1
|
Wang D, Li J, Yang H, Zhang Y, Zhu M, Xiao Z. Production, characterization, and application of zein-polyphenol complexes and conjugates: A comprehensive review. Food Chem 2025; 467:142309. [PMID: 39644665 DOI: 10.1016/j.foodchem.2024.142309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 11/06/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
The corn protein zein has several advantages, such as low production cost, excellent biodegradability, good biocompatibility, and low allergenicity. However, the application of zein in the food industry is limited by its high hydrophobicity. To increase the functionality of zein and meet the diverse requirements of food systems, researchers have explored several methods to form complexes or conjugates through noncovalent or covalent interactions, respectively, with polyphenols. This paper comprehensively reviews the formation mechanisms, preparation methods, and influencing factors of zein-polyphenol complexes and conjugates. In addition, the paper presents the techniques used to characterize zein-polyphenol complexes and conjugates and their various new functional properties and bioactivities including water solubility, emulsification activity, in vitro antioxidant activity and antibacterial activity, as well as factors that affect these properties. Furthermore, the potential uses of these compounds in the food sector and future research areas are discussed.
Collapse
Affiliation(s)
- Dexiong Wang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, Liaoning Province, China
| | - Jianan Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, Liaoning Province, China
| | - Hongli Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, Liaoning Province, China
| | - Yifan Zhang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, Liaoning Province, China
| | - Minpeng Zhu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, Liaoning Province, China.
| | - Zhigang Xiao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, Liaoning Province, China.
| |
Collapse
|
2
|
Martins LDA, Ferreira PS, Leitão Dos Santos OA, Martins LO, Cabral Fernandes Barroso LG, Pereira HM, Waddington-Cruz M, Palhano FL, Foguel D. Structural and thermodynamic characterization of a highly amyloidogenic dimer of transthyretin involved in a severe cardiomyopathy. J Biol Chem 2024; 300:107495. [PMID: 38925327 PMCID: PMC11293521 DOI: 10.1016/j.jbc.2024.107495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Transthyretin (TTR) is an homotetrameric protein involved in the transport of thyroxine. More than 150 different mutations have been described in the TTR gene, several of them associated with familial amyloid cardiomyopathy. Recently, our group described a new variant of TTR in Brazil, namely A39D-TTR, which causes a severe cardiac condition. Position 39 is in the AB loop, a region of the protein that is located within the thyroxine-binding channels and is involved in tetramer formation. In the present study, we solved the structure and characterize the thermodynamic stability of this new variant of TTR using urea and high hydrostatic pressure. Interestingly, during the process of purification, A39D-TTR turned out to be a dimer and not a tetramer, a variation that might be explained by the close contact of the four aspartic acids at position 39, where they face each other inside the thyroxine channel. In the presence of subdenaturing concentrations of urea, bis-ANS binding and dynamic light scattering revealed A39D-TTR in the form of a molten-globule dimer. Co-expression of A39D and WT isoforms in the same bacterial cell did not produce heterodimers or heterotetramers, suggesting that somehow a negative charge at the AB loop precludes tetramer formation. A39D-TTR proved to be highly amyloidogenic, even at mildly acidic pH values where WT-TTR does not aggregate. Interestingly, despite being a dimer, aggregation of A39D-TTR was inhibited by diclofenac, which binds to the thyroxine channel in the tetramer, suggesting the existence of other pockets in A39D-TTR able to accommodate this molecule.
Collapse
Affiliation(s)
- Lucas do Amaral Martins
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila S Ferreira
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Leticia Oliveira Martins
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Humberto M Pereira
- Instituto de Física de São Carlos, Universidade São Paulo, São Carlos, Brazil
| | - Márcia Waddington-Cruz
- Centro de Estudos de Paramiloidose Antônio Rodrigues de Mello, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Lucas Palhano
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Mohseni N, Royster A, Ren S, Ma Y, Pintado M, Mir M, Mir S. A novel compound targets the feline infectious peritonitis virus nucleocapsid protein and inhibits viral replication in cell culture. J Biol Chem 2023; 299:102976. [PMID: 36738790 PMCID: PMC10011503 DOI: 10.1016/j.jbc.2023.102976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Feline infectious peritonitis (FIP) is a serious viral illness in cats, caused by feline coronavirus. Once a cat develops clinical FIP, the prognosis is poor. The effective treatment strategy for coronavirus infections with immunopathological complications such as SARS-CoV-2, MERS, and FIP is focused on antiviral and immunomodulatory agents to inhibit virus replication and enhance the protective immune response. In this article we report the binding and conformational alteration of feline alphacoronavirus (FCoV) nucleocapsid protein by a novel compound K31. K31 noncompetitively inhibited the interaction between the purified nucleocapsid protein and the synthetic 5' terminus of viral genomic RNA in vitro. K31 was well tolerated by cells and inhibited FCoV replication in cell culture with a selective index of 115. A single dose of K31inhibited FCoV replication to an undetectable level in 24 h post treatment. K31 did not affect the virus entry to the host cell but inhibited the postentry steps of virus replication. The nucleocapsid protein forms ribonucleocapsid in association with the viral genomic RNA that serves as a template for transcription and replication of the viral genome. Our results show that K31 treatment disrupted the structural integrity of ribonucleocapsid in virus-infected cells. After the COVID-19 pandemic, most of the antiviral drug development strategies have focused on RdRp and proteases encoded by the viral genome. Our results have shown that nucleocapsid protein is a druggable target for anticoronavirus drug discovery.
Collapse
Affiliation(s)
- Nazleen Mohseni
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Austin Royster
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Songyang Ren
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Yutian Ma
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Melissa Pintado
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Mohammad Mir
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Sheema Mir
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA.
| |
Collapse
|
4
|
Gupta MN, Uversky VN. Pre-Molten, Wet, and Dry Molten Globules en Route to the Functional State of Proteins. Int J Mol Sci 2023; 24:ijms24032424. [PMID: 36768742 PMCID: PMC9916686 DOI: 10.3390/ijms24032424] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Transitions between the unfolded and native states of the ordered globular proteins are accompanied by the accumulation of several intermediates, such as pre-molten globules, wet molten globules, and dry molten globules. Structurally equivalent conformations can serve as native functional states of intrinsically disordered proteins. This overview captures the characteristics and importance of these molten globules in both structured and intrinsically disordered proteins. It also discusses examples of engineered molten globules. The formation of these intermediates under conditions of macromolecular crowding and their interactions with nanomaterials are also reviewed.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-494-5816
| |
Collapse
|
5
|
Glazier AN. Proposed Role for Internal Lens Pressure as an Initiator of Age-Related Lens Protein Aggregation Diseases. Clin Ophthalmol 2022; 16:2329-2340. [PMID: 35924184 PMCID: PMC9342656 DOI: 10.2147/opth.s369676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
The process that initiates lens stiffness evident in age-related lens protein aggregation diseases is thought to be mainly the result of oxidation. While oxidation is a major contributor, the exposure of lens proteins to physical stress over time increases susceptibility of lens proteins to oxidative damage, and this is believed to play a significant role in initiating these diseases. Accordingly, an overview of key physical stressors and molecular factors known to be implicated in the development of age-related lens protein aggregation diseases is presented, paying particular attention to the consequence of persistent increase in internal lens pressure.
Collapse
|
6
|
The Denaturant- and Mutation-Induced Disassembly of Pseudomonas aeruginosa Hexameric Hfq Y55W Mutant. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123821. [PMID: 35744948 PMCID: PMC9228748 DOI: 10.3390/molecules27123821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
Although oligomeric proteins are predominant in cells, their folding is poorly studied at present. This work is focused on the denaturant- and mutation-induced disassembly of the hexameric mutant Y55W of the Qβ host factor (Hfq) from mesophilic Pseudomonas aeruginosa (Pae). Using intrinsic tryptophan fluorescence, dynamic light scattering (DLS), and high-performance liquid chromatography (HPLC), we show that the dissociation of Hfq Y55W occurs either under the effect of GuHCl or during the pre-denaturing transition, when the protein concentration is decreased, with both events proceeding through the accumulation of stable intermediate states. With an extremely low pH of 1.4, a low ionic strength, and decreasing protein concentration, the accumulated trimers and dimers turn into monomers. Also, we report on the structural features of monomeric Hfq resulting from a triple mutation (D9A/V43R/Y55W) within the inter-subunit surface of the protein. This globular and rigidly packed monomer displays a high thermostability and an oligomer-like content of the secondary structure, although its urea resistance is much lower.
Collapse
|
7
|
Barroso SPC, Vicente Dos Santos AC, Souza Dos Santos P, Dos Santos Silva Couceiro JN, Fernandes Ferreira D, Nico D, Morrot A, Lima Silva J, Cheble de Oliveira A. Inactivation of avian influenza viruses by hydrostatic pressure as a potential vaccine development approach. Access Microbiol 2021; 3:000220. [PMID: 34151171 PMCID: PMC8208760 DOI: 10.1099/acmi.0.000220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Vaccines are a recommended strategy for controlling influenza A infections in humans and animals. Here, we describe the effects of hydrostatic pressure on the structure, morphology and functional characteristics of avian influenza A H3N8 virus. The effect of hydrostatic pressure for 3 h on H3N8 virus revealed that the particles were resistant to this condition, and the virus displayed only a discrete conformational change. We found that pressure of 3 kbar applied for 6 h was able to inhibit haemagglutination and infectivity while virus replication was no longer observed, suggesting that full virus inactivation occurred at this point. However, the neuraminidase activity was not affected at this approach suggesting the maintenance of neutralizing antibody epitopes in this key antigen. Our data bring important information for the area of structural virology of enveloped particles and support the idea of applying pressure-induced inactivation as a tool for vaccine production.
Collapse
Affiliation(s)
- Shana Priscila Coutinho Barroso
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Laboratório de Biologia Molecular, Instituto de Pesquisas Biomédicas, Hospital Naval Marcílio Dias, Marinha do Brasil, Brazil
| | - Ana Clara Vicente Dos Santos
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Patrícia Souza Dos Santos
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Centro Universitário IBMR, Rio de Janeiro, RJ, Brazil
| | | | - Davis Fernandes Ferreira
- Departamento de Virologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Dirlei Nico
- Departamento de Virologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alexandre Morrot
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.,Faculdade de Medicina, Departamento de Clínica Médica, Centro de Pesquisa em Tuberculose,, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jerson Lima Silva
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Andrea Cheble de Oliveira
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| |
Collapse
|
8
|
Aberrant environment and PS-binding to calnuc C-terminal tail drives exosomal packaging and its metastatic ability. Biochem J 2021; 478:2265-2283. [PMID: 34047336 DOI: 10.1042/bcj20210016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023]
Abstract
The characteristic features of cancer cells are aberrant (acidic) intracellular pH and elevated levels of phosphatidylserine. The primary focus of cancer research is concentrated on the discovery of biomarkers directed towards early diagnosis and therapy. It has been observed that azoxymethane-treated mice demonstrate an increased expression of calnuc (a multi-domain, Ca2+- and DNA-binding protein) in their colon, suggesting it to be a good biomarker of carcinogenesis. We show that culture supernatants from tumor cells have significantly higher amounts of secreted calnuc compared to non-tumor cells, selectively packaged into exosomes. Exosomal calnuc is causal for epithelial-mesenchymal transition and atypical migration in non-tumor cells, which are key events in tumorigenesis and metastasis. In vitro studies reveal a significant affinity for calnuc towards phosphatidylserine, specifically to its C-terminal region, leading to the formation of 'molten globule' conformation. Similar structural changes are observed at acidic pH (pH 4), which demonstrates the role of the acidic microenvironment in causing the molten globule conformation and membrane interaction. On a precise note, we propose that the molten globule structure of calnuc caused by aberrant conditions in cancer cells to be the causative mechanism underlying its exosome-mediated secretion, thereby driving metastasis.
Collapse
|
9
|
Alves de Souza SM, Fernandes TVA, Kalume DE, T R Lima LM, Pascutti PG, de Souza TLF. Physicochemical and structural properties of lunasin revealed by spectroscopic, chromatographic and molecular dynamics approaches. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2020; 1868:140440. [PMID: 32376479 DOI: 10.1016/j.bbapap.2020.140440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
Lunasin is a 43-amino acid peptide from seeds and grains with bioavailability in humans and potent chemotherapeutic action against several cancer cell lines. Here, we investigate new information about the physicochemical and structural properties of lunasin using circular dichroism (CD), fluorescence spectroscopy, electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS), size exclusion chromatography (SEC), molecular dynamics (MD), and bioinformatics. CD analysis and disorder prediction obtained by PONDR indicate that lunasin has a mostly unordered structure. Double wavelength [θ]222nm x [θ]200nm plot data suggests that lunasin is an intrinsically disordered peptide (IDP) in a pre-molten globule-like (PMG-like) state, while CD spectrum deconvolution and MD simulation indicate small β-strand content. The presence of residual structure was supported by loss of CD signal at 222 nm after treatment with urea and by increasing fluorescence emission upon bis-ANS binding. Lunasin also demonstrated stability to heating up to the temperature of 100 °C, as verified by CD. MD and CD analyses in the presence of TFE and MoRFpred prediction indicated the helix propensity of lunasin. ESI-IMS-MS data revealed that lunasin shows a propensity to form disulfide bonds at the conditions used. MD data also indicated that disulfide bond formation affects the adopted structure, showing a possible role of aspartyl-end in structure stabilization and compaction. In conclusion, our data support a characterization of lunasin as a peptide with an intrinsic disorder in a PMG-like state and reveal new aspects about its structural stability and plasticity, as well as the effects of disulfide bond formation and electrostatic attractions.
Collapse
Affiliation(s)
- Stephanny Miranda Alves de Souza
- Laboratório de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Programa de Pós-Graduação em Nanobiossistemas (PPGIM-NANOBIOS), Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tácio Vinício Amorim Fernandes
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Laboratório de Macromoléculas, Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia - INMETRO, Duque de Caxias, RJ 25250-020, Brazil
| | - Dário Eluan Kalume
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-360, Brazil
| | - Luís Maurício T R Lima
- Laboratório de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Macromoléculas, Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia - INMETRO, Duque de Caxias, RJ 25250-020, Brazil
| | - Pedro Geraldo Pascutti
- Programa de Pós-Graduação em Nanobiossistemas (PPGIM-NANOBIOS), Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Theo Luiz Ferraz de Souza
- Laboratório de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Programa de Pós-Graduação em Nanobiossistemas (PPGIM-NANOBIOS), Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
10
|
Structural and conformational behavior of MurE ligase from Salmonella enterica serovar Typhi at different temperature and pH conditions. Int J Biol Macromol 2020; 150:389-399. [DOI: 10.1016/j.ijbiomac.2020.01.306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/20/2022]
|
11
|
Alderson TR, Ying J, Bax A, Benesch JLP, Baldwin AJ. Conditional Disorder in Small Heat-shock Proteins. J Mol Biol 2020; 432:3033-3049. [PMID: 32081587 PMCID: PMC7245567 DOI: 10.1016/j.jmb.2020.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/27/2020] [Accepted: 02/09/2020] [Indexed: 12/31/2022]
Abstract
Small heat-shock proteins (sHSPs) are molecular chaperones that respond to cellular stresses to combat protein aggregation. HSP27 is a critical human sHSP that forms large, dynamic oligomers whose quaternary structures and chaperone activities depend on environmental factors. Upon exposure to cellular stresses, such as heat shock or acidosis, HSP27 oligomers can dissociate into dimers and monomers, which leads to significantly enhanced chaperone activity. The structured core of the protein, the α-crystallin domain (ACD), forms dimers and can prevent the aggregation of substrate proteins to a similar degree as the full-length protein. When the ACD dimer dissociates into monomers, it partially unfolds and exhibits enhanced activity. Here, we used solution-state NMR spectroscopy to characterize the structure and dynamics of the HSP27 ACD monomer. Web show that the monomer is stabilized at low pH and that its backbone chemical shifts, 15N relaxation rates, and 1H-15N residual dipolar couplings suggest structural changes and rapid motions in the region responsible for dimerization. By analyzing the solvent accessible and buried surface areas of sHSP structures in the context of a database of dimers that are known to dissociate into disordered monomers, we predict that ACD dimers from sHSPs across all kingdoms of life may partially unfold upon dissociation. We propose a general model in which conditional disorder-the partial unfolding of ACDs upon monomerization-is a common mechanism for sHSP activity.
Collapse
Affiliation(s)
- T Reid Alderson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Justin L P Benesch
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Andrew J Baldwin
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| |
Collapse
|
12
|
Chen G, Wang S, Feng B, Jiang B, Miao M. Interaction between soybean protein and tea polyphenols under high pressure. Food Chem 2019; 277:632-638. [PMID: 30502197 DOI: 10.1016/j.foodchem.2018.11.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/29/2018] [Accepted: 11/04/2018] [Indexed: 11/23/2022]
Abstract
Tea polyphenols (TP) and soybean proteins (SP) are important materials in food industry. High hydrostatic pressure (HHP) is a useful tool for improvement of protein's function. This study evaluated the interactions between the polyphenol and HHP-treated protein using circular dichroism, fluorescence spectroscopy and molecular modeling. The high pressure at 400 MPa significantly modified the secondary structure of SP by increasing the β-sheet content and decreasing the α-helix content, while the addition of 0.1% (w/v) tea ployphenol appeared to protect the α-helix structure. The surface hydrophobicity decreased with HHP treatment and the addition of TP. The optimal solubility of native SP was 0.258 g/mL at 0.08% (w/v) TP. Together with HHP treatment; TP increased the protein solubility to 0.50 g/mL and the emulsifying activity was enhanced approximately three times, up to 43.5%. The micro-texture of SP matrix was also improved with TP and HHP treatment. Both the hydrogen bonding and hydrophobic interaction between TP and SP were elucidated using docking method. Apart from the hydrogen bonding, the Pi-Pi interaction was observed in the binding of phenolic compounds to 7S or 11S globular protein.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China; School of Food Science and Technology, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, PR China
| | - Shuting Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
13
|
Julius K, Al-Ayoubi SR, Paulus M, Tolan M, Winter R. The effects of osmolytes and crowding on the pressure-induced dissociation and inactivation of dimeric LADH. Phys Chem Chem Phys 2018; 20:7093-7104. [DOI: 10.1039/c7cp08242h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Compatible osmolytes are able to efficiently modulate the oligomeric state, stability and activity of enzymes at high pressures.
Collapse
Affiliation(s)
- Karin Julius
- Fakultät Physik/DELTA
- TU Dortmund University
- 44221 Dortmund
- Germany
| | - Samy R. Al-Ayoubi
- Physical Chemistry I – Biophysical Chemistry
- Department of Chemistry and Chemical Biology
- TU Dortmund University
- 44227 Dortmund
- Germany
| | - Michael Paulus
- Fakultät Physik/DELTA
- TU Dortmund University
- 44221 Dortmund
- Germany
| | - Metin Tolan
- Fakultät Physik/DELTA
- TU Dortmund University
- 44221 Dortmund
- Germany
| | - Roland Winter
- Physical Chemistry I – Biophysical Chemistry
- Department of Chemistry and Chemical Biology
- TU Dortmund University
- 44227 Dortmund
- Germany
| |
Collapse
|
14
|
de Oliveira GA, Silva JL. The push-and-pull hypothesis in protein unfolding, misfolding and aggregation. Biophys Chem 2017; 231:20-26. [DOI: 10.1016/j.bpc.2017.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023]
|
15
|
de Souza TLF, de Lima SMB, Braga VLDA, Peabody DS, Ferreira DF, Bianconi ML, Gomes AMDO, Silva JL, de Oliveira AC. Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein. PeerJ 2016; 4:e2670. [PMID: 27867765 PMCID: PMC5111903 DOI: 10.7717/peerj.2670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/08/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) core protein, in addition to its structural role to form the nucleocapsid assembly, plays a critical role in HCV pathogenesis by interfering in several cellular processes, including microRNA and mRNA homeostasis. The C-terminal truncated HCV core protein (C124) is intrinsically unstructured in solution and is able to interact with unspecific nucleic acids, in the micromolar range, and to assemble into nucleocapsid-like particles (NLPs) in vitro. The specificity and propensity of C124 to the assembly and its implications on HCV pathogenesis are not well understood. METHODS Spectroscopic techniques, transmission electron microscopy and calorimetry were used to better understand the propensity of C124 to fold or to multimerize into NLPs when subjected to different conditions or in the presence of unspecific nucleic acids of equivalent size to cellular microRNAs. RESULTS The structural analysis indicated that C124 has low propensity to self-folding. On the other hand, for the first time, we show that C124, in the absence of nucleic acids, multimerizes into empty NLPs when subjected to a pH close to its isoelectric point (pH ≈ 12), indicating that assembly is mainly driven by charge neutralization. Isothermal calorimetry data showed that the assembly of NLPs promoted by nucleic acids is enthalpy driven. Additionally, data obtained from fluorescence correlation spectroscopy show that C124, in nanomolar range, was able to interact and to sequester a large number of short unspecific nucleic acids into NLPs. DISCUSSION Together, our data showed that the charge neutralization is the major factor for the nucleocapsid-like particles assembly from C-terminal truncated HCV core protein. This finding suggests that HCV core protein may physically interact with unspecific cellular polyanions, which may correspond to microRNAs and mRNAs in a host cell infected by HCV, triggering their confinement into infectious particles.
Collapse
Affiliation(s)
- Theo Luiz Ferraz de Souza
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Vanessa L. de Azevedo Braga
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David S. Peabody
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, United States
| | - Davis Fernandes Ferreira
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M. Lucia Bianconi
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre Marco de Oliveira Gomes
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson Lima Silva
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andréa Cheble de Oliveira
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Salim NN, Ganaie SS, Roy A, Jeeva S, Mir MA. Targeting a Novel RNA-Protein Interaction for Therapeutic Intervention of Hantavirus Disease. J Biol Chem 2016; 291:24702-24714. [PMID: 27733686 DOI: 10.1074/jbc.m116.750729] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/11/2016] [Indexed: 12/14/2022] Open
Abstract
An evolutionarily conserved sequence at the 5' terminus of hantaviral genomic RNA plays an important role in viral transcription initiation and packaging of the viral genome into viral nucleocapsids. Interaction of viral nucleocapsid protein (N) with this conserved sequence facilitates mRNA translation by a unique N-mediated translation strategy. Whereas this evolutionarily conserved sequence facilitates virus replication with the assistance of N in eukaryotic hosts having multifaceted antiviral defense, we demonstrate its interaction with N presents a novel target for therapeutic intervention of hantavirus disease. Using a high throughput screening approach, we identified three lead inhibitors that bind and induce structural perturbations in N. The inhibitors interrupt N-RNA interaction and abrogate both viral genomic RNA synthesis and N-mediated translation strategy without affecting the canonical translation machinery of the host cell. The inhibitors are well tolerated by cells and inhibit hantavirus replication with the same potency as ribavarin, a commercially available antiviral. We report the identification of a unique chemical scaffold that disrupts a critical RNA-protein interaction in hantaviruses and holds promise for the development of the first anti-hantaviral therapeutic with broad spectrum antiviral activity.
Collapse
Affiliation(s)
- Nilshad N Salim
- From the Kansas University Medical Center, Kansas City, Kansas 66160
| | - Safder S Ganaie
- From the Kansas University Medical Center, Kansas City, Kansas 66160
| | - Anuradha Roy
- the University of Kansas, Lawrence, Kansas 66045, and
| | - Subbiah Jeeva
- the College of Veterinary Medicine, Western University of Health Sciences, Pomona, California 91766
| | - Mohammad A Mir
- the College of Veterinary Medicine, Western University of Health Sciences, Pomona, California 91766.
| |
Collapse
|
17
|
A hypothesis to reconcile the physical and chemical unfolding of proteins. Proc Natl Acad Sci U S A 2015; 112:E2775-84. [PMID: 25964355 DOI: 10.1073/pnas.1500352112] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
High pressure (HP) or urea is commonly used to disturb folding species. Pressure favors the reversible unfolding of proteins by causing changes in the volumetric properties of the protein-solvent system. However, no mechanistic model has fully elucidated the effects of urea on structure unfolding, even though protein-urea interactions are considered to be crucial. Here, we provide NMR spectroscopy and 3D reconstructions from X-ray scattering to develop the "push-and-pull" hypothesis, which helps to explain the initial mechanism of chemical unfolding in light of the physical events triggered by HP. In studying MpNep2 from Moniliophthora perniciosa, we tracked two cooperative units using HP-NMR as MpNep2 moved uphill in the energy landscape; this process contrasts with the overall structural unfolding that occurs upon reaching a threshold concentration of urea. At subdenaturing concentrations of urea, we were able to trap a state in which urea is preferentially bound to the protein (as determined by NMR intensities and chemical shifts); this state is still folded and not additionally exposed to solvent [fluorescence and small-angle X-ray scattering (SAXS)]. This state has a higher susceptibility to pressure denaturation (lower p1/2 and larger ΔVu); thus, urea and HP share concomitant effects of urea binding and pulling and water-inducing pushing, respectively. These observations explain the differences between the molecular mechanisms that control the physical and chemical unfolding of proteins, thus opening up new possibilities for the study of protein folding and providing an interpretation of the nature of cooperativity in the folding and unfolding processes.
Collapse
|
18
|
Silva JL, Oliveira AC, Vieira TCRG, de Oliveira GAP, Suarez MC, Foguel D. High-Pressure Chemical Biology and Biotechnology. Chem Rev 2014; 114:7239-67. [DOI: 10.1021/cr400204z] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jerson L. Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Andrea C. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Tuane C. R. G. Vieira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Guilherme A. P. de Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Marisa C. Suarez
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
19
|
Abstract
Fluorescence is the most widely used technique to study the effect of pressure on biochemical systems. The use of pressure as a physical variable sheds light into volumetric characteristics of reactions. Here we focus on the effect of pressure on protein solutions using a simple unfolding example in order to illustrate the applications of the methodology. Topics covered in this review include the relationships between practical aspects and technical limitations; the effect of pressure and the study of protein cavities; the interpretation of thermodynamic and relaxation kinetics; and the study of relaxation amplitudes. Finally, we discuss the insights available from the combination of fluorescence and other methods adapted to high pressure, such as SAXS or NMR. Because of the simplicity and accessibility of high-pressure fluorescence, the technique is a starting point that complements appropriately multi-methodological approaches related to understanding protein function, disfunction, and folding from the volumetric point of view.
Collapse
|
20
|
Surmacz-Chwedoruk W, Nieznańska H, Wójcik S, Dzwolak W. Cross-seeding of fibrils from two types of insulin induces new amyloid strains. Biochemistry 2012; 51:9460-9. [PMID: 23127165 DOI: 10.1021/bi301144d] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The irreversibility and autocatalytic character of amyloidogenesis and the polymorphism of amyloid fibrils underlie the phenomenon of self-propagating strains, wherein the mother seed, rather than the seeding environment, determines the properties of daughter fibrils. Here we study the formation of amyloid fibrils from bovine insulin and the recombinant Lys(B31)-Arg(B32) human insulin analog. The two polypeptides are similar enough to cross-seed but, upon spontaneous aggregation, form amyloid fibrils with distinct spectral features in the infrared amide I' band region. When bovine insulin is cross-seeded with the analog amyloid (and vice versa), the shape, absorption maximum, and even fine fingerprint features of the amide I' band are passed from the mother to daughter fibrils with a high degree of fidelity. Although the differences in primary structure between bovine insulin and the Lys(B31)-Arg(B32) analog of human insulin lie outside of the polypeptide's critical amyloidogenic regions, they affect the secondary structure of fibrils, possibly the formation of intermolecular salt bridges, and the susceptibility to dissection and denaturation with dimethyl sulfoxide (DMSO). All these phenotypic features of mother fibrils are imprinted in daughter amyloid upon cross-seeding. Analysis of noncooperative DMSO-induced denaturation of daughter fibrils suggests that the self-propagating polymorphism underlying the emergence of new amyloid strains is encoded on the level of secondary structure. Our findings have been discussed in the context of polymorphism of fibrils, amyloid strains, and possible implications for mechanisms of amyloidogenesis.
Collapse
|
21
|
Monteiro KM, Cardoso MB, Follmer C, da Silveira NP, Vargas DM, Kitajima EW, Zaha A, Ferreira HB. Echinococcus granulosus antigen B structure: subunit composition and oligomeric states. PLoS Negl Trop Dis 2012; 6:e1551. [PMID: 22413028 PMCID: PMC3295803 DOI: 10.1371/journal.pntd.0001551] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 01/12/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Antigen B (AgB) is the major protein secreted by the Echinococcus granulosus metacestode and is involved in key host-parasite interactions during infection. The full comprehension of AgB functions depends on the elucidation of several structural aspects that remain unknown, such as its subunit composition and oligomeric states. METHODOLOGY/PRINCIPAL FINDINGS The subunit composition of E. granulosus AgB oligomers from individual bovine and human cysts was assessed by mass spectrometry associated with electrophoretic analysis. AgB8/1, AgB8/2, AgB8/3 and AgB8/4 subunits were identified in all samples analyzed, and an AgB8/2 variant (AgB8/2v8) was found in one bovine sample. The exponentially modified protein abundance index (emPAI) was used to estimate the relative abundance of the AgB subunits, revealing that AgB8/1 subunit was relatively overrepresented in all samples. The abundance of AgB8/3 subunit varied between bovine and human cysts. The oligomeric states formed by E. granulosus AgB and recombinant subunits available, rAgB8/1, rAgB8/2 and rAgB8/3, were characterized by native PAGE, light scattering and microscopy. Recombinant subunits showed markedly distinct oligomerization behaviors, forming oligomers with a maximum size relation of rAgB8/3>rAgB8/2>rAgB8/1. Moreover, the oligomeric states formed by rAgB8/3 subunit were more similar to those observed for AgB purified from hydatid fluid. Pressure-induced dissociation experiments demonstrated that the molecular assemblies formed by the more aggregative subunits, rAgB8/2 and rAgB8/3, also display higher structural stability. CONCLUSIONS/SIGNIFICANCE For the first time, AgB subunit composition was analyzed in samples from single hydatid cysts, revealing qualitative and quantitative differences between samples. We showed that AgB oligomers are formed by different subunits, which have distinct abundances and oligomerization properties. Overall, our findings have significantly contributed to increase the current knowledge on AgB expression and structure, highlighting issues that may help to understand the parasite adaptive response during chronic infection.
Collapse
Affiliation(s)
- Karina M. Monteiro
- Laboratório de Biologia Molecular de Cestódeos and Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mateus B. Cardoso
- Laboratório Nacional de Luz Síncrotron (LNLS), Campinas, São Paulo, Brazil
| | - Cristian Follmer
- Departamento de Físico-Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nádya P. da Silveira
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daiani M. Vargas
- Laboratório de Biologia Molecular de Cestódeos and Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Elliot W. Kitajima
- Departamento de Entomologia, Fitopatologia e Zoologia Agrícola, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Arnaldo Zaha
- Laboratório de Biologia Molecular de Cestódeos and Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Henrique B. Ferreira
- Laboratório de Biologia Molecular de Cestódeos and Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
22
|
Benanti EL, Chivers PT. Helicobacter pylori NikR protein exhibits distinct conformations when bound to different promoters. J Biol Chem 2011; 286:15728-37. [PMID: 21393642 DOI: 10.1074/jbc.m110.196055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Helicobacter pylori NikR (HpNikR) is a ribbon-helix-helix (RHH) DNA-binding protein that binds to several different promoter regions. The binding site sequences are not absolutely conserved. The ability of HpNikR to discriminate specific DNA sites resides partly in its nine-amino acid N-terminal arm. Previously, indirect evidence indicated that the arm exists in different conformations when HpNikR is bound to the nixA and ureA promoters. Here, we directly examined HpNikR conformation when it was bound to nixA and ureA DNA fragments by tethering (S)-1{[bis(carboxymethyl)amino]methyl}-2-{4-[(2-bromoacetyl)amino]phenylethyl}(carboxymethyl)amino]acetic acid, iron(III) to different positions in the N-terminal arm and RHH DNA binding domain. Different cleavage patterns at each promoter directly demonstrated that both the RHH domain and the arm adopt different conformations on the nixA and ureA promoters. Additionally, the two RHH domain dimers of the HpNikR tetramer are in distinct conformations at ureA. Site-directed mutagenesis identified an interchain salt bridge (Lys(48)-Glu(47')) in the RHH domain remote from the DNA binding interface that is required for high affinity binding to ureA but not nixA. Finally, DNA affinity measurements of wild-type HpNikR and a salt bridge mutant (K48A) to hybrid nixA-ureA promoters demonstrated that inverted repeat half-sites, spacers, and flanking DNA are all required for sequence-specific DNA binding by HpNikR. Notably, the spacer region made the largest contribution to DNA affinity. HpNikR exhibits a substantially expanded regulon compared with other NikR proteins. The results presented here provide a molecular basis for understanding regulatory network expansion by NikR as well as other prokaryotic regulatory proteins.
Collapse
Affiliation(s)
- Erin L Benanti
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
23
|
Schroer MA, Paulus M, Jeworrek C, Krywka C, Schmacke S, Zhai Y, Wieland DCF, Sahle CJ, Chimenti M, Royer CA, Garcia-Moreno B, Tolan M, Winter R. High-pressure SAXS study of folded and unfolded ensembles of proteins. Biophys J 2010; 99:3430-7. [PMID: 21081092 PMCID: PMC2980736 DOI: 10.1016/j.bpj.2010.09.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/19/2010] [Accepted: 09/23/2010] [Indexed: 11/29/2022] Open
Abstract
A structural interpretation of the thermodynamic stability of proteins requires an understanding of the structural properties of the unfolded state. High-pressure small-angle x-ray scattering was used to measure the effects of temperature, pressure, denaturants, and stabilizing osmolytes on the radii of gyration of folded and unfolded state ensembles of staphylococcal nuclease. A set of variants with the internal Val-66 replaced with Ala, Tyr, or Arg was used to examine how changes in the volume and polarity of an internal microcavity affect the dimensions of the native state and the pressure sensitivity of the ensemble. The unfolded state ensembles achieved for these proteins with high pressure were more compact than those achieved at high temperature, and were all very sensitive to the presence of urea and glycerol. Substitutions at the hydrophobic core detectably altered the conformation of the protein, even in the folded state. The introduction of a charged residue, such as Arg, inside the hydrophobic interior of a protein could dramatically alter the structural properties, even those of the unfolded state. The data suggest that a charge at an internal position can interfere with the formation of transient hydrophobic clusters in the unfolded state, and ensure that the pressure-unfolded form of a protein occupies the maximum volume possible. Only at high temperatures does the radius of gyration of the unfolded state ensemble approach the value for a statistical random coil.
Collapse
Affiliation(s)
- Martin A. Schroer
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | | | - Christina Krywka
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Saskia Schmacke
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Yong Zhai
- Fakultät Chemie, Technische Universität Dortmund, Dortmund, Germany
| | | | - Christoph J. Sahle
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Michael Chimenti
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Catherine A. Royer
- Centre de Biochimie Structurale, Institut National de la Santé et de la Recherche Médicale U554, Centre National de la Recherche Scientifique/Unite Mixte de Recherche, 5048 Université de Montpellier, Montpellier, France
| | | | - Metin Tolan
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Roland Winter
- Fakultät Chemie, Technische Universität Dortmund, Dortmund, Germany
| |
Collapse
|
24
|
Bom APDA, Freitas MS, Moreira FS, Ferraz D, Sanches D, Gomes AMO, Valente AP, Cordeiro Y, Silva JL. The p53 core domain is a molten globule at low pH: functional implications of a partially unfolded structure. J Biol Chem 2009; 285:2857-66. [PMID: 19933157 PMCID: PMC2807339 DOI: 10.1074/jbc.m109.075861] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p53 is a transcription factor that maintains genome integrity, and its function is lost in 50% of human cancers. The majority of p53 mutations are clustered within the core domain. Here, we investigate the effects of low pH on the structure of the wild-type (wt) p53 core domain (p53C) and the R248Q mutant. At low pH, the tryptophan residue is partially exposed to the solvent, suggesting a fluctuating tertiary structure. On the other hand, the secondary structure increases, as determined by circular dichroism. Binding of the probe bis-ANS (bis-8-anilinonaphthalene-1-sulfonate) indicates that there is an increase in the exposure of hydrophobic pockets for both wt and mutant p53C at low pH. This behavior is accompanied by a lack of cooperativity under urea denaturation and decreased stability under pressure when p53C is in acidic pH. Together, these results indicate that p53C acquires a partially unfolded conformation (molten-globule state) at low pH (5.0). The hydrodynamic properties of this conformation are intermediate between the native and denatured conformation. 1H-15N HSQC NMR spectroscopy confirms that the protein has a typical molten-globule structure at acidic pH when compared with pH 7.2. Human breast cells in culture (MCF-7) transfected with p53-GFP revealed localization of p53 in acidic vesicles, suggesting that the low pH conformation is present in the cell. Low pH stress also tends to favor high levels of p53 in the cells. Taken together, all of these data suggest that p53 may play physiological or pathological roles in acidic microenvironments.
Collapse
Affiliation(s)
- Ana Paula D Ano Bom
- Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Conformational plasticity of DM43, a metalloproteinase inhibitor from Didelphis marsupialis: Chemical and pressure-induced equilibrium (un)folding studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1379-86. [DOI: 10.1016/j.bbapap.2009.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 03/11/2009] [Accepted: 03/13/2009] [Indexed: 11/19/2022]
|
26
|
Membrane-disruptive properties of the bioinsecticide Jaburetox-2Ec: implications to the mechanism of the action of insecticidal peptides derived from ureases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1848-54. [PMID: 19751848 DOI: 10.1016/j.bbapap.2009.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/28/2009] [Accepted: 09/03/2009] [Indexed: 11/20/2022]
Abstract
Jaburetox-2Ec, a recombinant peptide derived from an urease isoform (JBURE-II), displays high insecticidal activity against important pests such as Spodoptera frugiperda and Dysdercus peruvianus. Although the molecular mechanism of action of ureases-derived peptides remains unclear, previous ab initio data suggest the presence of structural motifs in Jaburetox-2Ec with characteristics similar to those found in a class of pore-forming peptides. Here, we investigated the molecular aspects of the interaction between Jaburetox-2Ec and large unilamellar vesicles. Jaburetox-2Ec displays membrane-disruptive ability on acidic lipid bilayers and this effect is greatly influenced by peptide aggregation. Corroborating with this finding, molecular modeling studies revealed that Jaburetox-2Ec might adopt a well-defined beta-hairpin conformation similar to those found in antimicrobial peptides with membrane disruption properties. In addition, molecular dynamics simulations suggest that the protein is able to anchor at a polar/non-polar interface. In the light of these findings, for the first time it was possible to point out some evidence that the peptide Jaburetox-2Ec interacting with lipid vesicles promotes membrane permeabilization.
Collapse
|
27
|
Silva JL, Foguel D. Hydration, cavities and volume in protein folding, aggregation and amyloid assembly. Phys Biol 2009; 6:015002. [DOI: 10.1088/1478-3975/6/1/015002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Ryan DP, Duncan JL, Lee C, Kuchel PW, Matthews JM. Assembly of the oncogenic DNA-binding complex LMO2-Ldb1-TAL1-E12. Proteins 2007; 70:1461-74. [PMID: 17910069 DOI: 10.1002/prot.21638] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nuclear proteins TAL1 (T-cell acute leukaemia protein 1) and LMO2 (LIM-only protein 2) have critical roles in haematopoietic development, but are also often aberrantly activated in T-cell acute lymphoblastic leukaemia. TAL1 and LMO2 operate within multifactorial protein-DNA complexes that regulate gene expression in the developing blood cell. TAL1 is a tissue-specific basic helix-loop-helix (bHLH) protein that binds bHLH domains of ubiquitous E-proteins, (E12 and E47), to bind E-box (CANNTG) DNA motifs. TAL1(bHLH) also interacts specifically with the LIM domains of LMO2, which in turn bind Ldb1 (LIM-domain binding protein 1). Here we used biophysical methods to characterize the assembly of a five-component complex containing TAL1, LMO2, Ldb1, E12, and DNA. The bHLH domains of TAL1 and E12 alone primarily formed helical homodimers, but together preferentially formed heterodimers, to which LMO2 bound with high affinity (K(A) approximately 10(8) M(-1)). The resulting TAL1/E12/LMO2 complex formed in the presence or absence of DNA, but the different complexes preferentially bound different Ebox-sequences. Our data provide biophysical evidence for a mechanism, by which LMO2 and TAL1 both regulate transcription in normal blood cell development, and synergistically disrupt E2A function in T-cells to promote the onset of leukaemia.
Collapse
Affiliation(s)
- Daniel P Ryan
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
29
|
Braga CACA, Carvalho D, Lara FA, Cortines JR, Moore SD, Prevelige PE, Foguel D. An Aggregation-Prone Intermediate Species Is Present in the Unfolding Pathway of the Monomeric Portal Protein of Bacteriophage P22: Implications for Portal Assembly. Biochemistry 2007; 46:7353-64. [PMID: 17542560 DOI: 10.1021/bi700006d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The head of the P22 bacteriophage is interrupted by a unique dodecameric portal vertex that serves as a conduit for the entrance and exit of the DNA. Here, the in vitro unfolding/refolding processes of the portal protein of P22 were investigated at different temperatures (1, 25, and 37 degrees C) through the use of urea and high hydrostatic pressure (HHP) combined with spectroscopic techniques. We have characterized an intermediate species, IU, which forms at 25 degrees C during unfolding or refolding of the portal protein in 2-4 M urea. IU readily forms amorphous aggregates, rendering the folding process irreversible. On the other hand, at 1 degrees C, a two-state process is observed (DeltaGf = -2.2 kcal/mol). When subjected to HHP at 25 or 37 degrees C, the portal monomer undergoes partial denaturation, also forming an intermediate species, which we call IP. IP also tends to aggregate but, differently from IU, aggregates into a ring-like structure as seen by size-exclusion chromatography and electron microscopy. Again, at 1 degrees C the unfolding induced by HHP proved to be reversible, with DeltaGf = -2.4 kcal/mol and DeltaV = 72 mL/mol. Interestingly, at 25 degrees C, the binding of the hydrophobic probe bis-ANS to the native portal protein destabilizes it and completely blocks its aggregation under HHP. These data are relevant to the process by which the portal protein assembles into dodecamers in vivo, since species such as IP must prevail over IU in order to guarantee the proper ring formation.
Collapse
Affiliation(s)
- Carolina A C A Braga
- Instituto de Bioquímica Médica, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Matozo HC, Santos MAM, de Oliveira Neto M, Bleicher L, Lima LMTR, Iuliano R, Fusco A, Polikarpov I. Low-resolution structure and fluorescence anisotropy analysis of protein tyrosine phosphatase eta catalytic domain. Biophys J 2007; 92:4424-32. [PMID: 17400699 PMCID: PMC1877755 DOI: 10.1529/biophysj.106.094961] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rat protein tyrosine phosphatase eta, rPTPeta, is a class I "classical" transmembrane RPTP, with an intracellular portion composed of a unique catalytic region. The rPTPeta and the human homolog DEP-1 are downregulated in rat and human neoplastic cells, respectively. However, the malignant phenotype is reverted after exogenous reconstitution of rPTPeta, suggesting that its function restoration could be an important tool for gene therapy of human cancers. Using small-angle x-ray scattering (SAXS) and biophysical techniques, we characterized the intracellular catalytic domain of rat protein tyrosine phosphatase eta (rPTPetaCD) in solution. The protein forms dimers in solution as confirmed by SAXS data analysis. The SAXS data also indicated that rPTPetaCD dimers are elongated and have an average radius of gyration of 2.65 nm and a D(max) of 8.5 nm. To further study the rPTPetaCD conformation in solution, we built rPTPetaCD homology models using as scaffolds the crystallographic structures of RPTPalpha-D1 and RPTPmicro-D1 dimers. These models were, then, superimposed onto ab initio low-resolution SAXS structures. The structural comparisons and sequence alignment analysis of the putative dimerization interfaces provide support to the notion that the rPTPetaCD dimer architecture is more closely related to the crystal structure of autoinhibitory RPTPalpha-D1 dimer than to the dimeric arrangement exemplified by RPTPmicro-D1. Finally, the characterization of rPTPetaCD by fluorescence anisotropy measurements demonstrates that the dimer dissociation is concentration dependent with a dissociation constant of 21.6 +/- 2.0 microM.
Collapse
Affiliation(s)
- Huita C Matozo
- Instituto de Física de São Carlos, Departamento de Física e Informática, Universidade de São Paulo, São Carlos, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Senear DF, Tretyachenko-Ladokhina V, Opel ML, Aeling KA, Wesley Hatfield G, Franklin LM, Darlington RC, Alexander Ross J. Pressure dissociation of integration host factor-DNA complexes reveals flexibility-dependent structural variation at the protein-DNA interface. Nucleic Acids Res 2007; 35:1761-72. [PMID: 17324943 PMCID: PMC1874591 DOI: 10.1093/nar/gkl1122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
E. coli Integration host factor (IHF) condenses the bacterial nucleoid by wrapping DNA. Previously, we showed that DNA flexibility compensates for structural characteristics of the four consensus recognition elements associated with specific binding (Aeling et al., J. Biol. Chem. 281, 39236-39248, 2006). If elements are missing, high-affinity binding occurs only if DNA deformation energy is low. In contrast, if all elements are present, net binding energy is unaffected by deformation energy. We tested two hypotheses for this observation: in complexes containing all elements, (1) stiff DNA sequences are less bent upon binding IHF than flexible ones; or (2) DNA sequences with differing flexibility have interactions with IHF that compensate for unfavorable deformation energy. Time-resolved Förster resonance energy transfer (FRET) shows that global topologies are indistinguishable for three complexes with oligonucleotides of different flexibility. However, pressure perturbation shows that the volume change upon binding is smaller with increasing flexibility. We interpret these results in the context of Record and coworker's model for IHF binding (J. Mol. Biol. 310, 379-401, 2001). We propose that the volume changes reflect differences in hydration that arise from structural variation at IHF-DNA interfaces while the resulting energetic compensation maintains the same net binding energy.
Collapse
Affiliation(s)
- Donald F. Senear
- Department of Molecular Biology and Biochemistry, Department of Microbiology and Molecular Genetics, College of Medicine, Institute of Genomics and Bioinformatics, University of California, Irvine CA 92697 and Department of Chemistry, The University of Montana, Missoula, MT 59812, USA
- *To whom correspondence should be addressed: (949) 824-8014(949) 824-8551
| | - Vira Tretyachenko-Ladokhina
- Department of Molecular Biology and Biochemistry, Department of Microbiology and Molecular Genetics, College of Medicine, Institute of Genomics and Bioinformatics, University of California, Irvine CA 92697 and Department of Chemistry, The University of Montana, Missoula, MT 59812, USA
| | - Michael L. Opel
- Department of Molecular Biology and Biochemistry, Department of Microbiology and Molecular Genetics, College of Medicine, Institute of Genomics and Bioinformatics, University of California, Irvine CA 92697 and Department of Chemistry, The University of Montana, Missoula, MT 59812, USA
| | - Kimberly A. Aeling
- Department of Molecular Biology and Biochemistry, Department of Microbiology and Molecular Genetics, College of Medicine, Institute of Genomics and Bioinformatics, University of California, Irvine CA 92697 and Department of Chemistry, The University of Montana, Missoula, MT 59812, USA
| | - G. Wesley Hatfield
- Department of Molecular Biology and Biochemistry, Department of Microbiology and Molecular Genetics, College of Medicine, Institute of Genomics and Bioinformatics, University of California, Irvine CA 92697 and Department of Chemistry, The University of Montana, Missoula, MT 59812, USA
| | - Laurie M. Franklin
- Department of Molecular Biology and Biochemistry, Department of Microbiology and Molecular Genetics, College of Medicine, Institute of Genomics and Bioinformatics, University of California, Irvine CA 92697 and Department of Chemistry, The University of Montana, Missoula, MT 59812, USA
| | - Reuben C. Darlington
- Department of Molecular Biology and Biochemistry, Department of Microbiology and Molecular Genetics, College of Medicine, Institute of Genomics and Bioinformatics, University of California, Irvine CA 92697 and Department of Chemistry, The University of Montana, Missoula, MT 59812, USA
| | - J.B. Alexander Ross
- Department of Molecular Biology and Biochemistry, Department of Microbiology and Molecular Genetics, College of Medicine, Institute of Genomics and Bioinformatics, University of California, Irvine CA 92697 and Department of Chemistry, The University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
32
|
Follmer C, Romão L, Einsiedler CM, Porto TCR, Lara FA, Moncores M, Weissmüller G, Lashuel HA, Lansbury P, Neto VM, Silva JL, Foguel D. Dopamine Affects the Stability, Hydration, and Packing of Protofibrils and Fibrils of the Wild Type and Variants of α-Synuclein†. Biochemistry 2007; 46:472-82. [PMID: 17209557 DOI: 10.1021/bi061871+] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is characterized by the presence of cytoplasmic inclusions composed of alpha-synuclein (alpha-syn) in dopaminergic neurons. This suggests a pivotal role of dopamine (DA) on PD development. Here, we show that DA modulates differently the stability of protofibrils (PF) and fibrils (F) composed of wild type or variants of alpha-syn (A30P and A53T) as probed by high hydrostatic pressure (HHP). While in the absence of DA, all alpha-syn PF exhibited identical stability, in its presence, the variant-composed PF acquired a greater stability (DAPFwt < DAPFA30P = DAPFA53T), implying that they would last longer, which could shed light onto why these mutations are so aggressive. When alpha-syn was incubated for long times (18 days) in the presence of DA, we observed the formation of F by electronic microscopy, suggesting that the PF trapped in the presence of DA in short times can evolve into F. The stability of F was also altered by DA. DAFwt was more labile than Fwt, indicating that the former would be more susceptible to breakage. PFA30P and DAPFA30P, when added to mesencephalic and cortical neurons in culture, decreased the number and length of neurites and increased the number of apoptotic cells. Surprisingly, these toxic effects of PFA30P and DAPFA30P were practically abolished with HHP treatment, which was able to break the PF into smaller aggregates, as seen by atomic force microscopy. These results suggest that strategies aimed at breaking and/or clearing these aggregates is promising in alleviating the symptoms of PD.
Collapse
Affiliation(s)
- Cristian Follmer
- Instituto de Bioquímica Médica, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gonçalves RB, Mendes YS, Soares MR, Katpally U, Smith TJ, Silva JL, Oliveira AC. VP4 protein from human rhinovirus 14 is released by pressure and locked in the capsid by the antiviral compound WIN. J Mol Biol 2006; 366:295-306. [PMID: 17161425 PMCID: PMC1995025 DOI: 10.1016/j.jmb.2006.11.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/05/2006] [Accepted: 11/08/2006] [Indexed: 11/29/2022]
Abstract
Rhinoviruses are the major causative agents of the common cold in humans. Here, we studied the stability of human rhinovirus type 14 (HRV14) under conditions of high hydrostatic pressure, low temperature, and urea in the absence and presence of an antiviral drug. Capsid dissociation and changes in the protein conformation were monitored by fluorescence spectroscopy, light scattering, circular dichroism, gel filtration chromatography, mass spectrometry and infectivity assays. The data show that high pressure induces the dissociation of HRV14 and that this process is inhibited by WIN 52084. MALDI-TOF mass spectrometry experiments demonstrate that VP4, the most internal viral protein, is released from the capsid by pressure treatment. This release of VP4 is concomitant with loss of infectivity. Our studies also show that at least one antiviral effect of the WIN drugs involves the locking of VP4 inside the capsid by blocking the dynamics associated with cell attachment.
Collapse
Affiliation(s)
- Rafael B. Gonçalves
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, CCS, Universidade Federal do Rio de Janeiro, RJ, Brazil, 21941-590
| | - Ygara S. Mendes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, CCS, Universidade Federal do Rio de Janeiro, RJ, Brazil, 21941-590
| | - Marcia R. Soares
- Unidade Multidisciplinar de Genômica, IBCCF, UFRJ, RJ, Brazil, 21941-590
| | - Umesh Katpally
- Donald Danforth Plant Science Center, 63132, Saint Louis, MO, USA
| | - Thomas J. Smith
- Donald Danforth Plant Science Center, 63132, Saint Louis, MO, USA
| | - Jerson L. Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, CCS, Universidade Federal do Rio de Janeiro, RJ, Brazil, 21941-590
- § To whom correspondence should be addressed: Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Av. Bauhinia, 400 - CCS/Sl. E1-008, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil. Tel./Fax: + 55 21 2562-6756; e-mail: ;
| | - Andréa C. Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, CCS, Universidade Federal do Rio de Janeiro, RJ, Brazil, 21941-590
- § To whom correspondence should be addressed: Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Av. Bauhinia, 400 - CCS/Sl. E1-008, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil. Tel./Fax: + 55 21 2562-6756; e-mail: ;
| |
Collapse
|
34
|
Botelho MG, Rietveld AWM, Ferreira ST. Long-lived conformational isomerism of protein dimers: the role of the free energy of subunit association. Biophys J 2006; 91:2826-32. [PMID: 16861278 PMCID: PMC1578470 DOI: 10.1529/biophysj.106.089706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The association of protein subunits to form N-mers (N >or= 3) does not follow the dependence on the law of mass action predicted by the classical thermodynamic description used for the equilibrium of association of small molecules. For those anomalous cases, a so-called deterministic model has been previously proposed. The latter model was based on the empirical observation that the dynamics of subunit exchange between protein oligomers can be very slow, leading to the existence of long-lived conformational isomers and to a persistently heterogeneous ensemble of oligomers in solution. Contrary to the expectation for a protein dimer, we have recently shown that the subunit association of triosephosphate isomerase (TIM) could also be described as a deterministic process and that long-lived conformational isomers of TIM could be isolated in solution. Here we show that a), observation of hysteresis in pressure dissociation curves is an additional indicator of deterministic behavior; b), the extent of deviation from the classical thermodynamic behavior correlates with the free-energy change of subunit association; and c), experimental manipulation of the free energy of subunit association through the addition of a subdenaturing concentration of a chaotropic agent restores the concentration dependence of subunit association of TIM. A model that explains these features and its biological relevance is discussed.
Collapse
Affiliation(s)
- Michelle G Botelho
- Programa de Bioquimica e Biofisica Celular, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-590, Brazil
| | | | | |
Collapse
|
35
|
Gu J, Gribskov M, Bourne PE. Wiggle-predicting functionally flexible regions from primary sequence. PLoS Comput Biol 2006; 2:e90. [PMID: 16839194 PMCID: PMC1500818 DOI: 10.1371/journal.pcbi.0020090] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 06/02/2006] [Indexed: 11/18/2022] Open
Abstract
The Wiggle series are support vector machine-based predictors that identify regions of functional flexibility using only protein sequence information. Functionally flexible regions are defined as regions that can adopt different conformational states and are assumed to be necessary for bioactivity. Many advances have been made in understanding the relationship between protein sequence and structure. This work contributes to those efforts by making strides to understand the relationship between protein sequence and flexibility. A coarse-grained protein dynamic modeling approach was used to generate the dataset required for support vector machine training. We define our regions of interest based on the participation of residues in correlated large-scale fluctuations. Even with this structure-based approach to computationally define regions of functional flexibility, predictors successfully extract sequence-flexibility relationships that have been experimentally confirmed to be functionally important. Thus, a sequence-based tool to identify flexible regions important for protein function has been created. The ability to identify functional flexibility using a sequence based approach complements structure-based definitions and will be especially useful for the large majority of proteins with unknown structures. The methodology offers promise to identify structural genomics targets amenable to crystallization and the possibility to engineer more flexible or rigid regions within proteins to modify their bioactivity.
Collapse
Affiliation(s)
- Jenny Gu
- Department of Pharmacology and Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA.
| | | | | |
Collapse
|
36
|
Sousa FJR, Lima LMTR, Pacheco ABF, Oliveira CLP, Torriani I, Almeida DF, Foguel D, Silva JL, Mohana-Borges R. Tetramerization of the LexA repressor in solution: implications for gene regulation of the E.coli SOS system at acidic pH. J Mol Biol 2006; 359:1059-74. [PMID: 16701697 DOI: 10.1016/j.jmb.2006.03.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 03/30/2006] [Accepted: 03/31/2006] [Indexed: 11/25/2022]
Abstract
Structural changes on LexA repressor promoted by acidic pH have been investigated. Intense protein aggregation occurred around pH 4.0 but was not detected at pH values lower than pH 3.5. The center of spectral mass of the Trp increased 400 cm(-1) at pH 2.5 relatively to pH 7.2, an indication that LexA has undergone structural reorganization but not denaturation. The Trp fluorescence polarization of LexA at pH 2.5 indicated that its hydrodynamic volume was larger than its dimer at pH 7.2. 4,4'-Dianilino-1,1'-binaphthyl-5,5'- disulfonic acid (bis-ANS) experiments suggested that the residues in the hydrophobic clefts already present at the LexA structure at neutral pH had higher affinity to it at pH 2.5. A 100 kDa band corresponding to a tetramer was obtained when LexA was subject to pore-limiting native polyacrylamide gel electrophoresis at this pH. The existence of this tetrameric state was also confirmed by small angle X-ray scattering (SAXS) analysis at pH 2.5. 1D 1H NMR experiments suggested that it was composed of a mixture of folded and unfolded regions. Although 14,000-fold less stable than the dimeric LexA, it showed a tetramer-monomer dissociation at pH 2.5 from the hydrostatic pressure and urea curves. Albeit with half of the affinity obtained at pH 7.2 (Kaff of 170 nM), tetrameric LexA remained capable of binding recA operator sequence at pH 2.5. Moreover, different from the absence of binding to the negative control polyGC at neutral pH, LexA bound to this sequence with a Kaff value of 1415 nM at pH 2.5. A binding stoichiometry experiment at both pH 7.2 and pH 2.5 showed a [monomeric LexA]/[recA operator] ratio of 2:1. These results are discussed in relation to the activation of the Escherichia coli SOS regulon in response to environmental conditions resulting in acidic intracellular pH. Furthermore, oligomerization of LexA is proposed to be a possible regulation mechanism of this regulon.
Collapse
Affiliation(s)
- Francisco J R Sousa
- Laboratório de Genômica Estrutural, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janerio, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
McCarthy AN, Grigera JR. Effect of pressure on the conformation of proteins. A molecular dynamics simulation of lysozyme. J Mol Graph Model 2006; 24:254-61. [PMID: 16243554 DOI: 10.1016/j.jmgm.2005.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 09/18/2005] [Accepted: 09/20/2005] [Indexed: 11/22/2022]
Abstract
The effect of pressure on the structure and mobility of lysozyme was studied by molecular dynamics computer simulation at 1 and 3 kbar (1 atm = 1.01325 bar = 101.325 kPa). The results have good agreement with the available experimental data, allowing the analysis of other features of the effect of pressure on the protein solution. The studies of mobility show that although the general mobility is restricted under pressure this is not true for some particular residues. From the analysis of secondary structure along the trajectories it is observed that the conformation under pressure is more stable, suggesting that pressure acts as a 'conformer selector' on the protein. The difference in solvent-accessed surface (SAS) with pressure shows a clear inversion of the hydrophilic/hydrophobic SAS ratio, which consequently shows that the hydrophobic interaction is considerably weaker under high hydrostatic pressure conditions.
Collapse
Affiliation(s)
- Andrés N McCarthy
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), CONICET-UNLP-CIC, La Plata, Argentina
| | | |
Collapse
|
38
|
Chánez-Cárdenas ME, Pérez-Hernández G, Sánchez-Rebollar BG, Costas M, Vázquez-Contreras E. Reversible Equilibrium Unfolding of Triosephosphate Isomerase from Trypanosoma cruzi in Guanidinium Hydrochloride Involves Stable Dimeric and Monomeric Intermediates. Biochemistry 2005; 44:10883-92. [PMID: 16086591 DOI: 10.1021/bi047687a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reversible guanidinium hydrochloride-induced unfolding of Trypanosoma cruzi triosephosphate isomerase (TcTIM) was characterized under equilibrium conditions. The catalytic activity was followed as a native homodimeric functional probe. Circular dichroism, intrinsic fluorescence, and size-exclusion chromatography were used as secondary, tertiary, and quaternary structural probes, respectively. The change in ANS fluorescence intensity with increasing denaturant concentrations was also determined. The results show that two stable intermediates exist in the transition from the homodimeric native enzyme to the unfolded monomers: one (N(2*)) is a slightly more expanded, non-native, and active dimer, and the other is a partially expanded monomer (M) that binds ANS. Spectroscopic and activity data were used to reach a thermodynamic characterization. The results indicate that the Gibbs free energies for the partial reactions are 4.5 (N(2) <==> N(2*)), 65.8 (N(2*) <==> 2M), and 17.8 kJ/mol (M <==> U). It appears that TcTIM monomers are more stable than those found for other TIM species (except yeast TIM), where monomer stability is only marginal. These results are compared with those for the guanidinium hydrochloride-induced denaturation of TIM from different species, where despite the functional and three-dimensional similarities, a remarkable heterogeneity exists in the unfolding pathways.
Collapse
Affiliation(s)
- María Elena Chánez-Cárdenas
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, México, DF, Mexico
| | | | | | | | | |
Collapse
|
39
|
Paschek D, Nonn S, Geiger A. Low-temperature and high-pressure induced swelling of a hydrophobic polymer-chain in aqueous solution. Phys Chem Chem Phys 2005; 7:2780-6. [PMID: 16189593 DOI: 10.1039/b506207a] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report molecular dynamics simulations of a hydrophobic polymer-chain in aqueous solution between 260 K and 420 K at pressures of 1 bar, 3000 bar, and 4500 bar. The simulations reveal a hydrophobically collapsed structure at low pressures and high temperatures. At 3000 bar and about 260 K and at 4500 bar and about 260 K, however, an abrupt transition to a swelled state is observed. The transition is driven by a smaller volume and a remarkably strong lower enthalpy of the swelled state, indicating a steep positive slope of the corresponding transition line. The swelling is strongly stabilized by the energetically favorable state of water in the polymer's hydrophobic first hydration shell at low temperatures. This finding is consistent with the observation of a positive heat capacity of hydrophobic solvation. Moreover, the slope and location of the estimated swelling transition line for the collapsed hydrophobic chain coincides remarkably well with the cold denaturation transition of proteins.
Collapse
Affiliation(s)
- Dietmar Paschek
- Physikalische Chemie, Universität Dortmund, Otto-Hahn-Str. 6, D-44221 Dortmund, Germany.
| | | | | |
Collapse
|
40
|
Fu X, Zhang X, Chang Z. 4,4'-Dianilino-1,1'-binaphthyl-5,5'-sulfonate, a novel molecule having chaperone-like activity. Biochem Biophys Res Commun 2005; 329:1087-93. [PMID: 15752765 DOI: 10.1016/j.bbrc.2005.01.164] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Indexed: 11/24/2022]
Abstract
4,4'-Dianilino-1,1'-binaphthyl-5,5'-sulfonate (bis-ANS) and 1-anilinonaphthalene-8-sulfonate (ANS) are hydrophobic probes that are widely used in protein folding studies, using their capacity to bind to hydrophobic regions of partially unfolded proteins and in turn leading to an increase in fluorescence. Here we reveal a novel chaperone-like activity for bis-ANS, which acted as a highly effective inhibitor for the thermal- or chemical-induced aggregation of alcohol dehydrogenase, insulin or the whole cell extract of Escherichia coli, with ANS showing a much weaker effect. The studies to elucidate the mechanism underlying this activity show that bis-ANS is able to form stable soluble aggregates with the denaturing proteins and dramatically increase its fluorescence intensity upon incubation with aggregation-prone proteins. Moreover, we found that bis-ANS is able to prevent the heat inactivation of citrate synthase. These observations suggest that bis-ANS is able to block the exposed hydrophobic surfaces to suppress protein aggregation, acting in a way similar to what small heat shock proteins (one sub-class of molecular chaperones) do. The data presented here, together with the report that bis-ANS was able to suppress the amyloid formation of the prion peptide [J. Biol. Chem. 279 (2004) 5346], suggest that this molecule may be used as a potential protein stabilizer in addition to its current application as a hydrophobic probe.
Collapse
Affiliation(s)
- Xinmiao Fu
- State Key Laboratory of Protein Engineering and Plant Genetic Engineering, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
41
|
Refolding and activation of recombinant N-carbamoyl-d-amino acid amidohydrolase from Escherichia coli inclusion bodies. Process Biochem 2005. [DOI: 10.1016/j.procbio.2004.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Lima LMTR, Zingali RB, Foguel D, Monteiro RQ. New insights into conformational and functional stability of human alpha-thrombin probed by high hydrostatic pressure. ACTA ACUST UNITED AC 2004; 271:3580-7. [PMID: 15317594 DOI: 10.1111/j.0014-2956.2004.04295.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of high hydrostatic pressure (HHP) and urea on conformational transitions of human alpha-thrombin structure were studied by fluorescence spectroscopy and by measuring the catalytic activity of the enzyme. Treatment of thrombin with urea produced a progressive red shift in the center of mass of the intrinsic fluorescence emission spectrum, with a maximum displacement of 650 cm(-1). HHP (270 MPa) shifted the centre of mass by only 370 cm(-1). HHP combined with a subdenaturing urea concentration (1.5 m) displaced the centre of mass by approximately 750 cm(-1). The binding of the fluorescent probe bis(8-anilinonaphthalene-1-sulfonate) to thrombin was increased by 1.8-, 4.0-, and 2.7-fold after treatment with high urea concentration, HHP or HHP combined with urea, respectively, thus suggesting that all treatments convert the enzyme to partially folded intermediates with exposed hydrophobic regions. On the other hand, treatment of thrombin with urea (but not HHP) combined with dithiothreitol progressively displaced the fluorescent probe, thus suggesting that this condition converts the enzyme to a completely unfolded state. Urea and HHP also led to different conformations when changes in the thrombin catalytic site environment were assessed using the fluorescence emission of fluorescein-d-Phe-Pro-Arg-cloromethylketone-alpha-thrombin: addition of urea up to 2 m gradually decreased the fluorescence emission of the probe to 65% of the initial intensity, whereas HHP caused a progressive increase in fluorescence. Hydrolysis of the synthetic substrate S-2238 was enhanced (35%) in 2 m urea and gradually abolished at higher concentrations, while HHP (270 MPa) inhibited the enzyme's catalytic activity by 45% and abolished it when 1.5 m urea was also present. Altogether, analysis of urea and HHP effects on thrombin structure and activity indicates the formation of dissimilar intermediate states during denaturation by these agents.
Collapse
Affiliation(s)
- Luis Mauricio T R Lima
- Departamento de Medicamentos Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
43
|
Souza MO, Creczynski-Pasa TB, Scofano HM, Gräber P, Mignaco JA. High hydrostatic pressure perturbs the interactions between CF(0)F(1) subunits and induces a dual effect on activity. Int J Biochem Cell Biol 2004; 36:920-30. [PMID: 15006644 DOI: 10.1016/j.biocel.2003.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Revised: 10/06/2003] [Accepted: 10/22/2003] [Indexed: 11/26/2022]
Abstract
Chloroplast ATP-synthase is an H(+)/ATP-driven rotary motor in which a hydrophobic multi-subunit assemblage rotates within a hydrophilic stator, and subunit interactions dictate alternate-site catalysis. To explore the relevance of these interactions for catalysis we use hydrostatic pressure to induce conformational changes and/or subunit dissociation, and the resulting changes in the ATPase activity and oligomer structure are evaluated. Under moderate hydrostatic pressure (up to 60-80 MPa), ATPase activity is increased by 1.5-fold. This is not related to an increase in the affinity for ATP, but seems to correlate with an enhanced turnover induced by pressure, and an activation volume for the ATPase reaction of -23.7 ml/mol. Higher pressure (up to 200 MPa) leads to dissociation of the enzyme, as shown by enzyme inactivation, increased binding of 8-anilinonaphthalene-1-sulfonate (ANS) to hydrophobic regions, and labeling of specific Cys residues on the beta and alpha subunits by N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylene-4-diamine (IAEDANS). Compression-decompression cycles (between 0.1 and 200 MPa) inactivate CF(0)F(1) in a concentration-dependent manner, although after decompression no enzyme subunit is retained on a Sephadex-G-50 centrifuge column or is further labeled by IAEDANS. It is proposed that moderate hydrostatic pressures induce elastic compression of CF(0)F(1), leading to enhanced turnover. High pressure dissociation impairs the contacts needed for rotational catalysis.
Collapse
Affiliation(s)
- Manuela O Souza
- Departamento de Bioquímica Médica, ICB/CCS, Universidade Federal do Rio de Janeiro, Al. Bauhinia 400, Cidade Universitária, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
44
|
Lima LMTR, Silva JL. Positive contribution of hydration on DNA binding by E2c protein from papillomavirus. J Biol Chem 2004; 279:47968-74. [PMID: 15361525 DOI: 10.1074/jbc.m407696200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein-nucleic acid interactions are responsible for the regulation of key biological events such as genomic transcription and recombination and viral replication. However, the recognition mechanisms involved in these processes are not completely understood. Here, we investigate the dominant forces involved in protein-protein and protein-DNA interactions for the 80-amino-acid C-terminal domain of the E2 protein (E2c) from human papillomavirus (HPV-16). The E2c protein is a homodimer that specifically binds to double-stranded DNA containing the consensus sequence ACCG-N(4)-CGGT, where N is any nucleotide. DNA binding affinity is reduced by lowering water chemical potential, accompanied by an increase in cooperativity. Wyman linkage relations between affinity and water chemical potential indicate that 11 additional water molecules are bound in the formation of the complex between E2c and DNA. Salt dissociation isotherms showed that 10 counterions are released upon association, even at low water activity, indicating that this latter variable does not change the electrostatic component of the interaction. Further analysis demonstrates a strong dependence of cooperativity of binding on the protein concentration. Altogether, these results reveal a novel binding pathway in which the consolidated complex may achieve its final form via a monomer-DNA intermediate, which favors the binding of a second monomer. This molecular mechanism reveals the contributions of multiple conformers in a tight virus genome modulation that seems to be important in the cell infection scenario.
Collapse
Affiliation(s)
- Luis Maurício T R Lima
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, Bss34, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil.
| | | |
Collapse
|
45
|
Ishimaru D, Lima LMTR, Maia LF, Lopez PM, Ano Bom AP, Valente AP, Silva JL. Reversible aggregation plays a crucial role on the folding landscape of p53 core domain. Biophys J 2004; 87:2691-700. [PMID: 15298872 PMCID: PMC1304688 DOI: 10.1529/biophysj.104.044685] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of tumor suppressor protein p53 in cell cycle control depends on its flexible and partially unstructured conformation, which makes it crucial to understand its folding landscape. Here we report an intermediate structure of the core domain of the tumor suppressor protein p53 (p53C) during equilibrium and kinetic folding/unfolding transitions induced by guanidinium chloride. This partially folded structure was undetectable when investigated by intrinsic fluorescence. Indeed, the fluorescence data showed a simple two-state transition. On the other hand, analysis of far ultraviolet circular dichroism in 1.0 M guanidinium chloride demonstrated a high content of secondary structure, and the use of an extrinsic fluorescent probe, 4,4'-dianilino-1,1' binaphthyl-5,5'-disulfonic acid, indicated an increase in exposure of the hydrophobic core at 1 M guanidinium chloride. This partially folded conformation of p53C was plagued by aggregation, as suggested by one-dimensional NMR and demonstrated by light-scattering and gel-filtration chromatography. Dissociation by high pressure of these aggregates reveals the reversibility of the process and that the aggregates have water-excluded cavities. Kinetic measurements show that the intermediate formed in a parallel reaction between unfolded and folded structures and that it is under fine energetic control. They are not only crucial to the folding pathway of p53C but may explain as well the vulnerability of p53C to undergo departure of the native to an inactive state, which makes the cell susceptible to malignant transformation.
Collapse
Affiliation(s)
- Daniella Ishimaru
- Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | |
Collapse
|
46
|
Lima SMB, Peabody DS, Silva JL, De Oliveira AC. Mutations in the hydrophobic core and in the protein-RNA interface affect the packing and stability of icosahedral viruses. ACTA ACUST UNITED AC 2003. [DOI: 10.1046/j.1432-1033.2003.03911.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Cordeiro Y, Lima LMTR, Gomes MPB, Foguel D, Silva JL. Modulation of prion protein oligomerization, aggregation, and beta-sheet conversion by 4,4'-dianilino-1,1'-binaphthyl-5,5'-sulfonate (bis-ANS). J Biol Chem 2003; 279:5346-52. [PMID: 14634010 DOI: 10.1074/jbc.m312262200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The prion protein (PrP) is the major agent implicated in the diseases known as transmissible spongiform encephalopathies. The onset of transmissible spongiform encephalopathy is related to a change in conformation of the PrP(C), which loses most of its alpha-helical content, becoming a beta-sheet-rich protein, known as PrP(Sc). Here we have used two Syrian hamster prion domains (PrP 109-141 and PrP 109-149) and the murine recombinant PrP (rPrP 23-231) to investigate the effects of anilino-naphtalene compounds on prion oligomerization and aggregation. Aggregation in the presence of bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5'-sulfonate), ANS (1-anilinonaphthalene-8-sulfonate), and AmNS (1-amino-5-naphtalenesulfonate) was monitored. Bis-ANS was the most effective inhibitor of prion peptide aggregation. Bis-ANS binds strongly to rPrP 23-231 leading to a substantial increase in beta-sheet content and to limited oligomerization. More strikingly, the binding of bis-ANS to full-length rPrP is diminished by the addition of nanomolar concentrations of oligonucleotides, demonstrating that they compete for the same binding site. Thus, bis-ANS displays properties similar to those of nucleic acids, causing oligomerization and conversion to beta-sheet (Cordeiro, Y., Machado, F., Juliano, L., Juliano, M. A., Brentani, R. R., Foguel, D., and Silva, J. L. (2001) J. Biol. Chem. 276, 49400-49409). This dual effect of bis-ANS on prion protein makes this compound highly important to sequester crucial conformations of the protein, which may be useful to the understanding of the disease and to serve as a lead for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yraima Cordeiro
- Departamento de Bioquímica Médica, Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | |
Collapse
|
48
|
Ishimaru D, Maia LF, Maiolino LM, Quesado PA, Lopez PCM, Almeida FCL, Valente AP, Silva JL. Conversion of wild-type p53 core domain into a conformation that mimics a hot-spot mutant. J Mol Biol 2003; 333:443-51. [PMID: 14529628 DOI: 10.1016/j.jmb.2003.08.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The wild-type p53 protein can be driven into a conformation corresponding to that adopted by structural mutant forms by heterodimerization with a mutant subunit. To seek partially folded states of the wild-type p53 core domain (p53C) we used high hydrostatic pressure (HP) and subzero temperatures. Aggregation of the protein was observed in parallel with its pressure denaturation at 25 and 37 degrees C. However, when HP experiments were performed at 4 degrees C, the extent of denaturation and aggregation was significantly less pronounced. On the other hand, subzero temperatures under pressure led to cold denaturation and yielded a non-aggregated, alternative conformation of p53C. Nuclear magnetic resonance (1H15N-NMR) data showed that the alternative p53C conformation resembled that of the hot-spot oncogenic mutant R248Q. This alternative state was as susceptible to denaturation and aggregation as the mutant R248Q when subjected to HP at 25 degrees C. Together these data demonstrate that wild-type p53C adopts an alternative conformation with a mutant-like stability, consistent with the dominant-negative effect caused by many mutants. This alternative conformation is likely related to inactive forms that appear in vivo, usually driven by interaction with mutant proteins. Therefore, it can be a valuable target in the search for ways to interfere with protein misfolding and hence to prevent tumor development.
Collapse
Affiliation(s)
- Daniella Ishimaru
- Departamento de Bioquímica Médica, Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Martins SM, Chapeaurouge A, Ferreira ST. Folding intermediates of the prion protein stabilized by hydrostatic pressure and low temperature. J Biol Chem 2003; 278:50449-55. [PMID: 14525996 DOI: 10.1074/jbc.m307354200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prion diseases are associated with conformational conversion of the cellular prion protein, PrPC, into a misfolded form, PrPSc. We have investigated the equilibrium unfolding of the structured domain of recombinant murine prion protein, comprising residues 121-231 (mPrP-(121-231)). The equilibrium unfolding of mPrP-(121-231) by urea monitored by intrinsic fluorescence and circular dichroism (CD) spectroscopies indicated a two-state transition, without detectable folding intermediates. The fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5-disulfonic acid (bis-ANS) binds to native mPrP-(121-231), indicating exposure of hydrophobic domains on the protein surface. Increasing concentrations of urea (up to 4 M) caused the release of bound bis-ANS, whereas changes in intrinsic fluorescence and CD of mPrP took place only above 4 M urea. This indicates the existence of a partially unfolded conformation of mPrP, characterized by loss of bis-ANS binding and preservation of the overall structure of the protein, stabilized at low concentrations of urea. Hydrostatic pressure and low temperatures were also used to stabilize partially folded intermediates that are not detectable in the presence of chemical denaturants. Compression of mPrP to 3.5 kbar at 25 degrees C and pH 7 caused a slight decrease in intrinsic fluorescence emission and an 8-fold increase in bis-ANS fluorescence. Lowering the temperature to -9 degrees C under pressure reversed the decrease in intrinsic fluorescence and caused a marked (approximately 40-fold) increase in bis-ANS fluorescence. The increase in bis-ANS fluorescence at low temperatures was similar to that observed for mPrP at 1 atm at pH 4. These results suggest that pressure-assisted cold denaturation of mPrP stabilizes a partially folded intermediate that is qualitatively similar to the state obtained at acidic pH. Compression of mPrP in the presence of a subdenaturing concentration of urea stabilized another partially folded intermediate, and cold denaturation under these conditions led to complete unfolding of the protein. Possible implications of the existence of such partially folded intermediates in the folding of the prion protein and in the conversion to the PrPSc conformer are discussed.
Collapse
Affiliation(s)
- Samantha M Martins
- Departamento de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-590, Brazil
| | | | | |
Collapse
|
50
|
Ishimaru D, Andrade LR, Teixeira LSP, Quesado PA, Maiolino LM, Lopez PM, Cordeiro Y, Costa LT, Heckl WM, Weissmüller G, Foguel D, Silva JL. Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemistry 2003; 42:9022-7. [PMID: 12885235 DOI: 10.1021/bi034218k] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease, Parkinson's disease, cystic fibrosis, prion diseases, and many types of cancer are considered to be protein conformation diseases. Most of them are also known as amyloidogenic diseases due to the occurrence of pathological accumulation of insoluble aggregates with fibrillar conformation. Some neuroblastomas, carcinomas, and myelomas show an abnormal accumulation of the wild-type tumor suppressor protein p53 either in the cytoplasm or in the nucleus of the cell. Here we show that the wild-type p53 core domain (p53C) can form fibrillar aggregates after mild perturbation. Gentle denaturation of p53C by pressure induces fibrillar aggregates, as shown by electron and atomic force microscopies, by binding of thioflavin T, and by circular dichroism. On the other hand, heat denaturation produced granular-shaped aggregates. Annular aggregates similar to those found in the early aggregation stages of alpha-synuclein and amyloid-beta were also observed by atomic force microscopy immediately after pressure treatment. Annular and fibrillar aggregates of p53C were toxic to cells, as shown by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] reduction assay. Interestingly, the hot-spot mutant R248Q underwent similar aggregation behavior when perturbed by pressure or high temperature. Fibrillar aggregates of p53C contribute to the loss of function of p53 and seed the accumulation of conformationally altered protein in some cancerous cells.
Collapse
Affiliation(s)
- Daniella Ishimaru
- Departamento de Bioquímica Médica and Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|