1
|
Elverson K, Freeman S, Manson F, Warwicker J. Computational Investigation of Mechanisms for pH Modulation of Human Chloride Channels. Molecules 2023; 28:5753. [PMID: 37570721 PMCID: PMC10420675 DOI: 10.3390/molecules28155753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Many transmembrane proteins are modulated by intracellular or extracellular pH. Investigation of pH dependence generally proceeds by mutagenesis of a wide set of amino acids, guided by properties such as amino-acid conservation and structure. Prediction of pKas can streamline this process, allowing rapid and effective identification of amino acids of interest with respect to pH dependence. Commencing with the calcium-activated chloride channel bestrophin 1, the carboxylate ligand structure around calcium sites relaxes in the absence of calcium, consistent with a measured lack of pH dependence. By contrast, less relaxation in the absence of calcium in TMEM16A, and maintenance of elevated carboxylate sidechain pKas, is suggested to give rise to pH-dependent chloride channel activity. This hypothesis, modulation of calcium/proton coupling and pH-dependent activity through the extent of structural relaxation, is shown to apply to the well-characterised cytosolic proteins calmodulin (pH-independent) and calbindin D9k (pH-dependent). Further application of destabilised, ionisable charge sites, or electrostatic frustration, is made to other human chloride channels (that are not calcium-activated), ClC-2, GABAA, and GlyR. Experimentally determined sites of pH modulation are readily identified. Structure-based tools for pKa prediction are freely available, allowing users to focus on mutagenesis studies, construct hypothetical proton pathways, and derive hypotheses such as the model for control of pH-dependent calcium activation through structural flexibility. Predicting altered pH dependence for mutations in ion channel disorders can support experimentation and, ultimately, clinical intervention.
Collapse
Affiliation(s)
- Kathleen Elverson
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Sally Freeman
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Forbes Manson
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Jim Warwicker
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| |
Collapse
|
2
|
Gurung D, Danielson JA, Tasnim A, Zhang JT, Zou Y, Liu JY. Proline Isomerization: From the Chemistry and Biology to Therapeutic Opportunities. BIOLOGY 2023; 12:1008. [PMID: 37508437 PMCID: PMC10376262 DOI: 10.3390/biology12071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Proline isomerization, the process of interconversion between the cis- and trans-forms of proline, is an important and unique post-translational modification that can affect protein folding and conformations, and ultimately regulate protein functions and biological pathways. Although impactful, the importance and prevalence of proline isomerization as a regulation mechanism in biological systems have not been fully understood or recognized. Aiming to fill gaps and bring new awareness, we attempt to provide a wholistic review on proline isomerization that firstly covers what proline isomerization is and the basic chemistry behind it. In this section, we vividly show that the cause of the unique ability of proline to adopt both cis- and trans-conformations in significant abundance is rooted from the steric hindrance of these two forms being similar, which is different from that in linear residues. We then discuss how proline isomerization was discovered historically followed by an introduction to all three types of proline isomerases and how proline isomerization plays a role in various cellular responses, such as cell cycle regulation, DNA damage repair, T-cell activation, and ion channel gating. We then explore various human diseases that have been linked to the dysregulation of proline isomerization. Finally, we wrap up with the current stage of various inhibitors developed to target proline isomerases as a strategy for therapeutic development.
Collapse
Affiliation(s)
- Deepti Gurung
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jacob A Danielson
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Afsara Tasnim
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Yue Zou
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| |
Collapse
|
3
|
Linse S, Thulin E, Nilsson H, Stigler J. Benefits and constrains of covalency: the role of loop length in protein stability and ligand binding. Sci Rep 2020; 10:20108. [PMID: 33208843 PMCID: PMC7674454 DOI: 10.1038/s41598-020-76598-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/26/2020] [Indexed: 11/12/2022] Open
Abstract
Protein folding is governed by non-covalent interactions under the benefits and constraints of the covalent linkage of the backbone chain. In the current work we investigate the influence of loop length variation on the free energies of folding and ligand binding in a small globular single-domain protein containing two EF-hand subdomains—calbindin D9k. We introduce a linker extension between the subdomains and vary its length between 1 to 16 glycine residues. We find a close to linear relationship between the linker length and the free energy of folding of the Ca2+-free protein. In contrast, the linker length has only a marginal effect on the Ca2+ affinity and cooperativity. The variant with a single-glycine extension displays slightly increased Ca2+ affinity, suggesting that the slightly extended linker allows optimized packing of the Ca2+-bound state. For the extreme case of disconnected subdomains, Ca2+ binding becomes coupled to folding and assembly. Still, a high affinity between the EF-hands causes the non-covalent pair to retain a relatively high apparent Ca2+ affinity. Our results imply that loop length variation could be an evolutionary option for modulating properties such as protein stability and turnover without compromising the energetics of the specific function of the protein.
Collapse
Affiliation(s)
- Sara Linse
- Departments of Biophysical Chemistry, Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| | - Eva Thulin
- Departments of Biophysical Chemistry, Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Hanna Nilsson
- Departments of Biophysical Chemistry, Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Johannes Stigler
- Departments of Biophysical Chemistry, Biochemistry and Structural Biology, Lund University, Lund, Sweden. .,Gene Center, Ludwig-Maximilians-University, 81377, Munich, Germany.
| |
Collapse
|
4
|
Thapa M, Johnson E, Rance M. Effect of monovalent ion binding on molecular dynamics of the S100-family calcium-binding protein calbindin D 9k. J Comput Chem 2019; 40:1936-1945. [PMID: 30977915 DOI: 10.1002/jcc.25839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/25/2019] [Accepted: 03/23/2019] [Indexed: 11/06/2022]
Abstract
Calbindin D9k is a member of the S100 subfamily of EF-hand calcium binding proteins, and has served as an important model system for biophysical studies. The fast timescale dynamics of the calcium-free (apo) state is characterized using molecular dynamics simulations. Order parameters for the backbone NH bond vectors are determined from the simulations and compared with experimentally derived values, with a focus on the dynamics of calcium-binding site I. There is a significant discrepancy between simulated and experimental order parameters for site I residues in the case of no ion bound in site I. However, it was found in the simulations that a Na+ ion can bind in site I, and the resulting order parameters determined from the simulations are in excellent agreement with experiment. Comparisons are made to X-ray structures of other S100 family members in which Na+ ions were observed or suggested to be bound in site I. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mahendra Thapa
- Department of Physics, University of Cincinnati, Cincinnati, Ohio
| | - Eric Johnson
- Department of Chemistry and Physical Sciences, Mount St. Joseph University, Cincinnati, Ohio
| | - Mark Rance
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
5
|
Sikdar S, Ghosh M, Adak A, Chakrabarti J. Structural and dynamic responses of calcium ion binding loop residues in metallo-proteins. Biophys Chem 2019; 252:106207. [PMID: 31252378 DOI: 10.1016/j.bpc.2019.106207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
Conformational changes in bio-molecular systems are fundamental to several biological processes. It is important to study changes in responses of underlying microscopic variables, like dihedral angles as conformational change takes place. We perform all-atom simulations and modelling via Langevin equation to illustrate the changes in structural and dynamic responses of dihedral angles of calcium ion binding residues of different proteins in metal ion free (apo) and bound (holo) states. The equilibrium distributions of dihedral angles in apo- and holo-states represent structural response. Our studies show the presence of dihedrals with multiple peaks (isomeric states) separated by barrier heights is more frequent in apo- than in holo-state. The relaxation time-scale of dihedral fluctuations is found to increase linearly with decreasing barrier height due to more frequent barrier re-crossing events. The slow kinetic response of the dihedrals also contributes to slowing down of macro-scale fluctuations, which may be useful to understand kinetics of various bio-molecular processes.
Collapse
Affiliation(s)
- Samapan Sikdar
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
| | - Mahua Ghosh
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India
| | - Arunava Adak
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India
| | - J Chakrabarti
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India; The Thematic Unit of Excellence on Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
| |
Collapse
|
6
|
Orton HW, Otting G. Accurate Electron-Nucleus Distances from Paramagnetic Relaxation Enhancements. J Am Chem Soc 2018; 140:7688-7697. [PMID: 29790335 DOI: 10.1021/jacs.8b03858] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Measurements of paramagnetic relaxation enhancements (PREs) in 1H NMR spectra are an important tool to obtain long-range distance information in proteins, but quantitative interpretation is easily compromised by nonspecific intermolecular PREs. Here we show that PREs generated by lanthanides with anisotropic magnetic susceptibilities offer a route to accurate calibration-free distance measurements. As these lanthanides change 1H chemical shifts due to pseudocontact shifts, the relaxation rates in the paramagnetic and diamagnetic state can be measured with a single sample that simultaneously contains the protein labeled with a paramagnetic and a diamagnetic lanthanide ion. Nonspecific intermolecular PREs are thus automatically subtracted when calculating the PREs as the difference in nuclear relaxation rates between paramagnetic and diamagnetic protein. Although PREs from lanthanides with anisotropic magnetic susceptibilities are complicated by additional cross-correlation effects and residual dipolar couplings (RDCs) in the paramagnetic state, these effects can be controlled by the choice of lanthanide ion and experimental conditions. Using calbindin D9k with erbium, we succeeded in measuring intramolecular PREs with unprecedented accuracy, resulting in distance predictions with a root-mean-square-deviation of <0.9 Å in the range 11-24 Å.
Collapse
Affiliation(s)
- Henry W Orton
- Research School of Chemistry , Australian National University , Canberra , Australian Capital Territory 2601 , Australia
| | - Gottfried Otting
- Research School of Chemistry , Australian National University , Canberra , Australian Capital Territory 2601 , Australia
| |
Collapse
|
7
|
Momin M, Xin Y, Hamelberg D. Allosteric Fine-Tuning of the Binding Pocket Dynamics in the ITK SH2 Domain by a Distal Molecular Switch: An Atomistic Perspective. J Phys Chem B 2017; 121:6131-6138. [PMID: 28570811 DOI: 10.1021/acs.jpcb.7b03470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although the regulation of function of proteins by allosteric interactions has been identified in many subcellular processes, molecular switches are also known to induce long-range conformational changes in proteins. A less well understood molecular switch involving cis-trans isomerization of a peptidyl-prolyl bond could induce a conformational change directly to the backbone that is propagated to other parts of the protein. However, these switches are elusive and hard to identify because they are intrinsic to biomolecules that are inherently dynamic. Here, we explore the conformational dynamics and free energy landscape of the SH2 domain of interleukin-2-inducible T-cell or tyrosine kinase (ITK) to fully understand the conformational coupling between the distal cis-trans molecular switch and its binding pocket of the phosphotyrosine motif. We use multiple microsecond-long all-atom molecular dynamics simulations in explicit water for over a total of 60 μs. We show that cis-trans isomerization of the Asn286-Pro287 peptidyl-prolyl bond is directly coupled to the dynamics of the binding pocket of the phosphotyrosine motif, in agreement with previous NMR experiments. Unlike the cis state that is localized and less dynamic in a single free energy basin, the trans state samples two distinct conformations of the binding pocket-one that recognizes the phosphotyrosine motif and the other that is somewhat similar to that of the cis state. The results provide an atomic-level description of a less well understood allosteric regulation by a peptidyl-prolyl cis-trans molecular switch that could aid in the understanding of normal and aberrant subcellular processes and the identification of these elusive molecular switches in other proteins.
Collapse
Affiliation(s)
- Mohamed Momin
- Department of Chemistry and ‡Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302-3965, United States
| | - Yao Xin
- Department of Chemistry and ‡Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302-3965, United States
| | - Donald Hamelberg
- Department of Chemistry and ‡Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
8
|
Ababou A, Zaleska M, Pfuhl M. On the Ca 2+ binding and conformational change in EF-hand domains: Experimental evidence of Ca 2+-saturated intermediates of N-domain of calmodulin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:640-651. [PMID: 28288938 DOI: 10.1016/j.bbapap.2017.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023]
Abstract
Double mutation of Q41L and K75I in the N-domain of calmodulin (N-Cam) stabilizes the closed form of N-Cam such that binding of Ca2+ in solution no longer triggers a conformational change to the open form, and its Ca2+ binding affinity decreases dramatically. To further investigate the solvation effects on the structure, Ca2+ binding affinity and conformational dynamics of this N-Cam double mutant in the Ca2+ saturated state, we solved its X-ray structure. Surprisingly, the structure revealed an open conformation of the domain which contradicts its closed conformation in solution. Here we provide evidence that crystallization conditions were responsible for this Ca2+-saturated domain open conformation in the crystal. Importantly, we demonstrate that the presence of the crystallization co-precipitant and alcohols were able to induce a progressive opening of the closed form of this domain, in Ca2+ saturated state, in solution. However, in the Ca2+ depleted state, addition of alcohols was unable to induce any opening of this domain in solution. In addition, in the Ca2+ saturated state, the molecular dynamics simulations show that while N-Cam can populate the open and closed conformation, the N-Cam double mutant exclusively populates the closed conformation. Our results provide experimental evidence of intermediate conformations of Ca2+-saturated N-Cam in solution. We propose that conformational change of Ca2+ sensor EF-hand domains depends on solvation energetics, Ca2+ binding to promote the full open form, Ca2+ depleted state conformational dynamics, and the chemical properties of the molecules nearby key residues such as those at positions 41 and 75 in N-Cam.
Collapse
Affiliation(s)
- Abdessamad Ababou
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; University of East London, School of Health, Sport and Bioscience, Water Lane, London E15 4LZ, UK.
| | - Mariola Zaleska
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Mark Pfuhl
- Cardiovascular and Randall Division, King's College London, London SE1 1UL, UK
| |
Collapse
|
9
|
Singh MK, Manoj N. Structural role of a conserved active sitecisproline in theThermotoga maritimaacetyl esterase from the carbohydrate esterase family 7. Proteins 2017; 85:694-708. [DOI: 10.1002/prot.25249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/17/2016] [Accepted: 01/04/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Mrityunjay K. Singh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences; Indian Institute of Technology Madras; Chennai 600036 Tamil Nadu India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences; Indian Institute of Technology Madras; Chennai 600036 Tamil Nadu India
| |
Collapse
|
10
|
Orton HW, Kuprov I, Loh CT, Otting G. Using Paramagnetism to Slow Down Nuclear Relaxation in Protein NMR. J Phys Chem Lett 2016; 7:4815-4818. [PMID: 27934036 DOI: 10.1021/acs.jpclett.6b02417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Paramagnetic metal ions accelerate nuclear spin relaxation; this effect is widely used for distance measurement and called paramagnetic relaxation enhancement (PRE). Theoretical predictions established that, under special circumstances, it is also possible to achieve a reduction in nuclear relaxation rates (negative PRE). This situation would occur if the mechanism of nuclear relaxation in the diamagnetic state is counterbalanced by a paramagnetic relaxation mechanism caused by the metal ion. Here we report the first experimental evidence for such a cross-correlation effect. Using a uniformly 15N-labeled mutant of calbindin D9k loaded with either Tm3+ or Tb3+, reduced R1 and R2 relaxation rates of backbone 15N spins were observed compared with the diamagnetic reference (the same protein loaded with Y3+). The effect arises from the compensation of the chemical shift anisotropy tensor by the anisotropic dipolar shielding generated by the unpaired electron spin.
Collapse
Affiliation(s)
- Henry W Orton
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Ilya Kuprov
- School of Chemistry, University of Southampton , Southampton, SO17 1BJ, United Kingdom
| | - Choy-Theng Loh
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| |
Collapse
|
11
|
Augustyniak R, Stanek J, Colaux H, Bodenhausen G, Koźmiński W, Herrmann T, Ferrage F. Nuclear overhauser spectroscopy of chiral CHD methylene groups. JOURNAL OF BIOMOLECULAR NMR 2016; 64:27-37. [PMID: 26614488 DOI: 10.1007/s10858-015-0002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/12/2015] [Indexed: 06/05/2023]
Abstract
Nuclear magnetic resonance spectroscopy (NMR) can provide a great deal of information about structure and dynamics of biomolecules. The quality of an NMR structure strongly depends on the number of experimental observables and on their accurate conversion into geometric restraints. When distance restraints are derived from nuclear Overhauser effect spectroscopy (NOESY), stereo-specific assignments of prochiral atoms can contribute significantly to the accuracy of NMR structures of proteins and nucleic acids. Here we introduce a series of NOESY-based pulse sequences that can assist in the assignment of chiral CHD methylene protons in random fractionally deuterated proteins. Partial deuteration suppresses spin-diffusion between the two protons of CH2 groups that normally impedes the distinction of cross-relaxation networks for these two protons in NOESY spectra. Three and four-dimensional spectra allow one to distinguish cross-relaxation pathways involving either of the two methylene protons so that one can obtain stereospecific assignments. In addition, the analysis provides a large number of stereospecific distance restraints. Non-uniform sampling was used to ensure optimal signal resolution in 4D spectra and reduce ambiguities of the assignments. Automatic assignment procedures were modified for efficient and accurate stereospecific assignments during automated structure calculations based on 3D spectra. The protocol was applied to calcium-loaded calbindin D9k. A large number of stereospecific assignments lead to a significant improvement of the accuracy of the structure.
Collapse
Affiliation(s)
- Rafal Augustyniak
- Département de chimie, Ecole Normale Supérieure - PSL Research University, 24 rue Lhomond, 75005, Paris, France
- Sorbonne Universités, UPMC Université Paris 6, 4 Place Jussieu, 75005, Paris, France
- UMR 7203 LBM, CNRS, 75005, Paris, France
| | - Jan Stanek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Henri Colaux
- Département de chimie, Ecole Normale Supérieure - PSL Research University, 24 rue Lhomond, 75005, Paris, France
- Sorbonne Universités, UPMC Université Paris 6, 4 Place Jussieu, 75005, Paris, France
- UMR 7203 LBM, CNRS, 75005, Paris, France
| | - Geoffrey Bodenhausen
- Département de chimie, Ecole Normale Supérieure - PSL Research University, 24 rue Lhomond, 75005, Paris, France
- Sorbonne Universités, UPMC Université Paris 6, 4 Place Jussieu, 75005, Paris, France
- UMR 7203 LBM, CNRS, 75005, Paris, France
- Ecole Polytechnique Fédérale de Lausanne, Institut des Sciences et Ingénierie Chimiques, BCH, 1015, Lausanne, Switzerland
| | - Wiktor Koźmiński
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Torsten Herrmann
- Institut des Sciences Analytiques, Centre de RMN à Très Hauts Champs, Université de Lyon/UMR 5280 CNRS/ENS Lyon/UCB Lyon 1, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Fabien Ferrage
- Département de chimie, Ecole Normale Supérieure - PSL Research University, 24 rue Lhomond, 75005, Paris, France.
- Sorbonne Universités, UPMC Université Paris 6, 4 Place Jussieu, 75005, Paris, France.
- UMR 7203 LBM, CNRS, 75005, Paris, France.
| |
Collapse
|
12
|
Herling TW, Arosio P, Müller T, Linse S, Knowles TPJ. A microfluidic platform for quantitative measurements of effective protein charges and single ion binding in solution. Phys Chem Chem Phys 2015; 17:12161-7. [DOI: 10.1039/c5cp00746a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microfluidic electrophoresis enables the comparison of dry sequence and solvated protein charges, and the detection of protein–ion binding.
Collapse
Affiliation(s)
| | - Paolo Arosio
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Thomas Müller
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Sara Linse
- Department of Biochemistry and Structural Biology
- Lund University
- Lund
- Sweden
| | | |
Collapse
|
13
|
Tong M, Wang Q, Wang Y, Chen G. Structures and energies of the transition between two conformations of the alternate frame folding calbindin-D9k protein: a theoretical study. RSC Adv 2015. [DOI: 10.1039/c5ra11234f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We carried out molecular dynamics simulations and energy calculations for the two states of the alternate frame folding (AFF) calbindin-D9k protein and their conformational transition in Ca2+-free form to address their dynamical transition mechanism.
Collapse
Affiliation(s)
- Mingqiong Tong
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Qing Wang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Yan Wang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Guangju Chen
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| |
Collapse
|
14
|
Kiyota Y, Takeda-Shitaka M. Molecular Recognition Study on the Binding of Calcium to Calbindin D9k Based on 3D Reference Interaction Site Model Theory. J Phys Chem B 2014; 118:11496-503. [DOI: 10.1021/jp504822r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yasuomi Kiyota
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Mayuko Takeda-Shitaka
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
15
|
Zhang XL, Tibbits GF, Paetzel M. The structure of cardiac troponin C regulatory domain with bound Cd2+ reveals a closed conformation and unique ion coordination. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:722-34. [PMID: 23633581 DOI: 10.1107/s0907444913001182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/11/2013] [Indexed: 12/22/2022]
Abstract
The amino-terminal domain of cardiac troponin C (cNTnC) is an essential Ca(2+) sensor found in cardiomyocytes. It undergoes a conformational change upon Ca(2+) binding and transduces the signal to the rest of the troponin complex to initiate cardiac muscle contraction. Two classical EF-hand motifs (EF1 and EF2) are present in cNTnC. Under physiological conditions, only EF2 binds Ca(2+); EF1 is a vestigial site that has lost its function in binding Ca(2+) owing to amino-acid sequence changes during evolution. Proteins with EF-hand motifs are capable of binding divalent cations other than calcium. Here, the crystal structure of wild-type (WT) human cNTnC in complex with Cd(2+) is presented. The structure of Cd(2+)-bound cNTnC with the disease-related mutation L29Q, as well as a structure with the residue differences D2N, V28I, L29Q and G30D (NIQD), which have been shown to have functional importance in Ca(2+) sensing at lower temperatures in ectothermic species, have also been determined. The structures resemble the overall conformation of NMR structures of Ca(2+)-bound cNTnC, but differ significantly from a previous crystal structure of Cd(2+)-bound cNTnC in complex with deoxycholic acid. The subtle structural changes observed in the region near the mutations may play a role in the increased Ca(2+) affinity. The 1.4 Å resolution WT cNTnC structure, which is the highest resolution structure yet obtained for cardiac troponin C, reveals a Cd(2+) ion coordinated in the canonical pentagonal bipyramidal geometry in EF2 despite three residues in the loop being disordered. A Cd(2+) ion found in the vestigial ion-binding site of EF1 is coordinated in a noncanonical `distorted' octahedral geometry. A comparison of the ion coordination observed within EF-hand-containing proteins for which structures have been solved in the presence of Cd(2+) is presented. A refolded WT cNTnC structure is also presented.
Collapse
Affiliation(s)
- Xiaolu Linda Zhang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | | | | |
Collapse
|
16
|
Wood K, Gallat FX, Otten R, van Heel AJ, Lethier M, van Eijck L, Moulin M, Haertlein M, Weik M, Mulder FAA. Protein Surface and Core Dynamics Show Concerted Hydration-Dependent Activation. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201205898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Wood K, Gallat FX, Otten R, van Heel AJ, Lethier M, van Eijck L, Moulin M, Haertlein M, Weik M, Mulder FAA. Protein surface and core dynamics show concerted hydration-dependent activation. Angew Chem Int Ed Engl 2012; 52:665-8. [PMID: 23154872 DOI: 10.1002/anie.201205898] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/29/2012] [Indexed: 11/09/2022]
Abstract
By specifically labeling leucine/valine methyl groups and lysine side chains "inside" and "outside" dynamics of proteins on the nanosecond timescale are compared using neutron scattering. Surprisingly, both groups display similar dynamics as a function of temperature, and the buried hydrophobic core is sensitive to hydration and undergoes a dynamical transition.
Collapse
Affiliation(s)
- Kathleen Wood
- Australian Nuclear Science and Technology Organisation Bragg Institute, Menai NSW, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jiang W, Luo Y, Maragliano L, Roux B. Calculation of Free Energy Landscape in Multi-Dimensions with Hamiltonian-Exchange Umbrella Sampling on Petascale Supercomputer. J Chem Theory Comput 2012; 8:4672-80. [PMID: 26605623 DOI: 10.1021/ct300468g] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An extremely scalable computational strategy is described for calculations of the potential of mean force (PMF) in multidimensions on massively distributed supercomputers. The approach involves coupling thousands of umbrella sampling (US) simulation windows distributed to cover the space of order parameters with a Hamiltonian molecular dynamics replica-exchange (H-REMD) algorithm to enhance the sampling of each simulation. In the present application, US/H-REMD is carried out in a two-dimensional (2D) space and exchanges are attempted alternatively along the two axes corresponding to the two order parameters. The US/H-REMD strategy is implemented on the basis of parallel/parallel multiple copy protocol at the MPI level, and therefore can fully exploit computing power of large-scale supercomputers. Here the novel technique is illustrated using the leadership supercomputer IBM Blue Gene/P with an application to a typical biomolecular calculation of general interest, namely the binding of calcium ions to the small protein Calbindin D9k. The free energy landscape associated with two order parameters, the distance between the ion and its binding pocket and the root-mean-square deviation (rmsd) of the binding pocket relative the crystal structure, was calculated using the US/H-REMD method. The results are then used to estimate the absolute binding free energy of calcium ion to Calbindin D9k. The tests demonstrate that the 2D US/H-REMD scheme greatly accelerates the configurational sampling of the binding pocket, thereby improving the convergence of the potential of mean force calculation.
Collapse
Affiliation(s)
- Wei Jiang
- Argonne Leadership Computing Facility, Argonne National Laboratory , 9700 South Cass Avenue, Building 240, Argonne, Illinois 60439, United States
| | - Yun Luo
- Argonne Leadership Computing Facility, Argonne National Laboratory , 9700 South Cass Avenue, Building 240, Argonne, Illinois 60439, United States
| | - Luca Maragliano
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago , 929 57th Street, Chicago, Illinois 60637, United States
| | - Benoît Roux
- Argonne Leadership Computing Facility, Argonne National Laboratory , 9700 South Cass Avenue, Building 240, Argonne, Illinois 60439, United States.,Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago , 929 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
19
|
Joseph RE, Ginder ND, Hoy JA, Nix JC, Honzatko RB, Andreotti AH. Purification, crystallization and preliminary crystallographic analysis of the SH2 domain of IL-2-inducible T-cell kinase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:269-73. [PMID: 21301103 PMCID: PMC3034625 DOI: 10.1107/s1744309110052346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 12/13/2010] [Indexed: 01/31/2023]
Abstract
Proline is a unique amino acid owing to the relatively small energy difference between the cis and trans conformations of its peptide bond. The X-Pro imide bond readily undergoes cis-trans isomerization in the context of short peptides as well as some proteins. However, the direct detection of cis-trans proline isomerization in folded proteins is technically challenging. NMR spectroscopy is well suited to the direct detection of proline isomerization in folded proteins. It is less clear how well X-ray crystallography can reveal this conformational exchange event in folded proteins. Conformational heterogeneity owing to cis-trans proline isomerization in the Src homology 2 (SH2) domain of the IL-2-inducible T-cell kinase (ITK) has been extensively characterized by NMR. Using the ITK SH2 domain as a test system, an attempt was made to determine whether proline isomerization could be detected in a crystal structure of the ITK SH2 domain. As a first step towards this goal, the purification, crystallization and preliminary characterization of the ITK SH2 domain are described.
Collapse
Affiliation(s)
- Raji E. Joseph
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Nathaniel D. Ginder
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Julie A. Hoy
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Jay C. Nix
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Richard B. Honzatko
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Amy H. Andreotti
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
20
|
Grabarek Z. Insights into modulation of calcium signaling by magnesium in calmodulin, troponin C and related EF-hand proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:913-21. [PMID: 21262274 DOI: 10.1016/j.bbamcr.2011.01.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
The Ca(2+)-binding helix-loop-helix structural motif called "EF-hand" is a common building block of a large family of proteins that function as intracellular Ca(2+)-receptors. These proteins respond specifically to micromolar concentrations of Ca(2+) in the presence of ~1000-fold excess of the chemically similar divalent cation Mg(2+). The intracellular free Mg(2+) concentration is tightly controlled in a narrow range of 0.5-1.0mM, which at the resting Ca(2+) levels is sufficient to fully or partially saturate the Ca(2+)-binding sites of many EF-hand proteins. Thus, to convey Ca(2+) signals, EF-hand proteins must respond differently to Ca(2+) than to Mg(2+). In this review the structural aspects of Mg(2+) binding to EF-hand proteins are considered and interpreted in light of the recently proposed two-step Ca(2+)-binding mechanism (Grabarek, Z., J. Mol. Biol., 2005, 346, 1351). It is proposed that, due to stereochemical constraints imposed by the two-EF-hand domain structure, the smaller Mg(2+) ion cannot engage the ligands of an EF-hand in the same way as Ca(2+) and defaults to stabilizing the apo-like conformation of the EF-hand. It is proposed that Mg(2+) plays an active role in the Ca(2+)-dependent regulation of cellular processes by stabilizing the "off state" of some EF-hand proteins, thereby facilitating switching off their respective target enzymes at the resting Ca(2+) levels. Therefore, some pathological conditions attributed to Mg(2+) deficiency might be related to excessive activation of underlying Ca(2+)-regulated cellular processes. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Zenon Grabarek
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472-2829, USA.
| |
Collapse
|
21
|
Project E, Nachliel E, Gutman M. Force field-dependent structural divergence revealed during long time simulations of Calbindin d9k. J Comput Chem 2010; 31:1864-72. [PMID: 20033912 DOI: 10.1002/jcc.21473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structural and the dynamic features of the Calbindin (CaB) protein in its holo and apo states are compared using molecular dynamics simulations under nine different force fields (FFs) (G43a1, G53a6, Opls-AA, Amber94, Amber99, Amber99p, AmberGS, AmberGSs, and Amber99sb). The results show that most FFs reproduce reasonably well the majority of the experimentally derived features of the CaB protein. However, in several cases, there are significant differences in secondary structure properties, root mean square deviations (RMSDs), root mean square fluctuations (RMSFs), and S(2) order parameters among the various FFs. What is more, in certain cases, these parameters differed from the experimentally derived values. Some of these deviations became noticeable only after 50 ns. A comparison with experimental data indicates that, for CaB, the Amber94 shows overall best agreement with the measured values, whereas several others seem to deviate from both crystal and nuclear magnetic resonance data.
Collapse
Affiliation(s)
- Elad Project
- Laser Laboratory for Fast Reactions in Biology, Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
22
|
Otten R, Wood K, Mulder FAA. Comprehensive determination of (3)J (HNHalpha) for unfolded proteins using (13)C'-resolved spin-echo difference spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2009; 45:343-9. [PMID: 19898942 PMCID: PMC2777233 DOI: 10.1007/s10858-009-9382-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 10/01/2009] [Indexed: 05/15/2023]
Abstract
An experiment is presented to determine (3)J(HNHalpha) coupling constants, with significant advantages for applications to unfolded proteins. The determination of coupling constants for the peptide chain using 1D (1)H, or 2D and 3D (1)H-(15)N correlation spectroscopy is often hampered by extensive resonance overlap when dealing with flexible, disordered proteins. In the experiment detailed here, the overlap problem is largely circumvented by recording (1)H-(13)C' correlation spectra, which demonstrate superior resolution for unfolded proteins. J-coupling constants are extracted from the peak intensities in a pair of 2D spin-echo difference experiments, affording rapid acquisition of the coupling data. In an application to the cytoplasmic domain of human neuroligin-3 (hNlg3cyt) data were obtained for 78 residues, compared to 54 coupling constants obtained from a 3D HNHA experiment. The coupling constants suggest that hNlg3cyt is intrinsically disordered, with little propensity for structure.
Collapse
Affiliation(s)
- Renee Otten
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kathleen Wood
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Frans A. A. Mulder
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
23
|
Shehu A, Kavraki LE, Clementi C. Multiscale characterization of protein conformational ensembles. Proteins 2009; 76:837-51. [PMID: 19280604 DOI: 10.1002/prot.22390] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We propose a multiscale exploration method to characterize the conformational space populated by a protein at equilibrium. The method efficiently obtains a large set of equilibrium conformations in two stages: first exploring the entire space at a coarse-grained level of detail, then narrowing a refined exploration to selected low-energy regions. The coarse-grained exploration periodically adds all-atom detail to selected conformations to ensure that the search leads to regions which maintain low energies in all-atom detail. The second stage reconstructs selected low-energy coarse-grained conformations in all-atom detail. A low-dimensional energy landscape associated with all-atom conformations allows focusing the exploration to energy minima and their conformational ensembles. The lowest energy ensembles are enriched with additional all-atom conformations through further multiscale exploration. The lowest energy ensembles obtained from the application of the method to three different proteins correctly capture the known functional states of the considered systems.
Collapse
Affiliation(s)
- Amarda Shehu
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|
24
|
Juranić N, Atanasova E, Macura S, Prendergast FG. Directly observed hydrogen bonds at calcium-binding-sites of calmodulin in solution relate to affinity of the calcium-binding. J Inorg Biochem 2009; 103:1415-8. [DOI: 10.1016/j.jinorgbio.2009.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 08/14/2009] [Accepted: 08/19/2009] [Indexed: 11/24/2022]
|
25
|
Mulder FAA. Leucine side-chain conformation and dynamics in proteins from 13C NMR chemical shifts. Chembiochem 2009; 10:1477-9. [PMID: 19466705 DOI: 10.1002/cbic.200900086] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Frans A A Mulder
- Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, NL.
| |
Collapse
|
26
|
Shen Y, Vernon R, Baker D, Bax A. De novo protein structure generation from incomplete chemical shift assignments. JOURNAL OF BIOMOLECULAR NMR 2009; 43:63-78. [PMID: 19034676 PMCID: PMC2683404 DOI: 10.1007/s10858-008-9288-5] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 10/28/2008] [Indexed: 05/19/2023]
Abstract
NMR chemical shifts provide important local structural information for proteins. Consistent structure generation from NMR chemical shift data has recently become feasible for proteins with sizes of up to 130 residues, and such structures are of a quality comparable to those obtained with the standard NMR protocol. This study investigates the influence of the completeness of chemical shift assignments on structures generated from chemical shifts. The Chemical-Shift-Rosetta (CS-Rosetta) protocol was used for de novo protein structure generation with various degrees of completeness of the chemical shift assignment, simulated by omission of entries in the experimental chemical shift data previously used for the initial demonstration of the CS-Rosetta approach. In addition, a new CS-Rosetta protocol is described that improves robustness of the method for proteins with missing or erroneous NMR chemical shift input data. This strategy, which uses traditional Rosetta for pre-filtering of the fragment selection process, is demonstrated for two paramagnetic proteins and also for two proteins with solid-state NMR chemical shift assignments.
Collapse
Affiliation(s)
- Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | | | | | |
Collapse
|
27
|
Paquin R, Ferrage F, Mulder FAA, Akke M, Bodenhausen G. Multiple-Timescale Dynamics of Side-Chain Carboxyl and Carbonyl Groups in Proteins by 13C Nuclear Spin Relaxation. J Am Chem Soc 2008; 130:15805-7. [PMID: 18975903 DOI: 10.1021/ja803794g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raphaël Paquin
- Département de Chimie, associé au CNRS, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France, Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Center for Molecular Protein Science, Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, BCH, CH-1015 Lausanne, Switzerland
| | - Fabien Ferrage
- Département de Chimie, associé au CNRS, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France, Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Center for Molecular Protein Science, Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, BCH, CH-1015 Lausanne, Switzerland
| | - Frans A. A. Mulder
- Département de Chimie, associé au CNRS, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France, Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Center for Molecular Protein Science, Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, BCH, CH-1015 Lausanne, Switzerland
| | - Mikael Akke
- Département de Chimie, associé au CNRS, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France, Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Center for Molecular Protein Science, Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, BCH, CH-1015 Lausanne, Switzerland
| | - Geoffrey Bodenhausen
- Département de Chimie, associé au CNRS, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France, Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Center for Molecular Protein Science, Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, BCH, CH-1015 Lausanne, Switzerland
| |
Collapse
|
28
|
New Insights into Multiple Coagulation Factor Deficiency from the Solution Structure of Human MCFD2. J Mol Biol 2008; 381:941-55. [DOI: 10.1016/j.jmb.2008.06.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/12/2008] [Accepted: 06/13/2008] [Indexed: 11/20/2022]
|
29
|
Huang SW, Shih CH, Lin CP, Hwang JK. Prediction of NMR order parameters in proteins using weighted protein contact-number model. Theor Chem Acc 2008. [DOI: 10.1007/s00214-008-0465-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Abstract
This overview provides an illustrated, comprehensive survey of some commonly observed protein‐fold families and structural motifs, chosen for their functional significance. It opens with descriptions and definitions of the various elements of protein structure and associated terminology. Following is an introduction into web‐based structural bioinformatics that includes surveys of interactive web servers for protein fold or domain annotation, protein‐structure databases, protein‐structure‐classification databases, structural alignments of proteins, and molecular graphics programs available for personal computers. The rest of the overview describes selected families of protein folds in terms of their secondary, tertiary, and quaternary structural arrangements, including ribbon‐diagram examples, tables of representative structures with references, and brief explanations pointing out their respective biological and functional significance.
Collapse
Affiliation(s)
- Peter D Sun
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | | |
Collapse
|
31
|
Malashkevich VN, Varney KM, Garrett SC, Wilder PT, Knight D, Charpentier TH, Ramagopal UA, Almo SC, Weber DJ, Bresnick AR. Structure of Ca2+-bound S100A4 and its interaction with peptides derived from nonmuscle myosin-IIA. Biochemistry 2008; 47:5111-26. [PMID: 18410126 DOI: 10.1021/bi702537s] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
S100A4, also known as mts1, is a member of the S100 family of Ca2+-binding proteins that is directly involved in tumor invasion and metastasis via interactions with specific protein targets, including nonmuscle myosin-IIA (MIIA). Human S100A4 binds two Ca2+ ions with the typical EF-hand exhibiting an affinity that is nearly 1 order of magnitude tighter than that of the pseudo-EF-hand. To examine how Ca2+ modifies the overall organization and structure of the protein, we determined the 1.7 A crystal structure of the human Ca2+-S100A4. Ca2+ binding induces a large reorientation of helix 3 in the typical EF-hand. This reorganization exposes a hydrophobic cleft that is comprised of residues from the hinge region,helix 3, and helix 4, which afford specific target recognition and binding. The Ca2+-dependent conformational change is required for S100A4 to bind peptide sequences derived from the C-terminal portion of the MIIA rod with submicromolar affinity. In addition, the level of binding of Ca2+ to both EF-hands increases by 1 order of magnitude in the presence of MIIA. NMR spectroscopy studies demonstrate that following titration with a MIIA peptide, the largest chemical shift perturbations and exchange broadening effects occur for residues in the hydrophobic pocket of Ca2+-S100A4. Most of these residues are not exposed in apo-S100A4 and explain the Ca2+ dependence of formation of theS100A4-MIIA complex. These studies provide the foundation for understanding S100A4 target recognition and may support the development of reagents that interfere with S100A4 function.
Collapse
Affiliation(s)
- Vladimir N Malashkevich
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dhulesia A, Abergel D, Bodenhausen G. Networks of coupled rotators: relationship between structures and internal dynamics in metal-binding proteins. Applications to apo- and holo-calbindin. J Am Chem Soc 2007; 129:4998-5006. [PMID: 17402731 DOI: 10.1021/ja067429w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article presents an analysis of the internal dynamics of the Ca2+-binding protein calbindin, based on the Networks of Coupled Rotators (NCRs) introduced recently. Several fundamental and practical issues raised by this approach are investigated. The roles of various parameters of the model are examined. The NCR model is shown to account for the modifications of the internal dynamics upon Ca2+ binding by calbindin. Two alternative strategies to estimate local internal effective correlation times of the protein are proposed, which offer good agreement between predictions and experiment.
Collapse
Affiliation(s)
- Anne Dhulesia
- Département de Chimie, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
33
|
Fragai M, Luchinat C, Parigi G. "Four-dimensional" protein structures: examples from metalloproteins. Acc Chem Res 2006; 39:909-17. [PMID: 17176029 DOI: 10.1021/ar050103s] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fact that an object, for example, a protein, possesses a three-dimensional structure seems an obvious concept. However, when the object is flexible, the concept is less obvious. Growing experimental data over several decades show that proteins are not rigid objects, but they may sample more or less wide ranges of different conformations. To stress this concept, we propose to call the range of sampled conformations the "fourth dimension" of the protein structure. Nuclear magnetic resonance is a precious technique to define this fourth dimension. Examples of conformational heterogeneity taken from the realm of metalloproteins and their functional implications are discussed.
Collapse
Affiliation(s)
- Marco Fragai
- Centro Risonanze Magnetiche (CERM) and Department of Agricultural Biotechnology, University of Florence, Via Luigi Sacconi, 6, 50019 Sesto Fiorentino (Florence), Italy
| | | | | |
Collapse
|
34
|
Powers N, Jensen JH. Chemically accurate protein structures: validation of protein NMR structures by comparison of measured and predicted pKa values. JOURNAL OF BIOMOLECULAR NMR 2006; 35:39-51. [PMID: 16791739 DOI: 10.1007/s10858-006-9003-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 03/08/2006] [Indexed: 05/10/2023]
Abstract
A new method is presented for evaluating the quality of protein structures obtained by NMR. This method exploits the dependence between measurable chemical properties of a protein, namely pKa values of acidic residues, and protein structure. The accurate and fast empirical computational method employed by the PROPKA program ( http://www.propka.chem.uiowa.edu) allows the user to test the ability of a given structure to reproduce known pKa values, which in turn can be used as a criterion for the selection of more accurate structures. We demonstrate the feasibility of this novel idea for a series of proteins for which both NMR and X-ray structures, as well as pKa values of all ionizable residues, have been determined. For the 17 NMR ensembles used in this study, this criterion is shown effective in the elimination of a large number of NMR structure ensemble members.
Collapse
Affiliation(s)
- N Powers
- Department of Chemistry, University of Iowa, Iowa City, 52242, USA
| | | |
Collapse
|
35
|
Grabarek Z. Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 2006; 359:509-25. [PMID: 16678204 DOI: 10.1016/j.jmb.2006.03.066] [Citation(s) in RCA: 284] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/25/2006] [Accepted: 03/30/2006] [Indexed: 12/31/2022]
Abstract
The calcium binding proteins of the EF-hand super-family are involved in the regulation of all aspects of cell function. These proteins exhibit a great diversity of composition, structure, Ca2+-binding and target interaction properties. Here, our current understanding of the Ca2+-binding mechanism is assessed. The structures of the EF-hand motifs containing 11-14 amino acid residues in the Ca2+-binding loop are analyzed within the framework of the recently proposed two-step Ca2+-binding mechanism. A hypothesis is put forward that in all EF-hand proteins the Ca2+-binding and the resultant conformational responses are governed by the central structure connecting the Ca2+-binding loops in the two-EF-hand domain. This structure, named EFbeta-scaffold, defines the position of the bound Ca2+, and coordinates the function of the N-terminal (variable and flexible) with the C-terminal (invariable and rigid) parts of the Ca2+-binding loop. It is proposed that the nature of the first ligand of the Ca2+-binding loop is an important determinant of the conformational change. Additional factors, including the interhelical contacts, the length, structure and flexibility of the linker connecting the EF-hand motifs, and the overall energy balance provide the fine-tuning of the Ca2+-induced conformational change in the EF-hand proteins.
Collapse
Affiliation(s)
- Zenon Grabarek
- Boston Biomedical Research Institute, Watertown, MA 02472, USA.
| |
Collapse
|
36
|
Schultz DA, Friedman AM, White MA, Fox RO. The crystal structure of the cis-proline to glycine variant (P114G) of ribonuclease A. Protein Sci 2005; 14:2862-70. [PMID: 16199662 PMCID: PMC2253220 DOI: 10.1110/ps.051610505] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 07/30/2005] [Accepted: 08/09/2005] [Indexed: 10/25/2022]
Abstract
Replacement of a cis-proline by glycine at position 114 in ribonuclease A leads to a large decrease in thermal stability and simplifies the refolding kinetics. A crystallographic approach was used to determine whether the decrease in thermal stability results from the presence of a cis glycine peptide bond, or from a localized structural rearrangement caused by the isomerization of the mutated cis 114 peptide bond. The structure was solved at 2.0 A resolution and refined to an R-factor of 19.5% and an R(free) of 21.9%. The overall conformation of the protein was similar to that of wild-type ribonuclease A; however, there was a large localized rearrangement of the mutated loop (residues 110-117-a 9.3 A shift of the Calpha atom of residue 114). The peptide bond before Gly114 is in the trans configuration. Interestingly, a large anomalous difference density was found near residue 114, and was attributed to a bound cesium ion present in the crystallization experiment. The trans isomeric configuration of the peptide bond in the folded state of this mutant is consistent with the refolding kinetics previously reported, and the associated protein conformational change provides an explanation for the decreased thermal stability.
Collapse
Affiliation(s)
- David A Schultz
- Department of Physics, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
37
|
Malmendal A, Vander Kooi CW, Nielsen NC, Chazin WJ. Calcium-modulated S100 protein-phospholipid interactions. An NMR study of calbindin D9k and DPC. Biochemistry 2005; 44:6502-12. [PMID: 15850384 DOI: 10.1021/bi050088z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cellular functions of several S100 proteins involve specific interactions with phospholipids and the cell membrane. The interactions between calbindin D(9k) (S100D) and the detergent dodecyl phosphocholine (DPC) were studied using NMR spectroscopy. In the absence of Ca(2+), the protein associates with DPC micelles. The micelle-associated state has intact helical secondary structures but no apparent tertiary fold. At neutral pH, Ca(2+)-loaded calbindin D(9k) does not associate with DPC micelles. However, a specific interaction is observed with individual DPC molecules at a site close to the linker between the two EF-hands. Binding to this site occurs only when Ca(2+) is bound to the protein. A reduction in pH in the absence of Ca(2+) increases the stability of the micelle-associated state. This along with the corresponding reduction in Ca(2+) affinity causes a transition to the micelle-associated state also in the presence of Ca(2+) when the pH is lowered. Site-specific analysis of the data indicates that calbindin D(9k) has a core of three tightly packed helices (A, B, and D), with a dynamic fourth helix (C) more loosely associated. Evidence is presented that the Ca(2+)-binding characteristics of the two EF-hands are distinctly different in a micelle environment. The role of calbindin D(9k) in the cell is discussed, along with the broader implications for the function of the S100 protein family.
Collapse
Affiliation(s)
- Anders Malmendal
- Department of Biochemistry, Center for Structural Biology, 5140 BIOSCI/MRB III, Vanderbilt University, Nashville, Tennessee 37232-8725, USA.
| | | | | | | |
Collapse
|
38
|
Bertini I, Jiménez B, Piccioli M. 13C direct detected experiments: optimization for paramagnetic signals. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 174:125-132. [PMID: 15809180 DOI: 10.1016/j.jmr.2005.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 01/12/2005] [Indexed: 05/24/2023]
Abstract
To optimize 13C direct detected experiments for the observation of signals close to a paramagnetic center, we have assessed the sensitivity of different sequences based on CO-Cali coherence transfer. Features of CACO experiments were tested for Calbindin D9k, in which one of the two native Ca2+ ions is replaced by the paramagnetic Ce3+ ion. We have studied the comparison of single vs multiple quantum coherence transfer evolution as well as the influence of in-phase vs anti-phase detection of 13CO signals and finally the comparison of a coherence transfer step based on a CyO in plane with respect to a Cy ali in plane. The acquisition of the anti-phase component of the signal, accomplished by the removal of the last refocusing steps, allowed the identification of some signals unobserved with other pathways. The structural dependency of paramagnetism-induced nuclear relaxation is such that the identification of the most suitable coherence transfer pathway is not known "a priori" but it is driven by the relative proximity of Cali and CO to the paramagnetic center.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
| | | | | |
Collapse
|
39
|
Rabah G, Popescu R, Cox JA, Engelborghs Y, Craescu CT. Solution structure and internal dynamics of NSCP, a compact calcium-binding protein. FEBS J 2005; 272:2022-36. [PMID: 15819893 DOI: 10.1111/j.1742-4658.2005.04629.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solution structure of Nereis diversicolor sarcoplasmic calcium-binding protein (NSCP) in the calcium-bound form was determined by NMR spectroscopy, distance geometry and simulated annealing. Based on 1859 NOE restraints and 262 angular restraints, 17 structures were generated with a rmsd of 0.87 A from the mean structure. The solution structure, which is highly similar to the structure obtained by X-ray crystallography, includes two open EF-hand domains, which are in close contact through their hydrophobic surfaces. The internal dynamics of the protein backbone were determined by studying amide hydrogen/deuterium exchange rates and 15N nuclear relaxation. The two methods revealed a highly compact and rigid structure, with greatly restricted mobility at the two termini. For most of the amide protons, the free energy of exchange-compatible structural opening is similar to the free energy of structural stability, suggesting that isotope exchange of these protons takes place through global unfolding of the protein. Enhanced conformational flexibility was noted in the unoccupied Ca2+-binding site II, as well as the neighbouring helices. Analysis of the experimental nuclear relaxation and the molecular dynamics simulations give very similar profiles for the backbone generalized order parameter (S2), a parameter related to the amplitude of fast (picosecond to nanosecond) movements of N(H)-H vectors. We also noted a significant correlation between this parameter, the exchange rate, and the crystallographic B factor along the sequence.
Collapse
Affiliation(s)
- Ghada Rabah
- INSERM & Institut Curie, Centre Universitaire, Orsay, France
| | | | | | | | | |
Collapse
|
40
|
Khalili M, Saunders JA, Liwo A, Ołdziej S, Scheraga HA. A united residue force-field for calcium-protein interactions. Protein Sci 2005; 13:2725-35. [PMID: 15388862 PMCID: PMC2286548 DOI: 10.1110/ps.04878904] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
United-residue potentials are derived for interactions of the calcium cation with polypeptide chains in energy-based prediction of protein structure with a united-residue (UNRES) force-field. Specific potentials were derived for the interaction of the calcium cation with the Asp, Glu, Asn, and Gln side chains and the peptide group. The analytical expressions for the interaction energies for each of these amino acids were obtained by averaging the electrostatic interaction energy, expressed by a multipole series over the dihedral angles not considered in the united-residue model, that is, the side-chain dihedral angles chi and the dihedral angles lambda for the rotation of peptide groups about the C(alpha)...C(alpha) virtual-bond axes. For the side-chains that do not interact favorably with calcium, simple excluded-volume potentials were introduced. The parameters of the potentials were obtained from ab initio quantum mechanical calculations of model systems at the Restricted Hartree-Fock (RHF) level with the 6-31G(d,p) basis set. The energy surfaces of pairs consisting of Ca(2+)-acetate, Ca(2+)-propionate, Ca(2+)-acetamide, Ca(2+)-propionamide, and Ca(2+)-N-methylacetamide systems (modeling the Ca(2+)-Asp(-), Ca(2+)-Glu(-), Ca(2+)-Asn, Ca(2+)-Gln, and Ca(2+)-peptide group interactions) at different distances and orientations were calculated. For each pair, the restricted free energy (RFE) surfaces were calculated by numerical integration over the degrees of freedom lost when switching from the all-atom model to the united-residue model. Finally, the analytical expressions for each pair were fitted to the RFE surfaces. This force-field was able to distinguish the EF-hand motif from all potential binding sites in the crystal structures of bovine alpha-lactalbumin, whiting parvalbumin, calbindin D9K, and apo-calbindin D9K.
Collapse
Affiliation(s)
- Mey Khalili
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA
| | | | | | | | | |
Collapse
|
41
|
Liwo A, Khalili M, Scheraga HA. Ab initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains. Proc Natl Acad Sci U S A 2005; 102:2362-7. [PMID: 15677316 PMCID: PMC548970 DOI: 10.1073/pnas.0408885102] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We report the application of Langevin dynamics to the physics-based united-residue (UNRES) force field developed in our laboratory. Ten trajectories were run on seven proteins [PDB ID codes 1BDD (alpha; 46 residues), 1GAB (alpha; 47 residues), 1LQ7 (alpha; 67 residues), 1CLB (alpha; 75 residues), 1E0L (beta; 28 residues), and 1E0G (alpha+beta; 48 residues), and 1IGD (alpha+beta; 61 residues)] with the UNRES force field parameterized by using our recently developed method for obtaining a hierarchical structure of the energy landscape. All alpha-helical proteins and 1E0G folded to the native-like structures, whereas 1IGD and 1E0L yielded mostly nonnative alpha-helical folds although the native-like structures are lowest in energy for these two proteins, which can be attributed to neglecting the entropy factor in the current parameterization of UNRES. Average folding times for successful folding simulations were of the order of nanoseconds, whereas even the ultrafast-folding proteins fold only in microseconds, which implies that the UNRES time scale is approximately three orders of magnitude larger than the experimental time scale because the fast motions of the secondary degrees of freedom are averaged out. Folding with Langevin dynamics required 2-10 h of CPU time on average with a single AMD Athlon MP 2800+ processor depending on the size of the protein. With the advantage of parallel processing, this process leads to the possibility to explore thousands of folding pathways and to predict not only the native structure but also the folding scenario of a protein together with its quantitative kinetic and thermodynamic characteristics.
Collapse
Affiliation(s)
- Adam Liwo
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA
| | | | | |
Collapse
|
42
|
Dell'Orco D, Xue WF, Thulin E, Linse S. Electrostatic contributions to the kinetics and thermodynamics of protein assembly. Biophys J 2004; 88:1991-2002. [PMID: 15596501 PMCID: PMC1305251 DOI: 10.1529/biophysj.104.049189] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of electrostatic interactions in the assembly of a native protein structure was studied using fragment complementation. Contributions of salt, pH, or surface charges to the kinetics and equilibrium of calbindin D(9k) reconstitution was measured in the presence of Ca(2+) using surface plasmon resonance and isothermal titration calorimetry. Whereas surface charge substitutions primarily affect the dissociation rate constant, the association rates are correlated with subdomain net charge in a way expected for Coulomb interactions. The affinity is reduced in all mutants, with the largest effect (260-fold) observed for the double mutant K25E+K29E. At low net charge, detailed charge distribution is important, and charges remote from the partner EF-hand have less influence than close ones. The effects of salt and pH on the reconstitution are smaller than mutational effects. The interaction between the wild-type EF-hands occurs with high affinity (K(A) = 1.3 x 10(10) M(-1); K(D) = 80 pM). The enthalpy of association is overall favorable and there appears to be a very large favorable entropic contribution from the desolvation of hydrophobic surfaces that become buried in the complex. Electrostatic interactions contribute significantly to the affinity between the subdomains, but other factors, such as hydrophobic interactions, dominate.
Collapse
Affiliation(s)
- Daniele Dell'Orco
- Department of Biophysical Chemistry, Lund University, S-221 00 Lund, Sweden
| | | | | | | |
Collapse
|
43
|
Ołdziej S, Liwo A, Czaplewski C, Pillardy J, Scheraga HA. Optimization of the UNRES Force Field by Hierarchical Design of the Potential-Energy Landscape. 2. Off-Lattice Tests of the Method with Single Proteins. J Phys Chem B 2004. [DOI: 10.1021/jp0403285] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stanisław Ołdziej
- Baker Laboratory of Chemistry and Chemical Biology and Cornell Theory Center, Cornell University, Ithaca, New York 14853-1301, and Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland
| | - Adam Liwo
- Baker Laboratory of Chemistry and Chemical Biology and Cornell Theory Center, Cornell University, Ithaca, New York 14853-1301, and Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland
| | - Cezary Czaplewski
- Baker Laboratory of Chemistry and Chemical Biology and Cornell Theory Center, Cornell University, Ithaca, New York 14853-1301, and Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland
| | - Jarosław Pillardy
- Baker Laboratory of Chemistry and Chemical Biology and Cornell Theory Center, Cornell University, Ithaca, New York 14853-1301, and Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland
| | - Harold A. Scheraga
- Baker Laboratory of Chemistry and Chemical Biology and Cornell Theory Center, Cornell University, Ithaca, New York 14853-1301, and Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland
| |
Collapse
|
44
|
Jiménez B, Poggi L, Piccioli M. Monitoring the Early Steps of Unfolding of Dicalcium and Mono-Ce3+-Substituted Forms of P43M Calbindin D9k†. Biochemistry 2003; 42:13066-73. [PMID: 14596622 DOI: 10.1021/bi034638+] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Early steps of unfolding of P43M Calbindin D(9k) have been evaluated by NMR spectroscopy on the native dicalcium and on the paramagnetic monocerium-substituted derivative. Although at 2 M GdmHCl the protein core maintains its overall folding and structure, amide (15)N R(2) measurements and cross correlation rates between N-H dipole-dipole relaxation and (15)N CSA relaxation reveal a closer and stronger packing of the hydrophobic interactions in the protein as a response to the presence of denaturing agents in solution. A complete reorientation of the Met43 side chain toward the hydrophobic core is accomplished by the disappearance of the millisecond dynamics observed on the native form of Calbindin D(9k), while cross correlation rates provide evidence that the two-way hydrogen bond between Leu23 and Val61 is broken or substantially weakened. The substitution of the calcium ion in site II with the paramagnetic Ce(3+) ion allowed us to obtain a number of long-range nonconventional constraints, namely, pseudocontact shifts, which were used, together with the NOEs collected on the native state, to monitor subtle structural variations occurring in the non-native state of the protein. Although the average rmsd between the structures of native and non-native states is small (0.48 A), structural rearrangements could be reliably identified. Our results provide unprecedented information about the behavior of Calbindin D(9k) during the early steps of unfolding. Furthermore, they constitute strong evidence of the efficiency of paramagnetism-based constraints in monitoring subtle structural changes that are beyond the sensitivity of an approach based only on NOE.
Collapse
Affiliation(s)
- Beatriz Jiménez
- Departamento de Química Inorgánica, University of Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain
| | | | | |
Collapse
|
45
|
Zou J, Saven JG. Using self-consistent fields to bias Monte Carlo methods with applications to designing and sampling protein sequences. J Chem Phys 2003. [DOI: 10.1063/1.1539845] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Cao ZW, Chen X, Chen YZ. Correlation between normal modes in the 20-200 cm-1 frequency range and localized torsion motions related to certain collective motions in proteins. J Mol Graph Model 2003; 21:309-19. [PMID: 12479929 DOI: 10.1016/s1093-3263(02)00185-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In certain biologically relevant collective motions, such as protein domain motions and sub-domain motions, large amplitude movements are localized in one or a few flexible regions consisting of a small number of residues. This paper explores the possible use of normal mode analysis in probing localized vibrational torsion motions in these flexible regions that may be related to certain collective motions. The normal modes of 10 structures of five proteins in different conformation (TRP repressor, calmodulin, calbindin D(9k), HIV-1 protease and troponin C), known to have shear or hinge domain or sub-domain motion, respectively, are analyzed. Our study identifies, for each structure, unique normal modes in the 20-200 cm-1 frequency range, whose corresponding motions are primarily concentrated in the region where large amplitude torsion movements of a known domain or sub-domain motion occur. This suggests possible correlation between normal modes at 20-200 cm-1 frequency range and initial fluctuational motions leading to localized collective motions in proteins, and thus the potential application of normal mode analysis in facilitating the study of biologically important localized motions in biomolecules.
Collapse
Affiliation(s)
- Z W Cao
- Department of Computational Science, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | | | | |
Collapse
|
47
|
Abstract
There are two kinds of conformational forms of adenylate kinase (AK) in equilibrium in solution with different ANS-binding properties. Furthermore, the nature of AP(5)A inhibition suggests also that the native forms of AK for binding with different substrates pre-exist in the absence of substrates. In the present study, a kinetics approach was used to explore the native forms distinguished by ANS-binding properties and by the nature of AP(5)A inhibition. The results revealed that the native forms distinguished by ANS probe are two conformational sub-ensembles. Both sub-ensembles are active and consist of a series of forms, which pre-exist in solution and can bind with different substrates. The K(m) values of N(1) for AMP, ADP and MgATP are larger than that of N(2), indicating that the N(2) sub-ensemble is more specific for binding substrates. This is consistent with the previous observation that the activity of N(2) is about 1.8-fold of that of N(1).
Collapse
Affiliation(s)
- Yang Han
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing 100101, PR China
| | | | | |
Collapse
|
48
|
Zhou H, Zhou Y. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci 2002; 11:2714-26. [PMID: 12381853 PMCID: PMC2373736 DOI: 10.1110/ps.0217002] [Citation(s) in RCA: 700] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The distance-dependent structure-derived potentials developed so far all employed a reference state that can be characterized as a residue (atom)-averaged state. Here, we establish a new reference state called the distance-scaled, finite ideal-gas reference (DFIRE) state. The reference state is used to construct a residue-specific all-atom potential of mean force from a database of 1011 nonhomologous (less than 30% homology) protein structures with resolution less than 2 A. The new all-atom potential recognizes more native proteins from 32 multiple decoy sets, and raises an average Z-score by 1.4 units more than two previously developed, residue-specific, all-atom knowledge-based potentials. When only backbone and C(beta) atoms are used in scoring, the performance of the DFIRE-based potential, although is worse than that of the all-atom version, is comparable to those of the previously developed potentials on the all-atom level. In addition, the DFIRE-based all-atom potential provides the most accurate prediction of the stabilities of 895 mutants among three knowledge-based all-atom potentials. Comparison with several physical-based potentials is made.
Collapse
Affiliation(s)
- Hongyi Zhou
- Howard Hughes Medical Institute Center for Single Molecule Biophysics, Department of Physiology & Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | |
Collapse
|
49
|
Allegrozzi M, Bertini I, Choi SN, Lee YM, Luchinat C. Detecting Small Structural Changes in Metalloproteins by the Use of NMR Pseudocontact Shifts. Eur J Inorg Chem 2002. [DOI: 10.1002/1099-0682(200208)2002:8<2121::aid-ejic2121>3.0.co;2-o] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
André I, Linse S. Measurement of Ca2+-binding constants of proteins and presentation of the CaLigator software. Anal Biochem 2002; 305:195-205. [PMID: 12054448 DOI: 10.1006/abio.2002.5661] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complexity of Ca2+ cell signaling is dependent on a plethoria of Ca2+-binding proteins that respond to signals in different ranges of Ca2+ concentrations. Since the function of these proteins is directly coupled to their Ca2+-binding properties, there is a need for accurately determined equilibrium Ca2+-binding constants. In this work we outline the experimental techniques available to determine Ca2+-binding constants in proteins, derive the models used to describe the binding, and present CaLigator, software for least-square fitting directly to the measured quantity. The use of the software is illustrated for Ca2+-binding data obtained for two deamidated forms of calbindin D(9k), either an isospartate-56 (beta form) or a normal Asp-56 (alpha form). Here, the Ca2+-binding properties of the two isoforms have been studied using the chelator method. The alpha form shows similar Ca2+-binding properties to the wild type while the beta form has lost both cooperativety and affinity.
Collapse
Affiliation(s)
- Ingemar André
- Department of Biophysical Chemistry, Lund University, Lund, S-221 00, Sweden
| | | |
Collapse
|