1
|
Németh BZ, Kiss B, Sahin-Tóth M, Magyar C, Pál G. The High-Affinity Chymotrypsin Inhibitor Eglin C Poorly Inhibits Human Chymotrypsin-Like Protease: Gln192 and Lys218 Are Key Determinants. Proteins 2025; 93:543-554. [PMID: 39301701 DOI: 10.1002/prot.26750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Eglin C, a small protein from the medicinal leech, has been long considered a general high-affinity inhibitor of chymotrypsins and elastases. Here, we demonstrate that eglin C inhibits human chymotrypsin-like protease (CTRL) weaker by several orders of magnitude than other chymotrypsins. In order to identify the underlying structural aspects of this unique deviation, we performed comparative molecular dynamics simulations on experimental and AlphaFold model structures of bovine CTRA and human CTRL. Our results indicate that in CTRL, the primary determinants of the observed weak inhibition are amino-acid positions 192 and 218 (using conventional chymotrypsin numbering), which participate in shaping the S1 substrate-binding pocket and thereby affect the stability of the protease-inhibitor complexes.
Collapse
Affiliation(s)
- Bálint Zoltán Németh
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Molecular Life Sciences, Protein Bioinformatics Research Group, Hungarian Research Network, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, California, Los Angeles, USA
| | - Csaba Magyar
- Institute of Molecular Life Sciences, Protein Bioinformatics Research Group, Hungarian Research Network, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
2
|
Morgan HE, Turnbull WB, Webb ME. Challenges in the use of sortase and other peptide ligases for site-specific protein modification. Chem Soc Rev 2022; 51:4121-4145. [PMID: 35510539 PMCID: PMC9126251 DOI: 10.1039/d0cs01148g] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Site-specific protein modification is a widely-used biochemical tool. However, there are many challenges associated with the development of protein modification techniques, in particular, achieving site-specificity, reaction efficiency and versatility. The engineering of peptide ligases and their substrates has been used to address these challenges. This review will focus on sortase, peptidyl asparaginyl ligases (PALs) and variants of subtilisin; detailing how their inherent specificity has been utilised for site-specific protein modification. The review will explore how the engineering of these enzymes and substrates has led to increased reaction efficiency mainly due to enhanced catalytic activity and reduction of reversibility. It will also describe how engineering peptide ligases to broaden their substrate scope is opening up new opportunities to expand the biochemical toolkit, particularly through the development of techniques to conjugate multiple substrates site-specifically onto a protein using orthogonal peptide ligases. We highlight chemical and biochemical strategies taken to optimise peptide and protein modification using peptide ligases.![]()
Collapse
Affiliation(s)
- Holly E Morgan
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Michael E Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
3
|
Toplak A, Teixeira de Oliveira EF, Schmidt M, Rozeboom HJ, Wijma HJ, Meekels LKM, de Visser R, Janssen DB, Nuijens T. From thiol-subtilisin to omniligase: Design and structure of a broadly applicable peptide ligase. Comput Struct Biotechnol J 2021; 19:1277-1287. [PMID: 33717424 PMCID: PMC7921005 DOI: 10.1016/j.csbj.2021.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 11/05/2022] Open
Abstract
Omniligase-1 is a broadly applicable enzyme for peptide bond formation between an activated acyl donor peptide and a non-protected acyl acceptor peptide. The enzyme is derived from an earlier subtilisin variant called peptiligase by several rounds of protein engineering aimed at increasing synthetic yields and substrate range. To examine the contribution of individual mutations on S/H ratio and substrate scope in peptide synthesis, we selected peptiligase variant M222P/L217H as a starting enzyme and introduced successive mutations. Mutation A225N in the S1′ pocket and F189W of the S2′ pocket increased the synthesis to hydrolysis (S/H) ratio and overall coupling efficiency, whereas the I107V mutation was added to S4 pocket to increase the reaction rate. The final omniligase variants appeared to have a very broad substrate range, coupling more than 250 peptides in a 400-member library of acyl acceptors, as indicated by a high-throughput FRET assay. Crystal structures and computational modelling could rationalize the exceptional properties of omniligase-1 in peptide synthesis
Collapse
Affiliation(s)
- Ana Toplak
- EnzyPep B.V., Brightlands Campus Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Eduardo F Teixeira de Oliveira
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marcel Schmidt
- EnzyPep B.V., Brightlands Campus Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Henriëtte J Rozeboom
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hein J Wijma
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Linda K M Meekels
- EnzyPep B.V., Brightlands Campus Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Rowin de Visser
- EnzyPep B.V., Brightlands Campus Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Dick B Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Timo Nuijens
- EnzyPep B.V., Brightlands Campus Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
4
|
Abstract
Subtiligase-catalyzed peptide ligation is a powerful approach for site-specific protein bioconjugation, synthesis and semisynthesis of proteins and peptides, and chemoproteomic analysis of cellular N termini. Here, we provide a comprehensive review of the subtiligase technology, including its development, applications, and impacts on protein science. We highlight key advantages and limitations of the tool and compare it to other peptide ligase enzymes. Finally, we provide a perspective on future applications and challenges and how they may be addressed.
Collapse
Affiliation(s)
- Amy M Weeks
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
5
|
Schmidt M, Toplak A, Rozeboom HJ, Wijma HJ, Quaedflieg PJLM, van Maarseveen JH, Janssen DB, Nuijens T. Design of a substrate-tailored peptiligase variant for the efficient synthesis of thymosin-α 1. Org Biomol Chem 2019; 16:609-618. [PMID: 29300408 DOI: 10.1039/c7ob02812a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis of thymosin-α1, an acetylated 28 amino acid long therapeutic peptide, via conventional chemical methods is exceptionally challenging. The enzymatic coupling of unprotected peptide segments in water offers great potential for a more efficient synthesis of peptides that are difficult to synthesize. Based on the design of a highly engineered peptide ligase, we developed a fully convergent chemo-enzymatic peptide synthesis (CEPS) process for the production of thymosin-α1via a 14-mer + 14-mer segment condensation strategy. Using structure-inspired enzyme engineering, the thiol-subtilisin variant peptiligase was tailored to recognize the respective 14-mer thymosin-α1 segments in order to create a clearly improved biocatalyst, termed thymoligase. Thymoligase catalyzes peptide bond formation between both segments with a very high efficiency (>94% yield) and is expected to be well applicable to many other ligations in which residues with similar characteristics (e.g. Arg and Glu) are present in the respective positions P1 and P1'. The crystal structure of thymoligase was determined and shown to be in good agreement with the model used for the engineering studies. The combination of the solid phase peptide synthesis (SPPS) of the 14-mer segments and their thymoligase-catalyzed ligation on a gram scale resulted in a significantly increased, two-fold higher overall yield (55%) of thymosin-α1 compared to those typical of existing industrial processes.
Collapse
Affiliation(s)
- Marcel Schmidt
- EnzyPep B.V., Brightlands Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Buhmann MT, Schulze B, Förderer A, Schleheck D, Kroth PG. Bacteria may induce the secretion of mucin-like proteins by the diatom Phaeodactylum tricornutum. JOURNAL OF PHYCOLOGY 2016; 52:463-74. [PMID: 26993172 DOI: 10.1111/jpy.12409] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/19/2016] [Indexed: 05/10/2023]
Abstract
Benthic diatoms live in photoautotrophic/heterotrophic biofilm communities embedded in a matrix of secreted extracellular polymeric substances. Closely associated bacteria influence their growth, aggregation, and secretion of exopolymers. We have studied a diatom/bacteria model community, in which a marine Roseobacter strain is able to grow with secreted diatom exopolymers as a sole source of carbon. The strain influences the aggregation of Phaeodactylum tricornutum by inducing a morphotypic transition from planktonic, fusiform cells to benthic, oval cells. Analysis of the extracellular soluble proteome of P. tricornutum in the presence and absence of bacteria revealed constitutively expressed newly identified proteins with mucin-like domains that appear to be typical for extracellular diatom proteins. In contrast to mucins, the proline-, serine-, threonine-rich (PST) domains in these proteins were also found in combination with protease-, glucosidase- and leucine-rich repeat-domains. Bioinformatic functional predictions indicate that several of these newly identified diatom-specific proteins may be involved in algal defense, intercellular signaling, and aggregation.
Collapse
Affiliation(s)
| | - Birgit Schulze
- Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany
| | | | - David Schleheck
- Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany
| | - Peter G Kroth
- Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany
| |
Collapse
|
7
|
Islam N, Li G, Garrett WM, Lin R, Sriram G, Cooper B, Coleman GD. Proteomics of Nitrogen Remobilization in Poplar Bark. J Proteome Res 2014; 14:1112-26. [DOI: 10.1021/pr501090p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nazrul Islam
- Department
of Plant Sciences and Landscape Architecture, University of Maryland, College
Park, Maryland 20742, United States
| | - Gen Li
- Department
of Plant Sciences and Landscape Architecture, University of Maryland, College
Park, Maryland 20742, United States
| | - Wesley M. Garrett
- Animal
Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| | - Rongshuang Lin
- Department
of Plant Sciences and Landscape Architecture, University of Maryland, College
Park, Maryland 20742, United States
| | - Ganesh Sriram
- Department
of Chemical and Biomolecular Engineering, University of Maryland, College
Park, Maryland 20742, United States
| | - Bret Cooper
- Soybean
Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| | - Gary D. Coleman
- Department
of Plant Sciences and Landscape Architecture, University of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
8
|
Ahlstrom LS, Miyashita O. Packing interface energetics in different crystal forms of the λ Cro dimer. Proteins 2013; 82:1128-41. [PMID: 24218107 DOI: 10.1002/prot.24478] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/27/2013] [Accepted: 11/04/2013] [Indexed: 12/22/2022]
Abstract
Variation among crystal structures of the λ Cro dimer highlights conformational flexibility. The structures range from a wild type closed to a mutant fully open conformation, but it is unclear if each represents a stable solution state or if one may be the result of crystal packing. Here we use molecular dynamics (MD) simulation to investigate the energetics of crystal packing interfaces and the influence of site-directed mutagenesis on them in order to examine the effect of crystal packing on wild type and mutant Cro dimer conformation. Replica exchange MD of mutant Cro in solution shows that the observed conformational differences between the wild type and mutant protein are not the direct consequence of mutation. Instead, simulation of Cro in different crystal environments reveals that mutation affects the stability of crystal forms. Molecular Mechanics Poisson-Boltzmann Surface Area binding energy calculations reveal the detailed energetics of packing interfaces. Packing interfaces can have diverse properties in strength, energetic components, and some are stronger than the biological dimer interface. Further analysis shows that mutation can strengthen packing interfaces by as much as ∼5 kcal/mol in either crystal environment. Thus, in the case of Cro, mutation provides an additional energetic contribution during crystal formation that may stabilize a fully open higher energy state. Moreover, the effect of mutation in the lattice can extend to packing interfaces not involving mutation sites. Our results provide insight into possible models for the effect of crystallization on Cro conformational dynamics and emphasize careful consideration of protein crystal structures.
Collapse
Affiliation(s)
- Logan S Ahlstrom
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721
| | | |
Collapse
|
9
|
Yanagisawa Y, Chatake T, Naito S, Ohsugi T, Yatagai C, Sumi H, Kawaguchi A, Chiba-Kamosida K, Ogawa M, Adachi T, Morimoto Y. X-ray structure determination and deuteration of nattokinase. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:875-879. [PMID: 24121331 PMCID: PMC3795547 DOI: 10.1107/s0909049513020700] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/25/2013] [Indexed: 06/02/2023]
Abstract
Nattokinase (NK) is a strong fibrinolytic enzyme, which is produced in abundance by Bacillus subtilis natto. Although NK is a member of the subtilisin family, it displays different substrate specificity when compared with other subtilisins. The results of molecular simulations predict that hydrogen arrangements around Ser221 at the active site probably account for the substrate specificity of NK. Therefore, neutron crystallographic analysis should provide valuable information that reveals the enzymatic mechanism of NK. In this report, the X-ray structure of the non-hydrogen form of undeuterated NK was determined, and the preparation of deuterated NK was successfully achieved. The non-hydrogen NK structure was determined at 1.74 Å resolution. The three-dimensional structures of NK and subtilisin E from Bacillus subtilis DB104 are near identical. Deuteration of NK was carried out by cultivating Bacillus subtilis natto in deuterated medium. The D2O resistant strain of Bacillus subtilis natto was obtained by successive cultivation rounds, in which the concentration of D2O in the medium was gradually increased. NK was purified from the culture medium and its activity was confirmed by the fibrin plate method. The results lay the framework for neutron protein crystallography analysis.
Collapse
Affiliation(s)
- Yasuhide Yanagisawa
- Faculty of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomi-cho, Cho-shi, Chiba 288-025, Japan
| | - Toshiyuki Chatake
- Research Reactor Institute, Kyoto University, Asashironishi 2, Kumatori, Osaka 590-0494, Japan
| | - Sawa Naito
- Department of Life Science, Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajima-cho, Kurashiki, Okayama 712-8505, Japan
| | - Tadanori Ohsugi
- Department of Life Science, Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajima-cho, Kurashiki, Okayama 712-8505, Japan
| | - Chieko Yatagai
- Department of Life Science, Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajima-cho, Kurashiki, Okayama 712-8505, Japan
| | - Hiroyuki Sumi
- Department of Life Science, Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajima-cho, Kurashiki, Okayama 712-8505, Japan
| | - Akio Kawaguchi
- Research Reactor Institute, Kyoto University, Asashironishi 2, Kumatori, Osaka 590-0494, Japan
| | - Kaori Chiba-Kamosida
- Nippon Advanced Technology Co. Ltd, J-PARC, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Megumi Ogawa
- Faculty of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomi-cho, Cho-shi, Chiba 288-025, Japan
| | - Tatsumi Adachi
- Faculty of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomi-cho, Cho-shi, Chiba 288-025, Japan
| | - Yukio Morimoto
- Research Reactor Institute, Kyoto University, Asashironishi 2, Kumatori, Osaka 590-0494, Japan
| |
Collapse
|
10
|
Withers-Martinez C, Suarez C, Fulle S, Kher S, Penzo M, Ebejer JP, Koussis K, Hackett F, Jirgensons A, Finn P, Blackman MJ. Plasmodium subtilisin-like protease 1 (SUB1): insights into the active-site structure, specificity and function of a pan-malaria drug target. Int J Parasitol 2012; 42:597-612. [PMID: 22543039 PMCID: PMC3378952 DOI: 10.1016/j.ijpara.2012.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/29/2012] [Accepted: 04/12/2012] [Indexed: 01/09/2023]
Abstract
Release of the malaria merozoite from its host erythrocyte (egress) and invasion of a fresh cell are crucial steps in the life cycle of the malaria pathogen. Subtilisin-like protease 1 (SUB1) is a parasite serine protease implicated in both processes. In the most dangerous human malarial species, Plasmodium falciparum, SUB1 has previously been shown to have several parasite-derived substrates, proteolytic cleavage of which is important both for egress and maturation of the merozoite surface to enable invasion. Here we have used molecular modelling, existing knowledge of SUB1 substrates, and recombinant expression and characterisation of additional Plasmodium SUB1 orthologues, to examine the active site architecture and substrate specificity of P. falciparum SUB1 and its orthologues from the two other major human malaria pathogens Plasmodium vivax and Plasmodium knowlesi, as well as from the rodent malaria species, Plasmodium berghei. Our results reveal a number of unusual features of the SUB1 substrate binding cleft, including a requirement to interact with both prime and non-prime side residues of the substrate recognition motif. Cleavage of conserved parasite substrates is mediated by SUB1 in all parasite species examined, and the importance of this is supported by evidence for species-specific co-evolution of protease and substrates. Two peptidyl alpha-ketoamides based on an authentic PfSUB1 substrate inhibit all SUB1 orthologues examined, with inhibitory potency enhanced by the presence of a carboxyl moiety designed to introduce prime side interactions with the protease. Our findings demonstrate that it should be possible to develop ‘pan-reactive’ drug-like compounds that inhibit SUB1 in all three major human malaria pathogens, enabling production of broad-spectrum antimalarial drugs targeting SUB1.
Collapse
|
11
|
Abaturov LV, Nosova NG. Hydrogen exchange and proteolytic degradation of ribonuclease A. The local splitting of the native structure and the conformation of loop segments. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Whitley MJ, Lee AL. Exploring the role of structure and dynamics in the function of chymotrypsin inhibitor 2. Proteins 2010; 79:916-24. [PMID: 21287622 DOI: 10.1002/prot.22930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 10/16/2010] [Accepted: 10/25/2010] [Indexed: 11/11/2022]
Abstract
Increasing awareness of the possible role of internal dynamics in protein function has led to the development of new methods for experimentally characterizing protein dynamics across multiple time scales, especially using NMR spectroscopy. A few analyses of the conformational dynamics of proteins ranging from nonallosteric single domains to multidomain allosteric enzymes are now available; however, demonstrating a connection between dynamics and function remains difficult on account of the comparative lack of studies examining both changes in dynamics and changes in function in response to the same perturbations. In previous work, we characterized changes in structure and dynamics on the ps–ns time scale resulting from hydrophobic core mutations in chymotrypsin inhibitor 2 and found that there are moderate, persistent global changes in dynamics in the absence of gross structural changes (Whitley et al., Biochemistry 2008;47:8566–8576). Here, we assay those and additional mutants for inhibitory ability toward the serine proteases elastase and chymotrypsin to determine the effects of mutation on function. Results indicate that core mutation has only a subtle effect on CI2 function. Using chemical shifts, we also studied the effect of complex formation on CI2 structure and found that perturbations are greatest at the complex interface but also propagate toward CI2's hydrophobic core. The structure–dynamics–function data set completed here suggests that dynamics plays a limited role in the function of this small model system, although we do observe a correlation between nanosecond-scale reactive loop motions and inhibitory ability for mutations at one key position in the hydrophobic core.
Collapse
Affiliation(s)
- Matthew J Whitley
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
13
|
Abstract
The MEROPS website (http://merops.sanger.ac.uk) includes information on peptidase inhibitors as well as on peptidases and their substrates. Displays have been put in place to link peptidases and inhibitors together. The classification of protein peptidase inhibitors is continually being revised, and currently inhibitors are grouped into 67 families based on comparisons of protein sequences. These families can be further grouped into 38 clans based on comparisons of tertiary structure. Small molecule inhibitors are important reagents for peptidase characterization and, with the increasing importance of peptidases as drug targets, they are also important to the pharmaceutical industry. Small molecule inhibitors are now included in MEROPS and over 160 summaries have been written.
Collapse
Affiliation(s)
- Neil D Rawlings
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| |
Collapse
|
14
|
Micheelsen PO, Vévodová J, De Maria L, Østergaard PR, Friis EP, Wilson K, Skjøt M. Structural and Mutational Analyses of the Interaction between the Barley α-Amylase/Subtilisin Inhibitor and the Subtilisin Savinase Reveal a Novel Mode of Inhibition. J Mol Biol 2008; 380:681-90. [DOI: 10.1016/j.jmb.2008.05.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 05/09/2008] [Accepted: 05/14/2008] [Indexed: 11/28/2022]
|
15
|
Dashdorj N, Yamashita E, Schaibley J, Cramer WA, Savikhin S. Ultrafast Optical Pump−Probe Studies of the Cytochrome b6f Complex in Solution and Crystalline States. J Phys Chem B 2007; 111:14405-10. [PMID: 18047317 DOI: 10.1021/jp076536p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Naranbaatar Dashdorj
- Department of Physics and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Eiki Yamashita
- Department of Physics and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - John Schaibley
- Department of Physics and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - William A. Cramer
- Department of Physics and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Sergei Savikhin
- Department of Physics and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
16
|
Helland R, Larsen AN, Smalås AO, Willassen NP. The 1.8 A crystal structure of a proteinase K-like enzyme from a psychrotroph Serratia species. FEBS J 2006; 273:61-71. [PMID: 16367748 DOI: 10.1111/j.1742-4658.2005.05040.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Proteins from organisms living in extreme conditions are of particular interest because of their potential for being templates for redesign of enzymes both in biotechnological and other industries. The crystal structure of a proteinase K-like enzyme from a psychrotroph Serratia species has been solved to 1.8 A. The structure has been compared with the structures of proteinase K from Tritirachium album Limber and Vibrio sp. PA44 in order to reveal structural explanations for differences in biophysical properties. The Serratia peptidase shares around 40 and 64% identity with the Tritirachium and Vibrio peptidases, respectively. The fold of the three enzymes is essentially identical, with minor exceptions in surface loops. One calcium binding site is found in the Serratia peptidase, in contrast to the Tritirachium and Vibrio peptidases which have two and three, respectively. A disulfide bridge close to the S2 site in the Serratia and Vibrio peptidases, an extensive hydrogen bond network in a tight loop close to the substrate binding site in the Serratia peptidase and different amino acid sequences in the S4 sites are expected to cause different substrate specificity in the three enzymes. The more negative surface potential of the Serratia peptidase, along with a disulfide bridge close to the S2 binding site of a substrate, is also expected to contribute to the overall lower binding affinity observed for the Serratia peptidase. Clear electron density for a tripeptide, probably a proteolysis product, was found in the S' sites of the substrate binding cleft.
Collapse
Affiliation(s)
- Ronny Helland
- Norwegian Structural Biology Centre, Faculty of Science, University of Tromsø, Tromsø, Norway.
| | | | | | | |
Collapse
|
17
|
Khamrui S, Dasgupta J, Dattagupta JK, Sen U. Single mutation at P1 of a chymotrypsin inhibitor changes it to a trypsin inhibitor: X-ray structural (2.15 A) and biochemical basis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1752:65-72. [PMID: 16081330 DOI: 10.1016/j.bbapap.2005.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2005] [Revised: 06/29/2005] [Accepted: 06/30/2005] [Indexed: 11/29/2022]
Abstract
Change in specificity, caused by the mutations at P1 site, of the serine protease inhibitors of different families is reported in the literature, but Kunitz (STI) family inhibitors are almost unexplored in this regard. In this paper, we present the crystal structure of a P1 variant of winged bean chymotrypsin inhibitor (WCI) belonging to Kunitz (STI) family, supplemented by biochemical, phylogenetic and docking studies on the mutant. A single mutation (Leu-->Arg) at P1 converted WCI to a strong inhibitor of trypsin with an association constant of 4.8x10(10) M(-1) which is comparable to other potent trypsin inhibitors of the family. The crystal structure (2.15 A) of this mutant (L65R) shows that its reactive site loop conformation deviates from that of WCI and adopts a structure similar to that of Erythrina caffra trypsin inhibitor (ETI) belonging to the same family. Mutation induced structural changes have also been propagated in a concerted manner to the neighboring conserved scaffolding residue Asn14, such that the side chain of this residue took an orientation similar to that of ETI and optimized the hydrogen bonds with the loop residues. While docking studies provide information about the accommodation of non-specific residues in the active site groove of trypsin, the basis of the directional alteration of the reactive site loop conformation has been understood through sequence analysis and related phylogenetic studies.
Collapse
Affiliation(s)
- Susmita Khamrui
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064, India
| | | | | | | |
Collapse
|
18
|
Eyal E, Gerzon S, Potapov V, Edelman M, Sobolev V. The Limit of Accuracy of Protein Modeling: Influence of Crystal Packing on Protein Structure. J Mol Biol 2005; 351:431-42. [PMID: 16005885 DOI: 10.1016/j.jmb.2005.05.066] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 05/26/2005] [Accepted: 05/30/2005] [Indexed: 11/23/2022]
Abstract
The size of the protein database (PDB) makes it now feasible to arrive at statistical conclusions regarding structural effects of crystal packing. These effects are relevant for setting upper practical limits of accuracy on protein modeling. Proteins whose crystals have more than one molecule in the asymmetric unit or whose structures were determined at least twice by X-ray crystallography were paired and their differences analyzed. We demonstrate a clear influence of crystal environment on protein structure, including backbone conformations, hinge-like motions and side-chain conformations. The positions of surface water molecules tend to be variable in different crystal environments while those of ligands are not. Structures determined by independent groups vary more than structures determined by the same authors. The use of different refinement methods is a major source for this effect. Our pair-wise analysis derives a practical limit to the accuracy of protein modeling. For different crystal forms, the limit of accuracy (C(alpha), root-mean-square deviation (RMSD)) is approximately 0.8A for the entire protein, which includes approximately 0.3A due to crystal packing. For organized secondary elements, the upper limit of C(alpha) RMSD is 0.5-0.6A while for loops or protein surface it reaches 1.0A. Twenty percent of exposed side- chains exhibit different chi(1+2) conformations with approximately half of the effect also resulting from crystal packing. A web based tool for analysis and graphic presentation of surface areas of crystal contacts is available (http://ligin.weizmann.ac.il/cryco).
Collapse
Affiliation(s)
- Eran Eyal
- Department of Plant Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| | | | | | | | | |
Collapse
|
19
|
Kanaori K, Kamei K, Taniguchi M, Koyama T, Yasui T, Takano R, Imada C, Tajima K, Hara S. Solution structure of marinostatin, a natural ester-linked protein protease inhibitor. Biochemistry 2005; 44:2462-8. [PMID: 15709758 DOI: 10.1021/bi048034x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Marinostatin is a unique protein protease inhibitor containing two ester linkages. We have purified a 12-residue marinostatin [MST(1-12), (1)FATMRYPSDSDE(12)] and determined the residues involved in the formation of the ester linkages and the solution structure by (1)H NMR spectroscopy and restrained molecular dynamics calculation. The two ester linkages of MST(1-12) are formed between hydroxyl and carboxyl groups, Thr(3)-Asp(9) and Ser(8)-Asp(11), indicating that MST(1-12) has two cyclic regions which are fused at the residues of Ser(8) and Asp(9). A strong NOE cross-peak between Tyr(6) H(alpha) and Pro(7) H(alpha) was observed, indicating that the Pro(7) residue takes a cis-conformation. Well-converged structures and hydrogen-deuterium experiments of MST(1-12) showed that the backbone NH proton of the P1'residue, Arg(5), is hydrogen-bonded to the carbonyl oxygen of the ester linkage between Thr(3) and Asp(9). To reveal the significance of the ester linkages, a marinostatin analogue, MST-2SS ((1)FACMRYPCCSCE(12)) with two disulfide bridges of Cys(3)-Cys(9) and Cys(8)-Cys(11), was also synthesized. The inhibitory activity of MST-2SS was as strong as that of MST(1-12), and the Pro(7) residue of MST-2SS also takes a cis-conformation. However, the exchange rate of the Arg(5) NH proton of MST-2SS was about 100 times faster than that of MST(1-12), and the structure calculation of MST-2SS was not converged on account of the small number of NOEs, indicating that MST-2SS takes a more flexible structure. The hydrogen acceptability of the ester linkage formed by the P2 position residue, Thr(3), is crucial for suppressing the fluctuation of the reactive site and sustaining the inhibitory activity, which enables marinostatin to be one of the smallest protease inhibitors in nature.
Collapse
Affiliation(s)
- Kenji Kanaori
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rawlings ND, Tolle DP, Barrett AJ. Evolutionary families of peptidase inhibitors. Biochem J 2004; 378:705-16. [PMID: 14705960 PMCID: PMC1224039 DOI: 10.1042/bj20031825] [Citation(s) in RCA: 410] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 12/23/2003] [Accepted: 01/05/2004] [Indexed: 12/13/2022]
Abstract
The proteins that inhibit peptidases are of great importance in medicine and biotechnology, but there has never been a comprehensive system of classification for them. Some of the terminology currently in use is potentially confusing. In the hope of facilitating the exchange, storage and retrieval of information about this important group of proteins, we now describe a system wherein the inhibitor units of the peptidase inhibitors are assigned to 48 families on the basis of similarities detectable at the level of amino acid sequence. Then, on the basis of three-dimensional structures, 31 of the families are assigned to 26 clans. A simple system of nomenclature is introduced for reference to each clan, family and inhibitor. We briefly discuss the specificities and mechanisms of the interactions of the inhibitors in the various families with their target enzymes. The system of families and clans of inhibitors described has been implemented in the MEROPS peptidase database (http://merops.sanger.ac.uk/), and this will provide a mechanism for updating it as new information becomes available.
Collapse
Affiliation(s)
- Neil D Rawlings
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| | | | | |
Collapse
|
21
|
Fan YH, Grégoire CA, Haseltine J. Intramolecular orbital alignments in serine protease/protein inhibitor complexes. Bioorg Med Chem 2004; 12:3097-106. [PMID: 15142568 DOI: 10.1016/j.bmc.2004.02.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2003] [Accepted: 02/09/2004] [Indexed: 11/23/2022]
Abstract
By an analysis of PDB crystal structures, the mean conformations of protein strands bound in serine protease active sites are shown to contain extensively aligned atomic orbitals. The active-serine-bearing segment of each enzyme (subtilisin BPN' and beta-trypsin) also contains such alignments. The participating orbitals are almost identical in each system. All of the alignments converge on the targeted linkage. They suggest that a kind of through-strand polarizability is being optimized by evolution, presumably due to corresponding benefits in proteolysis rate. Such polarizability would help to explain the high values of kcat seen for long oligopeptide substrates. The idea predicts long substrates to be relatively reactive even under non-enzymatic conditions, which in fact they are.
Collapse
Affiliation(s)
- Yun-Hua Fan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | | | | |
Collapse
|
22
|
Barrette-Ng IH, Ng KKS, Cherney MM, Pearce G, Ryan CA, James MNG. Structural basis of inhibition revealed by a 1:2 complex of the two-headed tomato inhibitor-II and subtilisin Carlsberg. J Biol Chem 2003; 278:24062-71. [PMID: 12684499 DOI: 10.1074/jbc.m302020200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidomain proteinase inhibitors play critical roles in the defense of plants against predation by a wide range of pests. Despite a wealth of structural information on proteinase-single domain inhibitor interactions, the structural basis of inhibition by multidomain proteinase inhibitors remains poorly understood. Here we report the 2.5-A resolution crystal structure of the two-headed tomato inhibitor-II (TI-II) in complex with two molecules of subtilisin Carlsberg; it reveals how a multidomain inhibitor from the Potato II family of proteinase inhibitors can bind to and simultaneously inhibit two enzyme molecules within a single ternary complex. The N terminus of TI-II initiates the folding of Domain I (Lys-1 to Cys-15 and Pro-84 to Met-123) and then completes Domain II (Ile-26 to Pro-74) before coming back to complete the rest of Domain I (Pro-84 to Met-123). The two domains of TI-II adopt a similar fold and are arranged in an extended configuration that presents two reactive site loops at the opposite ends of the inhibitor molecule. Each subtilisin molecule interacts with a reactive site loop of TI-II through the standard, canonical binding mode. Remarkably, a significant distortion of the active site of subtilisin is induced by the presence of phenylalanine in the P1 position of reactive site loop II of TI-II. The structure of the TI-II.(subtilisin)2 complex provides a molecular framework for understanding how multiple inhibitory domains in a single Potato II type proteinase inhibitor molecule from the Potato II family act to inhibit proteolytic enzymes.
Collapse
Affiliation(s)
- Isabelle H Barrette-Ng
- Canadian Institutes for Health Research Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Govindarajan S, Ness JE, Kim S, Mundorff EC, Minshull J, Gustafsson C. Systematic variation of amino acid substitutions for stringent assessment of pairwise covariation. J Mol Biol 2003; 328:1061-9. [PMID: 12729741 DOI: 10.1016/s0022-2836(03)00357-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During protein evolution, amino acids change due to a combination of functional constraints and genetic drift. Proteins frequently contain pairs of amino acids that appear to change together (covariation). Analysis of covariation from naturally occurring sets of orthologs cannot distinguish between residue pairs retained by functional requirements of the protein and those pairs existing due to changes along a common evolutionary path. Here, we have separated the two types of covariation by independently recombining every naturally occurring amino acid variant within a set of 15 subtilisin orthologs. Our analysis shows that in this family of subtilisin orthologs, almost all possible pairwise combinations of amino acids can coexist. This suggests that amino acid covariation found in the subtilisin orthologs is almost entirely due to common ancestral origin of the changes rather than functional constraints. We conclude that naturally occurring sequence diversity can be used to identify positions that can vary independently without destroying protein function.
Collapse
|
24
|
Almeida MS, Cabral KMS, Kurtenbach E, Almeida FCL, Valente AP. Solution structure of Pisum sativum defensin 1 by high resolution NMR: plant defensins, identical backbone with different mechanisms of action. J Mol Biol 2002; 315:749-57. [PMID: 11812144 DOI: 10.1006/jmbi.2001.5252] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pisum sativum defensin 1 (Psd1) is a 46 amino acid residue plant defensin isolated from seeds of pea. The three-dimensional structure in solution of Psd1 was determined by two-dimensional NMR data recorded at 600 MHz. Experimental restraints were used for structure calculation using CNS and torsion-angle molecular dynamics. The 20 lowest energy structures were selected and further subjected to minimization, giving a root-mean-square deviation of 0.78(+/- 0.22) A in the backbone and 1.91(+/-0.60) A for over all atoms of the molecule. The protein has a globular fold with a triple-stranded antiparalell beta-sheet and an alpha-helix (from residue Asn17 to Leu27). Psd1 presents the so called "cysteine stabilized alpha/beta motif" and presents identical three-dimensional topology in the backbone with other defensins and neurotoxins. Comparison of the electrostatic surface potential among proteins with high three-dimensional (selected using the softwares TOP and DALI) topology gave insights into the mode of action of Psd1. The surface topologies between proteins that present antifungal activity or sodium channel inhibiting activity are different. On the other hand the surface topology presents several common features with potassium channel inhibitors, suggesting that Psd1 presents this activity. Other common features with potassium channel inhibitors were found including the presence of a lysine residue essential for inhibitory activity. The identity of Psd1 in primary sequence is not enough to infer a mechanism of action, in contrast with the strategy proposed here.
Collapse
Affiliation(s)
- Marcius S Almeida
- Departamento de Bioquímica Médica, ICB/CCS/UFRJ. CEP., Rio de Janeiro, 21941-590, Brazil
| | | | | | | | | |
Collapse
|
25
|
de Vos WM, Voorhorst WG, Dijkgraaf M, Kluskens LD, Van der Oost J, Siezen RJ. Purification, characterization, and molecular modeling of pyrolysin and other extracellular thermostable serine proteases from hyperthermophilic microorganisms. Methods Enzymol 2001; 330:383-93. [PMID: 11210516 DOI: 10.1016/s0076-6879(01)30390-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- W M de Vos
- Laboratory of Microbiology, Wageningen Agricultural University, Wageningen, NL-6703 CT, The Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
Komiyama T, Fuller RS. Engineered eglin c variants inhibit yeast and human proprotein processing proteases, Kex2 and furin. Biochemistry 2000; 39:15156-65. [PMID: 11106495 DOI: 10.1021/bi001907c] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We engineered eglin c, a potent subtilisin inhibitor, to create inhibitors for enzymes of the Kex2/furin family of proprotein processing proteases. A structural gene was synthesized that encoded "R(1)-eglin", having Arg at P(1) in the reactive site loop in place of Leu(45). Ten additional variants were created by cassette mutagenesis of R(1)-eglin. These polypeptides were expressed in Escherichia coli, purified to homogeneity, and their interactions with secreted, soluble Kex2 and furin were examined. R(1)-eglin itself was a modest inhibitor of Kex2, with a K(a) of approximately 10(7) M(-)(1). Substituting Arg (in R(4)R(1)-eglin) or Met (in M(4)R(1)-eglin) for Pro(42) at P(4) created potent Kex2 inhibitors exhibiting K(a) values of approximately 10(9) M(-)(1). R(4)R(1)-eglin inhibited furin with a K(a) of 4.0 x 10(8) M(-)(1). Introduction of Lys at P(1), in place of Arg in R(4)R(1)-eglin reduced affinity only approximately 3-fold for Kex2 but 15-fold for furin. The stabilities of enzyme-inhibitor complexes were characterized by association and dissociation rate constants and visualized by polyacrylamide gel electrophoresis. R(4)R(1)-eglin formed stable 1:1 complexes with both Kex2 and furin. However, substitution of Lys at P(2) in place of Thr(44) resulted in eglin variants that inhibited both Kex2 and furin but which were eventually cleaved (temporary inhibition). Surprisingly, R(6)R(4)R(1)-eglin, in which Arg was substituted for Gly(40) in R(4)R(1)-eglin, exhibited stable, high-affinity complex formation with Kex2 (K(a) of 3.5 x 10(9) M(-)(1)) but temporary inhibition of furin. This suggests that enzyme-specific interactions can alter the conformation of the reactive site loop, converting a permanent inhibitor into a substrate. Eglin variants offer possible avenues for affinity purification, crystallization, and regulation of proprotein processing proteases.
Collapse
Affiliation(s)
- T Komiyama
- Department of Biological Chemistry, University of Michigan Medical School, Room 5413 Medical Science I, 1301 East Catherine, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
27
|
Cierpicki T, Otlewski J. Determination of a high precision structure of a novel protein, Linum usitatissimum trypsin inhibitor (LUTI), using computer-aided assignment of NOESY cross-peaks. J Mol Biol 2000; 302:1179-92. [PMID: 11183783 DOI: 10.1006/jmbi.2000.4116] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solution structure of a novel 69 residue proteinase inhibitor, Linum usitatissimum trypsin inhibitor (LUTI), was determined using a method based on computer aided assignment of nuclear Overhauser enhancement spectroscopy (NOESY) data. The approach applied uses the program NOAH/DYANA for automatic assignment of NOESY cross-peaks. Calculations were carried out using two unassigned NOESY peak lists and a set of determined dihedral angle restraints. In addition, hydrogen bonds involving amide protons were identified during calculations using geometrical criteria and values of HN temperature coefficients. Stereospecific assignment of beta-methylene protons was carried out using a standard procedure based on nuclear Overhauser enhancement intensities and 3J(alpha)(beta) coupling constants. Further stereospecific assignment of methylene protons and diastereotopic methyl groups were established upon structure-based method available in the program GLOMSA and chemical shift calculations. The applied algorithm allowed us to assign 1968 out of 2164 peaks (91%) derived from NOESY spectra recorded in H2O and 2H2O. The final experimental data input consisted of 1609 interproton distance restraints, 88 restraints for 44 hydrogen bonds, 63 torsion angle restraints and 32 stereospecifically assigned methylene proton pairs and methyl groups. The algorithm allowed the calculation of a high precision protein structure without the laborious manual assignment of NOESY cross-peaks. For the 20 best conformers selected out of 40 refined ones in the program CNS, the calculated average pairwise rmsd values for residues 3 to 69 were 0.38 A (backbone atoms) and 1.02 A (all heavy atoms). The three-dimensional LUTI structure consists of a mixed parallel and antiparallel beta-sheet, a single alpha-helix and shows the fold of the potato 1 family of proteinase inhibitors. Compared to known structures of the family, LUTI contains Arg and Trp residues at positions P6' and P8', respectively, instead of two Arg residues, involved in the proteinase binding loop stabilization. A consequence of the ArgTrp substitution at P8' is a slightly more compact conformation of the loop relative to the protein core.
Collapse
Affiliation(s)
- T Cierpicki
- Laboratory of Protein Engineering, Institute of Biochemistry and Molecular Biology, University of Wroclaw, Wroclaw, Poland
| | | |
Collapse
|
28
|
Tanaka T, Kikuchi Y, Matsuzawa H, Ohta T. Application of a metal switch to aqualysin I, a subtilisin-type bacterial serine protease, to the S3 site residues, ser102 and gly131. Biosci Biotechnol Biochem 2000; 64:2008-11. [PMID: 11055415 DOI: 10.1271/bbb.64.2008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We applied 'metal switch' experiments to the S3 site residues, Ser102 and Gly131, of aqualysin I, a subtilisin-type serine protease. We showed that two histidines introduced at these positions did take part in histidine-metal-histidine bridge formation, and metal ions inhibited the protease activities. These results indicate that two histidines are near each other, and both side chains are metal-accessible. This is the first report on application of the metal-switch technique to a subtilisin-related enzyme.
Collapse
Affiliation(s)
- T Tanaka
- Department of Ecological Engineering, Toyohashi University of Technology, Aichi, Japan.
| | | | | | | |
Collapse
|
29
|
Lu WY, Starovasnik MA, Dwyer JJ, Kossiakoff AA, Kent SB, Lu W. Deciphering the role of the electrostatic interactions involving Gly70 in eglin C by total chemical protein synthesis. Biochemistry 2000; 39:3575-84. [PMID: 10736156 DOI: 10.1021/bi992292q] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eglin c from the leech Hirudo medicinalis is a potent protein inhibitor of many serine proteinases including chymotrypsin and subtilisins. Unlike most small protein inhibitors whose solvent-exposed enzyme-binding loop is stabilized primarily by disulfide bridges flanking the reactive-site peptide bond, eglin c possesses an enzyme-binding loop supported predominantly by extensive electrostatic/H-bonding interactions involving three Arg residues (Arg48, Arg51, and Arg53) projecting from the scaffold of the inhibitor. As an adjacent residue, the C-terminal Gly70 participates in these interactions via its alpha-carboxyl group interacting with the side chain of Arg51 and the main chain of Arg48. In addition, the amide NH group of Gly70 donates an H-bond to the carbonyl C=O groups of Arg48 and Arg51. To understand the structural and functional relevance of the electrostatic/H-bonding network, we chemically synthesized wild-type eglin c and three analogues in which Gly70 was either deleted or replaced by glycine amide (NH(2)CH(2)CONH(2)) or by alpha-hydroxylacetamide (HOCH(2)CONH(2)). NMR analysis indicated that the core structure of eglin c was maintained in the analogues, but that the binding loop was significantly perturbed. It was found that deletion or replacement of Gly70 destabilized eglin c by an average of 2.7 kcal/mol or 20 degrees C in melting temperature. As a result, these inhibitors become substrates for their target enzymes. Binding assays on these analogues with a catalytically incompetent subtilisin BPN' mutant indicated that loss or weakening of the interactions involving the carboxylate of Gly70 caused a decrease in binding by approximately 2 orders of magnitude. Notably, for all four synthetic inhibitors, the relative free energy changes (DeltaDeltaG) associated with protein destabilization are strongly correlated (slope = 0.94, r(2) = 0. 9996) with the DeltaDeltaG values derived from a decreased binding to the enzyme.
Collapse
Affiliation(s)
- W Y Lu
- Gryphon Sciences, South San Francisco, California 94080, USA
| | | | | | | | | | | |
Collapse
|
30
|
Mulder FA, Schipper D, Bott R, Boelens R. Altered flexibility in the substrate-binding site of related native and engineered high-alkaline Bacillus subtilisins. J Mol Biol 1999; 292:111-23. [PMID: 10493861 DOI: 10.1006/jmbi.1999.3034] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-alkaline serine proteases have been successfully applied as protein degrading components of detergent formulations and are subject to extensive protein engineering efforts to improve their stability and performance. Dynamics has been suggested to play an important role in determining enzyme activity and specificity and it is therefore of interest to establish how local changes in internal mobility affect protein stability, specificity and performance. Here we present the dynamic properties of the 269 residue serine proteases subtilisin PB92 (Maxacal(TM)) and subtilisin BLS (Savinase(TM)), secreted by Bacillus lentus, and an engineered quadruple variant, DSAI, that has improved washing performance. T1, T2 and heteronuclear NOE measurements of the 15N nuclei indicate that for all three proteins the majority of the backbone is very rigid, with only a limited number of residues being involved in local mobility. Many of the residues that constitute the S1 and S4 pockets, determining substrate specificity, are flexible in solution. In contrast, the backbone amides of the residues that constitute the catalytic triad do not exhibit any motion. Subtilisins PB92, BLS and DSAI demonstrate similar but not identical NMR relaxation rates. A detailed analysis of local flexibility indicates that the motion of residues Thr143 and Ala194 becomes more restricted in subtilisin BLS and DSAI. Noteworthy, the loop regions involved in substrate binding become more structured in the engineered variant as compared with the two native proteases, suggesting a relation between altered dynamics and performance. Similar conclusions have been established by X-ray crystallograpic methods, as shown in the accompanying paper.
Collapse
Affiliation(s)
- F A Mulder
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | | | | | | |
Collapse
|
31
|
Lu W, Randal M, Kossiakoff A, Kent SB. Probing intermolecular backbone H-bonding in serine proteinase-protein inhibitor complexes. CHEMISTRY & BIOLOGY 1999; 6:419-27. [PMID: 10381402 DOI: 10.1016/s1074-5521(99)80060-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Intermolecular backbone H-bonding (N-H.O=C) is a common occurrence at the interface of protein-protein complexes. For instance, the amide NH groups of most residues in the binding loop of eglin c, a potent serine proteinase inhibitor from the leech Hirudo medicinalis, are H-bonded to the carbonyl groups of residues in the target enzyme molecules such as chymotrypsin, elastase and subtilisins. We sought to understand the energetic significance of these highly conserved backbone-backbone H-bonds in the enzyme-inhibitor complexes. RESULTS We synthesized an array of backbone-engineered ester analogs of eglin c using native chemical ligation to yield five inhibitor proteins each containing a single backbone ester bond from P3 to P2' (i.e. -CONH-to -COO-). The structure at the ligation site (P6-P5) is essentially unaltered as shown by a high-resolution analysis of the subtilisin-BPN'-eglin c complex. The free-energy changes (DeltaDeltaGNH-->O) associated with the binding of ester analogs at P3, P1 and P2' with bovine alpha-chymotrypsin, subtilisin Carlsberg and porcine pancreatic elastase range from 0-4.5 kcal/mol. Most markedly, the NH-->O substitution at P2 not only stabilizes the inhibitor but also enhances binding to the enzymes by as much as 500-fold. CONCLUSIONS Backbone H-bond contributions are context dependent in the enzyme-eglin c complexes. The interplay of rigidity and adaptability of the binding loop of eglin c seems to play a prominent role in defining the binding action.
Collapse
Affiliation(s)
- W Lu
- Gryphon Sciences, 250 East Grand Avenue, Suite 90, South San Francisco, CA 94080, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
We studied the thermal denaturation of eglin c by using CD spectropolarimetry and differential scanning calorimetry (DSC). At low protein concentrations, denaturation is consistent with the classical two-state model. At concentrations greater than several hundred microM, however, the calorimetric enthalpy and the midpoint transition temperature increase with increasing protein concentration. These observations suggested the presence of intermediates and/or native state aggregation. However, the transitions are symmetric, suggesting that intermediates are absent, the DSC data do not fit models that include aggregation, and analytical ultracentrifugation (AUC) data show that native eglin c is monomeric. Instead, the AUC data show that eglin c solutions are nonideal. Analysis of the AUC data gives a second virial coefficient that is close to values calculated from theory and the DSC data are consistent with the behavior expected for nonideal solutions. We conclude that the concentration dependence is caused by differential nonideality of the native and denatured states. The nondeality arises from the high charge of the protein at acid pH and is exacerbated by low buffer concentrations. Our conclusion may explain differences between van't Hoff and calorimetric denaturation enthalpies observed for other proteins whose behavior is otherwise consistent with the classical two-state model.
Collapse
Affiliation(s)
- J C Waldner
- Department of Chemistry, University of North Carolina at Chapel Hill 27599-3290, USA
| | | | | | | |
Collapse
|
33
|
Tanaka T, Matsuzawa H, Ohta T. Engineering of S2 site of aqualysin I; alteration of P2 specificity by excluding P2 side chain. Biochemistry 1998; 37:17402-7. [PMID: 9860855 DOI: 10.1021/bi981533b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gly101, one of the conserved amino acid residues which was expected to be comprised in half-sphere-shaped S2 site small pocket of aqualysin I, a microbial thermophilic alkaline serine protease, was replaced by alanine, valine, or leucine to alterate the P2 specificity of the enzyme by excluding bulky P2 side chain of the substrate. By the mutation of G101A, the catalytic efficiencies of the enzyme for bulky amino acid residues in P2 site such as valine and leucine drastically decreased by excluding the P2 side chain. By the mutation of G101V, even the side chain of the methyl group of the alanine and the side chain of proline were excluded, while the catalytic efficiency toward glycine residue was retained. The enzyme was altered to be glycine preferable. The mutation of G101L reduced catalytic efficiencies for any substrate including glycine which is corresponding to the main chain of the peptide substrate. The strategies we have adopted in this paper are applicable to all subtilisin-related enzymes.
Collapse
Affiliation(s)
- T Tanaka
- Department of Biotechnology, The University of Tokyo, Japan.
| | | | | |
Collapse
|
34
|
McBride JD, Brauer AB, Nievo M, Leatherbarrow RJ. The role of threonine in the P2 position of Bowman-Birk proteinase inhibitors: studies on P2 variation in cyclic peptides encompassing the reactive site loop. J Mol Biol 1998; 282:447-58. [PMID: 9735299 DOI: 10.1006/jmbi.1998.2032] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we have described a template-assisted combinatorial peptide library based on the anti-tryptic reactive site loop of a Bowman-Birk inhibitor (BBI). Sequences that displayed inhibitory activity re-directed towards chymotrypsin were found to have a consensus binding motif, with their most striking feature being that exclusively threonine was found at the P2 position. The present study investigates the reason for this surprising specificity by maintaining the binding motif but systematically varying the P2 residue. From analysis of 26 variants, it is found that the requirements for inhibitory activity at P2 are finely tuned, and in agreement with the library work, threonine at P2 provides optimal inhibition. In addition, peptides with threonine at P2 are significantly less susceptible to hydrolysis. Examination of all available BBI sequences shows that threonine is very highly conserved at P2, which implies that the functional requirement extends to the full-length BBI protein. Our results are consistent with a dual requirement for hydrophobic recognition within the S2 pocket and maintenance of an inhibitory conformation via hydrogen bonding within the reactive-site loop. As the isolated peptide loop reproduces the active region of full-length BBI, these results explain why threonine is well conserved at P2 in this class of inhibitor. Furthermore, they illustrate that proteinase inhibitor specificity can have characteristics that are not easily predicted from information on the substrate preferences of a proteinase.
Collapse
Affiliation(s)
- J D McBride
- Department of Chemistry, Imperial College of Science, London, South Kensington, SW7 2AY, UK
| | | | | | | |
Collapse
|
35
|
Martin F, Dimasi N, Volpari C, Perrera C, Di Marco S, Brunetti M, Steinkühler C, De Francesco R, Sollazzo M. Design of selective eglin inhibitors of HCV NS3 proteinase. Biochemistry 1998; 37:11459-68. [PMID: 9708981 DOI: 10.1021/bi980283w] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV) infection is a major health problem that leads to cirrhosis and hepatocellular carcinoma in a substantial number of infected individuals, estimated to be 100-200 million worldwide. Unfortunately, immunotherapy or other effective treatments for HCV infection are not yet available, and interferon administration has limited efficacy. Different approaches to HCV therapy are being explored, and these include inhibition of the viral proteinase, helicase, and RNA-dependent RNA polymerase and development of a vaccine. Here we present the design of selective inhibitors with nanomolar potencies of HCV NS3 proteinase based on eglin c. These eglin c mutants were generated by reshaping the inhibitor active site-binding loop, and the results emphasize the role played by residues P5-P4' in enzyme recognition. In addition, alanine scanning experiments provide evidence that the N terminus of eglin c also contributes to NS3 binding. These eglin inhibitors offer a unique tool for accurately assessing the requirements for effective inhibition of the enzymatic activity of NS3 and at the same time can be considered lead compounds for the identification of other NS3 inhibitors in targeted design efforts.
Collapse
Affiliation(s)
- F Martin
- Department of Protein Engineering & Biocrystallography, Istituto di Ricerche di Biologia Molecolare (IRBM) P. Angeletti, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Martin JR, Mulder FA, Karimi-Nejad Y, van der Zwan J, Mariani M, Schipper D, Boelens R. The solution structure of serine protease PB92 from Bacillus alcalophilus presents a rigid fold with a flexible substrate-binding site. Structure 1997; 5:521-32. [PMID: 9115441 DOI: 10.1016/s0969-2126(97)00208-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Research on high-alkaline proteases, such as serine protease PB92, has been largely inspired by their industrial application as protein-degrading components of washing powders. Serine protease PB92 is a member of the subtilase family of enzymes, which has been extensively studied. These studies have included exhaustive protein engineering investigations and X-ray crystallography, in order to provide insight into the mechanism and specificity of enzyme catalysis. Distortions have been observed in the substrate-binding region of subtilisin crystal structures, due to crystal contacts. In addition, the structural variability in the substrate-binding region of subtilisins is often attributed to flexibility. It was hoped that the solution structure of this enzyme would provide further details about the conformation of this key region and give new insights into the functional properties of these enzymes. RESULTS The three-dimensional solution structure of the 269-residue (27 kDa) serine protease PB92 has been determined using distance and dihedral angle constraints derived from triple-resonance NMR data. The solution structure is represented by a family of 18 conformers which overlay onto the average structure with backbone and all-heavy-atom root mean square deviations (for the main body of the molecule) of 0.88 and 1.21 A, respectively. The family of structures contains a number of regions of relatively high conformational heterogeneity, including various segments that are involved in the formation of the substrate-binding site. The presence of flexibility within these segments has been established from NMR relaxation parameters and measurements of amide proton exchange rates. CONCLUSIONS The solution structure of the serine protease PB92 presents a well defined global fold which is rigid with the exception of a restricted number of sites. Among the limited number of residues involved in significant internal mobility are those of two pockets, termed S1 and S4, within the substrate-binding site. The presence of flexibility within the binding site supports the proposed induced fit mechanism of substrate binding.
Collapse
Affiliation(s)
- J R Martin
- Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Subtilases are members of the clan (or superfamily) of subtilisin-like serine proteases. Over 200 subtilases are presently known, more than 170 of which with their complete amino acid sequence. In this update of our previous overview (Siezen RJ, de Vos WM, Leunissen JAM, Dijkstra BW, 1991, Protein Eng 4:719-731), details of more than 100 new subtilases discovered in the past five years are summarized, and amino acid sequences of their catalytic domains are compared in a multiple sequence alignment. Based on sequence homology, a subdivision into six families is proposed. Highly conserved residues of the catalytic domain are identified, as are large or unusual deletions and insertions. Predictions have been updated for Ca(2+)-binding sites, disulfide bonds, and substrate specificity, based on both sequence alignment and three-dimensional homology modeling.
Collapse
Affiliation(s)
- R J Siezen
- Department of Biophysical Chemistry, NIZO, Ede, The Netherlands.
| | | |
Collapse
|
38
|
Qasim MA, Ganz PJ, Saunders CW, Bateman KS, James MN, Laskowski M. Interscaffolding additivity. Association of P1 variants of eglin c and of turkey ovomucoid third domain with serine proteinases. Biochemistry 1997; 36:1598-607. [PMID: 9048543 DOI: 10.1021/bi9620870] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Standard mechanism protein inhibitors of serine proteinases share a common mechanism of interaction with their cognate enzymes. The P1 residue of the inhibitor interacts with the enzyme in a substrate-like manner. Its side chain becomes imbedded in the S1 cavity of the enzyme. The nature of P1, the primary specificity residue, greatly affects the strength and specificity of the enzyme inhibitor association. In canonical inhibitors, residues P4-P2'(P3'), where P1-P1' is the reactive site, share a common main chain conformation that does not change on complex formation. The remainder of the inhibitor's structure, the scaffolding, is not always common. Instead, there are at least 20 inhibitor families, each with a different scaffolding. In this paper, we ask whether the differences in standard free energy of association of enzyme-inhibitor complexes upon P1 mutations are independent of the nature of the scaffolding. We have already reported on 25 P1 variants of turkey ovomucoid third domain, a member of the Kazal inhibitor family, interacting with six different serine proteinases. Here, we report on seven different P1 variants of eglin c, a potato I family member, interacting with the same six serine proteinases under the same conditions. The differences in standard free energy on P1 mutations in the eglin c system agree very well, when P1 Pro is omitted. Complete agreement indicates that these P1 residues are interscaffolding additive. This is consistent with the superimposition of the high-resolution structures of eglin c and of turkey ovomucoid third domain with chymotrypsin. In both cases, the P1 Leu side chain is similarly oriented in almost indistinguishable specificity pockets of the enzyme.
Collapse
Affiliation(s)
- M A Qasim
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
39
|
Rockwell NC, Wang GT, Krafft GA, Fuller RS. Internally consistent libraries of fluorogenic substrates demonstrate that Kex2 protease specificity is generated by multiple mechanisms. Biochemistry 1997; 36:1912-7. [PMID: 9048578 DOI: 10.1021/bi961779l] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Kex2 protease from the yeast Saccharomyces cerevisiae is the prototype for a family of eukaryotic proprotein processing proteases. To clarify understanding of the interactions responsible for substrate recognition in this family of enzymes, we have carried out a systematic examination of Kex2 substrate specificity using internally consistent sets of substrates having substitutions at only one or two positions. We examined Kex2 sequence recognition for residues at P3, P2, and P1 using two types of fluorogenic peptide substrates, peptidyl-methylcoumarinamides and internally quenched substrates in which cleavage occurs at an actual peptide bond. Kinetic analysis of the two sets of substrates gave comparable data on specificity at these three positions. For the best substrate sequences, high catalytic constants (kCM/KM) of (2-5) x 10(7) M-1 s-1 were seen for cleavage of both peptidyl-methylcoumarinamides and peptide bonds. While no evidence for positive interactions with the P3 residue emerged, Kex2 was found to discriminate against at least one residue Asp. at this position. Specificity at P2 was shown to rely primarily on recognition of a positive charge, although steric constraints on the P2 side chain were also apparent. Kex2 was demonstrated to be exquisitely selective for Arg at P1. Substitutions with similar charge (Lys, ornithine) or similar hydrogen-bonding capability (citrulline) do not confer efficient catalysis. Comparison of otherwise identical substrates having either Arg or citrulline at P1 showed that the positive charge of the Arg guanidinium group stabilizes the transition state by approximately 6.8 kcal/mol.
Collapse
Affiliation(s)
- N C Rockwell
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|
40
|
Remerowski ML, Pepermans HA, Hilbers CW, Van De Ven FJ. Backbone dynamics of the 269-residue protease Savinase determined from 15N-NMR relaxation measurements. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:629-40. [PMID: 8654411 DOI: 10.1111/j.1432-1033.1996.00629.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Backbone dynamics of Savinase, a subtilisin of 269 residues secreted by Bacillus lentus, have been studied using 15N relaxation measurements derived from proton-detected dimensional 1H-15N-NMR spectroscopy. 15N spin-lattice rate constants (R1), spin-spin relaxation-rate constants(R2), and 1H-15N nuclear Overhauser effects (NOE) were determined for 84% of the backbone amide 15N nuclei. The model-free formalism [Lipari, G. & Szabo, A. (1982) J. Am. Chem. Soc. 104, 4546-4559] was used to derive values for a generalized order parameter, S2, interpretable as a measure of the amplitude of motion on the picosecond-nanosecond timescale, for each N-H bond vector. Additional terms used to fit the data include an effective correlation time for internal motions (taue) and an exchange term (Rex) to account for exchange contributions to R2. The overall rotational correlation time (taum) is 9.59 +/- 0.02 ns; the average order parameter (S2) is 0.90 +/- 0.07, indicative of a rigid structure consistent with Savinase's high degree of secondary structure and compact tertiary fold. Residues S125-S128, located in the substrate-binding region, represent the longest stretch of protein which exhibits disorder on the picosecond-nanosecond timescale. These residues also exhibit significant exchange terms, possibly indicative of motion on the microsecond-millisecond timescale, which could also be influenced by the proximity of the phenyl ring of the substituted aryl boronic acid inhibitor used in this study. S103 and G219 in the substrate-binding region, represent the longest stretch of protein which exhibits disorder on the picosecond-nanosecond timescale. These residues also exhibit significant exchange terms, possibly indicative of motion on the microsecond-millisecond timescale, which could also be influenced by the proximity of the phenyl ring of the substituted aryl boronic acid inhibitor used in this study. S103 and G219 in the substrate-binding region also show flexibility on the picosecond-nanosecond timescale. There is also significant motion in the turn, G258-T260, of a small solvent-exposed loop region which may make the protein vulnerable autolysis at that point. Some residues in both calcium-binding sites and nearby also show mobility.
Collapse
|
41
|
Hipler K, Priestle JP, Rahuel J, Grütter MG. Active site binding loop stabilization in the subtilisin inhibitor eglin c: structural and functional studies on specifically designed mutants in complex with subtilisin and the uncomplexed inhibitor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 379:43-7. [PMID: 8796309 DOI: 10.1007/978-1-4613-0319-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As known from the x-ray crystal structure in complex with a proteinase and from NMR studies, the serine proteinase inhibitor eglin c has a wedge-like shape with a hydrophobic core and a solvent exposed active site binding loop which is stabilized by a network of non-covalent core-binding loop interactions. Previous studies implied a crucial role of the P1'-residue Asp-46 for binding loop stabilization and high inhibitory potency of eglin c towards serine proteinases such as subtilisin. In the present study, the formation of specific eglin core-binding loop interactions was modulated by replacing the wildtype Asp-46 by asparagine, glutarnate and glutamine. The x-ray crystal structures of these mutants were solved in complex with subtilisin, and the inhibitory potency towards this enzyme was determined. Our results imply a reduction of inhibitory potency with declining core-binding loop interactions. We succeeded in crystallizing free wildtype eglin c. The 1.95 angstroms x-ray crystal structure indicates that the transition from the free to the bound form of eglin is accompanied by a concerted conformational change in the binding loop, implying an induced fit to the accessible enzyme surface. Except for the binding loop domain and a few residues on the surface of eglin, the differences observed between the uncomplexed and bound form of the inhibitor are only small.
Collapse
Affiliation(s)
- K Hipler
- Department of Biotechnology, Pharmaceuticals Division, Ciba-Geigy Ltd., Basel, Switzerland
| | | | | | | |
Collapse
|
42
|
Bott R, Dauberman J, Wilson L, Ganshaw G, Sagar H, Graycar T, Estell D. Structural changes leading to increased enzymatic activity in an engineered variant of Bacillus lentus subtilisin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 379:277-83. [PMID: 8796332 DOI: 10.1007/978-1-4613-0319-0_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R Bott
- Genencor International, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
van der Laan JM, Misset O, Mulleners LJ, Gerritse G, Scheffers HN, van Schouwen DJ, Teplyakov AV, Dijkstra BW. Structural and functional consequences of engineering the high alkaline serine protease PB92. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 379:203-18. [PMID: 8796325 DOI: 10.1007/978-1-4613-0319-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J M van der Laan
- Royal Gist-brocades N.V., Research and Development, Delft, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Siezen RJ. Modelling and engineering of enzyme/substrate interactions in subtilisin-like enzymes of unknown 3-dimensional structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 379:63-73. [PMID: 8796311 DOI: 10.1007/978-1-4613-0319-0_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Homology modelling was used to predict enzyme-substrate interactions in three entirely different subtilisin-like enzymes of unknown three-dimensional structure. i.e. (a) cell-envelope proteinase of Lactococcus lactis, (b) putative leader peptidase for pre-nisin from L. lactis, and (c) human furin. Models were based on known three-dimensional structures of subtilisins and thermitase in complex with inhibitors. Detailed analysis of interactions of the P1-P4 residues of model substrates with the S1-S4 binding sites in each enzyme suggest that electrostatic interactions at all four binding sites can contribute to binding and hence to specificity. In particular, one or more negative charges in the S1 or S4 pockets can lead to a high selectivity for Arg residues in the substrate. Many of the predicted interactions have been confirmed by engineering of either enzyme, substrate or both.
Collapse
Affiliation(s)
- R J Siezen
- Department of Biophysical Chemistry, NIZO, Ede, The Netherlands
| |
Collapse
|
45
|
Ascenzi P, Amiconi G, Bode W, Bolognesi M, Coletta M, Menegatti E. Proteinase inhibitors from the European medicinal leech Hirudo medicinalis: structural, functional and biomedical aspects. Mol Aspects Med 1995; 16:215-313. [PMID: 8569452 DOI: 10.1016/0098-2997(95)00002-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- P Ascenzi
- Department of Pharmaceutical Chemistry and Technology, University of Torino, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Christiansen-Brams I, Jansson AM, Meldal M, Breddam K, Bock K. Silyl protection in the solid-phase synthesis of N-linked glycopeptides. Preparation of glycosylated fluorogenic substrates for subtilisins. Bioorg Med Chem 1994; 2:1153-67. [PMID: 7757413 DOI: 10.1016/s0968-0896(00)82067-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The trimethylsilyl (TMS) group was used for protection of the hydroxy groups of three disaccharide 1-amino-alditols and of the glycosylamines of glucose, maltotriose and maltoheptose. The per-O-trimethylsilylated derivatives were coupled with N alpha-Fmoc-Asp(Cl)-OPfp 7 to give six glycosylated building blocks for the solid-phase synthesis of N-linked glycopeptides. Building block 8 was used in the synthesis of five internally quenched fluorescent substrates which were studied by enzymatic hydrolysis with savinase, a subtilisin-type enzyme.
Collapse
|
47
|
Bruinenberg PG, de Vos WM, Siezen RJ. Prevention of C-terminal autoprocessing of Lactococcus lactis SK11 cell-envelope proteinase by engineering of an essential surface loop. Biochem J 1994; 302 ( Pt 3):957-63. [PMID: 7945226 PMCID: PMC1137323 DOI: 10.1042/bj3020957] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The catalytic domain of the cell-envelope proteinase from Lactococcus lactis SK11 has various inserts, situated in external loops of the catalytic domain, compared with the related subtilisins. Protein engineering was employed to analyse the necessity and function of one of these extra loops (residues 205-219), that is predicted to be located in close proximity to the substrate-binding region and is susceptible to autoproteolysis. We constructed a deletion mutant which lacks 14 residues of this surface loop and subsequently introduced various insertion cassettes coding either for the original loop with three mutations (E205S/E218T/M219S: triple-mutant proteinase) or for neutral spacers (1, 4, 7 and 16 serine residues). Engineered proteinases were analysed for activity, (auto)processing, and cleavage specificity. The presence of residues 205-219 is shown to be essential for proteolytic activity, as only triple-mutant proteinase retained activity towards casein substrates. The triple-mutant proteinase was found to be defective in C-terminal autoprocessing, and subsequent release from the lactococcal cell envelope in a calcium-free medium, indicative of either an altered proteolytic specificity or altered accessibility of the processing site. The specificity change appears to be subtle, as only small differences were found between wild-type and triple-mutant proteinase in the breakdown of casein substrates.
Collapse
Affiliation(s)
- P G Bruinenberg
- Department of Biophysical Chemistry, NIZO, Ede, The Netherlands
| | | | | |
Collapse
|
48
|
Gallagher WH, Croker KM. Identification of a molecular switch that selects between two crystals forms of bovine pancreatic trypsin inhibitor. Protein Sci 1994; 3:1602-4. [PMID: 7530544 PMCID: PMC2142951 DOI: 10.1002/pro.5560030925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Two crystals forms of bovine pancreatic trypsin inhibitor are produced between pH 8.39 and 10.13 when crystals are grown at room temperature from solutions of 1.5 M potassium phosphate. Lower pH values favor the form II crystals, whereas higher pH values favor the form III. The transition from one crystal form to the other occurs at pH 9.35. We examined the crystal lattice contacts in both crystal forms and identified an unusual interaction we believe explains these observations. Spanning the crystallographic 2-fold axis in form III crystals, the Lys 41 side-chain amino nitrogens from 2 symmetry-related molecules are only 2.72 A apart, implying they are hydrogen bonded to one another. In form II crystals, the Lys 41 side-chain amino group is protonated and forms a salt bridge with a solvent-derived phosphate group. For the Lys 41 side-chain amino groups to hydrogen bond in form III crystals, at least 1 member of the pair must be deprotonated. The transition that occurs at pH 9.35 marks the pKa for deprotonation. In solution, the pKa for the Lys 41 side chain is around 10.8. The pKa for one of the interacting Lys 41 side chains in form III crystals is therefore shifted downward by about 1.5 pH units. The energy for lowering the pKa value comes from the many additional intermolecular hydrogen bonds that are present in form III crystals: 19 compared to only 8 in form II crystals.
Collapse
Affiliation(s)
- W H Gallagher
- Department of Chemistry, University of Wisconsin-Eau Claire 54702-4004
| | | |
Collapse
|
49
|
Greagg MA, Brauer AB, Leatherbarrow RJ. Expression and kinetic characterization of barley chymotrypsin inhibitors 1a and 1b. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1222:179-86. [PMID: 8031854 DOI: 10.1016/0167-4889(94)90167-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The genes for chymotrypsin inhibitors 1a and 1b (CI-1a and CI-1b) from barley have been expressed in E. coli, and the CI-1a and CI-1b proteins purified. These proteins, although highly homologous, differ in the active site region at P2, P1' and P3' (Schechter and Berger nomenclature), and so might be expected to have differing specificities. Despite this, analysis of the inhibition kinetics showed that each displayed very similar kinetic behaviour when tested against a range of proteinases. The specificity of the CI-1 proteins is different to that of the other main barley inhibitor, CI-2, and Ki values are found to follow the series subtilisin Carlsberg < neutrophil elastase approximately subtilisin BPN' << chymotrypsin. Only very weak inhibition is found of trypsin, and pancreatic elastase is not measurably inhibited. For the proteinases inhibited most strongly, characteristic slow-binding inhibition kinetics were observed, whereas classical inhibition applied to the weaker interactions. The results are consistent with the major determinant of specificity being the P1 residue of the inhibitor, which is the same in both CI-1a and CI-1b. Consistent with this, is the similar spectrum of specificity found for the homologous inhibitor eglin c from leech, which has the same P1 residue. Both the CI-1 proteins are found to be less stable than CI-2, with CI-1a being significantly less stable than CI-1b as measured by guanidinium hydrochloride unfolding experiments. Possible reasons for the reduced stability are discussed in view of the sequence differences between CI-1a, CI-1b and CI-2.
Collapse
Affiliation(s)
- M A Greagg
- Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London, UK
| | | | | |
Collapse
|
50
|
Siezen RJ, Creemers JW, Van de Ven WJ. Homology modelling of the catalytic domain of human furin. A model for the eukaryotic subtilisin-like proprotein convertases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:255-66. [PMID: 8020465 DOI: 10.1111/j.1432-1033.1994.tb18864.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A model is presented for the three-dimensional structure of the catalytic domain of the human serine proteinase furin and its interaction with model substrates. This homology model is based on the crystal structures of subtilisin BPN' and thermitase in complex with the inhibitor eglin, and it also applies to other members of the eukaryotic subtilisin-like proprotein convertases. Predictions are made of the general protein fold, inserted loops, disulfide bonds, Ca(2+)-binding sites and salt bridges. A detailed prediction of the substrate-binding region attempts to explain the basis of specificity for multiple basic residues preceding the cleavage site. Specific acidic residues in the S1, S2 and S4 subsites of the substrate-binding region of furin are identified which appear to be of particular importance, while residues of the S2', S3, S5 and S6 subsites may also contribute to substrate binding. Based on this model, protein engineering can be employed not only to test the predicted enzyme-substrate interactions, as demonstrated for human furin, but, equally importantly, to design proprotein convertases with a desired specificity, or to design novel substrates or inhibitors.
Collapse
Affiliation(s)
- R J Siezen
- Department of Biophysical Chemistry, NIZO, Ede, The Netherlands
| | | | | |
Collapse
|