1
|
Yuan J, Zhu H, Li S, Thierry B, Yang CT, Zhang C, Zhou X. Truncated M13 phage for smart detection of E. coli under dark field. J Nanobiotechnology 2024; 22:599. [PMID: 39363262 PMCID: PMC11451008 DOI: 10.1186/s12951-024-02881-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND The urgent need for affordable and rapid detection methodologies for foodborne pathogens, particularly Escherichia coli (E. coli), highlights the importance of developing efficient and widely accessible diagnostic systems. Dark field microscopy, although effective, requires specific isolation of the target bacteria which can be hindered by the high cost of producing specialized antibodies. Alternatively, M13 bacteriophage, which naturally targets E. coli, offers a cost-efficient option with well-established techniques for its display and modification. Nevertheless, its filamentous structure with a large length-diameter ratio contributes to nonspecific binding and low separation efficiency, posing significant challenges. Consequently, refining M13 phage methodologies and their integration with advanced microscopy techniques stands as a critical pathway to improve detection specificity and efficiency in food safety diagnostics. METHODS We employed a dual-plasmid strategy to generate a truncated M13 phage (tM13). This engineered tM13 incorporates two key genetic modifications: a partial mutation at the N-terminus of pIII and biotinylation at the hydrophobic end of pVIII. These alterations enable efficient attachment of tM13 to diverse E. coli strains, facilitating rapid magnetic separation. For detection, we additionally implemented a convolutional neural network (CNN)-based algorithm for precise identification and quantification of bacterial cells using dark field microscopy. RESULTS The results obtained from spike-in and clinical sample analyses demonstrated the accuracy, high sensitivity (with a detection limit of 10 CFU/μL), and time-saving nature (30 min) of our tM13-based immunomagnetic enrichment approach combined with AI-enabled analytics, thereby supporting its potential to facilitate the identification of diverse E. coli strains in complex samples. CONCLUSION The study established a rapid and accurate detection strategy for E. coli utilizing truncated M13 phages as capture probes, along with a dark field microscopy detection platform that integrates an image processing model and convolutional neural network.
Collapse
Affiliation(s)
- Jiasheng Yuan
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Huquan Zhu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shixinyi Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Chih-Tsung Yang
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Chen Zhang
- School of Information Engineering, Yangzhou University, Yangzhou, 225127, China.
- Jiangsu Province Engineering Research Centre of Knowledge Management and Intelligent Service, Yangzhou University, Yangzhou, 225127, China.
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Chae I, Chung WJ, Jin HE, Yang RJ, Kim H, Lim B, Lee HJ, Kim SY, Lee SW. Evolutionary Design of Self-Templated Supramolecular Fibrils Using M13 Bacteriophage for Tissue Engineering. NANO LETTERS 2024; 24:10388-10395. [PMID: 39116280 DOI: 10.1021/acs.nanolett.4c03231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Biomaterials in nature form hierarchical structures and functions across various length scales through binding and assembly processes. Inspired by nature, we developed hierarchically organized tissue engineering materials through evolutionary screening and self-templating assembly. Leveraging the M13 bacteriophage (phage), we employed an evolutionary selection process against hydroxyapatite (HA) to isolate HA-binding phage (HAPh). The newly discovered phage exhibits a bimodal length, comprising 950 nm and 240 nm, where the synergistic effect of these dual lengths promotes the formation of supramolecular fibrils with periodic banded structures. The assembled HAPh fibrils show the capability of HA mineralization and the directional growth of osteoblast cells. When applied to a dentin surface, it induces the regeneration of dentin-like tissue structures, showcasing its potential applications as a scaffold in tissue engineering. The integration of evolutionary screening and self-templating assembly holds promise for the future development of hierarchically organized tissue engineering materials.
Collapse
Affiliation(s)
- Inseok Chae
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Woo-Jae Chung
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hyo-Eon Jin
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Robert J Yang
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Han Kim
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Applied Science and Technology, University of California, Berkeley, California 94720, United States
| | - Butaek Lim
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hee Jung Lee
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Sun-Young Kim
- Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Applied Science and Technology, University of California, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Rakonjac J, Gold VAM, León-Quezada RI, Davenport CH. Structure, Biology, and Applications of Filamentous Bacteriophages. Cold Spring Harb Protoc 2024; 2024:pdb.over107754. [PMID: 37460152 DOI: 10.1101/pdb.over107754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
The closely related Escherichia coli Ff filamentous phages (f1, fd, and M13) have taken a fantastic journey over the past 60 years, from the urban sewerage from which they were first isolated, to their use in high-end technologies in multiple fields. Their relatively small genome size, high titers, and the virions that tolerate fusion proteins make the Ffs an ideal system for phage display. Folding of the fusions in the oxidizing environment of the E. coli periplasm makes the Ff phages a platform that allows display of eukaryotic surface and secreted proteins, including antibodies. Resistance of the Ffs to a broad range of pH and detergents facilitates affinity screening in phage display, whereas the stability of the virions at ambient temperature makes them suitable for applications in material science and nanotechnology. Among filamentous phages, only the Ffs have been used in phage display technology, because of the most advanced state of knowledge about their biology and the various tools developed for E. coli as a cloning host for them. Filamentous phages have been thought to be a rather small group, infecting mostly Gram-negative bacteria. A recent discovery of more than 10 thousand diverse filamentous phages in bacteria and archaea, however, opens a fascinating prospect for novel applications. The main aim of this review is to give detailed biological and structural information to researchers embarking on phage display projects. The secondary aim is to discuss the yet-unresolved puzzles, as well as recent developments in filamentous phage biology, from a viewpoint of their impact on current and future applications.
Collapse
Affiliation(s)
- Jasna Rakonjac
- School of Natural Sciences, Massey University, Auckland 0632, New Zealand
- Nanophage Technologies Ltd., Palmerston North, Manawatu 4474, New Zealand
| | - Vicki A M Gold
- Living Systems Institute University of Exeter, Exeter, EX4 4QD, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
| | - Rayén I León-Quezada
- School of Natural Sciences, Massey University, Auckland 0632, New Zealand
- Nanophage Technologies Ltd., Palmerston North, Manawatu 4474, New Zealand
| | - Catherine H Davenport
- School of Natural Sciences, Massey University, Auckland 0632, New Zealand
- Nanophage Technologies Ltd., Palmerston North, Manawatu 4474, New Zealand
| |
Collapse
|
4
|
Shen K, Flood JJ, Zhang Z, Ha A, Shy B, Dueber J, Douglas S. Engineering an Escherichia coli strain for production of long single-stranded DNA. Nucleic Acids Res 2024; 52:4098-4107. [PMID: 38499480 PMCID: PMC11040142 DOI: 10.1093/nar/gkae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
Long single-stranded DNA (ssDNA) is a versatile molecular reagent with applications including RNA-guided genome engineering and DNA nanotechnology, yet its production is typically resource-intensive. We introduce a novel method utilizing an engineered Escherichia coli 'helper' strain and phagemid system that simplifies long ssDNA generation to a straightforward transformation and purification procedure. Our method obviates the need for helper plasmids and their associated contamination by integrating M13mp18 genes directly into the E. coli chromosome. We achieved ssDNA lengths ranging from 504 to 20 724 nt with titers up to 250 μg/l following alkaline lysis purification. The efficacy of our system was confirmed through its application in primary T-cell genome modifications and DNA origami folding. The reliability, scalability and ease of our approach promise to unlock new experimental applications requiring large quantities of long ssDNA.
Collapse
Affiliation(s)
- Konlin Shen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158 USA
| | - Jake J Flood
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Zhihuizi Zhang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158 USA
| | - Alvin Ha
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143 USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, 94158 USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143 USA
| | - Brian R Shy
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143 USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, 94158 USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143 USA
| | - John E Dueber
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
| | - Shawn M Douglas
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158 USA
| |
Collapse
|
5
|
Shen K, Flood JJ, Zhang Z, Ha A, Shy BR, Dueber JE, Douglas SM. Engineering an Escherichia coli strain for production of long single-stranded DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582394. [PMID: 38464036 PMCID: PMC10925301 DOI: 10.1101/2024.02.27.582394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Long single-stranded DNA (ssDNA) is a versatile molecular reagent with applications including RNA-guided genome engineering and DNA nanotechnology, yet its production is typically resource-intensive. We introduce a novel method utilizing an engineered E. coli "helper" strain and phagemid system that simplifies long ssDNA generation to a straightforward transformation and purification procedure. Our method obviates the need for helper plasmids and their associated contamination by integrating M13mp18 genes directly into the E. coli chromosome. We achieved ssDNA lengths ranging from 504 to 20,724 nucleotides with titers up to 250 μg/L following alkaline-lysis purification. The efficacy of our system was confirmed through its application in primary T cell genome modifications and DNA origami folding. The reliability, scalability, and ease of our approach promises to unlock new experimental applications requiring large quantities of long ssDNA.
Collapse
Affiliation(s)
- Konlin Shen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Jake J Flood
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Zhihuizi Zhang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Alvin Ha
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Brian R Shy
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - John E Dueber
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shawn M Douglas
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| |
Collapse
|
6
|
van Raaij MJ. Bacteriophage Receptor Recognition and Nucleic Acid Transfer. Subcell Biochem 2024; 105:593-628. [PMID: 39738959 DOI: 10.1007/978-3-031-65187-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Correct host cell recognition is important in the replication cycle for any virus, including bacterial viruses. This essential step should occur before the bacteriophage commits to transferring its genomic material into the target bacterium. In this chapter, we will discuss the mechanisms and proteins bacteriophages use for receptor recognition (just before full commitment to infection) and nucleic acid injection, which occurs just after commitment. Some bacteriophages use proteins of the capsid proper for host cell recognition, others use specialised spikes or fibres. Usually, several identical recognition events take place, and the information that a suitable host cell has been encountered is somehow transferred to the part of the bacteriophage capsid involved in nucleic acid transfer. The main part of the capsids of bacteriophages stays on the cell surface after transferring their genome, although a few specialised proteins move with the DNA, either forming a conduit, protecting the nucleic acids after transfer and/or functioning in the process of transcription and translation.
Collapse
Affiliation(s)
- Mark J van Raaij
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
7
|
Jia Q, Xiang Y. Cryo-EM structure of a bacteriophage M13 mini variant. Nat Commun 2023; 14:5421. [PMID: 37669979 PMCID: PMC10480500 DOI: 10.1038/s41467-023-41151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Filamentous bacteriophages package their circular, single stranded DNA genome with the major coat protein pVIII and the minor coat proteins pIII, pVII, pVI, and pIX. Here, we report the cryo-EM structure of a ~500 Å long bacteriophage M13 mini variant. The distal ends of the mini phage are sealed by two cap-like complexes composed of the minor coat proteins. The top cap complex consists of pVII and pIX, both exhibiting a single helix structure. Arg33 of pVII and Glu29 of pIX, located on the inner surface of the cap, play a key role in recognizing the genome packaging signal. The bottom cap complex is formed by the hook-like structures of pIII and pVI, arranged in helix barrels. Most of the inner ssDNA genome adopts a double helix structure with a similar pitch to that of the A-form double-stranded DNA. These findings provide insights into the assembly of filamentous bacteriophages.
Collapse
Affiliation(s)
- Qi Jia
- Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, P.R. China
| | - Ye Xiang
- Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, P.R. China.
| |
Collapse
|
8
|
Kao CY, Pan YC, Hsiao YH, Lim SK, Cheng TW, Huang SW, Wu SMY, Sun CP, Tao MH, Mou KY. Improvement of Gene Delivery by Minimal Bacteriophage Particles. ACS NANO 2023; 17:14532-14544. [PMID: 37466994 DOI: 10.1021/acsnano.3c01295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Direct delivery of therapeutic genes is a promising approach for treating cancers and other diseases. The current human viral vectors, however, suffer from several drawbacks, including poor cell-type specificity and difficult large-scale production. The M13 phage provides an alternative vehicle for gene therapy with engineerable specificity, but the low transduction efficiency seriously limits its translational application. In this work, we discovered important factors of cells and phages that greatly influence the phage transduction. The up-regulation of PrimPol or the down-regulation of DMBT1 in cells significantly enhanced the phage transduction efficiency. Furthermore, we found that the phage transduction efficiency was inversely correlated with the phage size. By carefully reconstructing the phage origin with the gene of interest, we designed "TransPhage" with a minimal length and maximal transduction efficiency. We showed that TransPhage successfully transduced the human cells with an excellent efficiency (up to 95%) comparable to or superior to that of the adeno-associated virus vectors. Moreover, we showed that TransPhage's tropism was specific to the cells that overexpress the target antigen, whereas adeno-associated viruses (AAVs) promiscuously infected many cell types. Using TransPhage as a gene therapy vehicle, we invented an NK-cell-mediated immunotherapy in which a membrane-bound fragment crystallizable region was introduced to cancer cells. We showed in vitro that the cancer cells expressing the membrane-bound fragment crystallizable (Fc) were effectively killed by CD16+ NK cells through an antibody-dependent cell-mediated cytotoxicity (ADCC)-like mechanism. In the xenograft mouse model, the administration of TransPhage carrying the membrane-bound Fc gene greatly suppressed tumor growth.
Collapse
Affiliation(s)
- Chia-Yi Kao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chung Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Hsiang Hsiao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 11490, Taiwan
| | - See-Khai Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Ting-Wei Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Sin-Wei Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Shania Meng-Yun Wu
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Kurt Yun Mou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| |
Collapse
|
9
|
Kamstrup Sell D, Sloth AB, Bakhshinejad B, Kjaer A. A White Plaque, Associated with Genomic Deletion, Derived from M13KE-Based Peptide Library Is Enriched in a Target-Unrelated Manner during Phage Display Biopanning Due to Propagation Advantage. Int J Mol Sci 2022; 23:ijms23063308. [PMID: 35328728 PMCID: PMC8950111 DOI: 10.3390/ijms23063308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
The nonspecific enrichment of target-unrelated peptides during biopanning remains a major drawback for phage display technology. The commercial Ph.D.TM-7 phage display library is used extensively for peptide discovery. This library is based on the M13KE vector, which carries the lacZα sequence, leading to the formation of blue plaques on IPTG-X-gal agar plates. In the current study, we report the isolation of a fast-propagating white clone (displaying WSLGYTG peptide) identified through screening against a recombinant protein. Sanger sequencing demonstrated that white plaques are not contamination from environmental M13-like phages, but derive from the library itself. Whole genome sequencing revealed that the white color of the plaques results from a large 827-nucleotide genomic deletion. The phenotypic characterization of propagation capacity through plaque count- and NGS-based competitive propagation assay supported the higher propagation rate of Ph-WSLGYTG clone compared with the library. According to our data, white plaques are likely to arise endogenously in Ph.D. libraries due to mutations in the M13KE genome and should not always be viewed as exogenous contamination. Our findings also led to the conclusion that the deletion observed here might be an ancestral mutation already present in the naïve library, which causes target-unrelated nonspecific enrichment of white clone during biopanning due to propagation advantage.
Collapse
|
10
|
Yue H, Li Y, Yang M, Mao C. T7 Phage as an Emerging Nanobiomaterial with Genetically Tunable Target Specificity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103645. [PMID: 34914854 PMCID: PMC8811829 DOI: 10.1002/advs.202103645] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Indexed: 05/05/2023]
Abstract
Bacteriophages, also known as phages, are specific antagonists against bacteria. T7 phage has drawn massive attention in precision medicine owing to its distinctive advantages, such as short replication cycle, ease in displaying peptides and proteins, high stability and cloning efficiency, facile manipulation, and convenient storage. By introducing foreign gene into phage DNA, T7 phage can present foreign peptides or proteins site-specifically on its capsid, enabling it to become a nanoparticle that can be genetically engineered to screen and display a peptide or protein capable of recognizing a specific target with high affinity. This review critically introduces the biomedical use of T7 phage, ranging from the detection of serological biomarkers and bacterial pathogens, recognition of cells or tissues with high affinity, design of gene vectors or vaccines, to targeted therapy of different challenging diseases (e.g., bacterial infection, cancer, neurodegenerative disease, inflammatory disease, and foot-mouth disease). It also discusses perspectives and challenges in exploring T7 phage, including the understanding of its interactions with human body, assembly into scaffolds for tissue regeneration, integration with genome editing, and theranostic use in clinics. As a genetically modifiable biological nanoparticle, T7 phage holds promise as biomedical imaging probes, therapeutic agents, drug and gene carriers, and detection tools.
Collapse
Affiliation(s)
- Hui Yue
- School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Yan Li
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Mingying Yang
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Chuanbin Mao
- School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
- Department of Chemistry and BiochemistryStephenson Life Science Research CenterInstitute for Biomedical Engineering, Science and TechnologyUniversity of Oklahoma101 Stephenson ParkwayNormanOklahoma73019‐5251USA
| |
Collapse
|
11
|
Łobocka M, Dąbrowska K, Górski A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs 2021; 35:255-280. [PMID: 33881767 PMCID: PMC8084836 DOI: 10.1007/s40259-021-00480-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
The current problems with increasing bacterial resistance to antibacterial therapies, resulting in a growing frequency of incurable bacterial infections, necessitates the acceleration of studies on antibacterials of a new generation that could offer an alternative to antibiotics or support their action. Bacteriophages (phages) can kill antibiotic-sensitive as well as antibiotic-resistant bacteria, and thus are a major subject of such studies. Their efficacy in curing bacterial infections has been demonstrated in in vivo experiments and in the clinic. Unlike antibiotics, phages have a narrow range of specificity, which makes them safe for commensal microbiota. However, targeting even only the most clinically relevant strains of pathogenic bacteria requires large collections of well characterized phages, whose specificity would cover all such strains. The environment is a rich source of diverse phages, but due to their complex relationships with bacteria and safety concerns, only some naturally occurring phages can be considered for therapeutic applications. Still, their number and diversity make a detailed characterization of all potentially promising phages virtually impossible. Moreover, no single phage combines all the features required of an ideal therapeutic agent. Additionally, the rapid acquisition of phage resistance by bacteria may make phages already approved for therapy ineffective and turn the search for environmental phages of better efficacy and new specificity into an endless race. An alternative strategy for acquiring phages with desired properties in a short time with minimal cost regarding their acquisition, characterization, and approval for therapy could be based on targeted genome modifications of phage isolates with known properties. The first example demonstrating the potential of this strategy in curing bacterial diseases resistant to traditional therapy is the recent successful treatment of a progressing disseminated Mycobacterium abscessus infection in a teenage patient with the use of an engineered phage. In this review, we briefly present current methods of phage genetic engineering, highlighting their advantages and disadvantages, and provide examples of genetically engineered phages with a modified host range, improved safety or antibacterial activity, and proven therapeutic efficacy. We also summarize novel uses of engineered phages not only for killing pathogenic bacteria, but also for in situ modification of human microbiota to attenuate symptoms of certain bacterial diseases and metabolic, immune, or mental disorders.
Collapse
Affiliation(s)
- Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
12
|
Jackson K, Peivandi A, Fogal M, Tian L, Hosseinidoust Z. Filamentous Phages as Building Blocks for Bioactive Hydrogels. ACS APPLIED BIO MATERIALS 2021; 4:2262-2273. [PMID: 35014350 DOI: 10.1021/acsabm.0c01557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Filamentous bacteriophages (bacterial viruses) are semiflexible proteinous nanofilaments with high aspect ratios for which the surface chemistry can be controlled with atomic precision via genetic engineering. That, in addition to their ability to self-propagate and replicate a nearly monodisperse batch of biologically and chemically identical nanofilaments, makes these bionanofilaments superior to most synthetic nanoparticles and thus a powerful tool in the bioengineers' toolbox. Furthermore, filamentous phages form liquid crystalline structures at high concentrations; these ordered assemblies create hierarchically ordered macro-, micro-, and nanostructures that, once cross-linked, can form hierarchically ordered hydrogels, hydrated soft material with a variety of physical and chemical properties suitable for biomedical applications (e.g., wound dressings and tissue engineering scaffolds) as well as biosensing, diagnostic assays. We provide a critical review of these hydrogels of filamentous phage, and their physical, mechanical, chemical, and biological properties and current applications, as well as an overview of limitations and challenges and outlook for future applications. In addition, we present a list of design parameters for filamentous phage hydrogels to serve as a guide for the (bio)engineer and (bio)chemist interested in utilizing these powerful bionanofilaments for designing smart, bioactive materials and devices.
Collapse
Affiliation(s)
- Kyle Jackson
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Azadeh Peivandi
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Meea Fogal
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Lei Tian
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada.,School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
13
|
Phage Display for Imaging Agent Development. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Rodriguez RS, O'Keefe TL, Froehlich C, Lewis RE, Sheldon TR, Haynes CL. Sensing Food Contaminants: Advances in Analytical Methods and Techniques. Anal Chem 2020; 93:23-40. [PMID: 33147958 DOI: 10.1021/acs.analchem.0c04357] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rebeca S Rodriguez
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Tana L O'Keefe
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Clarice Froehlich
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Riley E Lewis
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Trever R Sheldon
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020; 11:1986. [PMID: 32983137 PMCID: PMC7485114 DOI: 10.3389/fimmu.2020.01986] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage–derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Abstract
Bacteriophages are interesting entities on the border of biology and chemistry. In nature, they are bacteria parasites, while, after genetic manipulation, they gain new properties, e.g., selectively binding proteins. Owing to this, they may be applied as recognition elements in biosensors. Combining bacteriophages with different transducers can then result in the development of innovative sensor designs that may revolutionize bioanalytics and improve the quality of medical services. Therefore, here, we review the use of bacteriophages, or peptides from bacteriophages, as new sensing elements for the recognition of biomarkers and the construction of the highly effective diagnostics tools.
Collapse
|
17
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020. [PMID: 32983137 DOI: 10.3389/fimmu.2020.01986/bibtex] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage-derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
18
|
Putra BR, Szot-Karpińska K, Kudła P, Yin H, Boswell JA, Squires AM, Da Silva MA, Edler KJ, Fletcher PJ, Parker SC, Marken F. Bacteriophage M13 Aggregation on a Microhole Poly(ethylene terephthalate) Substrate Produces an Anionic Current Rectifier: Sensitivity toward Anionic versus Cationic Guests. ACS APPLIED BIO MATERIALS 2019; 3:512-521. [DOI: 10.1021/acsabm.9b00952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Budi Riza Putra
- Department of Chemistry, University of Bath, Claverton Down BA2 7AY, U.K
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, West Java, Indonesia
| | - Katarzyna Szot-Karpińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Patryk Kudła
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Han Yin
- Department of Chemistry, University of Bath, Claverton Down BA2 7AY, U.K
| | - Jacob A. Boswell
- Department of Chemistry, University of Bath, Claverton Down BA2 7AY, U.K
| | - Adam M. Squires
- Department of Chemistry, University of Bath, Claverton Down BA2 7AY, U.K
| | | | - Karen J. Edler
- Department of Chemistry, University of Bath, Claverton Down BA2 7AY, U.K
| | - Philip J. Fletcher
- Material & Chemical Characterisation Facility MC2, University of Bath, Bath BA2 7AY, U.K
| | - Stephen C. Parker
- Department of Chemistry, University of Bath, Claverton Down BA2 7AY, U.K
| | - Frank Marken
- Department of Chemistry, University of Bath, Claverton Down BA2 7AY, U.K
| |
Collapse
|
19
|
Gillespie JW, Yang L, De Plano LM, Stackhouse MA, Petrenko VA. Evolution of a Landscape Phage Library in a Mouse Xenograft Model of Human Breast Cancer. Viruses 2019; 11:E988. [PMID: 31717800 PMCID: PMC6893515 DOI: 10.3390/v11110988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
Peptide-displayed phage libraries are billion-clone collections of diverse chimeric bacteriophage particles, decorated by genetically fused peptides built from a random combination of natural amino acids. Studying the molecular evolution of peptide-displayed libraries in mammalian model systems, using in vivo phage display techniques, can provide invaluable knowledge about the underlying physiology of the vasculature system, allow recognition of organ- and tissue-specific networks of protein-protein interactions, and provide ligands for targeted diagnostics and therapeutics. Recently, we discovered that landscape phage libraries, a specific type of multivalent peptide phage display library, expose on their surface comprehensive collections of elementary binding units (EBUs), which can form short linear motifs (SLiMs) that interact with functional domains of physiologically relevant proteins. Because of their unique structural and functional features, landscape phages can use an alternative mechanism of directed molecular evolution, i.e., combinatorial avidity selection. These discoveries fueled our interest in revisiting the in vivo evolution of phage displayed libraries using another format of display, i.e., landscape phages. In this study, we monitored the evolution of a landscape phage library in a mouse model with and without an implanted human breast cancer tumor xenograft. As expected, the multivalent architecture of landscape phage displayed proteins provided strong tissue selectivity and resulted in a huge diversity of tissue penetrating, chimeric phage particles. We identified several types of EBU interactions that evolved during the course of tissue distribution, which included interactions of EBUs with all tissue types, those EBUs that interacted selectively with specific organs or tissues with shared gene expression profiles or functionalities, and other EBUs that interacted in a tissue-selective manner. We demonstrated that landscape phage libraries are a rich collection of unique nanobioparticles that can be used to identify functional organ and tissue-binding elements after the evolution of a phage display library in vivo.
Collapse
Affiliation(s)
- James W. Gillespie
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (J.W.G.); (L.M.D.P.)
| | - Liping Yang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (J.W.G.); (L.M.D.P.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Laura Maria De Plano
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (J.W.G.); (L.M.D.P.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | | | - Valery A. Petrenko
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (J.W.G.); (L.M.D.P.)
| |
Collapse
|
20
|
Engelhardt FS, Praetorius F, Wachauf CH, Brüggenthies G, Kohler F, Kick B, Kadletz KL, Pham PN, Behler KL, Gerling T, Dietz H. Custom-Size, Functional, and Durable DNA Origami with Design-Specific Scaffolds. ACS NANO 2019; 13:5015-5027. [PMID: 30990672 PMCID: PMC6992424 DOI: 10.1021/acsnano.9b01025] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
DNA origami nano-objects are usually designed around generic single-stranded "scaffolds". Many properties of the target object are determined by details of those generic scaffold sequences. Here, we enable designers to fully specify the target structure not only in terms of desired 3D shape but also in terms of the sequences used. To this end, we built design tools to construct scaffold sequences de novo based on strand diagrams, and we developed scalable production methods for creating design-specific scaffold strands with fully user-defined sequences. We used 17 custom scaffolds having different lengths and sequence properties to study the influence of sequence redundancy and sequence composition on multilayer DNA origami assembly and to realize efficient one-pot assembly of multiscaffold DNA origami objects. Furthermore, as examples for functionalized scaffolds, we created a scaffold that enables direct, covalent cross-linking of DNA origami via UV irradiation, and we built DNAzyme-containing scaffolds that allow postfolding DNA origami domain separation.
Collapse
Affiliation(s)
- Floris
A. S. Engelhardt
- Physics
Department and Lehrstuhl für Bioverfahrenstechnik, Technical University of Munich, Am Coulombwall 4a, 85748 Garching bei München, Germany
| | - Florian Praetorius
- Physics
Department and Lehrstuhl für Bioverfahrenstechnik, Technical University of Munich, Am Coulombwall 4a, 85748 Garching bei München, Germany
| | - Christian H. Wachauf
- Physics
Department and Lehrstuhl für Bioverfahrenstechnik, Technical University of Munich, Am Coulombwall 4a, 85748 Garching bei München, Germany
| | - Gereon Brüggenthies
- Physics
Department and Lehrstuhl für Bioverfahrenstechnik, Technical University of Munich, Am Coulombwall 4a, 85748 Garching bei München, Germany
| | - Fabian Kohler
- Physics
Department and Lehrstuhl für Bioverfahrenstechnik, Technical University of Munich, Am Coulombwall 4a, 85748 Garching bei München, Germany
| | - Benjamin Kick
- Physics
Department and Lehrstuhl für Bioverfahrenstechnik, Technical University of Munich, Am Coulombwall 4a, 85748 Garching bei München, Germany
| | - Karoline L. Kadletz
- Physics
Department and Lehrstuhl für Bioverfahrenstechnik, Technical University of Munich, Am Coulombwall 4a, 85748 Garching bei München, Germany
| | - Phuong Nhi Pham
- Physics
Department and Lehrstuhl für Bioverfahrenstechnik, Technical University of Munich, Am Coulombwall 4a, 85748 Garching bei München, Germany
| | - Karl L. Behler
- Physics
Department and Lehrstuhl für Bioverfahrenstechnik, Technical University of Munich, Am Coulombwall 4a, 85748 Garching bei München, Germany
| | - Thomas Gerling
- Physics
Department and Lehrstuhl für Bioverfahrenstechnik, Technical University of Munich, Am Coulombwall 4a, 85748 Garching bei München, Germany
| | - Hendrik Dietz
- Physics
Department and Lehrstuhl für Bioverfahrenstechnik, Technical University of Munich, Am Coulombwall 4a, 85748 Garching bei München, Germany
- E-mail:
| |
Collapse
|
21
|
Kim BO, Kim ES, Yoo YJ, Bae HW, Chung IY, Cho YH. Phage-Derived Antibacterials: Harnessing the Simplicity, Plasticity, and Diversity of Phages. Viruses 2019; 11:v11030268. [PMID: 30889807 PMCID: PMC6466130 DOI: 10.3390/v11030268] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
Despite the successful use of antibacterials, the emergence of multidrug-resistant bacteria has become a serious threat to global healthcare. In this era of antibacterial crisis, bacteriophages (phages) are being explored as an antibacterial treatment option since they possess a number of advantages over conventional antibacterials, especially in terms of specificity and biosafety; phages specifically lyse target bacteria while not affecting normal and/or beneficial bacteria and display little or no toxicity in that they are mainly composed of proteins and nucleic acids, which consequently significantly reduces the time and cost involved in antibacterial development. However, these benefits also create potential issues regarding antibacterial spectra and host immunity; the antibacterial spectra being very narrow when compared to those of chemicals, with the phage materials making it possible to trigger host immune responses, which ultimately disarm antibacterial efficacy upon successive treatments. In addition, phages play a major role in horizontal gene transfer between bacterial populations, which poses serious concerns for the potential of disastrous consequences regarding antibiotic resistance. Fortunately, however, recent advancements in synthetic biology tools and the speedy development of phage genome resources have allowed for research on methods to circumvent the potentially disadvantageous aspects of phages. These novel developments empower research which goes far beyond traditional phage therapy approaches, opening up a new chapter for phage applications with new antibacterial platforms. Herein, we not only highlight the most recent synthetic phage engineering and phage product engineering studies, but also discuss a new proof-of-concept for phage-inspired antibacterial design based on the studies undertaken by our group.
Collapse
Affiliation(s)
- Bi-O Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea.
| | - Eun Sook Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea.
| | - Yeon-Ji Yoo
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea.
| | - Hee-Won Bae
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea.
| | - In-Young Chung
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea.
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea.
| |
Collapse
|
22
|
Nafisi PM, Aksel T, Douglas SM. Construction of a novel phagemid to produce custom DNA origami scaffolds. Synth Biol (Oxf) 2018; 3. [PMID: 30984875 PMCID: PMC6461039 DOI: 10.1093/synbio/ysy015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA origami, a method for constructing nanoscale objects, relies on a long single strand of DNA to act as the 'scaffold' to template assembly of numerous short DNA oligonucleotide 'staples'. The ability to generate custom scaffold sequences can greatly benefit DNA origami design processes. Custom scaffold sequences can provide better control of the overall size of the final object and better control of low-level structural details, such as locations of specific base pairs within an object. Filamentous bacteriophages and related phagemids can work well as sources of custom scaffold DNA. However, scaffolds derived from phages require inclusion of multi-kilobase DNA sequences in order to grow in host bacteria, and those sequences cannot be altered or removed. These fixed-sequence regions constrain the design possibilities of DNA origami. Here, we report the construction of a novel phagemid, pScaf, to produce scaffolds that have a custom sequence with a much smaller fixed region of 393 bases. We used pScaf to generate new scaffolds ranging in size from 1512 to 10 080 bases and demonstrated their use in various DNA origami shapes and assemblies. We anticipate our pScaf phagemid will enhance development of the DNA origami method and its future applications.
Collapse
Affiliation(s)
- Parsa M Nafisi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Tural Aksel
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Shawn M Douglas
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Ngo-Duc TT, Plank JM, Chen G, Harrison RES, Morikis D, Liu H, Haberer ED. M13 bacteriophage spheroids as scaffolds for directed synthesis of spiky gold nanostructures. NANOSCALE 2018; 10:13055-13063. [PMID: 29952390 DOI: 10.1039/c8nr03229g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The spherical form (s-form) of a genetically-modified gold-binding M13 bacteriophage was investigated as a scaffold for gold synthesis. Repeated mixing of the phage with chloroform caused a 15-fold contraction from a nearly one micron long filament to an approximately 60 nm diameter spheroid. The geometry of the viral template and the helicity of its major coat protein were monitored throughout the transformation process using electron microscopy and circular dichroism spectroscopy, respectively. The transformed virus, which retained both its gold-binding and mineralization properties, was used to assemble gold colloid clusters and synthesize gold nanostructures. Spheroid-templated gold synthesis products differed in morphology from filament-templated ones. Spike-like structures protruded from the spherical template while isotropic particles developed on the filamentous template. Using inductively coupled plasma-mass spectroscopy (ICP-MS), gold ion adsorption was found to be comparatively high for the gold-binding M13 spheroid, and likely contributed to the dissimilar gold morphology. Template contraction was believed to modify the density, as well as the avidity of gold-binding peptides on the scaffold surface. The use of the s-form of the M13 bacteriophage significantly expands the templating capabilities of this viral platform and introduces the potential for further morphological control of a variety of inorganic material systems.
Collapse
Affiliation(s)
- Tam-Triet Ngo-Duc
- Materials Science and Engineering Program, University of California, Riverside, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Gibaud T. Filamentous phages as building blocks for reconfigurable and hierarchical self-assembly. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:493003. [PMID: 29099393 DOI: 10.1088/1361-648x/aa97f9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Filamentous bacteriophages such as fd-like viruses are monodisperse rod-like colloids that have well defined properties of diameter, length, rigidity, charge and chirality. Engineering these viruses leads to a library of colloidal rods, which can be used as building blocks for reconfigurable and hierarchical self-assembly. Their condensation in an aqueous solution with additive polymers, which act as depletants to induce attraction between the rods, leads to a myriad of fluid-like micronic structures ranging from isotropic/nematic droplets, colloid membranes, achiral membrane seeds, twisted ribbons, π-wall, pores, colloidal skyrmions, Möbius anchors, scallop membranes to membrane rafts. These structures, and the way that they shape-shift, not only shed light on the role of entropy, chiral frustration and topology in soft matter, but also mimic many structures encountered in different fields of science. On the one hand, filamentous phages being an experimental realization of colloidal hard rods, their condensation mediated by depletion interactions constitutes a blueprint for the self-assembly of rod-like particles and provides a fundamental foundation for bio- or material-oriented applications. On the other hand, the chiral properties of the viruses restrict the generalities of some results but vastly broaden the self-assembly possibilities.
Collapse
Affiliation(s)
- Thomas Gibaud
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
25
|
Alfaleh MA, Jones ML, Howard CB, Mahler SM. Strategies for Selecting Membrane Protein-Specific Antibodies using Phage Display with Cell-Based Panning. Antibodies (Basel) 2017; 6:E10. [PMID: 31548525 PMCID: PMC6698842 DOI: 10.3390/antib6030010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022] Open
Abstract
Membrane proteins are attractive targets for monoclonal antibody (mAb) discovery and development. Although several approved mAbs against membrane proteins have been isolated from phage antibody libraries, the process is challenging, as it requires the presentation of a correctly folded protein to screen the antibody library. Cell-based panning could represent the optimal method for antibody discovery against membrane proteins, since it allows for presentation in their natural conformation along with the appropriate post-translational modifications. Nevertheless, screening antibodies against a desired antigen, within a selected cell line, may be difficult due to the abundance of irrelevant organic molecules, which can potentially obscure the antigen of interest. This review will provide a comprehensive overview of the different cell-based phage panning strategies, with an emphasis placed on the optimisation of four critical panning conditions: cell surface antigen presentation, non-specific binding events, incubation time, and temperature and recovery of phage binders.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
26
|
Fibre diffraction studies of biological macromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 127:43-87. [DOI: 10.1016/j.pbiomolbio.2017.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/21/2017] [Accepted: 04/05/2017] [Indexed: 12/27/2022]
|
27
|
Rakonjac J, Russel M, Khanum S, Brooke SJ, Rajič M. Filamentous Phage: Structure and Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:1-20. [PMID: 29549632 DOI: 10.1007/978-3-319-72077-7_1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ff filamentous phage (fd, M13 and f1) of Escherichia coli have been the workhorse of phage display technology for the past 30 years. Dominance of Ff over other bacteriophage in display technology stems from the titres that are about 100-fold higher than any other known phage, efficacious transformation ensuring large library size and superior stability of the virion at high temperatures, detergents and pH extremes, allowing broad range of biopanning conditions in screening phage display libraries. Due to the excellent understanding of infection and assembly requirements, Ff phage have also been at the core of phage-assisted continual protein evolution strategies (PACE). This chapter will give an overview of the Ff filamentous phage structure and biology, emphasizing those properties of the Ff phage life cycle and virion that are pertinent to phage display applications.
Collapse
Affiliation(s)
- Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | | | - Sofia Khanum
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Sam J Brooke
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Marina Rajič
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Dogic Z. Filamentous Phages As a Model System in Soft Matter Physics. Front Microbiol 2016; 7:1013. [PMID: 27446051 PMCID: PMC4927585 DOI: 10.3389/fmicb.2016.01013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023] Open
Abstract
Filamentous phages have unique physical properties, such as uniform particle lengths, that are not found in other model systems of rod-like colloidal particles. Consequently, suspensions of such phages provided powerful model systems that have advanced our understanding of soft matter physics in general and liquid crystals in particular. We described some of these advances. In particular we briefly summarize how suspensions of filamentous phages have provided valuable insight into the field of colloidal liquid crystals. We also describe recent experiments on filamentous phages that have elucidated a robust pathway for assembly of 2D membrane-like materials. Finally, we outline unique structural properties of filamentous phages that have so far remained largely unexplored yet have the potential to further advance soft matter physics and material science.
Collapse
Affiliation(s)
- Zvonimir Dogic
- Department of Physics, Brandeis University Waltham, MA, USA
| |
Collapse
|
29
|
Tan Y, Tian T, Liu W, Zhu Z, J Yang C. Advance in phage display technology for bioanalysis. Biotechnol J 2016; 11:732-45. [PMID: 27061133 DOI: 10.1002/biot.201500458] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/30/2016] [Accepted: 03/15/2016] [Indexed: 11/06/2022]
Abstract
Phage display technology has emerged as a powerful tool for target gene expression and target-specific ligand selection. It is widely used to screen peptides, proteins and antibodies with the advantages of simplicity, high efficiency and low cost. A variety of targets, including ions, small molecules, inorganic materials, natural and biological polymers, nanostructures, cells, bacteria, and even tissues, have been demonstrated to generate specific binding ligands by phage display. Phages and target-specific ligands screened by phage display have been widely used as affinity reagents in therapeutics, diagnostics and biosensors. In this review, comparisons of different types of phage display systems are first presented. Particularly, microfluidic-based phage display, which enables screening with high throughput, high efficiency and integration, is highlighted. More importantly, we emphasize the advances in biosensors based on phages or phage-derived probes, including nonlytic phages, lytic phages, peptides or proteins screened by phage display, phage assemblies and phage-nanomaterial complexes. However, more efficient and higher throughput phage display methods are still needed to meet an explosion in demand for bioanalysis. Furthermore, screening of cyclic peptides and functional peptides will be the hotspot in bioanalysis.
Collapse
Affiliation(s)
- Yuyu Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Tian Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Wenli Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zhi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| | - Chaoyong J Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
30
|
Sattar S, Bennett NJ, Wen WX, Guthrie JM, Blackwell LF, Conway JF, Rakonjac J. Ff-nano, short functionalized nanorods derived from Ff (f1, fd, or M13) filamentous bacteriophage. Front Microbiol 2015; 6:316. [PMID: 25941520 PMCID: PMC4403547 DOI: 10.3389/fmicb.2015.00316] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/30/2015] [Indexed: 11/22/2022] Open
Abstract
F-specific filamentous phage of Escherichia coli (Ff: f1, M13, or fd) are long thin filaments (860 nm × 6 nm). They have been a major workhorse in display technologies and bionanotechnology; however, some applications are limited by the high length-to-diameter ratio of Ff. Furthermore, use of functionalized Ff outside of laboratory containment is in part hampered by the fact that they are genetically modified viruses. We have now developed a system for production and purification of very short functionalized Ff-phage-derived nanorods, named Ff-nano, that are only 50 nm in length. In contrast to standard Ff-derived vectors that replicate in E. coli and contain antibiotic-resistance genes, Ff-nano are protein-DNA complexes that cannot replicate on their own and do not contain any coding sequences. These nanorods show an increased resistance to heating at 70∘C in 1% SDS in comparison to the full-length Ff phage of the same coat composition. We demonstrate that functionalized Ff-nano particles are suitable for application as detection particles in sensitive and quantitative “dipstick” lateral flow diagnostic assay for human plasma fibronectin.
Collapse
Affiliation(s)
- Sadia Sattar
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| | - Nicholas J Bennett
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| | - Wesley X Wen
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| | - Jenness M Guthrie
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand ; Science Haven Limited, Palmerston North New Zealand
| | - Len F Blackwell
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand ; Science Haven Limited, Palmerston North New Zealand
| | - James F Conway
- University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| |
Collapse
|
31
|
Dedeo MT, Finley DT, Francis MB. Viral capsids as self-assembling templates for new materials. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 103:353-92. [PMID: 22000000 DOI: 10.1016/b978-0-12-415906-8.00002-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The self-assembling protein shells of viruses have provided convenient scaffolds for the construction of many new materials with well-defined nanoscale architectures. In some cases, the native amino acid functional groups have served as nucleation sites for the deposition of metals and semiconductors, leading to organic-inorganic composites with interesting electronic, magnetic, optical, and catalytic properties. Other approaches have involved the covalent modification of the protein monomers, typically with the goal of generating targeting delivery vehicles for drug and imaging cargo. Covalently modified capsid proteins have also been used to generate periodic arrays of chromophores for use in light harvesting and photocatalytic applications. All of these research areas have taken advantage of the low polydispersity, high chemical stability, and intrinsically multivalent properties that are uniquely offered by these biological building blocks.
Collapse
Affiliation(s)
- Michel T Dedeo
- Department of Chemistry, University of California, Berkeley, California, USA
| | | | | |
Collapse
|
32
|
Abstract
Correct host cell recognition is important in the replication cycle for any virus, including bacterial viruses. This essential step should occur before the bacteriophage commits to transfer its genomic material into the host. In this chapter we will discuss the proteins and mechanisms bacteriophages use for receptor recognition (just before full commitment to infection) and nucleic acid injection, which occurs just after commitment. Some bacteriophages use proteins of the capsid proper for host cell recognition, others use specialised spikes or fibres. Usually, several identical recognition events take place, and the information that a suitable host cell has been encountered is somehow transferred to the part of the bacteriophage capsid involved in nucleic acid transfer. The main part of the capsids of bacteriophages stay on the cell surface after transferring their genome, although a few specialised proteins move with the DNA, either forming a conduit, protecting the nucleic acids after transfer and/or functioning in the process of transcription and translation.
Collapse
Affiliation(s)
- Carmela Garcia-Doval
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CSIC), c/Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | | |
Collapse
|
33
|
Ghosh D, Kohli AG, Moser F, Endy D, Belcher AM. Refactored M13 bacteriophage as a platform for tumor cell imaging and drug delivery. ACS Synth Biol 2012; 1:576-582. [PMID: 23656279 DOI: 10.1021/sb300052u] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
M13 bacteriophage is a well-characterized platform for peptide display. The utility of the M13 display platform is derived from the ability to encode phage protein fusions with display peptides at the genomic level. However, the genome of the phage is complicated by overlaps of key genetic elements. These overlaps directly couple the coding sequence of one gene to the coding or regulatory sequence of another, making it difficult to alter one gene without disrupting the other. Specifically, overlap of the end of gene VII and the beginning of gene IX has prevented the functional genomic modification of the N-terminus of p9. By redesigning the M13 genome to physically separate these overlapping genetic elements, a process known as "refactoring," we enabled independent manipulation of gene VII and gene IX and the construction of the first N-terminal genomic modification of p9 for peptide display. We demonstrate the utility of this refactored genome by developing an M13 bacteriophage-based platform for targeted imaging of and drug delivery to prostate cancer cells in vitro. This successful use of refactoring principles to re-engineer a natural biological system strengthens the suggestion that natural genomes can be rationally designed for a number of applications.
Collapse
Affiliation(s)
- Debadyuti Ghosh
- MIT-Harvard Center of Cancer Nanotechnology Excellence, Cambridge, Massachusetts, United States
| | - Aditya G. Kohli
- MIT-Harvard Center of Cancer Nanotechnology Excellence, Cambridge, Massachusetts, United States
| | | | - Drew Endy
- Department of Bioengineering, Stanford University, Stanford, California, United States
| | - Angela M. Belcher
- MIT-Harvard Center of Cancer Nanotechnology Excellence, Cambridge, Massachusetts, United States
| |
Collapse
|
34
|
Carrico ZM, Farkas ME, Zhou Y, Hsiao SC, Marks JD, Chokhawala H, Clark DS, Francis MB. N-Terminal labeling of filamentous phage to create cancer marker imaging agents. ACS NANO 2012; 6:6675-80. [PMID: 22830952 PMCID: PMC3435507 DOI: 10.1021/nn301134z] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We report a convenient new technique for the labeling of filamentous phage capsid proteins. Previous reports have shown that phage coat protein residues can be modified, but the lack of chemically distinct amino acids in the coat protein sequences makes it difficult to attach high levels of synthetic molecules without altering the binding capabilities of the phage. To modify the phage with polymer chains, imaging groups, and other molecules, we have developed chemistry to convert the N-terminal amines of the ~4200 coat proteins into ketone groups. These sites can then serve as chemospecific handles for the attachment of alkoxyamine groups through oxime formation. Specifically, we demonstrate the attachment of fluorophores and up to 3000 molecules of 2 kDa poly(ethylene glycol) (PEG2k) to each of the phage capsids without significantly affecting the binding of phage-displayed antibody fragments to EGFR and HER2 (two important epidermal growth factor receptors). We also demonstrate the utility of the modified phage for the characterization of breast cancer cells using multicolor fluorescence microscopy. Due to the widespread use of filamentous phage as display platforms for peptide and protein evolution, we envision that the ability to attach large numbers of synthetic functional groups to their coat proteins will be of significant value to the biological and materials communities.
Collapse
Affiliation(s)
| | | | - Yu Zhou
- Department of Anesthesia and Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Sonny C. Hsiao
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - James D. Marks
- Department of Anesthesia and Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Harshal Chokhawala
- Department of Chemical Engineering, University of California, Berkeley, CA 94720
| | - Douglas S. Clark
- Department of Chemical Engineering, University of California, Berkeley, CA 94720
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, CA 94720
- Corresponding author:
| |
Collapse
|
35
|
Whyburn GP, Li Y, Huang Y. Protein and protein assembly based material structures. ACTA ACUST UNITED AC 2008. [DOI: 10.1039/b807421f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Abstract
DNA secondary structure plays an important role in biology, genotyping diagnostics, a variety of molecular biology techniques, in vitro-selected DNA catalysts, nanotechnology, and DNA-based computing. Accurate prediction of DNA secondary structure and hybridization using dynamic programming algorithms requires a database of thermodynamic parameters for several motifs including Watson-Crick base pairs, internal mismatches, terminal mismatches, terminal dangling ends, hairpins, bulges, internal loops, and multibranched loops. To make the database useful for predictions under a variety of salt conditions, empirical equations for monovalent and magnesium dependence of thermodynamics have been developed. Bimolecular hybridization is often inhibited by competing unimolecular folding of a target or probe DNA. Powerful numerical methods have been developed to solve multistate-coupled equilibria in bimolecular and higher-order complexes. This review presents the current parameter set available for making accurate DNA structure predictions and also points to future directions for improvement.
Collapse
Affiliation(s)
- John SantaLucia
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | | |
Collapse
|
37
|
Hansen MR, Hanson P, Pardi A. Filamentous bacteriophage for aligning RNA, DNA, and proteins for measurement of nuclear magnetic resonance dipolar coupling interactions. Methods Enzymol 2000; 317:220-40. [PMID: 10829283 DOI: 10.1016/s0076-6879(00)17017-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M R Hansen
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215, USA
| | | | | |
Collapse
|
38
|
Bentley L, Fehrsen J, Jordaan F, Huismans H, du Plessis DH. Identification of antigenic regions on VP2 of African horsesickness virus serotype 3 by using phage-displayed epitope libraries. J Gen Virol 2000; 81:993-1000. [PMID: 10725425 DOI: 10.1099/0022-1317-81-4-993] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
VP2 is an outer capsid protein of African horsesickness virus (AHSV) and is recognized by serotype-discriminatory neutralizing antibodies. With the objective of locating its antigenic regions, a filamentous phage library was constructed that displayed peptides derived from the fragmentation of a cDNA copy of the gene encoding VP2. Peptides ranging in size from approximately 30 to 100 amino acids were fused with pIII, the attachment protein of the display vector, fUSE2. To ensure maximum diversity, the final library consisted of three sub-libraries. The first utilized enzymatically fragmented DNA encoding only the VP2 gene, the second included plasmid sequences, while the third included a PCR step designed to allow different peptide-encoding sequences to recombine before ligation into the vector. The resulting composite library was subjected to immunoaffinity selection with AHSV-specific polyclonal chicken IgY, polyclonal horse immunoglobulins and a monoclonal antibody (MAb) known to neutralize AHSV. Antigenic peptides were located by sequencing the DNA of phages bound by the antibodies. Most antigenic determinants capable of being mapped by this method were located in the N-terminal half of VP2. Important binding areas were mapped with high resolution by identifying the minimum overlapping areas of the selected peptides. The MAb was also used to screen a random 17-mer epitope library. Sequences that may be part of a discontinuous neutralization epitope were identified. The amino acid sequences of the antigenic regions on VP2 of serotype 3 were compared with corresponding regions on three other serotypes, revealing regions with the potential to discriminate AHSV serotypes serologically.
Collapse
Affiliation(s)
- L Bentley
- Immunology Division, Onderstepoort Veterinary Institute, Private Bag X5, Onderstepoort 0110, Republic of South Africa
| | | | | | | | | |
Collapse
|
39
|
Cabilly S. The basic structure of filamentous phage and its use in the display of combinatorial peptide libraries. Mol Biotechnol 1999; 12:143-8. [PMID: 10596371 DOI: 10.1385/mb:12:2:143] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Combinatorial peptide libraries have been playing a major role in the search for new drugs, ligands, enzyme substrates, and other specifically interacting molecules. The principal features of these libraries require a versatile repertoire, an easily identifiable tag for each of the library members, a simple method of synthesis, and a compatibility with the biochemical milieu. Two types of combinatorial libraries are in use: synthetic libraries and biological (mainly phage display) ones. An advantage of the biological libraries is due to the ability of each of the library members to replicate itself and to the fact that they carry their own coding sequences. The uniqueness of filamentous phage is that of its five virion proteins, three can tolerate the insertion of foreign peptides, each in a distinctive manner. The major coat protein, pVIII, is capable of displaying hundreds of peptide copies over the phage virion, pIII can display either one or five copies, and pVI, as opposed to the first two, displays its peptides such that the carboxy terminus is oriented outward. A major drawback of filamentous phage is its size. The length of an intact phage particle is 930 nm and it contains an ssDNA of 6400 bp. 2800 copies of the major coat protein form a "fish scale" cover over most of the virion DNA, whereas five copies of pIII, which has been the major protein used for library display, and five copies of pVI are located at one end of the filamentous virion. There is no doubt that in order to improve the quality of filamentous phage libraries, the size of phage should be drastically reduced. Comprehensive research on the phage life cycle and its structure will lead us to the construction of miniature phage and to other methods that will enable an in vivo expanding of the library repertoire as well as to binding-induced specific clone-proliferation.
Collapse
Affiliation(s)
- S Cabilly
- Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
40
|
Ruan B, Hoskins J, Wang L, Bryan PN. Stabilizing the subtilisin BPN' pro-domain by phage display selection: how restrictive is the amino acid code for maximum protein stability? Protein Sci 1998; 7:2345-53. [PMID: 9828000 PMCID: PMC2143871 DOI: 10.1002/pro.5560071111] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have devised a procedure using monovalent phage display to select for stable mutants in the pro-domain of the serine protease, subtilisin BPN'. In complex with subtilisin, the pro-domain assumes a compact structure with a four-stranded antiparallel beta-sheet and two three-turn alpha-helices. When isolated, however, the pro-domain is 97% unfolded. These experiments use combinatorial mutagenesis to select for stabilizing amino acid combinations at a particular structural locus and determine how many combinations are close to the maximum protein stability. The selection for stability is based on the fact that the independent stability of the pro-domain is very low and that binding to subtilisin is thermodynamically linked to folding. Two libraries of mutant pro-domains were constructed and analyzed to determine how many combinations of amino acids at a particular structural locus result in the maximum stability. A library comprises all combinations of four amino acids at a structural locus. Previous studies using combinatorial genetics have shown that many different combinations of amino acids can be accommodated in a selected locus without destroying function. The present results indicate that the number of sequence combinations at a structural locus, which are close to the maximum stability, is small. The most striking example is a selection at an interior locus of the pro-domain. After two rounds of phagemid selection, one amino acid combination is found in 40% of sequenced mutants. The most frequently selected mutant has a deltaG(unfolding) = 4 kcal/mol at 25 degrees C, an increase of 6 kcal/mol relative to the naturally occurring sequence. Some implications of these results on the amount of sequence information needed to specify a unique tertiary fold are discussed. Apart from possible implications on the folding code, the phage display selection described here should be useful in optimizing the stability of other proteins, which can be displayed on the phage surface.
Collapse
Affiliation(s)
- B Ruan
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville 20850, USA
| | | | | | | |
Collapse
|
41
|
|
42
|
Abstract
Strategies for the construction of vehicles for phage display are evaluated here on the basis of structural studies of filamentous bacteriophages. Potential sites for the insertion of foreign peptides into the major coat protein, gp8, of M13 are identified. Currently, the insertion of peptides into gp8 has two basic limitations: all insertion sites that have been used successfully are located within 5 amino acids (aa) of the N terminus, and in virions containing only mutant coat proteins, insertions larger than about 6 aa have not been successfully incorporated. The possible reasons for these limitations are discussed in terms of the structures of gp8 and the minor structural proteins, gp7 and gp9. Potential strategies for overcoming these limitations are outlined. Reasons for the successful incorporation of larger inserts into hybrid phage containing both native and mutant coat proteins are also discussed. The structures of gp6, gp7, and gp9 are described, and it is concluded that insertion sites in these minor proteins are unlikely to have substantial advantages over those currently being used in gp3. The structure of the coat protein of another filamentous phage, Pseudomonas phage Pf1, is also described. Its structure provides a number of clues for the successful design of phage display insertion sites. Because it contains a 7-aa surface loop in the major coat protein, the Pf1 coat protein may have significant advantages over gp8 of M13 as a vehicle for phage display.
Collapse
Affiliation(s)
- L Makowski
- Institute of Molecular Biophysics, Florida State University, Tallahassee 32306
| |
Collapse
|
43
|
Makowski L. Terminating a macromolecular helix. Structural model for the minor proteins of bacteriophage M13. J Mol Biol 1992; 228:885-92. [PMID: 1469721 DOI: 10.1016/0022-2836(92)90872-h] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Analysis of the results of X-ray diffraction, electron microscopy and s sequence studies of filamentous bacteriophage M13 are used to construct structural models for the minor proteins gp7 and gp9 at the end of the virus assembled first, and a portion of gp6 at the end of the virus that binds host. Comparison of the sequence of the major coat protein, gp8, with those of gp7, gp9 and gp6 indicates that significant portions of these three proteins have sequences similar to that of gp8. Assuming that sequence similarity is indicative of structural similarity, gp7, gp9 and portions of gp6 are modeled based on what is known about the structure of gp8. These molecular models are analyzed to predict the packing of the minor proteins with the terminal gp8 proteins (the last gp8 proteins at either end of the helix). This analysis indicates that the gp8 proteins integrated into the virus first may have a structure distinct from those in the body of the virus particle. The gp8 proteins at the end assembled last appear to have a conformation very similar to that of the integral coat proteins. These models place specific constraints on models for the process of viral assembly.
Collapse
Affiliation(s)
- L Makowski
- Department of Physics, Boston University, MA 02215
| |
Collapse
|