1
|
Ahlström M, Pekkinen M, Lamberg-Allardt C. Dexamethasone downregulates the expression of parathyroid hormone-related protein (PTHrP) in mesenchymal stem cells. Steroids 2009; 74:277-82. [PMID: 19121329 DOI: 10.1016/j.steroids.2008.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 10/28/2008] [Accepted: 12/04/2008] [Indexed: 11/26/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) has been shown to have anabolic effects in women with postmenopausal osteoporosis. PTHrP promotes the recruitment of osteogenic cells and prevents apoptotic death of osteoblasts and osteocytes. The receptor responsible for the effects of PTHrP is the common PTH/PTHrP receptor (PTH1R). Glucocorticoids (GC) are commonly used as drugs to treat inflammatory diseases. Long-term GC treatments are often associated with bone loss which can lead to GC-induced osteoporosis. The aim of this work was to study the effects of the glucocorticoid dexamethasone (Dex) on the expression of PTHrP and PTH1R in adult human mesenchymal stem cells, the progenitor cells of osteoblasts. Adult human mesenchymal stem cells (hMSC) were cultured and differentiated by standard methods. The expression of PTHrP and PTH1R mRNA was assayed by real-time qPCR. The PTHrP release into the culture media was measured by an immunoradiometric assay. Treatment with Dex (10 nM) resulted in an 80% drop in the PTHrP release within 6 h. A 24 h Dex treatment also reduced the expression of PTHrP mRNA by up to 90%. The expression of PTH1R receptor mRNA was simultaneously increased up to 20-fold by 10 nM Dex. The effects of Dex on PTHrP and PTH1R were dose-dependent and experiments with the GC-receptor antagonist mifepristone showed an involvement of GC-receptors in these effects. In addition to the Dex-induced effects on PTHrP and PTH1R, Dex also increased mineralization and the expression of the osteoblast markers Runx2 and alkaline phosphatase. In our studies, we show that dexamethasone decreases the expression of PTHrP and increases the expression of the PTH1R receptor. This could have an impact on PTHrP-mediated anabolic actions on bone and could also affect the responsiveness of circulating PTH. The results indicate that glucocorticoids affect the signalling pathway of PTHrP by regulating both PTHrP and PTH1R expression and these mechanisms could be involved in glucocorticoid-induced osteoporosis.
Collapse
Affiliation(s)
- Mikael Ahlström
- Calcium Research Unit, Department of Applied Chemistry and Microbiology, P.O. Box 66, 00014 University of Helsinki, Finland.
| | | | | |
Collapse
|
2
|
Simons SS. What goes on behind closed doors: physiological versus pharmacological steroid hormone actions. Bioessays 2008; 30:744-56. [PMID: 18623071 DOI: 10.1002/bies.20792] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Steroid-hormone-activated receptor proteins are among the best-understood class of factors for altering gene transcription in cells. Steroid receptors are of major importance in maintaining normal human physiology by responding to circulating concentrations of steroid in the nM range. Nonetheless, most studies of steroid receptor action have been conducted using the supra-physiological conditions of saturating concentrations (> or =100 nM) of potent synthetic steroid agonists. Here we summarize the recent developments arising from experiments using two clinically relevant conditions: subsaturating concentrations of agonist (to mimic the circulating concentrations in mammals) and saturating concentrations of antagonists (which are employed in endocrine therapies to block the actions of endogenous steroids). These studies have revealed new facets of steroid hormone action that could not be uncovered by conventional experiments with saturating concentrations of agonist steroids, such as a plethora of factors/conditions for the differential control of gene expression by physiological levels of steroid, a rational approach for examining the gene-specific variations in partial agonist activity of antisteroids, and a dissociation of steroid potency and efficacy that implies the existence of separate, and possibly novel, mechanistic steps and cofactors.
Collapse
Affiliation(s)
- S Stoney Simons
- Steroid Hormones Section, Bldg 10, Room 8N-307B, NIDDK/CEB, NIH, Bethesda, MD 20892-1772, USA
| |
Collapse
|
3
|
Kim Y, Sun Y, Chow C, Pommier YG, Simons SS. Effects of acetylation, polymerase phosphorylation, and DNA unwinding in glucocorticoid receptor transactivation. J Steroid Biochem Mol Biol 2006; 100:3-17. [PMID: 16723222 DOI: 10.1016/j.jsbmb.2006.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 03/02/2006] [Indexed: 11/29/2022]
Abstract
Varying the concentration of selected factors alters the induction properties of steroid receptors by changing the position of the dose-response curve (or the value for half-maximal induction=EC(50)) and the amount of partial agonist activity of antisteroids. We now describe a rudimentary mathematical model that predicts a simple Michaelis-Menten curve for the multi-step process of steroid-regulated gene induction. This model suggests that steps far downstream from receptor binding to steroid can influence the EC(50) of agonist-complexes and partial agonist activity of antagonist-complexes. We therefore asked whether inhibitors of three possible downstream steps can reverse the effects of increased concentrations of two factors: glucocorticoid receptors (GRs) and Ubc9. The downstream steps (with inhibitors in parentheses) are protein deacetylation (TSA and VPA), DNA unwinding (CPT), and CTD phosphorylation of RNA polymerase II (DRB and H8). None of the inhibitors mimic or prevent the effects of added GRs. However, inhibitors of DNA unwinding and CTD phosphorylation do reverse the effects of Ubc9 with high GR concentrations. These results support our earlier conclusion that different rate-limiting steps operate at low and high GR concentrations versus high GR with Ubc9. The present data also suggest that downstream steps can modulate the EC(50) of GR-mediated induction, thus both supporting the utility of our mathematical model and widening the field of biochemical processes that can modify the EC(50).
Collapse
Affiliation(s)
- Yuli Kim
- Steroid Hormones Section, NIDDK/CEB, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
4
|
Abstract
We recently reported that three factors (a cis-acting element and changing concentrations of receptor or coactivator TIF2) act at a common rate-limiting step to modulate the position of the dose-response curve and the partial agonist activity of glucocorticoid receptors (GRs). The ability of saturating levels of GR, and added inhibitors, to prevent the actions of the three modulators (cis-acting element, GR, and TIF2) but not the currently investigated C-terminal fragment of E1A-13S (E1A-133C) indicates that E1A-133C alters GR properties via a second pathway that is downstream of the common step for the original three modulators. hSur2 binds to E1A-133C. We find that hSur2 modulates GR transactivation properties, thus suggesting that the effects of E1A-133C are due to the recruitment of hSur2. hSur2 also modifies GR activities in the presence of saturating GR concentrations, which is consistent with hSur2 acting downstream of the common step for the original three modulators. The H160Y mutation, which eliminates hSur2 binding to E1A, blocks most of the activity of E1A-133C. This suggests that the modulatory activity of E1A-133C is largely due to the binding of hSur2, which is a component of the Mediator complex. Collectively, these data support the existence of a new pathway for modulating GR transactivation processes, thereby increasing the number of cellular mechanisms that permit differential control of gene expression by endogenous levels of glucocorticoid hormones.
Collapse
Affiliation(s)
- Shiyou Chen
- Steroid Hormones Section, NIDDK/LMCB, National Institutes of Health (NIH), Building 8, Room B2A-07, Bethesda, MD 20892, USA
| | | |
Collapse
|
5
|
Chen J, Kaul S, Simons SS. Structure/activity elements of the multifunctional protein, GMEB-1. Characterization of domains relevant for the modulation of glucocorticoid receptor transactivation properties. J Biol Chem 2002; 277:22053-62. [PMID: 11934901 DOI: 10.1074/jbc.m202311200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GMEB-1 was initially described as a component of a 550-kDa heteromeric DNA binding complex that is involved in the modulation of two properties of glucocorticoid receptor (GR) transactivation, the dose-response curve of agonists and the partial agonist activity of antagonists. Subsequently, GMEB-1 was also found to bind to hsp27, to associate with the coactivator TIF2 in yeast cells, and to participate in Parvovirus replication. To understand these multiple activities of GMEB-1 at a molecular level, we have now determined which regions are associated with the various activities associated with the modulation of GR transactivation properties. These activities include, homooligomerization, heterooligomerization, DNA binding, binding to GR and the transcriptional cofactor CBP, and GR modulation. Complex activities such as DNA binding and GR modulation, are found to require the physical combination of those domains that would be predicted from the involved biochemical processes. We have previously documented that GMEB-1 possesses both GR modulatory and intrinsic transactivation activity. However, the domains for these two activities of GMEB-1 are found not to overlap. This separation of activities provides a structural basis for our prior biological observations that the modulation of the dose-response curve and partial agonist activity of GR complexes is independent of the total levels of gene activation by the same GR complexes.
Collapse
Affiliation(s)
- Jun Chen
- Steroid Hormones Section, NIDDK/Laboratory of Molecular and Cellular Biology, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
6
|
Kaul S, Blackford JA, Cho S, Simons SS. Ubc9 is a novel modulator of the induction properties of glucocorticoid receptors. J Biol Chem 2002; 277:12541-9. [PMID: 11812797 DOI: 10.1074/jbc.m112330200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The EC(50) of agonists and the partial agonist activity of antagonists are crucial parameters for steroid hormone control of gene expression and endocrine therapies. These parameters have been shown to be modulated by a naturally occurring cis-acting element, called the glucocorticoid modulatory element (GME) that binds two proteins, GMEB-1 and -2. We now present evidence that the GMEBs contact Ubc9, which is the mammalian homolog of a yeast E2 ubiquitin-conjugating enzyme. Ubc9 also binds to glucocorticoid receptors (GRs). Ubc9 displays no intrinsic transactivation activity but modifies both the absolute amount of induced gene product and the fold induction by GR. With high concentrations of GR, added Ubc9 also reduces the EC(50) of agonists and increases the partial agonist activity of antagonists in a manner that is independent of the ability of Ubc9 to transfer SUMO-1 (small ubiquitin-like modifier-1) to proteins. This new activity of Ubc9 requires only the ligand binding domain of GR and part of the hinge region. Interestingly, Ubc9 modulation of full-length GR transcriptional properties can be seen in the absence of a GME. This, though, is consistent with the GME acting by increasing the local concentration of Ubc9, which then activates a previously unobserved target in the transcriptional machinery. With high concentrations of Ubc9 and GR, Ubc9 binding to GR appears to be sufficient to permit Ubc9 to act independently of the GME.
Collapse
Affiliation(s)
- Sunil Kaul
- Steroid Hormones Section, NIDDK/Laboratory of Molecular and Cellular Biology, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
7
|
Giannoukos G, Szapary D, Smith CL, Meeker JE, Simons SS. New antiprogestins with partial agonist activity: potential selective progesterone receptor modulators (SPRMs) and probes for receptor- and coregulator-induced changes in progesterone receptor induction properties. Mol Endocrinol 2001; 15:255-70. [PMID: 11158332 DOI: 10.1210/mend.15.2.0596] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A pharmacologically relevant property of steroid hormone-regulated gene induction is the partial agonist activity of antisteroid complexes. We now report that dexamethasone-mesylate (Dex-Mes) and dexamethasone-oxetanone (Dex-Ox), each a derivative of the glucocorticoid-selective steroid dexamethasone (Dex), are two new antiprogestins with significant amounts of agonist activity with both the A and B isoforms of progesterone receptor (PR), for different progesterone-responsive elements, and in several cell lines. These compounds continue to display activity under conditions where another partial antiprogestin (RTI-020) is inactive. These new antiprogestins were used to determine whether the partial agonist activity of PR complexes can be modified by changing concentrations of receptor or coregulator, as we have recently demonstrated for glucocorticoid receptors (GRs). Because GR and coregulator concentrations simultaneously altered the position of the physiologically relevant dose-response curve, and associated EC(50), of GR-agonist complexes, we also examined this phenomenon with PR. We find that elevated PR or transcriptional intermediary factor 2 (TIF2) concentrations increase the partial agonist activity of Dex-Mes and Dex-Ox, and the EC(50) of agonists, independently of changes in total gene transactivation. Furthermore, the corepressors SMRT (silencing mediator for retinoid and thyroid receptors) and NCoR (nuclear receptor corepressor) each suppresses gene induction but NCoR acts opposite to SMRT and, like the coactivator TIF2, reduces the EC(50) and increases the partial agonist activity of antiprogestins. These comparable responses of GR and PR suggest that variations in receptor and coregulator concentrations may be a general mechanism for altering the induction properties of other steroid receptors. Finally, the magnitude of coregulator effects on PR induction properties are often not identical for agonists and the new antagonists, suggesting subtle mechanistic differences. These properties of Dex-Mes and Dex-Ox, plus the sensitivity of their activity to cellular differences in PR and coregulator concentrations, make these steroids potential new SPRMs (selective progesterone receptor modulators) that should prove useful as probes of PR induction properties.
Collapse
Affiliation(s)
- G Giannoukos
- Steroid Hormones Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0805, USA
| | | | | | | | | |
Collapse
|
8
|
Chen S, Sarlis NJ, Simons SS. Evidence for a common step in three different processes for modulating the kinetic properties of glucocorticoid receptor-induced gene transcription. J Biol Chem 2000; 275:30106-17. [PMID: 10899170 DOI: 10.1074/jbc.m005418200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dose-response curve of steroid hormones and the associated EC(50) value are critical parameters both in the development of new pharmacologically active compounds and in the endocrine therapy of various disease states. We have recently described three different variables that can reposition the dose-response curve of agonist-bound glucocorticoid receptors (GRs): a 21-base pair sequence of the rat tyrosine aminotransferase gene called a glucocorticoid modulatory element (GME), GR concentration, and coactivator concentration. At the same time, each of these three components was found to influence the partial agonist activity of antiglucocorticoids. In an effort to determine whether these three processes proceed via independent pathways or a common intermediate, we have examined several mechanistic details. The effects of increasing concentrations of both GR and the coactivator TIF2 are found to be saturable. Furthermore, saturating levels of either GR or TIF2 inhibit the ability of each protein, and the GME, to affect further changes in the dose-response curve or partial agonist activity of antisteroids. This competitive inhibition suggests that all three modulators proceed through a common step involving a titratable factor. Support for this hypothesis comes from the observation that a fragment of the coactivator TIF2 retaining intrinsic transactivation activity is a dominant negative inhibitor of each component (GME, GR, and coactivator). This inhibition was not due to nonspecific effects on the general transcription machinery as the VP16 transactivation domain was inactive. The viral protein E1A also prevented the action of each of the three components in a manner that was independent of E1A's ability to block the histone acetyltransferase activity of CBP. Collectively, these results suggest that three different inputs (GME, GR, and coactivator) for perturbing the dose-response curve, and partial agonist activity, of GR-steroid complexes act by converging at a single step that involves a limiting factor prior to transcription initiation.
Collapse
Affiliation(s)
- S Chen
- Steroid Hormones Section, NIDDK/Laboratory of Molecular and Cellular Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
9
|
Kaul S, Blackford JA, Chen J, Ogryzko VV, Simons SS. Properties of the glucocorticoid modulatory element binding proteins GMEB-1 and -2: potential new modifiers of glucocorticoid receptor transactivation and members of the family of KDWK proteins. Mol Endocrinol 2000; 14:1010-27. [PMID: 10894151 DOI: 10.1210/mend.14.7.0494] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An important component of glucocorticoid steroid induction of tyrosine aminotransferase (TAT) gene expression is the glucocorticoid modulatory element (GME), which is located at -3.6 kb of the rat TAT gene. The GME both mediates a greater sensitivity to hormone, due to a left shift in the dose-response curve of agonists, and increases the partial agonist activity of antiglucocorticoids. These properties of the GME are intimately related to the binding of a heteromeric complex of two proteins (GMEB-1 and -2). We previously cloned the rat GMEB-2 as a 67-kDa protein. We now report the cloning of the other member of the GME binding complex, the 88-kDa human GMEB-1, and various properties of both proteins. GMEB-1 and -2 each possess an intrinsic transactivation activity in mammalian one-hybrid assays, consistent with our proposed model in which they modify glucocorticoid receptor (GR)-regulated gene induction. This hypothesis is supported by interactions between GR and both GMEB-1 and -2 in mammalian two-hybrid and in pull-down assays. Furthermore, overexpression of GMEB-1 and -2, either alone or in combination, results in a reversible right shift in the dose-response curve, and decreased agonist activity of antisteroids, as expected from the squelching of other limiting factors. Additional mechanistic details that are compatible with the model of GME action are suggested by the interactions in a two-hybrid assay of both GMEBs with CREB-binding protein (CBP) and the absence of histone acetyl transferase (HAT) activity in both proteins. GMEB-1 and -2 share a sequence of 90 amino acids that is 80% identical. This region also displays homology to several other proteins containing a core sequence of KDWK. Thus, the GMEBs may be members of a new family of factors with interesting transcriptional properties.
Collapse
Affiliation(s)
- S Kaul
- Steroid Hormones Section, National Institute of Diabetes and Digestive and Kidney Diseases/Laboratory of Molecular and Cellular Biology, National Institutes of Health, Bethesda, Maryland 20892-0805, USA
| | | | | | | | | |
Collapse
|
10
|
Zeng H, Plisov SY, Simons SS. Ability of the glucocorticoid modulatory element to modify glucocorticoid receptor transactivation indicates parallel pathways for the expression of glucocorticoid modulatory element and glucocorticoid response element activities. Mol Cell Endocrinol 2000; 162:221-34. [PMID: 10854715 DOI: 10.1016/s0303-7207(99)00208-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The glucocorticoid modulatory element (GME) of the rat tyrosine aminotransferase gene is located at -3.6 kb and 1 kb upstream of the glucocorticoid response elements (GREs). The GME has the unique transcriptional properties of modulating both the dose-response curve of agonists bound to the glucocorticoid receptor (GR) and the residual agonist activity of GR-bound antisteroids. The expression of GME activity involves the binding of two novel proteins (GMEB-1 and GMEB-2) that we have recently cloned. However, the mechanistic details are limited. The DNA sequence requirements for GME activity (CGTC) also remain poorly defined, which restricts efforts to identify other GME modulated genes. To help understand the mechanism for the unusual activities of the GME and to identify permissive gene environments for GME activity, we compared the changes in GME activity and GRE action (i.e. the fold induction by GR) caused by modifying several parameters. Phasing between the GME and downstream tandem GREs was unimportant, in contrast to other cis-acting elements like the GRE, while GME activity decreased rapidly when placed at increasingly larger distances 3' to a tandem GRE. A minimal promoter was less effective in supporting GME than GRE activity. Although CREB binds to the GME, overexpression of CREB reduced GRE, but not GME, activity and a CRE was inactive when substituted for the GME. No effect of the GME was observed on the binding of GRs to a single GRE. However, the GME upstream of a single GRE was also unable to produce a left shift in the Dex dose-response curve under conditions where the GME was active with two GREs. In the absence of any GREs, the GME displayed intrinsic activity by elevating basal level expression. Collectively, these results indicate that an optimal position for a functional GME is within 250 bp upstream of a tandem GRE driving a complex promoter. Furthermore, as the changes in GME activity did not correlate with those for fold induction from the GRE, the mechanisms for expression of GME and GRE activities appear to utilize parallel, as opposed to common pathways.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites/genetics
- Binding, Competitive
- Cyclic AMP Response Element-Binding Protein/metabolism
- DNA Primers/genetics
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Models, Biological
- Promoter Regions, Genetic
- Rats
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/genetics
- Transcriptional Activation
- Transfection
- Tumor Cells, Cultured
- Tyrosine Transaminase/genetics
Collapse
Affiliation(s)
- H Zeng
- The Steroid Hormones Section, NIDDK/LMCB, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
11
|
Zeng H, Kaul S, Simons SS. Genomic organization of human GMEB-1 and rat GMEB-2: structural conservation of two multifunctional proteins. Nucleic Acids Res 2000; 28:1819-29. [PMID: 10734202 PMCID: PMC102812 DOI: 10.1093/nar/28.8.1819] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The glucocorticoid modulatory element binding proteins 1 and 2 (GMEB-1 and GMEB-2) are of interest both for their multiple activities (e.g. modulation of transactivation by the glucocorticoid receptor and initiation of parvovirus replication) and their membership in the emerging family of KDWK proteins. The genomic sequence of these proteins was desired in order to begin studies on the control of GMEB expression and to pursue previous evidence for significant homologies between the GMEBs. We now report the genomic sequence of human GMEB-1 and rat GMEB-2. The structure of both genes, including portions of the introns, is highly conserved. However, GMEB-1 and GMEB-2 were found to reside on chromosomes 1 and 20, respectively, demonstrating that they are encoded by distinctly different genes. Several isoforms of the GMEBs have been reported or detected in this study, and the splicing patterns were determined. The tissue distribution of each GMEB is not the same and is highest in fetal and developing tissues, consistent with previous suggestions that both homo- and hetero-oligomers may possess biological activity. The promoter region of both genes has been identified and both display high levels of transcription activity in transiently transfected cells when fused upstream of a promoterless reporter. These results indicate that the GMEBs are proteins that evolved from a single parent gene, have been highly conserved since the divergence of rats and humans and probably play important roles in development and differentiation.
Collapse
Affiliation(s)
- H Zeng
- Steroid Hormones Section, Building 8, Room B2A-07, NIDDK/LMCB, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
12
|
Szapary D, Huang Y, Simons SS. Opposing effects of corepressor and coactivators in determining the dose-response curve of agonists, and residual agonist activity of antagonists, for glucocorticoid receptor-regulated gene expression. Mol Endocrinol 1999; 13:2108-21. [PMID: 10598585 DOI: 10.1210/mend.13.12.0384] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A distinguishing, but unexplained, characteristic of steroid hormone action is the dose-response curve for the regulation of gene expression. We have previously reported that the dose-response curve for glucocorticoid induction of a transfected reporter gene in CV-1 and HeLa cells is repositioned in the presence of increasing concentrations of glucocorticoid receptors (GRs). This behavior is now shown to be independent of the reporter, promoter, or enhancer, consistent with our proposal that a transacting factor(s) was being titrated by added receptors. Candidate factors have been identified by the observation that changes in glucocorticoid induction parameters in CV-1 cells could be reproduced by varying the cellular levels of coactivators [transcriptional intermediary factor 2 (TIF2), steroid receptor coactivator 1 (SRC-1), and amplified in breast cancer 1 (AIB1)], comodulator [CREB-binding protein (CBP)], or corepressor [silencing mediator for retinoid and thyroid-hormone receptors (SMRT)] without concomitant increases in GR. Significantly, the effects of TIF2 and SMRT were mutually antagonistic. Similarly, additional SMRT could reverse the action of increased levels of GRs in HeLa cells, thus indicating that the effects of cofactors on transcription may be general for GR in a variety of cells. These data further indicate that GRs are yet an additional target of the corepressor SMRT. At the same time, these cofactors were found to be capable of regulating the level of residual agonist activity displayed by antiglucocorticoids. Finally, these observations suggest that a novel role for cofactors is to participate in processes that determine the dose-response curve, and partial agonist activity, of GR-steroid complexes. This new activity of cofactors is disconnected from their ability to increase or decrease GR transactivation. An equilibrium model is proposed in which the ratio of coactivator-corepressor bound to either receptor-agonist or -antagonist complexes regulates the final transcriptional properties.
Collapse
Affiliation(s)
- D Szapary
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Molecular and Cellular Biology, National Institutes of Health, Bethesda, Maryland 20892-0805, USA
| | | | | |
Collapse
|
13
|
Xu M, Modarress KJ, Meeker JE, Simons SS. Steroid-induced conformational changes of rat glucocorticoid receptor cause altered trypsin cleavage of the putative helix 6 in the ligand binding domain. Mol Cell Endocrinol 1999; 155:85-100. [PMID: 10580842 DOI: 10.1016/s0303-7207(99)00110-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Steroid-induced changes in receptor protein conformation constitute a logical means of translating the variations in steroid structures into the observed array of whole cell biological activities. One conformational change in the rat glucocorticoid receptor (GR) can be readily discerned by following the ability of trypsin digestion to afford a 16-kDa fragment. This fragment is seen after proteolysis of steroid-free receptors but disappears in digests of either glucocorticoid- or antiglucocorticoid-bound receptors. The location of this cleavage site has now been located unambiguously as R651, in helix 6 of the ligand binding domain, by a combination of point mutagenesis, arginine specific protease digestion, and radiochemical sequencing. This 16-kDa species, corresponding to amino acids 652-795, was non-covalently associated with another, approximately 17-kDa species that was determined to be amino acids 518-651 after a comparison of co-immunoprecipitated fragments from wild type and two chimeric receptors. These assignments revise our earlier report of amino acids 537-673 being the 16-kDa fragment and suggest that sequences of the entire ligand binding domain are required for high affinity and specificity binding. This was supported by the observation that trypsin digestion of the steroid-free R651A mutant GR gave rise to the 30-kDa meroreceptor (amino acids 518-795), which displayed wild type affinity. This 30-kDa species is thus the smallest non-associated fragment of GR possessing wild type steroid binding affinity. This suggests that other GR regions do not influence steroid binding affinity. The above results are reminiscent of those observed for the estrogen receptor. However, unlike the estrogen receptor or the more closely related progesterone receptor, the precise proteolytic cleavage points of both the steroid-free and -bound GR fall within regions that are predicted, on the basis of X-ray crystal structures of related receptors, to be alpha-helical and resistant to proteolysis. Thus, the tertiary structure of the GR ligand binding domain may be distinctly different from that of estrogen and progesterone receptors.
Collapse
Affiliation(s)
- M Xu
- Steroid Hormones Section, NIDDK/LMCB, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
14
|
Sarlis NJ, Bayly SF, Szapary D, Simons SS. Quantity of partial agonist activity for antiglucocorticoids complexed with mutant glucocorticoid receptors is constant in two different transactivation assays but not predictable from steroid structure. J Steroid Biochem Mol Biol 1999; 68:89-102. [PMID: 10369406 DOI: 10.1016/s0960-0760(99)00021-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An unsolved question in steroid hormone action is why the amount of agonist activity displayed by antisteroids is not constant but varies with the assay conditions. Receptor mutations have provided insight into hormone action, presumably due to changes in the tertiary structure of the receptor that alter its interaction surfaces with the transcriptional machinery or/and co-factors. We have now employed two mechanistically different induction assays to determine whether disparate transactivation processes are similarly altered by receptor mutations. The two activation assays studied were (i) the standard induction of GREtkLUC in transiently transfected CV-1 cells and (ii) a novel modulation of endogenous receptor activity by transiently transfected receptors in HeLa cells. Five different mutations in the ligand binding and DNA binding domains of the rat glucocorticoid receptor (CS1, CS1/CD, 451/9, C656G, and R732Q) and seven steroids of varied structures (five antagonists and two agonists) were selected for use. The results in both induction assays were the same. However, no generalizations regarding steroid structure and activity emerged. Neither of two potent glucocorticoids were active with GR-CS1, or GR-CS1/CD, while RU 486 was the only antisteroid with appreciable agonist activity. With the GR-451/9 mutant, three antagonists afforded partial agonist activity. We confirmed that the C656G mutant is both "super-sensitive" and "super-selective" for transactivation. In contrast, the R732Q mutation caused significant decreases in activity with both antagonists and subsaturating concentrations of agonists. This inability to generalize about the behavior of any class of steroids with mutant receptors may reflect an induced fit for each receptor steroid complex. Nevertheless, the activity of a given steroid appeared to be constant in two different transactivation assays for a given mutant receptor. Thus, disparate transactivation processes may utilize identical receptor surfaces, even in the expression of partial agonist activity for specific antiglucocorticoids.
Collapse
Affiliation(s)
- N J Sarlis
- Steroid Hormones Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
15
|
Jackson DA, Collier CD, Oshima H, Simons SS. Modulation of TAT gene induction by glucocorticoids involves a neutralizing sequence. J Steroid Biochem Mol Biol 1998; 66:79-91. [PMID: 9719442 DOI: 10.1016/s0960-0760(98)00048-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent studies have indicated that two elements in addition to the glucocorticoid response element (GRE) are involved in the induction of the endogenous TAT gene in FuS-5 rat hepatoma cells. The first is the 21 bp glucocorticoid modulatory element (GME) at -3648 bp, which causes reporter constructs to display both a left shift in the dose-response curve for glucocorticoids and increased percentages of agonist activity for antiglucocorticoids. The second is a negative element at -3340 to -3050 that blocks the action of the GME. This last observation raised the question of how GME activity can be expressed in Fu5-5 cells in the intact TAT gene that contains both the GME and the negative element. The present study identifies a third element, a "neutralizing" sequence, that restores the activity of the GME even when otherwise inactivated by the negative element. This neutralizing sequence was located within the region surrounding the GREs of the TAT gene but is separate from the GREs. The activity of the individual GME and negative elements was found to depend upon spacing. However, in combination with the natural GRE, the native TAT gene spacing of the GME and negative elements was able to reproduce the activity of the intact gene. Thus, a total of three additional elements (an activator, a negative element, and a neutralizer) appear to cooperate with the GREs in glucocorticoid induction of the TAT gene in Fu5-5 cells. While such a grouping of elements may be novel among steroid regulated genes, it is a not uncommon occurrence for the transcriptional control of other genes.
Collapse
Affiliation(s)
- D A Jackson
- Steroid Hormones Section, NIDDK/LMCB, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
16
|
Zeng H, Jackson DA, Oshima H, Simons SS. Cloning and characterization of a novel binding factor (GMEB-2) of the glucocorticoid modulatory element. J Biol Chem 1998; 273:17756-62. [PMID: 9651376 DOI: 10.1074/jbc.273.28.17756] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 21-base pair glucocorticoid modulatory element (GME) of the rat tyrosine aminotransferase gene is the only cis-acting element known to modulate the transcriptional activity of receptors bound to glucocorticoid response elements. Specifically, the GME increases the activity of complexes bound both by physiological concentrations of glucocorticoids, due to a left shift in the dose-response curve, and by saturating concentrations of anti-glucocorticoids. For this reason, the nuclear protein(s) that has been demonstrated to bind to the GME is of major interest as a possible transcription factor with hitherto undescribed properties. Subsequent studies indicated that not one but two proteins of 88 and 67 kDa (= GMEB-1 and -2, respectively) formed a heteromeric complex with double-stranded GME oligonucleotides in gel shift assays and participated in the expression of GME activity (Oshima, H., Szapary, D., and Simons, S. S., Jr. (1995) J. Biol. Chem. 270, 21893-21910). Here, we report the use of polymerase chain reaction of degenerate oligonucleotides and 5'- and 3'-rapid amplification of cDNA ends to clone two cDNAs of 2. 0 and 1.9 kilobase pairs that probably result from alternative splicing. Both cDNAs encoded open reading frames containing all four previously sequenced peptides. The longer 2.0-kilobase pair cDNA encoded an open reading frame for an acidic, 529-amino acid protein and afforded a major 67-kDa and a minor 58-kDa protein after in vitro transcription/translation. Both proteins were recognized by a mono-epitopic antibody raised against a peptide of GMEB-2. The in vitro translated protein bound to GME DNA in gel shift assays. However, the binding to GME DNA increased markedly after mixing with authentic GMEB-1 to give a gel-shifted complex that was similar to that derived from HTC cell cytosol. GMEB-2 shares a unique domain (KDWKR) with proteins derived from diverse organisms as follows: Drosophila (DEAF-I), rat (Suppressin), and Caenorhabditis elegans (three unknown open reading frames). Collectively, these data suggest that the 67-kDa GMEB-2 not only is an important factor for the modulation of glucocorticoid receptor bound to glucocorticoid response elements but also may belong to a novel family of transcription factors.
Collapse
Affiliation(s)
- H Zeng
- Steroid Hormones Section, NIDDK/LMCB, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
17
|
Modarress KJ, Opoku J, Xu M, Sarlis NJ, Simons SS. Steroid-induced conformational changes at ends of the hormone-binding domain in the rat glucocorticoid receptor are independent of agonist versus antagonist activity. J Biol Chem 1997; 272:23986-94. [PMID: 9295350 DOI: 10.1074/jbc.272.38.23986] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The underlying molecular mechanism for the expression of agonist versus antagonist activity for a given receptor-steroid complex is still not known. One attractive hypothesis, based on data from progesterone receptors, is that agonist versus antagonist binding induces unique conformations at the C terminus of receptors, which can be detected by the different fragments produced by partial proteolysis. We now report that the determinants of glucocorticoid receptor (GR)-antagonist complex activity are more complex. Steroid binding did cause a conformational change in the GR that was detected by partial trypsin digestion, as described previously (Simons, S. S., Jr., Sistare, F. D., and Chakraborti, P. K. (1989) J. Biol. Chem. 264, 14493-14497). However, there was no uniformity in the digestion patterns of unactivated or activated receptors bound by a series of six structurally different antagonists including the affinity labeling antiglucocorticoid dexamethasone 21-mesylate. A total of four resistant bands were observed on SDS-polyacrylamide gels in the range of 30-27 kDa. Using a series of point mutations and epitope-specific antibodies, it was determined that the 30-kDa species represented the entire C-terminal sequence of amino acids 518-795, whereas the other bands arose from additional N-terminal and/or C-terminal cleavages. Bioassays with GRs containing various point and deletion mutations failed to reveal any C-terminal alterations that could convert antagonists into biologically active agonists. Thus, the presence or absence of C-terminal amino acids of the GR did not uniquely determine either the appearance of smaller trypsin-resistant fragments or the nature of the biological response of receptor-bound antisteroids. When compared with the current model of the ligand-binding domain, which is based on the x-ray structures of the comparable region of thyroid and retinoic acid receptors, the present results suggest that sequences outside of the model structure are relevant for the binding and biological activity of GRs.
Collapse
Affiliation(s)
- K J Modarress
- Steroid Hormones Section, NIDDK/Laboratory of Molecular and Cellular Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
Glucocorticoid hormones influence the physiological activity of almost all cell types in the mammal. This is accomplished via a soluble receptor that, in the presence of an appropriate steroid, modifies the activity of RNA polymerase by binding to the site where different factors assemble for the initiation of cell transcription. The development of antiglucocorticoids has permitted the molecular elucidation of a number of underlying events. Contrary to the classical view, it is now clear that the affinity, stability and activability of the glucocorticoid receptor in the presence of a steroid are cell- and/or tissue-dependent events. The antiglucocorticoid RU 38486 can even activate transcription by binding to sites distinct from those that process transactivation by the agonist. Furthermore, glucocorticoids can sometimes activate the mineralocorticoid receptor, whereas mineralocorticoids can bind the glucocorticoid receptor. Since mifepristone is devoid of adverse toxicity, it has been used for the paraclinical diagnosis of the hypothalamus-pituitary-adrenal axis in normal volunteers, subjects with disorders of the behaviour, and the treatment of Cushing's disease. However, the whole spectrum of cell-specific processes that are antagonized by RU 38486 suggests wide ranging possibilities in the eventual application of antigluco-corticoids.
Collapse
Affiliation(s)
- M K Agarwai
- Hormone Laboratory, Centre Universitaire Des Cordeliers, Paris, France
| |
Collapse
|
19
|
Oshima H, Szapary D, Simons SS. The factor binding to the glucocorticoid modulatory element of the tyrosine aminotransferase gene is a novel and ubiquitous heteromeric complex. J Biol Chem 1995; 270:21893-901. [PMID: 7665613 DOI: 10.1074/jbc.270.37.21893] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glucocorticoid induction of the tyrosine aminotransferase gene deviates from that of many glucocorticoid-responsive genes by having a lower EC50 and displaying more agonist activity with a given antiglucocorticoid. A cis-acting element, located 3646 base pairs upstream of the start of tyrosine aminotransferase gene transcription, has been found to be sufficient to reproduce these variations with heterologous genes and promoters (Oshima, H., and Simons, S.S., Jr. (1992) Mol. Endocrinol. 6, 416-428). This element has been called a glucocorticoid modulatory element, or GME. Others have called this sequence a cyclic AMP-responsive element (CRE) due to the binding of the cyclic AMP response element binding protein (CREB). We now report the partial purification and characterization of two new proteins (GMEB1 and -2) of 88 and 67 kDa that bind to the GME/CRE as a heteromeric complex. This purification was followed by the formation of a previously characterized, biologically relevant band in gel shift assays. By several biochemical criteria, the GMEBs differed from many of the previously described CREB/CREM/ATF family members. Partial peptide sequencing revealed that the sequences of these two proteins have not yet been described. Size exclusion chromatography and molecular weight measurements of the gel-shifted band demonstrated that the GMEBs bound to the GME as a macromolecular complex of about 550 kDa that could be dissociated by deoxycholate. Similar experiments showed that CREB bound to the GME as heteromeric complexes of about 310 and 360 kDa. As determined from gel shift assays, GMEB1 and -2 are not restricted to rat liver cells but appear to be ubiquitous. Thus, these novel GMEBs may participate in a similar modulation of other glucocorticoid-inducible genes in a variety of cells.
Collapse
Affiliation(s)
- H Oshima
- Steroid Hormones Section, NIDDK/Laboratory of Molecular and Cellular Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
20
|
Sequence-selective interactions of transcription factor elements with tandem glucocorticoid-responsive elements at physiological steroid concentrations. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74190-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Simons SS, Oshima H, Szapary D. Modulation of the agonist activity of antisteroids by a novel cis-acting element. J Steroid Biochem Mol Biol 1992; 43:43-55. [PMID: 1356017 DOI: 10.1016/0960-0760(92)90186-m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The amount of agonist activity displayed by the antiglucocorticoid dexamethasone mesylate (Dex-Mes) for the induction of tyrosine aminotransferase (TAT) in rat hepatoma cells is greater than for glutamine synthetase and varies over a period of weeks. This variation, which has been reproduced over a period of 40 h by changing the density of the cells, suggests the involvement of a trans-acting factor. The target of this proposed trans-acting factor has now been localized to the region between -3.9 to -2.9 of the rat TAT gene from experiments with cells that were stably transfected with hybrid TAT/CAT constructs. Deletion experiments with transiently transfected TAT/tk promoter/CAT constructs revealed that this entire activity could be conveyed by a 21 bp sequence of the TAT gene. Gel shift experiments support the binding of a factor(s) to this 21 bp sequence. Thus the activity of the antagonist Dex-Mes is relatively independent of steroid structure and is largely determined by the further interactions of a trans-acting factor with the cis-acting sequence. We call this novel sequence a glucocorticoid modulatory element. A model is advanced which accounts for almost all of the results concerning TAT induction by glucocorticoids. This same model may also be useful in explaining why the amount of agonist activity of most antisteroids varies, even for different genes within the same cell.
Collapse
Affiliation(s)
- S S Simons
- Steroid Hormones Section, NIDDK/LMCB, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
22
|
Michelsohn AM, Anderson DJ. Changes in competence determine the timing of two sequential glucocorticoid effects on sympathoadrenal progenitors. Neuron 1992; 8:589-604. [PMID: 1347997 DOI: 10.1016/0896-6273(92)90285-l] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have studied the control of adrenal chromaffin cell development by glucocorticoids (GCs), in a reconstituted in vitro system. The development of the chromaffin phenotype involves two sequential, GC-dependent events: the decision not to become a sympathetic neuron, and the decision to express the epinephrine-synthesizing enzyme, phenylethanolamine-N-methyltransferase (PNMT). Both decisions appear to be mediated by the type II GC receptor. Competence to express PNMT develops on a schedule in vitro which parallels that seen in vivo, but only in progenitors that have first failed to undergo neuronal differentiation. The schedule of PNMT induction is thus controlled by the time of appearance of neither the inducing signal nor its receptor, as previously suggested, but rather by a cell-intrinsic timed process in chromaffin precursors. The two effects of GCs are pharmacologically distinct, suggesting that the GC receptor may interact differently with different genes in the same cell, in a manner that changes with development.
Collapse
Affiliation(s)
- A M Michelsohn
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
23
|
|
24
|
Gannon MN, Spencer RL, Lundblad JR, McEwen BS, Roberts JL. Pharmacological characterization of type II glucocorticoid binding sites in AtT20 pituitary cell culture. JOURNAL OF STEROID BIOCHEMISTRY 1990; 36:83-8. [PMID: 2362452 DOI: 10.1016/0022-4731(90)90116-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent evidence indicates that at least two functional glucocorticoid receptors (Type I and Type II) are present in many tissues. It has also become increasingly recognized that, as in other systems, stimulus-response relationships for steroid hormones are often nonlinear. Thus, precise pharmacological parameters are required to establish a functional relationship(s) between binding site and response characteristics. We therefore pharmacologically characterized a glucocorticoid binding site present in AtT20 mouse pituitary cells, a cell line extensively used in studying Type II glucocorticoid receptor function. By several different criteria, glucocorticoids were shown to bind to a single class of binding sites, which, in comparison to available literature, correspond to classical Type II glucocorticoid receptors. No evidence for Type I adrenal steroid binding sites was observed, under the experimental conditions used. Unambiguous Kb values for both glucocorticoid agonists and antagonists were therefore calculated. These parameters should prove of use in elucidating the relationships between glucocorticoid receptor activation and different responses in both AtT20 cells and other glucocorticoid responsive tissues.
Collapse
Affiliation(s)
- M N Gannon
- Department of Neuroendocrinology, Rockefeller University, New York, NY 10021
| | | | | | | | | |
Collapse
|
25
|
Fève B, Antras J, Lasnier F, Hilliou F, Pairault J. The antiglucocorticoid RU38486 is a potent accelerator of adipose conversion of 3T3-F442A cells. Mol Cell Endocrinol 1989; 67:17-27. [PMID: 2558929 DOI: 10.1016/0303-7207(89)90226-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We examined the effects of RU38486, a potent glucocorticoid and progestin antagonist, upon several aspects of 3T3-F442A adipocyte differentiation. RU38486 accelerated the onset of differentiation, as monitored by cell morphological changes, accumulation of lipid droplets and widespread increases in the rate of expression of several enzyme adipose markers and specific mRNAs. RU38486, at a maximal concentration of 1 microM, dramatically hastened the emergence of both fatty-acid synthetase (FAS) and glycerol-3-phosphate dehydrogenase (G3PDH) enzyme activities (550% and 450% above control values 4 days after confluence, respectively). RU38486 induction of G3PDH-specific activity ran parallel to an increase in G3PDH mRNA content (2.4-fold the control content 4 days after confluence). Moreover, RU38486-treated cells exhibited enhancement of adenylate cyclase sensitivity to both isoproterenol and ACTH (160% and 350% above control activities 8 days after confluence, respectively). While the level of expression of lipogenic markers reached similar values at the mature stage, RU38486 enabled cells to acquire hypersensitivity in terms of ACTH-stimulated adenylate cyclase activity. Similarly, adipsin gene expression was highly potentiated by the drug at day 15 post-confluence (5-fold the control value). RU38486 responsiveness observed in differentiating 3T3-F442A cells is dependent upon their prior developmental activation; none of the studied markers could be induced by the drug in the undifferentiating 3T3-C2 cell subclone. Finally, this antiglucocorticoid appears to be a useful tool for studies on adipose conversion in vitro; it could permit a re-evaluation of the role of glucocorticoids in the understanding of adipocyte development.
Collapse
Affiliation(s)
- B Fève
- INSERM U282, Hôpital Henri Mondor, Creteil, France
| | | | | | | | | |
Collapse
|
26
|
Gagne D, Labhilili M, Pons M. Description and analysis of differential sensitivity to glucocorticoids in Fao cells. JOURNAL OF STEROID BIOCHEMISTRY 1988; 31:917-25. [PMID: 2904511 DOI: 10.1016/0022-4731(88)90333-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study shows that the derived hepatoma cell line Fao displays different sensitivities for glucocorticoid induction of tyrosine aminotransferase (TAT), alanine aminotransferase (AAT) and gamma-glutamyltransferase (GGT). This was seen in the different behaviors of nine steroids with respect to these three effects: (1) in the presence of full agonists (dexamethasone or deacylcortivazol), half-maximal induction of GGT occurred at approx 5- to 6-fold higher agonist concentrations than those required for half-maximal induction of AAT and TAT; (2) in the presence of full antagonists (RU 486, R5020, or progesterone) the GGT response induced by an equal agonist concentration was inhibited at concentrations approx 4- to 5-fold lower than those required for an equivalent inhibition of TAT response; (3) in the presence of cortexolone, deoxycorticosterone, 11 beta-hydroxyprogesterone and dexamethasone-3'-oxetanone, there was a partial agonistic effect (30-50%) on TAT and AAT responses, whereas there was a mainly antagonistic effect (very weak agonistic effect: 0-10%) on GGT response; (4) regardless of the steroid or its full or partial agonist activity, a given TAT induction level (50%, for example) always corresponded to the same AAT and GGT induction levels (50 and 10% respectively). We provide evidence showing that the three above-mentioned biological responses are mediated via the same type of glucocorticoid receptor binding site. Consequently, this differential behavior probably originates from a phenomenon occurring after the common steps (activation, translocation) that follow the formation of the steroid-receptor complex. This leads us to propose a model in which this phenomenon is assumed to originate from a difference in the affinities of the activated receptor for the nuclear acceptor sites of the TAT and GGT genes.
Collapse
Affiliation(s)
- D Gagne
- Institut National de la Santé et de la Recherche Médicale, Unité 58, Montpellier, France
| | | | | |
Collapse
|
27
|
Simons SS, Miller PA, Wasner G, Miller NR, Mercier L. Inverse correlation between dexamethasone 21-mesylate agonist activity and sensitivity to dexamethasone for induction of tyrosine aminotransferase in rat hepatoma cells. JOURNAL OF STEROID BIOCHEMISTRY 1988; 31:1-7. [PMID: 2899655 DOI: 10.1016/0022-4731(88)90198-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Previous results demonstrated that both the level of induction of the liver specific enzyme tyrosine aminotransferase (TAT) by the irreversible antiglucocorticoid dexamethasone 21-mesylate (Dex-Mes) and the concentration of the reversible glucocorticoid dexamethasone (Dex) required for 50% of maximal TAT induction (i.e. EC50) were different in HTC and Fu5-5 rat hepatoma culture cells. In the present study, a retrospective analysis of these two parameters over an 8 yr period indicates that the absolute values of both parameters varied within each cell line over time in a reversible manner. The variation of both parameters appears to be causally related since a linear, reciprocal relationship exists between the amount of Dex-Mes agonist activity and log10 (Dex EC50) in both cell lines (correlation coefficient is -0.896 for n = 46). This relationship was independent of changes in basal TAT level, culture medium, and serum lot. Results with cloned HTC cells indicate that these temporal variations are not due to fluctuations in the relative abundance of two cell populations displaying either high or low amounts of agonist activity with Dex-Mes. While these analyses relied on the detection of enzyme levels, the amount of TAT mRNA is shown to parallel the enzyme levels. Thus the variation in parameters of TAT induction by Dex and by Dex-Mes appears to be modulated at a pre-translational step. Such variations have not previously been observed for the control of specific gene transcripts by other steroid hormones and may be related to the known differences in agonist activity seen for most antisteroids in various systems.
Collapse
Affiliation(s)
- S S Simons
- Steroid Hormones Section, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
28
|
|