at pH 7.0 = 22 mmHg; Hb A P(50) = 10.5 mmHg), reduced Bohr effect (-0.26 compared to - 0.54 in Hb A), and low subunit cooperativity (n = 1.4, compared to 2.6 in Hb A). X-ray crystallography results explain the probable effects of the structural modification on the oxygen-binding properties of this Hb variant.
Collapse
Affiliation(s)
- Osheiza Abdulmalik
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Balakrishnan G, Case MA, Pevsner A, Zhao X, Tengroth C, McLendon GL, Spiro TG. Time-resolved Absorption and UV Resonance Raman Spectra Reveal Stepwise Formation of T Quaternary Contacts in the Allosteric Pathway of Hemoglobin. J Mol Biol 2004; 340:843-56. [PMID: 15223325 DOI: 10.1016/j.jmb.2004.05.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 05/03/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
Hemoglobin undergoes a series of molecular changes on the nanosecond and microsecond time-scale following photodissociation of CO ligands. We have monitored these processes with a combination of transient absorption and resonance Raman (RR) spectroscopy. The latter have been acquired at higher data rates than previously available, thanks to kilohertz Ti:sapphire laser technology, with frequency-quadrupling into the ultraviolet. As a result of improved resolution of the UVRR time-course, a new intermediate has been identified in the pathway from the R (HbCO) to the T (deoxyHb) state. This intermediate is not detected via absorption transients, since the change in heme absorption is insignificant, but its lifetime agrees with a reported magnetic circular dichroism transient, which has been attributed to a quaternary tryptophan interaction. The new UVRR data allow elaboration of the allosteric pathway by establishing that the T-state quaternary contacts are formed in two well-separated steps, with time constants of 2.9 micros and 21 micros, instead of a single 20 micros process. The first step involves the "hinge" region contacts, as monitored by the Trp beta 37...Asp alpha 94 H-bond, while the second involves the "switch" region, as monitored by the Tyr alpha 42...Asp beta 99 H-bond. A working model for the allosteric pathway is presented.
Collapse
|
13
|
Barrick D, Lukin JA, Simplaceanu V, Ho C. Nuclear magnetic resonance spectroscopy in the study of hemoglobin cooperativity. Methods Enzymol 2004; 379:28-54. [PMID: 15051350 DOI: 10.1016/s0076-6879(04)79002-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Doug Barrick
- Department of Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
14
|
Li R, Nagai Y, Nagai M. Changes of tyrosine and tryptophan residues in human hemoglobin by oxygen binding: near- and far-UV circular dichroism of isolated chains and recombined hemoglobin. J Inorg Biochem 2000; 82:93-101. [PMID: 11132645 DOI: 10.1016/s0162-0134(00)00151-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to assign the circular dichroism (CD) spectral change in the region between 280 and 300 nm of human adult hemoglobin (Hb A) upon the quaternary structure transition induced by oxygen binding, the near- and far-UV CD spectra of the isolated chains and the recombined hemoglobin were examined. Deoxygenation made the negative CD band at 290 nm of oxy-alpha chain deeper. On the other hand, positive CD bands of oxy-beta chain at the 280 to approximately 300 nm became negative upon deoxygenation. These changes were interpreted as being due to environmental alterations of tyrosine (Tyr) and/or tryptophan (Trp) perturbed by tertiary structural changes from the oxy to deoxy form in isolated chains, referring to the CD spectra of model compounds. From the difference between CD bands of the arithmetic mean of deoxy isolated chains and the CD band of deoxyHb tetramer, the contribution of tertiary structural change to the negative CD band of deoxyHb A at 287 nm was estimated to be 50%. This finding has revealed that the net contribution of quaternary structure transition to the negative band is 50%. In far-UV CD spectra, the environmental changes of aromatic residues upon the quaternary structure transition were also detected as a negative band at 225 nm.
Collapse
Affiliation(s)
- R Li
- School of Health Sciences, Kanazawa University Faculty of Medicine, Japan
| | | | | |
Collapse
|
15
|
Inaba K, Ishimori K, Imai K, Morishima I. Substitution of the heme binding module in hemoglobin alpha- and beta-subunits. Implication for different regulation mechanisms of the heme proximal structure between hemoglobin and myoglobin. J Biol Chem 2000; 275:12438-45. [PMID: 10777528 DOI: 10.1074/jbc.275.17.12438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In our previous work, we demonstrated that the replacement of the "heme binding module," a segment from F1 to G5 site, in myoglobin with that of hemoglobin alpha-subunit converted the heme proximal structure of myoglobin into the alpha-subunit type (Inaba, K., Ishimori, K. and Morishima, I. (1998) J. Mol. Biol. 283, 311-327). To further examine the structural regulation by the heme binding module in hemoglobin, we synthesized the betaalpha(HBM)-subunit, in which the heme binding module (HBM) of hemoglobin beta-subunit was replaced by that of hemoglobin alpha-subunit. Based on the gel chromatography, the betaalpha(HBM)-subunit was preferentially associated with the alpha-subunit to form a heterotetramer, alpha(2)[betaalpha(HBM)(2)], just as is native beta-subunit. Deoxy-alpha(2)[betaalpha(HBM)(2)] tetramer exhibited the hyperfine-shifted NMR resonance from the proximal histidyl N(delta)H proton and the resonance Raman band from the Fe-His vibrational mode at the same positions as native hemoglobin. Also, NMR spectra of carbonmonoxy and cyanomet alpha(2)[betaalpha(HBM)(2)] tetramer were quite similar to those of native hemoglobin. Consequently, the heme environmental structure of the betaalpha(HBM)-subunit in tetrameric alpha(2)[betaalpha(HBM)(2)] was similar to that of the beta-subunit in native tetrameric Hb A, and the structural conversion by the module substitution was not clear in the hemoglobin subunits. The contrastive structural effects of the module substitution on myoglobin and hemoglobin subunits strongly suggest different regulation mechanisms of the heme proximal structure between these two globins. Whereas the heme proximal structure of monomeric myoglobin is simply determined by the amino acid sequence of the heme binding module, that of tetrameric hemoglobin appears to be closely coupled to the subunit interactions.
Collapse
Affiliation(s)
- K Inaba
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
16
|
Mawjood AH, Miyazaki G, Kaneko R, Wada Y, Imai K. Site-directed mutagenesis in hemoglobin: test of functional homology of the F9 amino acid residues of hemoglobin alpha and beta chains. PROTEIN ENGINEERING 2000; 13:113-20. [PMID: 10708650 DOI: 10.1093/protein/13.2.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The cysteine residue at F9(93) of the human hemoglobin (Hb A) beta chain, conserved in mammalian and avian hemoglobins, is located near the functionally important alpha1-beta2 interface and C-terminal region of the beta chain and is reactive to sulfhydryl reagents. The functional roles of this residue are still unclear, although regulation of local blood flow through allosteric S-nitrosylation of this residue is proposed. To clarify the role of this residue and its functional homology to F9(88) of the alpha chain, we measured oxygen equilibrium curves, UV-region derivative spectra, Soret-band absorption spectra, the number of titratable -SH groups with p-mercuribenzoate and the rate of reaction of these groups with 4, 4'-dipyridine disulfide for three recombinant mutant Hbs with single amino acid substitutions: Ala-->Cys at 88alpha (rHb A88alphaC), Cys-->Ala at 93beta (rHb C93betaA) and Cys-->Thr at 93beta (rHb C93betaT). These Hbs showed increased oxygen affinities and impaired allosteric effects. The spectral data indicated that the R to T transition upon deoxygenation was partially restricted in these Hbs. The number of titratable -SH groups of liganded form was 3.2-3.5 for rHb A88alphaC compared with 2.2 for Hb A, whereas those for rHb C93betaA and rHb C93betaT were negligibly small. The reduction of rate of reaction with 4,4'-dipyridine disulfide upon deoxygenation in rHb A88alphaC was smaller than that in Hb A. Our experimental data have shown that the residues at 88alpha and 93beta have definite roles but they have no functional homology. Structure-function relationships in our mutant Hbs are discussed.
Collapse
Affiliation(s)
- A H Mawjood
- Department of Physiology and Biosignaling, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
17
|
Hu X, Dick LA, Spiro TG. Fourier transform infrared evidence against Asp beta 99 protonation in hemoglobin: nature of the Tyr alpha 42-Asp beta 99 quaternary H-bond. Biochemistry 1998; 37:9445-8. [PMID: 9649327 DOI: 10.1021/bi9805644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Tyr alpha 42-Asp beta 99 intersubunit H-bond stabilizes the T quaternary structure in hemoglobin (Hb) tetramers. We had proposed that Tyr alpha 42 acts as an acceptor in this H-bond, because the tyrosine Y8a/8b and Y7a' UVRR (ultraviolet resonance Raman) bands shift in directions opposite to those expected if tyrosine is an H-bond donor. If Asp beta 99 is the H-bond donor, then it must be protonated in the T state, and would be a previously unrecognized contributor to the Bohr effect. This implication was strengthened by the discovery that an R-minus-T difference FTIR (Fourier transform infrared) band at 1693 cm-1, which might be a signal from protonated carboxylate, is missing in Hb Kempsey, a mutant in which Asp beta 99 is replaced by Asn. However, we now find that this FTIR signal is insensitive to 13C-labeling of the aspartate residues in Hb, and cannot arise from protonated Asp beta 99. There are no other difference signals in the 1700 cm-1 region at a sensitivity of one COOH group. We conclude that Asp beta 99 is not protonated, and that the anomalous UVRR shifts must arise from compensating polarization of the Tyr alpha 42 OH. Candidates for this compensation are the H-bond donated by the Asp beta 94 backbone NH, and the nearby positive charge of Arg beta 40.
Collapse
Affiliation(s)
- X Hu
- Department of Chemistry, Princeton University, New Jersey 08544, USA
| | | | | |
Collapse
|
18
|
Inaba K, Ishimori K, Imai K, Morishima I. Structural and functional effects of pseudo-module substitution in hemoglobin subunits. New structural and functional units in globin structure. J Biol Chem 1998; 273:8080-7. [PMID: 9525909 DOI: 10.1074/jbc.273.14.8080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Functional and structural significance of the "module" in proteins has been investigated for globin proteins. Our previous studies have revealed that some modules in globins are responsible for regulating the subunit association and heme environmental structures, whereas the module substitution often induces fatal structural destabilization, resulting in failure of functional regulation. In this paper, to gain further insight into functional and structural significance of the modular structure in globins, we focused upon the "pseudo-module" in globin structure where boundaries are located at the center of modules. Although the pseudo-module has been supposed not to retain a compactness, the betaalpha(PM3)-subunit, in which one of the pseudo-modules, the F1-H6 region, of the alpha-subunit is implanted into the beta-subunit, conserved stable globin structure, and its association property was converted into that of the alpha-subunit, as the case for the module substituted globin, the betaalpha(M4)-subunit. These results suggest that modules are not unique structural and functional units for globins. Interestingly, however, the recent reconsideration of the module boundary indicates that the modules in globins can be further divided into two small modules, and one of the boundaries for the new small modules coincides with that of the pseudo-module we substituted in this study. Although it would be premature to conclude the significance of the modular structure in globins, it can be safely said that we have found new structural units in globin structure, probably new modules.
Collapse
Affiliation(s)
- K Inaba
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 Japan
| | | | | | | |
Collapse
|
19
|
Abstract
The affinities of the individual subunits in human adult and fetal hemoglobins to azide ion have been determined from the combined analysis of NMR and optical titration data. Structural and functional non-equivalence of the constituent subunits, i.e. alpha and beta subunits in human adult hemoglobin and alpha and gamma subunits in human fetal hemoglobin, has been confirmed. The function of the alpha subunits, which are common to both hemoglobins, is essentially identical in these hemoglobins and, in spite of the substitutions of 39 amino acid residues between beta and gamma subunits, they exhibit similar azide ion affinities. The present study also demonstrates that the NMR spectral comparison between the two proteins provides signal assignments to the individual subunits in intact tetramer.
Collapse
Affiliation(s)
- Y Yamamoto
- Department of Chemistry, University of Tsukuba, Japan.
| | | |
Collapse
|
20
|
|
21
|
Huang S, Peterson ES, Ho C, Friedman JM. Quaternary structure sensitive tyrosine interactions in hemoglobin: a UV resonance Raman study of the double mutant rHb (beta99Asp-->Asn, alpha42Tyr-->Asp). Biochemistry 1997; 36:6197-206. [PMID: 9166792 DOI: 10.1021/bi970018v] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two interactions involving tyrosines have been implicated in the communication pathway that links ligand binding to quaternary state changes in hemoglobin. Tyr alpha(1)42 stabilizes the alpha1beta2 T state interface through the formation of a hydrogen bond to Asp beta(2)99. The side chains of the penultimate Tyr residues (alpha140 and beta145) occupy the pockets made by helicies F and H in the deoxy form with the phenolic hydroxyl hydrogen bonded to the carbonyl group of Val FG5. Early crystallographic studies indicated that in the R form the penultimate Tyr is expelled out of the pocket, thus eliminating the hydrogen bond. This hydrogen bond has been considered to play an important role in maintaining the low-oxygen-affinity state (T state) in deoxy HbA, but a later higher resolution crystallographic study (Shannon, 1983) failed to reveal such movement of this Tyr during the R --> T transition. Nevertheless, conversion of this Tyr to Phe increases oxygen affinity considerably, suggesting that hydrogen bonding is involved in oxygen affinity modulation. Earlier ultraviolet resonance Raman results reported by Spiro and co-workers [Rodgers et al. (1992) J. Am. Chem. Soc. 114, 3697-3709] were used to conclude that the significant quaternary structure dependent changes observed in tyrosine Raman bands are due to the formation of the T state hydrogen bond with Tyr alpha42 acting as a proton acceptor rather than being the anticipated proton donor, as would be expected if Asp beta99 were ionized. This surprising result rests on the assumption that changes in the environment of Tyr alpha42 are the overwhelming contributor to the R - T UV Raman difference spectrum. In this study, a cooperative double mutant lacking Tyr alpha42, [rHb (Asp beta99 --> Asn, Tyr alpha42 --> Asp)], is used to determine the relative contributions of Tyr alpha42 and the penultimate tyrosines to the R - T UV resonance Raman difference spectrum. The results both directly support the claim that Tyr alpha42 is the proton acceptor in the T state and expose the potential role of the penultimate tyrosines in coupling the quaternary state to the ligand reactivity.
Collapse
Affiliation(s)
- S Huang
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
22
|
Petruzzelli R, Aureli G, Lania A, Galtieri A, Desideri A, Giardina B. Diving behaviour and haemoglobin function: the primary structure of the alpha- and beta-chains of the sea turtle (Caretta caretta) and its functional implications. Biochem J 1996; 316 ( Pt 3):959-65. [PMID: 8670176 PMCID: PMC1217442 DOI: 10.1042/bj3160959] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The amino acid sequence of the alpha- and beta-chains of haemoglobin (Hb) from the loggerhead sea turtle (Caretta caretta) has been determined. Comparison with that of human Hb shows differences in several residues involved in both alpha 1 beta 1 and alpha 1 beta 2 packing contacts. On the whole, in spite of the mutations, the essential characteristics of both interfaces seem to be maintained. The functional properties of the sea turtle Hb have been investigated at different temperatures and as a function of proton, chloride and organic phosphate concentrations. In addition to overall similarities shared with most of the vertebrate Hbs previously described, this molecule shows significant differences which could be related to the life behaviour of the turtle. In fact, while the shape of the Bohr-effect curve is well adapted for gas exchange during prolonged dives, the very small enthalpy change for O2 binding ensures that O2 delivery becomes essentially insensitive to the temperature changes of the environment. Moreover, and similarly to the case of emperor penguin Hb, the small alkaline Bohr effect appears to be only choride-linked, since the pH dependence of the O2 affinity is abolished in the absence of this ion. These functional characteristics are discussed on the basis of the primary structure of alpha- and beta-chains.
Collapse
Affiliation(s)
- R Petruzzelli
- Istituto di Scienze Biochimiche, Facolta' di Medicina, Universita' di Chieti, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Ultraviolet resonance Raman studies of hemoglobin quaternary structure using a tyrosine-α42 mutant: changes in the α1β2 subunit interface upon the T → R transition. J Mol Struct 1996. [DOI: 10.1016/0022-2860(95)09177-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Kim HW, Shen TJ, Ho NT, Zou M, Tam MF, Ho C. Contributions of asparagine at alpha 97 to the cooperative oxygenation process of hemoglobin. Biochemistry 1996; 35:6620-7. [PMID: 8639610 DOI: 10.1021/bi952518z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
According to the X-ray crystallographic results from human deoxyhemoglobin, beta 99Asp at the alpha 1 Beta 2 interface forms hydrogen bonds with alpha 42Tyr and alpha 97Asn. To clarify the structural and functional roles of the hydrogen bond between alpha 97Asn and beta 99Asp, we have engineered a recombinant hemoglobin in which alpha 97Asn is replaced by Ala, and have investigated its oxygen-binding properties, and have used proton nuclear magnetic resonance spectroscopy to determine the structural consequences of the mutation. Recombinant Hb (alpha 97Asn-->Ala) shows a milder alteration of functional properties compared to the severely impaired beta 99 mutants of the human abnormal hemoglobins. The addition of inositol hexaphosphate, an allosteric effector, causes recovery of the functional properties of recombinant Hb (alpha 97 Asn-->Ala) almost to the level of human normal adult hemoglobin without this allosteric effector. r Hb (alpha 97 Asn-->Ala) shows very similar tertiary structure around the heme pockets and quaternary structure in the alpha 1 beta 2 interface compared to those of human normal adult hemoglobin. The proton nuclear magnetic resonance spectrum of the deoxy form of this recombinant hemoglobin shows the existence of an altered hydrogen bond which is believed to be between alpha 42Tyr and beta 99Asp at the alpha 1 beta 2 interface. Thus, the present results suggest that the intersubunit hydrogen bond between alpha 97 Asn and beta 99Asp at the alpha 1 beta 2 interface is not as crucial as the one between alpha 42Tyr and beta 99Asp in the deoxy quaternary structure. Preliminary molecular dynamics simulations have been used to calculate the contributions of specific interactions of several amino acid residues in r Hb (alpha 97Asn-->Ala) to the free energy of cooperativity of this recombinant hemoglobin. The results of these calculations are consistent with the experimental results.
Collapse
Affiliation(s)
- H W Kim
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
25
|
Yanase H, Cahill S, Martin de Llano JJ, Manning LR, Schneider K, Chait BT, Vandegriff KD, Winslow RM, Manning JM. Properties of a recombinant human hemoglobin with aspartic acid 99(beta), an important intersubunit contact site, substituted by lysine. Protein Sci 1994; 3:1213-23. [PMID: 7987216 PMCID: PMC2142911 DOI: 10.1002/pro.5560030807] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Site-directed mutagenesis of an important subunit contact site, Asp-99(beta), by a Lys residue (D99K(beta)) was proven by sequencing the entire beta-globin gene and the mutant tryptic peptide. Oxygen equilibrium curves of the mutant hemoglobin (Hb) (2-15 mM in heme) indicated that it had an increased oxygen affinity and a lowered but significant amount of cooperativity compared to native HbA. However, in contrast to normal HbA, oxygen binding of the recombinant mutant Hb was only marginally affected by the allosteric regulators 2,3-diphosphoglycerate or inositol hexaphosphate and was not at all responsive to chloride. The efficiency of oxygen binding by HbA in the presence of allosteric regulators was limited by the mutant Hb. At concentrations of 0.2 mM or lower in heme, the mutant D99K(beta) Hb was predominantly a dimer as demonstrated by gel filtration, haptoglobin binding, fluorescence quenching, and light scattering. The purified dimeric recombinant Hb mutant exists in 2 forms that are separable on isoelectric focusing by about 0.1 pH unit, in contrast to tetrameric hemoglobin, which shows 1 band. These mutant forms, which were present in a ratio of 60:40, had the same masses for their heme and globin moieties as determined by mass spectrometry. The elution positions of the alpha- and beta-globin subunits on HPLC were identical. Circular dichroism studies showed that one form of the mutant Hb had a negative ellipticity at 410 nm and the other had positive ellipticity at this wavelength. The findings suggest that the 2 D99K(beta) recombinant mutant forms have differences in their heme-protein environments.
Collapse
Affiliation(s)
- H Yanase
- Rockefeller University, New York, New York 10021
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wakasugi K, Ishimori K, Imai K, Wada Y, Morishima I. “Module” substitution in hemoglobin subunits. Preparation and characterization of a “chimera beta alpha-subunit”. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32232-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
27
|
Affiliation(s)
- R P Roy
- Department of Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461
| | | |
Collapse
|
28
|
|
29
|
Hashimoto M, Ishimori K, Imai K, Miyazaki G, Morimoto H, Wada Y, Morishima I. Site-directed mutagenesis in hemoglobin: functional and structural study of the intersubunit hydrogen bond of threonine-38(C3)alpha at the alpha 1-beta 2 interface in human hemoglobin. Biochemistry 1993; 32:13688-95. [PMID: 8257703 DOI: 10.1021/bi00212a038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To clarify the functional and structural roles of Thr-38 alpha at the alpha 1-beta 2 interface, two artificial alpha-chain mutants, in which Thr-38 alpha is replaced by Ser (Hb T38 alpha S) or Val (Hb T38 alpha V), were prepared. Thr-38 alpha is one of the highly conserved amino acid residues in hemoglobins and forms a hydrogen bond to Asp-99 beta, which is a crucial residue to stabilize the T state, via a water molecule in the deoxygenated form. We investigated their oxygen binding properties together with structural consequences of the mutations by using various spectroscopic probes. Their oxygen equilibrium curves showed small changes in the oxygen binding properties. Structural probes such as ultraviolet-region derivative and oxy-minus-deoxy difference spectra, resonance Raman scattering, and 1H-NMR spectra also indicated that the oxy and deoxy forms of these mutants show spectra characteristic of the R and T states, respectively, and the R-T transition is not very disturbed. The present structural and functional data of the mutants imply that the hydrogen bond between Thr-38 alpha and Asp-99 beta does not play a key role in stabilizing the deoxy T structure, which is in sharp contrast to the role of the hydrogen bond between Tyr-42 alpha and Asp-99 beta, and suggest that the interactions via the intersubunit hydrogen bonds are highly site-specific, depending on the amino acid residue which participates in them.
Collapse
Affiliation(s)
- M Hashimoto
- Division of Molecular Engineering, Graduate School of Engineering, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Gilch H, Schweitzer-Stenner R, Dreybrodt W. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode. Biophys J 1993; 65:1470-85. [PMID: 8274641 PMCID: PMC1225874 DOI: 10.1016/s0006-3495(93)81216-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have examined the Fe(2+)-N epsilon (HisF8) complex in hemoglobin A (HbA) by measuring the band profile of its Raman-active nu Fe-His stretching mode at pH 6.4, 7.0, and 8.0 using the 441-nm line of a HeCd laser. A line shape analysis revealed that the band can be decomposed into five different sublines at omega 1 = 195 cm-1, omega 2 = 203 cm-1, omega 3 = 212 cm-1, omega 4 = 218 cm-1, and omega 5 = 226 cm-1. To identify these to the contributions from the different subunits we have reanalyzed the nu Fe-His band of the HbA hybrids alpha(Fe)2 beta(Co)2 and alpha(Co)2 beta(Fe)2 reported earlier by Rousseau and Friedman (D. Rousseau and J. M. Friedman. 1988. In Biological Application on Raman Spectroscopy. T. G. Spiro, editor, 133-216). Moreover we have reanalyzed other Raman bands from the literature, namely the nu Fe-His band of the isolated hemoglobin subunits alpha SH- and beta SH-HbA, various hemoglobin mutants (i.e., Hb(TyrC7 alpha-->Phe), Hb(TyrC7 alpha-->His), Hb M-Boston and Hb M-Iwate), N-ethylmaleimide-des(Arg141 alpha) hemoglobin (NES-des(Arg141 alpha)HbA) and photolyzed carbonmonoxide hemoglobin (Hb*CO) measured 25 ps and 10 ns after photolysis. These molecules are known to exist in different quaternary states. All bands can be decomposed into a set of sublines exhibiting frequencies which are nearly identical to those found for deoxyhemoglobin A. Additional sublines were found to contribute to the nu Fe-His band of NES-des(Arg141 alpha) HbA and the Hb*CO species. The peak frequencies of the bands are determined by the most intensive sublines. Moreover we have measured the nu Fe-His band of deoxyHbA at 10 K in an aqueous solution and in a 80% glycerol/water mixture. Its subline composition at this temperature depends on the solvent and parallels that of more R-like hemoglobin derivatives. We have also measured the optical charge transfer band III of deoxyHbA at room temperature and found, that at least three subbands are required to fit its asymmetric band shape. This corroborates the findings on the nu Fe-His band in that it is indicative of a heterogeneity of the Fe(2+)-N epsilon(HisF8) bond. Finally we measured the nu Fe-His band of horse heart deoxyMb at different temperatures and decomposed it into three different sublines. In accordance with what was obtained for HbA their intensities rather than their frequencies are temperature-dependent. By comparison with VFe-His bands of some Mb mutants (i.e., Mb(His E7.->Gly) and Mb(HisE7__*Met) we suggest that these sublines may be attributed to different conformations of the heme pocket. Our data show, that the V Fe-His band is governed by at least two different coordinates x and y determining its frequency and intensity, respectively. While the former can be assigned to the tilt angle theta between the Fe2+-NJ(HisF8) bond and the heme normal and/or to the displacement delta of the iron from the heme plane, variations in the intensity may be caused by changes of the azimuthal angle phi formed by the projection of the proximal imidazole and the N(l)-Fe2+-N(III) line of the heme. The sublines are therefore interpreted as resulting from different conformational substates of the Fe2+-N(HisFa) complex which differ in terms of x (theta and/or delta). Each of them may further be subdivided in sub-substates with respect to the coordinate y (theta). Quaternary and tertiary transitions of the protein alter the population of these substates thus giving rise to a redistribution of the VFe-HiS sublines which shifts the corresponding peak frequency to higher values.
Collapse
Affiliation(s)
- H Gilch
- Institute of Experimental Physics, University of Bremen, Germany
| | | | | |
Collapse
|
31
|
Togi A, Ishimori K, Unno M, Konno T, Morishima I, Miyazaki G, Imai K. Effects of intra- and intersubunit hydrogen bonds on the R-T transition in human hemoglobin as studied with alpha 42(C7) and beta 145(HC2) mutations. Biochemistry 1993; 32:10165-9. [PMID: 8399142 DOI: 10.1021/bi00089a036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To clarify the effects of specific inter- and intrasubunit hydrogen bonds on the R-T transition in human hemoglobin (Hb A), the recombination reaction of carbon monoxide with artificial mutant Hbs was measured and analyzed. One of the hydrogen bonds we focused on is formed between Tyr-42 alpha and Asp-99 beta in the alpha 1-beta 2 interface of Hb A, which is one of the hydrogen bonds characteristic of the T state. Hb His-42 alpha, in which Tyr-42 alpha is replaced by His to perturb this hydrogen bond, showed that the ligand-free R to T transition rate was decreased by 20-fold compared with that for Hb A. This mutation caused the destabilization of the transition state in the R to T quaternary structure change by about 7 kJ mol-1, indicating that the hydrogen bond between Tyr-42 alpha and Asp-99 beta plays a definite role in the R-T transition as well as in stabilization of the equilibrium T state. Hb Phe-145 beta, in which Tyr-145 beta is replaced by Phe and the intrasubunit hydrogen bond between Tyr-145 beta and Val-98 beta is lacking, also showed a slow R-T transition rate as observed in Hb His-42 alpha. The published crystallographic data suggest that this intrasubunit hydrogen bond stabilizes the transition state by reducing the freedom of motion of the C-terminus of the beta subunit and, thereby, facilitates the R-T transition.
Collapse
Affiliation(s)
- A Togi
- Division of Molecular Engineering, Graduate School of Engineering, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Pagnier J, Baudin V, Poyart C. [Expression of recombinant human hemoglobin]. REVUE FRANCAISE DE TRANSFUSION ET D'HEMOBIOLOGIE : BULLETIN DE LA SOCIETE NATIONALE DE TRANSFUSION SANGUINE 1992; 35:407-15. [PMID: 1288539 DOI: 10.1016/s1140-4639(05)80147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The well recognized prevalence of infectious agents in products derived from human whole blood and the increasing number of transfusion-transmitted diseases has made urgent the search for a safe alternative to conventional blood transfusion. Sources of hemoglobin (Hb) different from outdated human bank blood are under active scrutiny in several laboratories. Different approaches have been proposed to produce recombinant human Hb in bacteria (E. coli), yeast (S. cerevisiae) and transgenic mammals. These efforts have lead to the synthesis of recombinant human Hb with functional properties similar to those of native human Hb A. Site directed mutagenesis enables one to modify the structure of the recombinant globin chains with the view of lowering the oxygen affinity and increasing the stability of the tetramers. Progress is still necessary to ensure scaling-up and safe purification procedures, and to prolong shelf life of these solutions.
Collapse
Affiliation(s)
- J Pagnier
- INSERM U 299, Hôpital de Bicêtre, Le Kremlin-Bicêtre
| | | | | |
Collapse
|
33
|
Turner GJ, Galacteros F, Doyle ML, Hedlund B, Pettigrew DW, Turner BW, Smith FR, Moo-Penn W, Rucknagel DL, Ackers GK. Mutagenic dissection of hemoglobin cooperativity: effects of amino acid alteration on subunit assembly of oxy and deoxy tetramers. Proteins 1992; 14:333-50. [PMID: 1438173 DOI: 10.1002/prot.340140303] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Free energies of oxygen-linked subunit assembly and cooperative interaction have been determined for 34 molecular species of human hemoglobin, which differ by amino acid alterations as a result of mutation or chemical modification at specific sites. These studies required the development of extensions to our earlier methodology. In combination with previous results they comprise a data base of 60 hemoglobin species, characterized under the same conditions. The data base was analyzed in terms of the five following issues. (1) Range and sensitivity to site modifications. Deoxy tetramers showed greater average energetic response to structural modifications than the oxy species, but the ranges are similar for the two ligation forms. (2) Structural localization of cooperative free energy. Difference free energies of dimer-tetramer assembly (oxy minus deoxy) yielded delta Gc for each hemoglobin, i.e., the free energy used for modulation of oxygen affinity over all four binding steps. A structure-energy map constructed from these results shows that the alpha 1 beta 2 interface is a unique structural location of the noncovalent bonding interactions that are energetically coupled to cooperativity. (3) Relationship of cooperativity to intrinsic binding. Oxygen binding energetics for dissociated dimers of mutants strongly indicates that cooperativity and intrinsic binding are completely decoupled by tetramer to dimer dissociation. (4) Additivity, site-site coupling and adventitious perturbations. All these are exhibited by individual-site modifications of this study. Large nonadditivity may be correlated with global (quaternary) structure change. (5) Residue position vs. chemical nature. Functional response is solely dictated by structural location for a subset of the sites, but varies with side-chain type at other sites. The current data base provides a unique framework for further analyses and modeling of fundamental issues in the structural chemistry of proteins and allosteric mechanisms.
Collapse
Affiliation(s)
- G J Turner
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Doyle ML, Lew G, Turner GJ, Rucknagel D, Ackers GK. Regulation of oxygen affinity by quaternary enhancement: does hemoglobin Ypsilanti represent an allosteric intermediate? Proteins 1992; 14:351-62. [PMID: 1438174 DOI: 10.1002/prot.340140304] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent crystallographic studies on the mutant human hemoglobin Ypsilanti (beta 99 Asp-->Tyr) have revealed a previously unknown quaternary structure called "quaternary Y" and suggested that the new structure may represent an important intermediate in the cooperative oxygenation pathway of normal hemoglobin. Here we measure the oxygenation and subunit assembly properties of hemoglobin Ypsilanti and five additional beta 99 mutants (Asp beta 99-->Val, Gly, Asn, Ala, His) to test for consistency between their energetics and those of the intermediate species of normal hemoglobin. Overall regulation of oxygen affinity in hemoglobin Ypsilanti is found to originate entirely from 2.6 kcal of quaternary enhancement, such that the tetramer oxygenation affinity is 85-fold higher than for binding to the dissociated dimers. Equal partitioning of this regulatory energy among the four tetrameric binding steps (0.65 kcal per oxygen) leads to a noncooperative isotherm with extremely high affinity (pmedian = .14 torr). Temperature and pH studies of dimer-tetramer assembly and sulfhydryl reaction kinetics suggest that oxygenation-dependent structural changes in hemoglobin Ypsilanti are small. These properties are quite different from the recently characterized allosteric intermediate, which has two ligands bound on the same side of the alpha 1 beta 2 interface (see ref. 1 for review). The combined results do, however, support the view that quaternary Y may represent the intermediate cooperativity state of normal hemoglobin that binds the last oxygen.
Collapse
Affiliation(s)
- M L Doyle
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | | |
Collapse
|
35
|
Lendaro E, Ippoliti R, Brancaccio A, Bellelli A, Vallone B, Ivaldi G, Sciarratta GV, Castello C, Tomova S, Brunori M. Hemoglobin Dallas (alpha 97(G4)Asn-->Lys): functional characterization of a high oxygen affinity natural mutant. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1180:15-20. [PMID: 1390940 DOI: 10.1016/0925-4439(92)90021-e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hemoglobin Dallas, an alpha-chain variant with a substitution of lysine for asparagine at position 97(G4), was found to have increased oxygen affinity (p1/2 = 1 mmHg at pH 7.3 and 20 degrees C), diminished cooperativity (n, the Hill coefficient = 1.7) and reduced Bohr effect (about 50%). Addition of allosteric effectors (such as 2,3-diphosphoglycerate, inositol hexakisphosphate and bezafibrate) led to a decrease in oxygen affinity and increase in cooperative energy. Kinetic studies at pH 7.0 and 20 degrees C revealed that (i), the overall rate of oxygen dissociation is 1.4-fold slower than that for HbA and (ii), the carbon monoxide dissociation rate is unaffected. The abnormal properties of this hemoglobin variant can be attributed to a more 'relaxed' T-state.
Collapse
Affiliation(s)
- E Lendaro
- CNR, Center of Molecular Biology, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Baudin V, Pagnier J, Lacaze N, Bihoreau MT, Kister J, Marden M, Kiger L, Poyart C. Allosteric properties of haemoglobin beta 41 (C7) Phe-->Tyr: a stable, low-oxygen-affinity variant synthesized in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1159:223-6. [PMID: 1390926 DOI: 10.1016/0167-4838(92)90029-d] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In human deoxy haemoglobin, the alpha 42(C7)Tyr-residue is hydrogen-bonded to beta 99(G1)Asp which stabilizes the low-oxygen-affinity deoxy conformation. We engineered a haemoglobin with Tyr for Phe at the homologous C7 position in beta-chains. The oxygen affinity of the variant is decreased about two-fold relative to Hb A while keeping similar KR and KT values. This mutant may be a candidate for the development of an artificial oxygen carrier, as it would not require an external effector for significant oxygen unloading in vivo.
Collapse
Affiliation(s)
- V Baudin
- Institut National de la Santé et de la Recherche Médicale U299, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Koide S, Yokoyama S, Matsuzawa H, Miyazawa T, Ohta T. Conformational equilibrium of an enzyme catalytic site in the allosteric transition. Biochemistry 1992; 31:5362-8. [PMID: 1606160 DOI: 10.1021/bi00138a017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The dynamic equilibrium of a catalytic site between active and inactive conformations, the missing link between the structure and function of allosteric enzymes, was identified using protein engineering and NMR techniques. Kinetic analyses of the wild-type and three mutants of Thermus L-lactate dehydrogenase established that the allosteric property of the enzyme is associated with a concerted transition between the high-affinity (R) and low-affinity (T) states. By introducing mutations, we prepared an enzyme in which the R and T states were balanced. The conformation of the enzyme-bound coenzyme, NAD+, which interacts directly with the substrate, was analyzed using NMR spectroscopy. NAD+ bound to the mutant enzyme was in a conformational mixture of the active and inactive forms, while NAD+ took on predominantly one of the two forms when it was bound to the other enzymes we had analyzed. We interpret this to mean that the catalytic site is in equilibrium between the two conformations. The ratio of the conformers of each enzyme agreed with the [T]/[R] ratio as determined by kinetic analyses. Therefore, it is the identified conformational equilibrium of the catalytic site that governs the allosteric regulation of the enzyme activity.
Collapse
Affiliation(s)
- S Koide
- Department of Agricultural Chemistry, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
38
|
Ho C. Proton nuclear magnetic resonance studies on hemoglobin: cooperative interactions and partially ligated intermediates. ADVANCES IN PROTEIN CHEMISTRY 1992; 43:153-312. [PMID: 1442322 DOI: 10.1016/s0065-3233(08)60555-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- C Ho
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
39
|
Kitagawa T. Investigation of higher order structures of proteins by ultraviolet resonance Raman spectroscopy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1992; 58:1-18. [PMID: 1631313 DOI: 10.1016/0079-6107(92)90009-u] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Progress in laser technology and light detection devices have enabled us to explore protein structures and their dynamics by using time-resolved resonance Raman spectroscopy. It is in the last decade that Raman spectra of proteins excited at 200-240 nm have brought about rich structural information. The technological developments in deep UV resonance Raman spectroscopy are reviewed first, and the unique information on proteins obtainable from such spectra are summarized. As an application of this technique to investigations of the higher order structures of proteins, studies on the quaternary structure transition of haemoglobin are described.
Collapse
Affiliation(s)
- T Kitagawa
- Institute for Molecular Science, Okazaki National Research Institutes, Japan
| |
Collapse
|