1
|
Tuffaha S, Lee EB. Growth Factors to Enhance Nerve Regeneration: Approaching Clinical Translation. Hand Clin 2024; 40:399-408. [PMID: 38972684 DOI: 10.1016/j.hcl.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Following nerve injury, growth factors (GFs) are transiently upregulated in injured neurons, proliferating Schwann cells, and denervated muscle and skin. They act on these same cells and tissues to promote nerve regeneration and end-organ reinnervation. Consequently, much attention has been focused on developing GF-based therapeutics. A major barrier to clinical translation of GFs is their short half-life. To provide sustained GF treatment to the affected nerve, muscle, and skin in a safe and practical manner, engineered drug delivery systems are needed. This review highlights recent advancements in GF-based therapeutics and discusses the remaining hurdles for clinical translation.
Collapse
Affiliation(s)
- Sami Tuffaha
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Erica B Lee
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
2
|
Huang RY, Liu ZH, Weng WH, Chang CW. Magnetic nanocomplexes for gene delivery applications. J Mater Chem B 2021; 9:4267-4286. [PMID: 33942822 DOI: 10.1039/d0tb02713h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gene delivery is an indispensable technique for various biomedical applications such as gene therapy, stem cell engineering and gene editing. Recently, magnetic nanoparticles (MNPs) have received increasing attention for their use in promoting gene delivery efficiency. Under magnetic attraction, gene delivery efficiency using viral or nonviral gene carriers could be universally enhanced. Besides, magnetic nanoparticles could be utilized in magnetic resonance imaging or magnetic hyperthermia therapy, providing extra theranostic opportunities. In this review, recent research integrating MNPs with a viral or nonviral gene vector is summarized from both technical and application perspectives. Applications of MNPs in cutting-edge research technologies, such as biomimetic cell membrane nano-gene carriers, exosome-based gene delivery, cell-based drug delivery systems or CRISPR/Cas9 gene editing, are also discussed.
Collapse
Affiliation(s)
- Rih-Yang Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taiwan.
| | - Wei-Han Weng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
3
|
Li R, Li DH, Zhang HY, Wang J, Li XK, Xiao J. Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration. Acta Pharmacol Sin 2020; 41:1289-1300. [PMID: 32123299 PMCID: PMC7608263 DOI: 10.1038/s41401-019-0338-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022] Open
Abstract
Peripheral nerve injury (PNI), one of the most common concerns following trauma, can result in a significant loss of sensory or motor function. Restoration of the injured nerves requires a complex cellular and molecular response to rebuild the functional axons so that they can accurately connect with their original targets. However, there is no optimized therapy for complete recovery after PNI. Supplementation with exogenous growth factors (GFs) is an emerging and versatile therapeutic strategy for promoting nerve regeneration and functional recovery. GFs activate the downstream targets of various signaling cascades through binding with their corresponding receptors to exert their multiple effects on neurorestoration and tissue regeneration. However, the simple administration of GFs is insufficient for reconstructing PNI due to their short half‑life and rapid deactivation in body fluids. To overcome these shortcomings, several nerve conduits derived from biological tissue or synthetic materials have been developed. Their good biocompatibility and biofunctionality made them a suitable vehicle for the delivery of multiple GFs to support peripheral nerve regeneration. After repairing nerve defects, the controlled release of GFs from the conduit structures is able to continuously improve axonal regeneration and functional outcome. Thus, therapies with growth factor (GF) delivery systems have received increasing attention in recent years. Here, we mainly review the therapeutic capacity of GFs and their incorporation into nerve guides for repairing PNI. In addition, the possible receptors and signaling mechanisms of the GF family exerting their biological effects are also emphasized.
Collapse
Affiliation(s)
- Rui Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Duo-Hui Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong-Yu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jian Wang
- Department of Peripheral Neurosurgery, The First Affiliated Hospital, Wenzhou, Medical University, Wenzhou, 325000, China
| | - Xiao-Kun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- Department of Peripheral Neurosurgery, The First Affiliated Hospital, Wenzhou, Medical University, Wenzhou, 325000, China.
| |
Collapse
|
4
|
Kotulska K, Marcol W, Larysz-Brysz M, Barski JJ, Fus Z, Lewin-Kowalik J. Impaired regeneration of bcl-2 lacking peripheral nerves. Neurol Res 2013; 27:843-9. [PMID: 16354545 DOI: 10.1179/016164105x48815] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECT The outcome of peripheral nerve damage in still not satisfactory, despite the general capacity of peripheral nervous system to regenerate. The molecular mechanisms underlying nerve regeneration are still not clear, but it is likely that apoptosis regulating genes plays a crucial role in these processes. The aim of the present study was to establish the role of the anti-apoptotic gene bcl-2 in peripheral nerve repair. MATERIAL AND METHODS Sciatic nerves of bcl-2-deficient and wild type mice were transected, and immediately re-sutured. The regeneration was assessed functionally and morphologically throughout the 4-week follow-up. RESULTS We found markedly worse sciatic function index outcome, as well as more significant atrophy of denervated muscles in bcl-2 knock-out animals when compared with wild-type ones. The intensity of histological regeneration features, including GAP-43-positive growth cones, Schwann cells and macrophages in the distal stump of the transected nerve, was also decreased. The number of motor and sensory neurons in the relevant cross-sections of spinal cord was similar in both groups of mice. CONCLUSION We concluded that the bcl-2 gene plays an important role in peripheral nerve regeneration, influencing nerve injury site clearing, fiber regrowth and myelination.
Collapse
Affiliation(s)
- Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
5
|
Castillo C, Malavé C, Martínez JC, Núñez J, Hernández D, Pasquali F, Villegas GM, Villegas R. Neuregulin-1 isoform induces mitogenesis, KCa and Ca2+ currents in PC12 cells. A comparison with sciatic nerve conditioned medium. Brain Res 2006; 1110:64-75. [PMID: 16859657 DOI: 10.1016/j.brainres.2006.06.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 05/31/2006] [Accepted: 06/19/2006] [Indexed: 11/20/2022]
Abstract
Neuregulin-1 (NRG-1) is an active component found in sciatic nerve conditioned medium (CM). NRG-1 is a growth and differentiation factor shown to have an effect on neuritogenesis and survival of neural cells. PC12 cells chronically treated with NRG-1 (beta1 isoform) show an increase in proliferation under low-serum condition (2.5% fetal bovine serum and 1.25% horse serum) and serum deprivation, without visible morphological changes. NRG-1 and CM treatments of PC12 cells induced an increase of voltage-activated Ca2+ currents and large-conductance calcium-activated K+ currents (KCa). AG825, a specific inhibitor for erbB2 receptor, abolishes KCa current, though Ca2+ currents were not inhibited. These results showed that NRG-1 is capable of inducing functional changes but is not sufficient on its own to have an effect on cell morphology.
Collapse
Affiliation(s)
- Cecilia Castillo
- Centro de Biociencias y Medicina Molecular, Instituto de Estudios Avanzados-IDEA, Apartado 17606, Caracas, Venezuela.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Martínez JC, Malavé C, Bosch I, Castillo C, Núñez J, Villegas GM, Villegas R. A real-time quantitative PCR comparative study between rat optic and sciatic nerves: determination of neuregulin-1 mRNA levels. ACTA ACUST UNITED AC 2005; 130:49-60. [PMID: 15519676 DOI: 10.1016/j.molbrainres.2004.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2004] [Indexed: 01/13/2023]
Abstract
Injured axons from peripheral nervous system (PNS) possess the ability to regenerate. In contrast, regeneration of injured axons does not occur in the central nervous system (CNS) or occurs to a limited extent. Previous works have shown that rat sciatic nerve conditioned medium (CM) produced PC12 cells neuronal-like differentiation and neurite outgrowth. In the present work, we compared the expression of neuregulin-1s (NRG-1s) from rat sciatic and optic nerves as members of the PNS and CNS, respectively. Sciatic nerve CM showed a higher neurotrophic activity on PC12 cells than rat optic nerve CM. RT-PCR analysis verified the presence of all three types of NRG-1 mRNAs and their receptors in both types of nerves. Real-time quantitative PCR (QPCR) assays showed that the relative expression levels of all three types of NRG-1 mRNAs were higher in optic nerves than in sciatic nerves. Eleven-day cultured optic nerves showed an increased in NDF and SMDF when compared to freshly isolated optic nerves, whereas GGF decreased. However, 11-day-cultured sciatic nerves only showed an increase in SMDF mRNA. Western blots corroborated the differences in NRG-1 expression profile for both types of nerves and their CMs. Incubation of both CMs with the anti-pan-NRG-1 antibody showed that the neurotrophic activity of the optic nerve CM increased, whereas the sciatic nerve CM remained unchanged. These results indicated that different NRG-1 levels are expressed upon nerve degeneration and the balance between those levels and other neurotrophic factors could have an important role on nerve regeneration.
Collapse
Affiliation(s)
- J C Martínez
- Instituto de Estudios Avanzados (IDEA), Apartado 17606, Caracas 1015-A, Miranda 1080, Venezuela.
| | | | | | | | | | | | | |
Collapse
|
7
|
Conti AM, Brimijoin S, Miller LJ, Windebank AJ. Suppression of neurite outgrowth by high-dose nerve growth factor is independent of functional p75NTR receptors. Neurobiol Dis 2004; 15:106-14. [PMID: 14751775 DOI: 10.1016/j.nbd.2003.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have previously demonstrated that high concentrations of nerve growth factor suppress neurite outgrowth from sensory neurons. Inhibition could be mediated by either the p75NTR or TrkA receptor. We used a functional block of p75NTR by REX antibody in rat dorsal root ganglion neurons and dorsal root ganglion cultures from p75NTR knockout mice. In both systems, high-dose NGF inhibited neurite outgrowth, implying that p75NTR is not involved in suppression of neurite outgrowth. Confocal images of dissociated dorsal root ganglion neurons exposed to fluorescence-tagged NGF showed ligand internalization. Radioligand binding indicated disappearance of high-affinity binding sites from the surface of dorsal root ganglia after treatment with 200 ng/ml NGF for 1 h. Downstream signaling showed sustained hyperphosphorylation of MAPK (Erk(1-2)) but not of SNT or Akt. High-dose NGF may induce cytoplasmic relocation of the receptor TrkA and axonal growth arrest independently of p75NTR.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Binding Sites/drug effects
- Binding Sites/genetics
- Cells, Cultured
- Dose-Response Relationship, Drug
- Endocytosis/drug effects
- Endocytosis/genetics
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/growth & development
- Ganglia, Spinal/metabolism
- Growth Cones/drug effects
- Growth Cones/metabolism
- Growth Cones/ultrastructure
- Ligands
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Microscopy, Confocal
- Nerve Growth Factor/metabolism
- Nerve Growth Factor/pharmacology
- Neurites/drug effects
- Neurites/metabolism
- Neurites/ultrastructure
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Nerve Growth Factor
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Receptors, Nerve Growth Factor/antagonists & inhibitors
- Receptors, Nerve Growth Factor/deficiency
- Receptors, Nerve Growth Factor/genetics
Collapse
Affiliation(s)
- Anna M Conti
- Department of Neurology, Mayo Clinic, College of Medicine, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
8
|
Castillo C, Carreño F, Villegas GM, Villegas R. Ionic currents in PC12 cells differentiated into neuron-like cells by a cultured-sciatic nerve conditioned medium. Brain Res 2001; 911:181-92. [PMID: 11511389 DOI: 10.1016/s0006-8993(01)02683-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The present work deals with the identification of the ionic currents found in PC12 cells differentiated into neuron-like cells by a 9-11-day cultured-sciatic nerve conditioned medium (CM). PC12 whole-cell currents were measured after chronic exposure to CM. The results obtained in these CM-treated cells reveal that the functional expression of Ca(2+) currents is increased, that Na+ currents are not affected, and that a transient K+ current and a K+ delayed rectifier (K+ dr) current are increased. The combination of nifedipine and omega-conotoxin GVIA (omega-CgTX) does not block completely the increased functional expression of the Ca(2+) current. The remaining current is blocked by omega-agatoxin TK indicating that P/Q-type channels are additionally contributing to the increase in Ca(2+) current. NGF-treated PC12 cells, used as positive controls, confirm that NGF increases the expression of voltage-dependent Na+ currents and of Ca(2+) currents. In addition, we found that NGF also increases a K+ dr-type current in these cells. The results obtained with the CM might be due to a molecule or a mixture of molecules released into the medium by the 9-11-day cultured sciatic nerves.
Collapse
Affiliation(s)
- C Castillo
- Centro de Biociencias y Medicina Molecular, Instituto de Estudios Avanzados (IDEA), Apartado 17606, Caracas 1015-A, Venezuela.
| | | | | | | |
Collapse
|
9
|
Gołka B, Lewin-Kowalik J, Swiech-Sabuda E, Larysz-Brysz M, Górka D, Małecka-Tendera E. Predegenerated peripheral nerve grafts rescue retinal ganglion cells from axotomy-induced death. Exp Neurol 2001; 167:118-25. [PMID: 11161599 DOI: 10.1006/exnr.2000.7540] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The inability of axons to grow across damaged central nervous system tissue is a well-known consequence of injury to the brain and spinal cord of adult mammals. Our previous studies showed that predegenerated peripheral nerve grafts facilitate neurite outgrowth from the injured hippocampus and that this effect was particularly distinct when 7-, 28-, and 35-day-predegenerated nerve grafts were used. The purpose of the present study was to use the above method to induce and support the regrowth of injured nerve fibers as well as the survival of retinal ganglion cells (RGCs). Adult Sprague-Dawley rats were assigned to three groups. In the experimental groups transected optic nerve was grafted with peripheral nerve (predegenerated for 7 days (PD) or nonpredegenerated). In the control group, the optic nerve was totally transected. RGCs and growing fibers labeled with fluorescent tracers were examined. They were counted and the results were subjected to statistical analysis. Retinal ganglion cells survived in the groups treated with predegenerated as well as nonpredegenerated grafts; however, the number of surviving retinal ganglion cells was significantly higher in the first one. In both groups the regrowth of the transected optic nerve was observed but the distance covered by regenerating fibers was longer in the PD group. No fibers inside grafts and no labeled cells in retinas were present in the control animals. On the basis of the obtained results we can state that the predegeneration of grafts enhance their neurotrophic influence upon the injured retinal ganglion cells.
Collapse
Affiliation(s)
- B Gołka
- Department of Physiology, Silesian Medical University, ul. Medyków 18, Katowice, 40-762, Poland
| | | | | | | | | | | |
Collapse
|
10
|
Villegas R, Villegas GM, Longart M, Hernández M, Maqueira B, Buonanno A, García R, Castillo C. Neuregulin found in cultured-sciatic nerve conditioned medium causes neuronal differentiation of PC12 cells. Brain Res 2000; 852:305-18. [PMID: 10678757 DOI: 10.1016/s0006-8993(99)02109-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The present work deals with the search and identification of the molecule or combination of molecules, present in a medium conditioned by cultured rat-sciatic nerves (CM), able to cause neuronal differentiation of PC12 cells. The molecular mass range of the active fraction, as well as the thermostability and heparin affinity of the active component found in previous work, all characteristics shared with neuregulin (NRG) family members, led us to search for a NRG protein in the CM. Nerves were previously cultured for 8 days and the CM collected every 24 h, the following 3 days. The CM was concentrated (30,000 NMWL) and fractionated by quaternary ammonium chromatography and Cibacron blue affinity chromatography. The most active fraction B1.2 was further characterized by heparin affinity chromatography, size exclusion HPLC, Western blotting and immunoprecipitation. Results reveal abundance of NRG mRNA in the cultured nerves, presence of a 54 kDa NRG protein in the CM that increases along fractionation, and progressive diminution of fraction B1.2 differentiation activity on PC12 cells by gradual removal of the NRG protein by immunoprecipitation. The abundance of Schwann cells and the lack of axons in the cultured nerves suggest Schwann cells as the main NRG source, to which fibroblasts and perineurial cells might contribute.
Collapse
Affiliation(s)
- R Villegas
- Centro de Biociencias, Instituto de Estudios Avanzados, Caracas, Venezuela.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Yu X, Dillon GP, Bellamkonda RB. A laminin and nerve growth factor-laden three-dimensional scaffold for enhanced neurite extension. TISSUE ENGINEERING 1999; 5:291-304. [PMID: 10477852 DOI: 10.1089/ten.1999.5.291] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Agarose hydrogel scaffolds were engineered to stimulate and guide neuronal process extension in three dimensions in vitro. The extracellular matrix (ECM) protein laminin (LN) was covalently coupled to agarose hydrogel using the bifunctional cross-linking reagent 1,19- carbonyldiimidazole (CDI). Compared to unmodified agarose gels, LN-modified agarose gels significantly enhanced neurite extension from three-dimensionally (3D) cultured embryonic day 9 (E9) chick dorsal root ganglia (DRGs), and PC 12 cells. After incubation of DRGs or PC 12 cells with YIGSR peptide or integrin beta1 antibody respectively, the neurite outgrowth promoting effects in LN-modified agarose gels were significantly decreased or abolished. These results indicate that DRG/PC 12 cell neurite outgrowth promoting effect of LN-modified agarose gels involves receptors for YIGSR/integrin beta1 subunits respectively. 1,2-bis(10, 12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC(8,9)PC)-based lipid microcylinders were loaded with nerve growth factor (NGF), and embedded into agarose hydrogels. The resulting trophic factor gradients stimulated directional neurite extension from DRGs in agarose hydrogels. A PC 12 cell-based bioassay demonstrated that NGF-loaded lipid microcylinders can release physiologically relevant amounts of NGF for at least 7 days in vitro. Agarose hydrogel scaffolds may find application as biosynthetic 3D bridges that promote regeneration across severed nerve gaps.
Collapse
Affiliation(s)
- X Yu
- Biomaterials, Cell and Tissue Engineering Laboratory, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7207, USA
| | | | | |
Collapse
|
12
|
Gill JS, Windebank AJ. Direct activation of the high-affinity nerve growth factor receptor by a non-peptide symmetrical polyanion. Neuroscience 1998; 87:855-60. [PMID: 9759973 DOI: 10.1016/s0306-4522(98)00206-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The high-affinity nerve growth factor receptor (gp140TrkA) is a tyrosine kinase receptor. The dimeric ligand, nerve growth factor, activates the receptor by stabilizing homodimer formation, which initiates transautophosphorylation. Suramin is a symmetrical planar polyanionic molecule which is being used as a novel experimental anti-neoplastic agent. Proposed mechanisms of the drug's anti-proliferative activity include blocking mitogenic stimulatory growth factors or inhibition of tumor-specific cellular enzymes. In PC12 cells and in dorsal root ganglion neurons, suramin has been shown to act as a partial agonist for gp140TrkA. We now demonstrate direct activation of gp140TrkA by suramin using in vitro protein kinase assays and receptor dimerization studies. Additionally, activation of phosphatidylinositol-3-kinase by suramin and nerve growth factor was observed with 10-min exposure. The addition of anti-nerve growth factor antibodies along with suramin did not reduce the level of gp140TrkA phosphorylation, excluding induction of an autocrine loop of nerve growth factor release and activation. This demonstrates that a small polyanion can directly activate gp140TrkA via receptor dimerization. Our study reveals a suramin-induced homodimerization of gp140TrkA. This finding correlated with significant neurite outgrowth in naive PC12 cells exposed to the drug. Studies will be initiated to design structural analogs of suramin which possess neurotrophic properties with no associated neurotoxicity.
Collapse
Affiliation(s)
- J S Gill
- Molecular Neuroscience Program, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, USA
| | | |
Collapse
|
13
|
Decherchi P, Lammari-Barreault N, Cochard P, Carin M, Réga P, Pio J, Péllissier JF, Ladaique P, Novakovitch G, Gauthier P. CNS axonal regeneration with peripheral nerve grafts cryopreserved by vitrification: cytological and functional aspects. Cryobiology 1997; 34:214-39. [PMID: 9160994 DOI: 10.1006/cryo.1997.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To test cool-warm protocols for storing peripheral nerves, 4-cm-long-nerve segments were removed from the hindleg of adult rats and cryopreserved using a vitrification solution (or cryoprotective mixture) containing a mixture of polyalcohols (2,3-butanediol, 1,2-propanediol, polyethylene glycol, and Belzer U.W. medium). Schwann cell viability and morphology were studied with regard to the effect of (i) cryoprotective mixture concentration (100, 50, and 30% diluted in human serum albumin at 4%), (ii) duration of exposure (10, 15, or 30 min in a single step) of nerves to the cryoprotective mixture, (iii) cooling rate (F1/F2, F3, and F4: 3, 12, and 231 degrees C/min, respectively), and (iv) type of replacement of cryoprotectant (T1, one step; or T2, perfusion) after warming. Nerves exposed 10 min to cryoprotective mixture 50% (2,3-butanediol, 1.926 mol.liter-1; 1,2-propanediol, 3.063 mol.liter-1; polyethylene glycol, 0.084 mol.liter-1; and Belzer U.W., 22.4 mosm-1) and cooled-warmed with the F2/F3/F4-T2 protocols contained live and correctly cryopreserved Schwann cells. The capacity of these cryopreserved nerve segments (n = 6) to be subsequently repopulated by regenerating axons from central neurons was compared to that of fresh nerves when used as peripheral nerve autografts implanted within the spinal cord at the level of the descending respiratory pathways. All cryopreserved nerve grafts were successfully reinnervated by regenerated central axons. Unitary spontaneous action potentials propagated along these axons were assessed by recording the discharge of tested nervous filaments (T) from the grafts in artificially ventilated and paralyzed animals. Out of 535 T, 32 (6 +/- 1.2%) presented spontaneous unitary activity with respiratory (R, n = 2) and nonrespiratory (NR, n = 30) pattern of discharge. The T mean number, the occurrence rate referenced to the total number of T (R/T, NR/T, and R + NR/T) and the mean number of spontaneous units (R, NR, R + NR) were compared to those of fresh spinal peripheral nerve grafts. Except for T, cryopreserved peripheral nerve grafts contained statistically significantly (P < 0.05) less spontaneous R and NR unitary activity, which represented, respectively, 6.2 +/- 6.2 and 26.8 +/- 5.7% of that found in the control group. These data indicate that nerves cryopreserved with the protocols described above contain viable Schwann cells which constitute a suitable support to induce regeneration of central fibers. The effectiveness of nerve cryopreservation by vitrification is discussed with regard to Schwann cell viability following cool-warm protocols and to subsequent reinnervation of the cryopreserved peripheral nerve grafts.
Collapse
Affiliation(s)
- P Decherchi
- Département de Physiologie et de Neurophysiologie, URA CNRS 1832, Faculté des Sciences et des Techniques de Saint-Jéôme (Aix-Marseille III), France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Decherchi P, Gauthier P. In vitro pre-degenerated nerve autografts support CNS axonal regeneration. Brain Res 1996. [DOI: 10.1016/0006-8993(96)00331-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Villegas GM, Haustein AT, Villegas R. Neuronal differentiation of PC12 and chick embryo ganglion cells induced by a sciatic nerve conditioned medium: characterization of the neurotrophic activity. Brain Res 1995; 685:77-90. [PMID: 7583256 DOI: 10.1016/0006-8993(95)00412-j] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present work deals with the finding and characterization of a neurotrophic factor present in serum-free Dulbecco's modified Eagle's medium in which rat sciatic nerves previously cultured for 9 days were maintained for 24 h. This sciatic nerve conditioned medium (SNCM) produced neuronal differentiation and neurite outgrowth on PC12 cells, as well as survival and differentiation of eight-day old chick embryo dorsal root ganglion (E8-DRG) and ciliary ganglion (E8-CG) neurons. SNCM activity was decreased by dilution, heating and trypsin treatment; it was not inhibited by anti-NGF and anti-bFGF antibodies; and it was not mimicked by CNTF, laminin and fibronectin. By utilizing its neurite-promoting activity on PC12 cells, experiments oriented to purify the factor were carried out. Ultrafiltration, heparin-affinity chromatography and size-exclusion high pressure liquid chromatography (HPLC) were employed. The ability of SNCM to induce PC12 cell, E8-DRG and E8-CG neuronal differentiation, the heparin affinity of the active SNCM protein, and the size-exclusion HPLC elution characteristics of the active protein suggest that the active component of the SNCM is, in all probability, a novel sciatic nerve neurotrophic factor (SNTF).
Collapse
Affiliation(s)
- G M Villegas
- Instituto Internacional de Estudios Avanzados (IDEA), Apartado, Caracas, Venezuela
| | | | | |
Collapse
|
16
|
Chen S, Bisby MA. Long-term consequences of impaired regeneration on facial motoneurons in the C57BL/Ola mouse. J Comp Neurol 1993; 335:576-85. [PMID: 8227536 DOI: 10.1002/cne.903350409] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Peripheral nerves of the C57BL/Ola mouse mutant undergo markedly slowed Wallerian degeneration following injury. This is associated with impaired regeneration of both sensory and motor axons. Following a crush lesion of the facial nerve, there was no cell loss in facial nuclei of normal (C57BL/6J) adult mice, but 40% cell loss occurred in Ola mice and the survivors increased in size during the period when functional reinnervation was established. These results are interpreted as a result, first, of prolonged deprivation of target-derived trophic factor in the slowly regenerating Ola motoneurons and second, increased peripheral field size of the survivors. Within the regenerated facial nerve, there was marked heterogeneity of myelinated fibre size in Ola mice. Some Ola axons, both proximal and distal to the lesion site, had areas over twice as great as the largest 6J axons when measured 1 year following injury. A population of small diameter fibres, not observed in 6J nerves, persisted distal to the crush site in Ola nerves, and this was associated with an increase in the total number of myelinated axons in the distal nerve: on average, each parent Ola axon retained three persistent daughter axons. The delayed Wallerian degeneration in Ola mice not only impairs immediate axon regrowth, but also results in a breakdown of the normal mechanisms which regulate axon number and size in regenerating nerve.
Collapse
Affiliation(s)
- S Chen
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
17
|
Abstract
The relative abundance of several axonal cytoskeletal proteins was determined by immunoassay at various sites in the peripheral and central nervous systems of adult rats. Within the peripheral nervous system, the ratio of tubulin to neurofilaments was greatest for nerves composed of unmyelinated axons and least for nerves with large myelinated axons. MAP1 protein was more prominent in unmyelinated fibers; conversely tau proteins were relatively more abundant in large myelinated axons. An immunochemical index of neurofilament phosphorylation was less for unmyelinated fibers than for myelinated ones. In the fimbria-fornix, pyramidal tract, and superior cerebellar peduncle, similar trends were observed: small axons had more MAP1, less tau, and a greater ratio of tubulin to neurofilament proteins. The phosphorylation index was greatest for the superior cerebellar peduncle, the tract with the largest axons. The immunochemical index of neurofilament phosphorylation was greater for the optic nerve than for axonal tracts in the brain proper. These results suggest that development of large myelinated axons is associated with greater neurofilament content, neurofilament phosphorylation, and with greater abundance of tau proteins in the CNS and the PNS; however, quantitative aspects of these relationships differ in the PNS and the CNS.
Collapse
Affiliation(s)
- D Watson
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|