1
|
Hooper AWM, Alamilla JF, Venier RE, Gillespie DC, Igdoura SA. Neuronal pentraxin 1 depletion delays neurodegeneration and extends life in Sandhoff disease mice. Hum Mol Genet 2017; 26:661-673. [PMID: 28007910 DOI: 10.1093/hmg/ddw422] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/09/2016] [Indexed: 01/15/2023] Open
Abstract
GM2 gangliosidoses are a group of lysosomal storage disorders which include Sandhoff disease and Tay-Sachs disease. Dysregulation of glutamate receptors has been recently postulated in the pathology of Sandhoff disease. Glutamate receptor association with neuronal pentraxins 1 and 2, and the neuronal pentraxin receptor facilitates receptor potentiation and synaptic shaping. In this study, we have observed an upregulation of a novel form of neuronal pentraxin 1 (NP1-38) in the brains of a mouse model of Sandhoff disease and Tay-Sachs disease. In order to determine the impact of NP1 on the pathophysiology of Sandhoff disease mouse models, we have generated an Np1-/-Hexb-/- double knockout mouse, and observed extended lifespan, improved righting reflex and enhanced body condition relative to Hexb-/- mice, with no effect on gliosis or apoptotic markers in the CNS. Sandhoff mouse brain slices reveals a reduction in AMPA receptor-mediated currents, and increased variability in total glutamate currents in the CA1 region of the hippocampus; Np1-/-Hexb-/- mice show a correction of this phenotype, suggesting NP1-38 may be interfering with glutamate receptor function. Indeed, some of the psychiatric aspects of Sandhoff and Tay-Sachs disease (particularly late onset) may be attributed to a dysfunctional hippocampal glutamatergic system. Our work highlights a potential role for synaptic proteins, such as NP1 and glutamate receptors in lysosomal storage diseases.
Collapse
Affiliation(s)
| | | | | | | | - Suleiman A Igdoura
- Department of Biology.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
2
|
Zhang W, Zeng H, Huang Y, Xie T, Zheng J, Zhao X, Sheng H, Liu H, Liu L. Clinical,biochemical and molecular analysis of five Chinese patients with Sandhoff disease. Metab Brain Dis 2016; 31:861-7. [PMID: 27021291 DOI: 10.1007/s11011-016-9819-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/02/2016] [Indexed: 11/25/2022]
Abstract
Sandhoff disease (SD) is a rare autosomal recessive lysosomal storage disorder of sphingolipid metabolism resulting from the deficiency of β-hexosaminidase (HEX). Mutations of the HEXB gene cause Sandhoff disease. In order to improve the diagnosis and expand the knowledge of the disease, we collected and analyzed relevant data of clinical diagnosis, biochemical investigation, and molecular mutational analysis in five Chinese patients with SD. The patients presented with heterogenous symptoms of neurologic deterioration. HEX activity in leukocytes was severely deficient. We identified seven different mutations, including three known mutations: IVS12-26G > A, p.T209I, p.I207V, and four novel mutations: p.P468PfsX62, p.L223P, p.Y463X, p.G549R. We also detected two different heterozygous mutations c.-122delC and c.-126C > T in the promoter which were suspected to be deleterious mutations. We attempted to correlate these mutations with the clinical presentation of the patients. Our study indicates that the mutation p.T209I and p.P468PfsX62 may link to the infantile form of SD. Our study expands the spectrum of genotype of SD in China, provides new insights into the molecular mechanism of SD and helps to the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Huasong Zeng
- Department of Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Yonglan Huang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China.
| | - Ting Xie
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Jipeng Zheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Xiaoyuan Zhao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Huiying Sheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China.
| |
Collapse
|
3
|
Sobek AKU, Evers C, Dekomien G. Integrated multiplex ligation dependent probe amplification (MLPA) assays for the detection of alterations in the HEXB, GM2A and SMARCAL1 genes to support the diagnosis of Morbus Sandhoff, M. Tay-Sachs variant AB and Schimke immuno-osseous dysplasia in humans. Mol Cell Probes 2012; 27:32-7. [PMID: 23010210 DOI: 10.1016/j.mcp.2012.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
Abstract
Multiplex ligation dependent probe amplification (MLPA) assays were designed for the genes HEXB (OMIM: 606873), GM2A (OMIM: 613109) and SMARCAL1 (OMIM: 606622) of humans. Two sets of synthetic MLPA probes for these coding exons were tested. Changes in copy numbers were detected as well as single nucleotide polymorphisms (SNPs) by complementary DNA sequence analyses. The MLPA method was shown to be reliable for mutation detection and identified five published and 12 new mutations. In all cases from a Morbus Sandhoff cohort of patients, exclusively one variation in copy number was observed and linked to a nucleotide alteration called c.1614-14C>A. This deletion comprised exons 1-5. One of these cases is described in detail. Deletions were neither detected in the GM2A nor the SMARCAL1 genes. The MLPA assays complement routine diagnostics for M. Sandhoff (OMIM: 268800), M. Tay-Sachs variant AB (OMIM: 272750) and Schimke immuno-osseous dysplasia (OMIM: 242900).
Collapse
Affiliation(s)
- Anna K U Sobek
- Human Genetics, Ruhr University Bochum, Universitaetsstrasse 150, 44801 Bochum, Germany
| | | | | |
Collapse
|
4
|
Maegawa GHB, Stockley T, Tropak M, Banwell B, Blaser S, Kok F, Giugliani R, Mahuran D, Clarke JTR. The natural history of juvenile or subacute GM2 gangliosidosis: 21 new cases and literature review of 134 previously reported. Pediatrics 2006; 118:e1550-62. [PMID: 17015493 PMCID: PMC2910078 DOI: 10.1542/peds.2006-0588] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Juvenile GM2 gangliosidosis is a group of inherited neurodegenerative diseases caused by deficiency of lysosomal beta-hexosaminidase resulting in GM2 ganglioside accumulation in brain. The purpose of this study was to delineate the natural history of the condition and identify genotype-phenotype correlations that might be helpful in predicting the course of the disease in individual patients. METHODS A cohort of 21 patients with juvenile GM2 gangliosidosis, 15 with the Tay-Sachs variant and 6 with the Sandhoff variant, was studied prospectively in 2 centers. Our experience was compared with previously published reports on 134 patients. Information about clinical features, beta-hexosaminidase enzyme activity, and mutation analysis was collected. RESULTS In our cohort of patients, the mean (+/-SD) age of onset of symptoms was 5.3 +/- 4.1 years, with a mean follow-up time of 8.4 years. The most common symptoms at onset were gait disturbances (66.7%), incoordination (52.4%), speech problems (28.6%), and developmental delay (28.6%). The age of onset of gait disturbances was 7.1 +/- 5.6 years. The mean time for progression to becoming wheelchair-bound was 6.2 +/- 5.5 years. The mean age of onset of speech problems was 7.0 +/- 5.6 years, with a mean time of progression to anarthria of 5.6 +/- 5.3 years. Muscle wasting (10.6 +/- 7.4 years), proximal weakness (11.1 +/- 7.7 years), and incontinence of sphincters (14.6 +/- 9.7 years) appeared later in the course of the disease. Psychiatric disturbances and neuropathy were more prevalent in patients with the Sandhoff variant than in those with the Tay-Sachs variant. However, dysphagia, sphincter incontinence, and sleep problems occurred earlier in those with the Tay-Sachs variant. Cerebellar atrophy was the most common finding on brain MRI (52.9%). The median survival time among the studied and reviewed patients was 14.5 years. The genotype-phenotype correlation revealed that in patients with the Tay-Sachs variant, the presence of R178H and R499H mutations was predictive of an early onset and rapidly progressive course. The presence of either G269S or W474C mutations was associated with a later onset of symptoms along with a more slowly progressive disease course. CONCLUSIONS Juvenile GM2 gangliosidosis is clinically heterogeneous, not only in terms of age of onset and clinical features but also with regard to the course of the disease. In general, the earlier the onset of symptoms, the more rapidly the disease progresses. The Tay-Sachs and Sandhoff variants differed somewhat in the frequency of specific clinical characteristics. Speech deterioration progressed more rapidly than gait abnormalities in both the Tay-Sachs variant and Sandhoff variant groups. Among patients with the Tay-Sachs variant, the HEXA genotype showed a significant correlation with the clinical course.
Collapse
Affiliation(s)
- Gustavo H. B. Maegawa
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Tracy Stockley
- Department of Paediatrics, Paediatric Laboratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Michael Tropak
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Brenda Banwell
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Susan Blaser
- Department of Paediatrics, Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Kok
- Centro do Genoma Humano, University of Sao Paulo, Sao Paulo, Brazil
| | - Roberto Giugliani
- Medical Genetics Service, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| | - Don Mahuran
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Joe T. R. Clarke
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Yoshizawa T, Kohno Y, Nissato S, Shoji S. Compound heterozygosity with two novel mutations in the HEXB gene produces adult Sandhoff disease presenting as a motor neuron disease phenotype. J Neurol Sci 2002; 195:129-38. [PMID: 11897243 DOI: 10.1016/s0022-510x(02)00007-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Little information is available on molecular defects involved in adult Sandhoff disease presenting as motor neuron disease phenotype. We studied enzyme activities of beta-hexosaminidase (Hex) and the HEXB gene encoding the beta-subunit of Hex in a family of the Japanese case. Enzyme assay with 4-methylumbelliferyl-2-acetamido-2-deoxy-beta-D-glucopyranoside revealed a reduction in Hex A and B activity in proband's leukocytes. Although the activity of both in the mother were intermediate between those of controls and the proband, only Hex B reduction determined with heat inactivation was found in the father. Analysis of HEXB gene demonstrated two novel point mutations. The first mutation, IVS2-1G>A, was located at the 3'-splice acceptor site of intron 2 derived from the mother, causing exon 3 skipping. The resultant mRNA encoded a shorter beta-chain, which may not form an active enzyme. The second mutation was a G-to-A transition in exon 13 (c.1598G>A) derived from the father and resulted in arginine-to-histidine substitution at amino acid position 533 (R533H). Expression of R533H mutation in COS-1 cells demonstrated a lack of normal Hex activity, indicating that this mutation is pathological. Compound heterozygosity of these two mutations may trigger the development of adult Sandhoff disease with a motor neuron disease phenotype.
Collapse
Affiliation(s)
- Toshihiro Yoshizawa
- Department of Neurology, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, 305-8575, Tsukuba, Japan.
| | | | | | | |
Collapse
|
6
|
Triggs-Raine B, Mahuran DJ, Gravel RA. Naturally occurring mutations in GM2 gangliosidosis: a compendium. ADVANCES IN GENETICS 2002; 44:199-224. [PMID: 11596984 DOI: 10.1016/s0065-2660(01)44081-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- B Triggs-Raine
- Department of Biochemistry and Medical Genetics University of Manitoba, Winnipeg, Canada.
| | | | | |
Collapse
|
7
|
Abstract
Genotyping individuals for Tay-Sachs disease (TSD) is mainly based on the heat lability of beta-hexosaminidase (Hex) A (alphabeta) and the heat stability of Hex B (betabeta). Mutations in the HEXB gene encoding the beta-subunits of Hex that result in heat-labile Hex B thus may lead to erroneous enzymatic genotyping regarding TSD. Utilizing single strand conformation polymorphism (SSCP) analysis for all 14 exons of HEXB followed by direct sequencing of aberrant fragments, we screened individuals whose Hex B was heat labile. A novel heat labile mutation, previously concluded to exist in the HEXB gene, was identified among Jews and Arabs as 1627 G-->A. One individual with heat labile Hex B (HLB) was negative for this novel mutation and for the known 1514 G-->A HLB mutation, proving that there exists at least one other unidentified HLB mutation. Based on these results, it is advisable to perform DNA tests for 1627 G-->A mutation in suspected HLB individuals.
Collapse
Affiliation(s)
- G Narkis
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | |
Collapse
|
8
|
Mahuran DJ. Biochemical consequences of mutations causing the GM2 gangliosidoses. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1455:105-38. [PMID: 10571007 DOI: 10.1016/s0925-4439(99)00074-5] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hydrolysis of GM2-ganglioside is unusual in its requirements for the correct synthesis, processing, and ultimate combination of three gene products. Whereas two of these proteins are the alpha- (HEXA gene) and beta- (HEXB) subunits of beta-hexosaminidase A, the third is a small glycolipid transport protein, the GM2 activator protein (GM2A), which acts as a substrate specific co-factor for the enzyme. A deficiency of any one of these proteins leads to storage of the ganglioside, primarily in the lysosomes of neuronal cells, and one of the three forms of GM2-gangliosidosis, Tay-Sachs disease, Sandhoff disease or the AB-variant form. Studies of the biochemical impact of naturally occurring mutations associated with the GM2 gangliosidoses on mRNA splicing and stability, and on the intracellular transport and stability of the affected protein have provided some general insights into these complex cellular mechanisms. However, such studies have revealed little in the way of structure-function information on the proteins. It appears that the detrimental effect of most mutations is not specifically on functional elements of the protein, but rather on the proteins' overall folding and/or intracellular transport. The few exceptions to this generalization are missense mutations at two codons in HEXA, causing the unique biochemical phenotype known as the B1-variant, and one codon in both the HEXB and GM2A genes. Biochemical characterization of these mutations has led to the localization of functional residues and/or domains within each of the encoded proteins.
Collapse
Affiliation(s)
- D J Mahuran
- Research Institute, The Hospital for Sick Children, Toronto, Ont, Canada.
| |
Collapse
|
9
|
Hara A, Uyama E, Uchino M, Shimmoto M, Utsumi K, Itoh K, Kase R, Naito M, Sugiyama E, Taketomi T, Sukegawa K, Sakuraba H. Adult Sandhoff's disease: R505Q and I207V substitutions in the HEXB gene of the first Japanese case. J Neurol Sci 1998; 155:86-91. [PMID: 9562328 DOI: 10.1016/s0022-510x(97)00299-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe a 31-year-old Japanese man with adult Sandhoff s disease presenting as spinocerebellar degeneration. There was a marked cerebellar atrophy on MRI, and proliferation of abundant PAS-positive foamy macrophages in the rectal mucosa. The activities of total beta-Hex, beta-Hex A, and beta-Hex B in leucocytes of the patient were 14%, 15%, and 6% of control values, respectively. However, oligosacchariduria or ultrastructural storage materials in liver tissue were nil. Direct sequencing of cDNA and genomic DNA, and restriction digestion revealed two different homozygous base substitutions in the HEXB gene: the G1514-->A substitution (R505Q) and the A619-->G substitution (1207V). The parents were consanguineous. His healthy mother, an enzymatic heterozygous carrier, was homozygous for 1207V, but heterozygous for R505Q mutation. Thus, the patient is probably homozygous for both base substitutions and a R505Q mutation may be linked to the phenotype of adult Sandhoff's disease.
Collapse
Affiliation(s)
- A Hara
- Department of Neurology, Kumamoto University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Schnorf H, Gitzelmann R, Bosshard NU, Spycher M, Waespe W. Early and severe sensory loss in three adult siblings with hexosaminidase A and B deficiency (Sandhoff disease). J Neurol Neurosurg Psychiatry 1995; 59:520-3. [PMID: 8530938 PMCID: PMC1073716 DOI: 10.1136/jnnp.59.5.520] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Three siblings in their sixth and seventh decade with hexosaminidase A and B deficiency (adult form of GM2-gangliosidosis, variant O) developed early and severe sensory loss in addition to chronic motor neuron disease and cerebellar ataxia. Prominent mechanoallodynia was a manifesting symptom in two siblings. It is suggested that sensory deficits are due to a central-peripheral dying back axonopathy. The early and dominant sensory disturbances extend the clinical range of GM2-gangliosidosis.
Collapse
Affiliation(s)
- H Schnorf
- Department of Neurology, University Hospital, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Brown CA, McInnes B, de Kremer RD, Mahuran DJ. Characterization of two HEXB gene mutations in Argentinean patients with Sandhoff disease. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1180:91-8. [PMID: 1390948 DOI: 10.1016/0925-4439(92)90031-h] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Beta-hexosaminidase A (beta-N-acetyl-D-hexosaminidase, EC 3.2.1.5.2) is a lysosomal hydrolase composed of an alpha- and a beta-subunit. It is responsible for the degradation of GM2 ganglioside. Mutations in the HEXB gene encoded beta-subunit cause a form of GM2 gangliosidosis known as Sandhoff disease. Although this is a rare disease in the general population, several geographically isolated groups have a high carrier frequency. Most notably, a 1 in 16-29 carrier frequency has been reported for an Argentinean population living in an area contained within a 375-km radius from Córdoba. Analysis of the genomic DNA of two patients from this region revealed that one was homozygous for a G to A substitution at the 5' donor splice site of intron 2. This mutation completely abolishes normal mRNA splicing. The other patient was a compared of the intron 2 G-->A substitution and a second allele due to a 4-bp deletion in exon 7. The beta-subunit mRNA of this allele is unstable, presumably as a result of an early stop codon introduced by the deletion. Two novel PCR-based assays were developed to detect these mutations. We suggest that one of these assays could be modified and used as a rapid screening procedure for 5' donor splice site defects in other genes. These results provide a further example of the genetic heterogeneity that can exist even in a small geographically isolated population.
Collapse
Affiliation(s)
- C A Brown
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
12
|
McInnes B, Brown CA, Mahuran DJ. Two small deletion mutations of the HEXB gene are present in DNA from a patient with infantile Sandhoff disease. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1138:315-7. [PMID: 1532910 DOI: 10.1016/0925-4439(92)90009-c] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lysosomal beta-hexosaminidase (EC 3.2.1.52) occurs as two major isozymes hexosaminidase A (alpha beta) and B (beta beta). The alpha subunit is encoded by the HEXA gene and the beta subunit by HEXB gene. Defects in the alpha or beta subunits lead to Tay-Sachs or Sandhoff disease, respectively. While many HEXA gene mutations have been reported only three HEXB gene mutations are known. We report the characterization of two rare HEXB mutations present in genomic DNA from a single fibroblast cell line, GM203, taken from a patient with the infantile form of Sandhoff disease. The first is a single base pair deletion in exon 7 changing the codon for Gly-258, GGA, to GA and the second, a two base pair deletion in exon 11 changes the codons for Arg-435/Val-436, AGA/GTC, to AGTC. Each mutation produces a frame shift in the affected allele that results in a premature stop codon 17 or 20 codons downstream, respectively. These mutations also result in the inability to detect beta-mRNA by Northern blot analysis of total mRNA. These data are consistent with the idea that the severe infantile form of Tay-Sachs or Sandhoff disease is associated with a total lack of residual hexosaminidase A activity.
Collapse
Affiliation(s)
- B McInnes
- Research Institute, Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|
13
|
Akerman BR, Zielenski J, Triggs-Raine BL, Prence EM, Natowicz MR, Lim-Steele JS, Kaback MM, Mules EH, Thomas GH, Clarke JT. A mutation common in non-Jewish Tay-Sachs disease: frequency and RNA studies. Hum Mutat 1992; 1:303-9. [PMID: 1301938 DOI: 10.1002/humu.1380010407] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tay-Sachs disease (TSD) is an autosomal recessive genetic disorder resulting from mutation of the HEXA gene encoding the alpha-subunit of the lysosomal enzyme, beta-N-acetylhexosaminidase A (Hex A). We have discovered that a Tay-Sachs mutation, IVS-9 + 1 G-->A, first detected by Akli et al. (Genomics 11:124-134, 1991), is a common disease allele in non-Jewish Caucasians (10/58 alleles examined). A PCR-based diagnostic test, which detects an NlaIII site generated by the mutation, revealed a frequency among enzyme-defined carriers of 9/64 (14%). Most of those carrying the allele trace their origins to the United Kingdom, Ireland, or Western Europe. It was not identified among 12 Black American TSD alleles or in any of 18 Ashkenazi Jewish, enzyme-defined carriers who did not carry any of the mutations common to this population. No normally spliced RNA was detected in PCR products generated from reverse transcription of RNA carrying the IVS-9 mutation. Instead, the low levels of mRNA from this allele were comprised of aberrant species resulting from the use of either of two cryptic donor sites, one truncating exon 9 and the other within IVS-9, spliced to exon 10. Numerous additional splice products were detected, most involving skipping of one or more surrounding exons. Together with a recently identified allele responsible for Hex A pseudodeficiency (Triggs-Raine et al. Am J Hum Genet, 1992), these two alleles accounted for almost 50% (29/64) of TSD or carrier alleles ascertained by enzyme screening tests in non-Jewish Caucasians.
Collapse
Affiliation(s)
- B R Akerman
- McGill University-Montreal Children's Hospital Research Institute, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tein I, De Vivo DC, Hale DE, Clarke JT, Zinman H, Laxer R, Shore A, DiMauro S. Short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency in muscle: a new cause for recurrent myoglobinuria and encephalopathy. Ann Neurol 1991; 30:415-9. [PMID: 1835339 DOI: 10.1002/ana.410300315] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report on a 16-year-old girl with short-chain L-3-hydroxyacyl-coenzyme A (CoA) dehydrogenase deficiency resulting in juvenile-onset recurrent myoglobinuria, hypoketotic hypoglycemic encephalopathy, and hypertrophic/dilatative cardiomyopathy. Urinary organic acids showed traces of 3-hydroxy-dodecanedioic acids and small amounts of suberic, sebacic, and adipic acids. There was a marked decrease in L-3-hydroxyacyl-CoA dehydrogenase activity in muscle with acetoacetyl-CoA as substrate (2.48 mumol/min/gm; normal = 6.90 +/- 1.80 mumol/min/gm of tissue; n = 11), contrasting with normal L-3-hydroxyacyl-CoA dehydrogenase activity with 3-ketooctanoyl-CoA and 3-ketopalmitoyl-CoA as substrates. Short-chain L-3-hydroxyacyl-CoA dehydrogenase activity was normal in fibroblasts, suggesting a tissue-specific defect.
Collapse
Affiliation(s)
- I Tein
- Columbia Presbyterian Medical Center, New York, NY
| | | | | | | | | | | | | | | |
Collapse
|