1
|
Qu T. The effects of amyloidosis and aging on glutamatergic and GABAergic synapses, and interneurons in the barrel cortex and non-neocortical brain regions. Front Neuroanat 2025; 19:1526962. [PMID: 40012738 PMCID: PMC11863279 DOI: 10.3389/fnana.2025.1526962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/15/2025] [Indexed: 02/28/2025] Open
Abstract
Previous studies on changes in the distribution of GABAergic interneurons and excitation/inhibition (E/I) balance in Alzheimer's disease (AD) and aging were mainly conducted in the neocortex and hippocampus. However, the limbic system is the primary and crucial location for AD progression. Therefore, in this study, we utilized AD and aging mouse models to investigate the E/I balance and the distribution of parvalbumin (PV)- and somatostatin (SST)-expressing cells in S1BF (barrel field of primary somatosensory cortex, barrel cortex), CA1 hippocampal area and brain regions beyond the neocortex and hippocampus, including retrosplenial cortex (RSC, which is composed of RSG and RSA), piriform cortex (Pir), amygdala (BMA), and hypothalamus (DM). We discovered that amyloidosis may disrupt the alignment of excitatory pre- and postsynaptic quantities. Amyloidosis reduces the quantity of synapses and SST cells, but does not impact the counts of PV cells. By contrast, aging is linked to a decline in synapses, I/E ratios, SST and PV cells. Amyloidosis affects the S1BF and BMA, while aging may harm all studied regions, including the S1BF, RSC, hippocampus, Pir, BMA, and DM. Aging mostly affects synapses and I/E ratios in Pir, BMA, and DM, and PV and SST interneurons in the hippocampus.
Collapse
Affiliation(s)
- Tao Qu
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
2
|
Zhang X, Wu M, Cheng L, Cao W, Liu Z, Yang SB, Kim MS. Fast-spiking parvalbumin-positive interneurons: new perspectives of treatment and future challenges in dementia. Mol Psychiatry 2025; 30:693-704. [PMID: 39695324 DOI: 10.1038/s41380-024-02756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 12/20/2024]
Abstract
Central nervous system parvalbumin-positive interneurons (PV-INs) are crucial and highly vulnerable to various stressors. They also play a significant role in the pathological processes of many neuropsychiatric diseases, especially those associated with cognitive impairment, such as Alzheimer's disease (AD), vascular dementia (VD), Lewy body dementia, and schizophrenia. Although accumulating evidence suggests that the loss of PV-INs is associated with memory impairment in dementia, the precise molecular mechanisms remain elusive. In this review, we delve into the current evidence regarding the physiological properties of PV-INs and summarize the latest insights into how their loss contributes to cognitive decline in dementia, particularly focusing on AD and VD. Additionally, we discuss the influence of PV-INs on brain development, the variations in their characteristics across different types of dementia, and how their loss affects the etiology and progression of cognitive impairments. Ultimately, our goal is to provide a comprehensive overview of PV-INs and to consider their potential as novel therapeutic targets in dementia treatment.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Moxin Wu
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Lin Cheng
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Wa Cao
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Ziying Liu
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Seung-Bum Yang
- Department of Paramedicine, Wonkwang Health Science University, Iksan, Republic of Korea
| | - Min-Sun Kim
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan, Republic of Korea.
| |
Collapse
|
3
|
Melgosa-Ecenarro L, Doostdar N, Radulescu CI, Jackson JS, Barnes SJ. Pinpointing the locus of GABAergic vulnerability in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:35-54. [PMID: 35963663 DOI: 10.1016/j.semcdb.2022.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/31/2022]
Abstract
The early stages of Alzheimer's disease (AD) have been linked to microcircuit dysfunction and pathophysiological neuronal firing in several brain regions. Inhibitory GABAergic microcircuitry is a critical feature of stable neural-circuit function in the healthy brain, and its dysregulation has therefore been proposed as contributing to AD-related pathophysiology. However, exactly how the critical balance between excitatory and inhibitory microcircuitry is modified by AD pathogenesis remains unclear. Here, we set the current evidence implicating dysfunctional GABAergic microcircuitry as a driver of early AD pathophysiology in a simple conceptual framework. Our framework is based on a generalised reductionist model of firing-rate control by local feedback inhibition. We use this framework to consider multiple loci that may be vulnerable to disruption by AD pathogenesis. We first start with evidence investigating how AD-related processes may impact the gross number of inhibitory neurons in the network. We then move to discuss how pathology may impact intrinsic cellular properties and firing thresholds of GABAergic neurons. Finally, we cover how AD-related pathogenesis may disrupt synaptic connectivity between excitatory and inhibitory neurons. We use the feedback inhibition framework to discuss and organise the available evidence from both preclinical rodent work and human studies in AD patients and conclude by identifying key questions and understudied areas for future investigation.
Collapse
Affiliation(s)
- Leire Melgosa-Ecenarro
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Nazanin Doostdar
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Carola I Radulescu
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Johanna S Jackson
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Samuel J Barnes
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
4
|
Morrone CD, Lai AY, Bishay J, Hill ME, McLaurin J. Parvalbumin neuroplasticity compensates for somatostatin impairment, maintaining cognitive function in Alzheimer's disease. Transl Neurodegener 2022; 11:26. [PMID: 35501886 PMCID: PMC9063209 DOI: 10.1186/s40035-022-00300-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/31/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Patient-to-patient variability in the degree to which β-amyloid, tau and neurodegeneration impact cognitive decline in Alzheimer's disease (AD) complicates disease modeling and treatment. However, the underlying mechanisms leading to cognitive resilience are not resolved. We hypothesize that the variability in cognitive function and loss relates to neuronal resilience of the hippocampal GABAergic network. METHODS We compared TgF344-AD and non-transgenic littermate rats at 9, 12, and 15 months of age. Neurons, β-amyloid plaques and tau inclusions were quantified in hippocampus and entorhinal cortex. Somatostatin (SST) and parvalbumin (PVB) interneurons were traced to examine hippocampal neuroplasticity and cognition was tested in the Barnes maze. RESULTS The 9-month-old TgF344-AD rats exhibited loss of neurons in the entorhinal cortex and hippocampus. Hippocampal neuronal compensation was observed in 12-month TgF344-AD rats, with upregulation of GABAergic interneuronal marker. By 15 months, the TgF344-AD rats had robust loss of excitatory and inhibitory neurons. β-Amyloid and tau pathology accumulated continuously across age. SST interneurons exhibited tau inclusions and atrophy from 9 months, whereas PVB interneurons were resilient until 15 months. The hippocampal PVB circuit underwent neuroplastic reorganization with increased dendritic length and complexity in 9- and 12-month-old TgF344-AD rats, before atrophy at 15 months. Strikingly, 12-month-old TgF344-AD rats were resilient in executive function and cognitive flexibility. Cognitive resilience in TgF344-AD rats occurred as maintenance of function between 9 and 12 months of age despite progressive spatial memory deficits, and was sustained by PVB neuroplasticity. CONCLUSIONS Our results demonstrate the inherent neuronal processes leading to cognitive maintenance, and describe a novel finding of endogenous cognitive resilience in an AD model.
Collapse
Affiliation(s)
| | - Aaron Yenhsin Lai
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - Jossana Bishay
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - Mary Elizabeth Hill
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - JoAnne McLaurin
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
5
|
Reorganization of Parvalbumin Immunopositive Perisomatic Innervation of Principal Cells in Focal Cortical Dysplasia Type IIB in Human Epileptic Patients. Int J Mol Sci 2022; 23:ijms23094746. [PMID: 35563137 PMCID: PMC9100614 DOI: 10.3390/ijms23094746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Focal cortical dysplasia (FCD) is one of the most common causes of drug-resistant epilepsy. As several studies have revealed, the abnormal functioning of the perisomatic inhibitory system may play a role in the onset of seizures. Therefore, we wanted to investigate whether changes of perisomatic inhibitory inputs are present in FCD. Thus, the input properties of abnormal giant- and control-like principal cells were examined in FCD type IIB patients. Surgical samples were compared to controls from the same cortical regions with short postmortem intervals. For the study, six subjects were selected/each group. The perisomatic inhibitory terminals were quantified in parvalbumin and neuronal nuclei double immunostained sections using a confocal fluorescent microscope. The perisomatic input of giant neurons was extremely abundant, whereas control-like cells of the same samples had sparse inputs. A comparison of pooled data shows that the number of parvalbumin-immunopositive perisomatic terminals contacting principal cells was significantly larger in epileptic cases. The analysis showed some heterogeneity among epileptic samples. However, five out of six cases had significantly increased perisomatic input. Parameters of the control cells were homogenous. The reorganization of the perisomatic inhibitory system may increase the probability of seizure activity and might be a general mechanism of abnormal network activity.
Collapse
|
6
|
Xu Y, Zhao M, Han Y, Zhang H. GABAergic Inhibitory Interneuron Deficits in Alzheimer's Disease: Implications for Treatment. Front Neurosci 2020; 14:660. [PMID: 32714136 PMCID: PMC7344222 DOI: 10.3389/fnins.2020.00660] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized clinically by severe cognitive deficits and pathologically by amyloid plaques, neuronal loss, and neurofibrillary tangles. Abnormal amyloid β-protein (Aβ) deposition in the brain is often thought of as a major initiating factor in AD neuropathology. However, gamma-aminobutyric acid (GABA) inhibitory interneurons are resistant to Aβ deposition, and Aβ decreases synaptic glutamatergic transmission to decrease neural network activity. Furthermore, there is now evidence suggesting that neural network activity is aberrantly increased in AD patients and animal models due to functional deficits in and decreased activity of GABA inhibitory interneurons, contributing to cognitive deficits. Here we describe the roles played by excitatory neurons and GABA inhibitory interneurons in Aβ-induced cognitive deficits and how altered GABA interneurons regulate AD neuropathology. We also comprehensively review recent studies on how GABA interneurons and GABA receptors can be exploited for therapeutic benefit. GABA interneurons are an emerging therapeutic target in AD, with further clinical trials urgently warranted.
Collapse
Affiliation(s)
- Yilan Xu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Manna Zhao
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yuying Han
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
7
|
Hyperexcitable Parvalbumin Interneurons Render Hippocampal Circuitry Vulnerable to Amyloid Beta. iScience 2020; 23:101271. [PMID: 32593000 PMCID: PMC7327841 DOI: 10.1016/j.isci.2020.101271] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 01/17/2023] Open
Abstract
Parvalbumin (PV) interneuron dysfunction is associated with various brain disorders, including Alzheimer disease (AD). Here, we asked whether early PV neuron hyperexcitability primes the hippocampus for amyloid beta-induced functional impairment. We show that prolonged chemogenetic activation of PV neurons induces long-term hyperexcitability of these cells, disrupts synaptic transmission, and causes spatial memory deficits on the short-term. On the long-term, pyramidal cells also become hyperexcitable, and synaptic transmission and spatial memory are restored. However, under these conditions of increased excitability of both PV and pyramidal cells, a single low-dose injection of amyloid beta directly into the hippocampus significantly impairs PV neuron function, increases pyramidal neuron excitability, and reduces synaptic transmission, resulting in significant spatial memory deficits. Taken together, our data show that an initial hyperexcitable state of PV neurons renders hippocampal function vulnerable to amyloid beta and may contribute to an increased risk for developing AD. Hyperexcitable hippocampal PV neurons impair spatial memory When excitability of pyramidal neurons also increases, spatial memory is restored This overall network hyperstate is particularly sensitive to amyloid-beta toxicity PV neuron hyperexcitability increases risk for Alzheimer disease
Collapse
|
8
|
Waller R, Mandeya M, Viney E, Simpson JE, Wharton SB. Histological characterization of interneurons in Alzheimer's disease reveals a loss of somatostatin interneurons in the temporal cortex. Neuropathology 2020; 40:336-346. [PMID: 32232904 DOI: 10.1111/neup.12649] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 11/28/2022]
Abstract
Neuronal dysfunction and synaptic loss are major hallmarks of Alzheimer's disease (AD) which correlate with symptom severity. Impairment of the γ-aminobutyric acid (GABA)ergic inhibitory interneurons, which form around 20% of the total neuronal network, may be an early event contributing to neuronal circuit dysfunction in neurodegenerative diseases. This study examined the expression of two of the main classes of inhibitory interneurons, parvalbumin (PV) and somatostatin (SST) interneurons in the temporal cortex and hippocampus of AD and control cases, using immunohistochemistry. We report a significant regional variation in the number of PV and SST interneurons with a higher number identified per mm2 in the temporal cortex compared to the hippocampus. Fewer SST interneurons, but not PV interneurons, were identified per mm2 in the temporal cortex of AD cases compared to control subjects. Our results support regional neuroanatomical effects on selective interneuron classes in AD, and suggest that impairment of the interneuronal circuit may contribute to neuronal dysfunction and cognitive decline in AD.
Collapse
Affiliation(s)
- Rachel Waller
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Memory Mandeya
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Edward Viney
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| |
Collapse
|
9
|
Sanchez-Mejias E, Nuñez-Diaz C, Sanchez-Varo R, Gomez-Arboledas A, Garcia-Leon JA, Fernandez-Valenzuela JJ, Mejias-Ortega M, Trujillo-Estrada L, Baglietto-Vargas D, Moreno-Gonzalez I, Davila JC, Vitorica J, Gutierrez A. Distinct disease-sensitive GABAergic neurons in the perirhinal cortex of Alzheimer's mice and patients. Brain Pathol 2019; 30:345-363. [PMID: 31491047 PMCID: PMC7064898 DOI: 10.1111/bpa.12785] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/02/2019] [Indexed: 12/29/2022] Open
Abstract
Neuronal loss is the best neuropathological substrate that correlates with cortical atrophy and dementia in Alzheimer's disease (AD). Defective GABAergic neuronal functions may lead to cortical network hyperactivity and aberrant neuronal oscillations and in consequence, generate a detrimental alteration in memory processes. In this study, using immunohistochemical and stereological approaches, we report that the two major and non-overlapping groups of inhibitory interneurons (SOM-cells and PV-cells) displayed distinct vulnerability in the perirhinal cortex of APP/PS1 mice and AD patients. SOM-positive neurons were notably sensitive and exhibited a dramatic decrease in the perirhinal cortex of 6-month-old transgenic mice (57% and 61% in areas 36 and 35, respectively) and, most importantly, in AD patients (91% in Braak V-VI cases). In addition, this interneuron degenerative process seems to occur in parallel, and closely related, with the progression of the amyloid pathology. However, the population expressing PV was unaffected in APP/PS1 mice while in AD brains suffered a pronounced and significant loss (69%). As a key component of cortico-hippocampal networks, the perirhinal cortex plays an important role in memory processes, especially in familiarity-based memory recognition. Therefore, disrupted functional connectivity of this cortical region, as a result of the early SOM and PV neurodegeneration, might contribute to the altered brain rhythms and cognitive failures observed in the initial clinical phase of AD patients. Finally, these findings highlight the failure of amyloidogenic AD models to fully recapitulate the selective neuronal degeneration occurring in humans.
Collapse
Affiliation(s)
- Elisabeth Sanchez-Mejias
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Cristina Nuñez-Diaz
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raquel Sanchez-Varo
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Angela Gomez-Arboledas
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Antonio Garcia-Leon
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Jose Fernandez-Valenzuela
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marina Mejias-Ortega
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laura Trujillo-Estrada
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - David Baglietto-Vargas
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ines Moreno-Gonzalez
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jose Carlos Davila
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Vitorica
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBIS)-Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Antonia Gutierrez
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
10
|
Unsupervised excitation: GABAergic dysfunctions in Alzheimer’s disease. Brain Res 2019; 1707:216-226. [DOI: 10.1016/j.brainres.2018.11.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
|
11
|
Gil V, Del Río JA. Functions of Plexins/Neuropilins and Their Ligands during Hippocampal Development and Neurodegeneration. Cells 2019; 8:E206. [PMID: 30823454 PMCID: PMC6468495 DOI: 10.3390/cells8030206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/22/2022] Open
Abstract
There is emerging evidence that molecules, receptors, and signaling mechanisms involved in vascular development also play crucial roles during the development of the nervous system. Among others, specific semaphorins and their receptors (neuropilins and plexins) have, in recent years, attracted the attention of researchers due to their pleiotropy of functions. Their functions, mainly associated with control of the cellular cytoskeleton, include control of cell migration, cell morphology, and synapse remodeling. Here, we will focus on their roles in the hippocampal formation that plays a crucial role in memory and learning as it is a prime target during neurodegeneration.
Collapse
Affiliation(s)
- Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Parc Científic de Barcelona, 08028 Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08028 Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain.
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Parc Científic de Barcelona, 08028 Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08028 Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
12
|
Zallo F, Gardenal E, Verkhratsky A, Rodríguez JJ. Loss of calretinin and parvalbumin positive interneurones in the hippocampal CA1 of aged Alzheimer's disease mice. Neurosci Lett 2018; 681:19-25. [PMID: 29782955 DOI: 10.1016/j.neulet.2018.05.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/30/2018] [Accepted: 05/17/2018] [Indexed: 01/19/2023]
Abstract
Neuronal degeneration associated with Alzheimer's disease (AD), is linked to impaired calcium homeostasis and to changes in calcium-binding proteins (CBPs). The AD-related modification of neuronal CBPs remains controversial. Here we analysed the presence and expression of calretinin (CR) and parvalbumin (PV) in the hippocampal CA1 neurones of 18 months old 3xTg-AD mice compared to non-Tg animals. We found a layer specific decrease in number of interneurones expressing CR and PV (by 33.7% and 52%, respectively). Expression of PV decreased (by 13.8%) in PV-positive neurones, whereas expression of CR did not change in CR positive cells. The loss of specific subpopulations of Ca2+-binding proteins expressing interneurones (CR and PV) together with the decrease of PV in the surviving cells may be linked to their vulnerability to AD pathology. Specific loss of inhibitory interneurones with age could contribute to overall increase in the network excitability associated with AD.
Collapse
Affiliation(s)
- Fatima Zallo
- BioCruces Health Research Institute, 48903, Barakaldo, Spain; Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Emanuela Gardenal
- Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Spain; Human Histology and Embryology Unit, Medical School, University of Verona, 37134, Verona, Italy
| | - Alexei Verkhratsky
- Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48013-Bilbao, Medical School, Spain; Achúcarro Basque Center for Neuroscience, 48940, Leioa, Spain; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, United Kingdom; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - José Julio Rodríguez
- BioCruces Health Research Institute, 48903, Barakaldo, Spain; Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48013-Bilbao, Medical School, Spain.
| |
Collapse
|
13
|
Llorens-Martín M, Blazquez-Llorca L, Benavides-Piccione R, Rabano A, Hernandez F, Avila J, DeFelipe J. Selective alterations of neurons and circuits related to early memory loss in Alzheimer's disease. Front Neuroanat 2014; 8:38. [PMID: 24904307 PMCID: PMC4034155 DOI: 10.3389/fnana.2014.00038] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/30/2014] [Indexed: 12/17/2022] Open
Abstract
A progressive loss of episodic memory is a well-known clinical symptom that characterizes Alzheimer’s disease (AD). The beginning of this loss of memory has been associated with the very early, pathological accumulation of tau and neuronal degeneration observed in the entorhinal cortex (EC). Tau-related pathology is thought to then spread progressively to the hippocampal formation and other brain areas as the disease progresses. The major cortical afferent source of the hippocampus and dentate gyrus is the EC through the perforant pathway. At least two main circuits participate in the connection between EC and the hippocampus; one originating in layer II and the other in layer III of the EC giving rise to the classical trisynaptic (ECII → dentate gyrus → CA3 → CA1) and monosynaptic (ECIII → CA1) circuits. Thus, the study of the early pathological changes in these circuits is of great interest. In this review, we will discuss mainly the alterations of the granule cell neurons of the dentate gyrus and the atrophy of CA1 pyramidal neurons that occur in AD in relation to the possible differential alterations of these two main circuits.
Collapse
Affiliation(s)
- Maria Llorens-Martín
- Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid Madrid, Spain
| | - Lidia Blazquez-Llorca
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid Madrid, Spain ; Instituto Cajal, Consejo Superior de Investigaciones Cientificas Madrid, Spain
| | - Ruth Benavides-Piccione
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid Madrid, Spain ; Instituto Cajal, Consejo Superior de Investigaciones Cientificas Madrid, Spain ; Centro de Investigación en Red sobre Enfermedades Neurodegenerativas Madrid, Spain
| | - Alberto Rabano
- Departamento de Neuropatología y Banco de Tejidos, Fundación CIEN, Instituto de Salud Carlos III Madrid, Spain
| | - Felix Hernandez
- Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid Madrid, Spain
| | - Jesus Avila
- Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid Madrid, Spain ; Centro de Investigación en Red sobre Enfermedades Neurodegenerativas Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid Madrid, Spain ; Instituto Cajal, Consejo Superior de Investigaciones Cientificas Madrid, Spain ; Centro de Investigación en Red sobre Enfermedades Neurodegenerativas Madrid, Spain
| |
Collapse
|
14
|
Morawski M, Brückner G, Jäger C, Seeger G, Matthews RT, Arendt T. Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer's disease neuropathology. Brain Pathol 2012; 22:547-61. [PMID: 22126211 DOI: 10.1111/j.1750-3639.2011.00557.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brain extracellular matrix (ECM) is organized in specific patterns assumed to mirror local features of neuronal activity and synaptic plasticity. Aggrecan-based perineuronal nets (PNs) and brevican-based perisynaptic axonal coats (ACs) form major structural phenotypes of ECM contributing to the laminar characteristics of cortical areas. In Alzheimer's disease (AD), the deposition of amyloid proteins and processes related to neurofibrillary degeneration may affect the integrity of the ECM scaffold. In this study we investigate ECM organization in primary sensory, secondary and associative areas of the temporal and occipital lobe. By detecting all major PN components we show that the distribution, structure and molecular properties of PNs remain unchanged in AD. Intact PNs occurred in close proximity to amyloid plaques and were even located within their territory. Counting of PNs revealed no significant alteration in AD. Moreover, neurofibrillary tangles never occurred in neurons associated with PNs. ACs were only lost in the core of amyloid plaques in parallel with the loss of synaptic profiles. In contrast, hyaluronan was enriched in the majority of plaques. We conclude that the loss of brevican is associated with the loss of synapses, whereas PNs and related matrix components resist disintegration and may protect neurons from degeneration.
Collapse
Affiliation(s)
- Markus Morawski
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, Universität Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Jeong DU, Chang WS, Hwang YS, Lee D, Chang JW. Decrease of GABAergic markers and arc protein expression in the frontal cortex by intraventricular 192 IgG-saporin. Dement Geriatr Cogn Disord 2012; 32:70-8. [PMID: 21876356 DOI: 10.1159/000330741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Previous studies used 192 IgG-saporin to study cholinergic function because of its facility for selective lesioning; however, results varied due to differences in the methods of administration and behavioral tests used. We examined an animal model of dementia using 192 IgG-saporin to confirm its features before applying this model to research of therapeutic drugs or electrical stimulation techniques. METHODS Features were verified by the Morris water maze test, immunochemistry, and Western blotting. Animals were examined after intraventricular injection of 192 IgG-saporin (0.63 μg/μl; 6, 8, and 10 μl) or phosphate-buffered saline. RESULTS In the acquisition phase of the Morris water maze test, the latencies of the injection groups were significantly delayed, but recovered within 1 week. In the probe test, 2 of 4 indices (time in the platform zone and the number of crossings) were significantly different in the 8-μl injection group. Immunohistochemistry revealed the extent of cholinergic destruction. Activity-regulated cytoskeleton-associated protein and glutamate decarboxylase expression significantly decreased in the frontal cortex (8- and 10-μl groups), but not in the hippocampus. CONCLUSION Spatial memory impairment was associated with cholinergic basal forebrain injury as well as frontocortical GABAergic hypofunction and synaptic plasticity deceleration.
Collapse
Affiliation(s)
- Da Un Jeong
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
16
|
Attems J, Ittner A, Jellinger K, Nitsch RM, Maj M, Wagner L, Götz J, Heikenwalder M. Reduced secretagogin expression in the hippocampus of P301L tau transgenic mice. J Neural Transm (Vienna) 2011; 118:737-45. [PMID: 21442354 DOI: 10.1007/s00702-011-0626-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 03/13/2011] [Indexed: 11/26/2022]
Abstract
Neuropathological features in Alzheimer's Disease (AD) include the presence of hyperphosphorylated forms of the microtubule-associated tau protein (tau) in hippocampal neurones. Numerous studies indicate a neuroprotective effect of calcium-binding proteins (Ca2+ binding proteins) in neurodegenerative diseases (e.g., AD). Secretagogin is a newly described Ca2+ binding protein that is produced by pyramidal neurones of the human hippocampus. Recently, secretagogin expressing hippocampal neurones were demonstrated to resist tau-induced pathology in AD in contrast to the majority of neighbouring neurones. This suggested a neuroprotective effect of secretagogin in hippocampal neurones. Here, we investigated secretagogin expression in wild type (wt) mice as well as in hemizygous and homozygous P301L tau transgenic (tg) mice, which show pronounced and widespread tau pathology in hippocampal neurones. Secretagogin expression was analyzed at the immunohistochemical and biochemical levels in brains of age-matched wt and hemi- and homozygous tau tg mice. In wt mice hippocampal secretagogin-immunoreactive neurones were invariably detected, while immunoreactivity was much lower (P < 0.001) in tau tg mice. Of note, hippocampal secretagogin immunoreactivity was absent in 62.5% of homozygous tau tg mice. In line with this finding, Western blot analysis demonstrated a significant reduction in protein expression levels of secretagogin in homozygous tau tg compared to wt mice. Our results suggest that increased levels of tau negatively influence secretagogin expression in the hippocampus of tau tg mice.
Collapse
Affiliation(s)
- Johannes Attems
- Institute for Ageing and Health, Wolfson Research Centre, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lemmens MAM, Sierksma ASR, Rutten BPF, Dennissen F, Steinbusch HWM, Lucassen PJ, Schmitz C. Age-related changes of neuron numbers in the frontal cortex of a transgenic mouse model of Alzheimer's disease. Brain Struct Funct 2011; 216:227-37. [PMID: 21409417 PMCID: PMC3155024 DOI: 10.1007/s00429-011-0305-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 02/22/2011] [Indexed: 12/16/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder, characterized by amyloid plaque accumulation, intracellular tangles and neuronal loss in selective brain regions. The frontal cortex, important for executive functioning, is one of the regions that are affected. Here, we investigated the neurodegenerative effects of mutant human amyloid precursor protein (APP) and presenilin 1 (PS1) on frontal cortex neurons in APP/PS1KI mice, a transgenic mouse model of AD, expressing two mutations in the human APP, as well as two human PS1 mutations knocked-in into the mouse PS1 gene in a homozygous (ho) manner. Although the hippocampus is significantly affected in these mice, very little is known about the effects of these mutations on selective neuronal populations and plaque load in the frontal cortex. In this study, cytoarchitectural changes were characterized using high precision design-based stereology to evaluate plaque load, total neuron numbers, as well as total numbers of parvalbumin- (PV) and calretinin- (CR) immunoreactive (ir) neurons in the frontal cortex of 2- and 10-month-old APP/PS1KI mice. The frontal cortex was divided into two subfields: layers II–IV and layers V–VI, the latter of which showed substantially more extracellular amyloid-beta aggregates. We found a 34% neuron loss in layers V–VI in the frontal cortex of 10-month-old APP/PS1KI mice compared to 2-month-old, while there was no change in PV- and CR-ir neurons in these mice. In addition, the plaque load in layers V–VI of 10-month-old APP/PS1KI mice was only 11% and did not fully account for the extent of neuronal loss. Interestingly, an increase was found in the total number of PV-ir neurons in all frontal cortical layers of single transgenic APP mice and in layers II–IV of single transgenic PS1ho mice between 2 and 10 months of age. In conclusion, the APP/PS1KI mice provide novel insights into the regional selective vulnerability in the frontal cortex during AD that, together with previous findings in the hippocampus, are remarkably similar to the human situation.
Collapse
Affiliation(s)
- Marijke A M Lemmens
- Department for Neuroscience, Faculty of Health, Medicine and Life Sciences (FHML), School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Bernstein HG, Johnson M, Perry RH, LeBeau FEN, Dobrowolny H, Bogerts B, Perry EK. Partial loss of parvalbumin-containing hippocampal interneurons in dementia with Lewy bodies. Neuropathology 2011; 31:1-10. [PMID: 20487308 DOI: 10.1111/j.1440-1789.2010.01117.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementia. Among many other neuropathological changes in DLB, brain region-specific cellular deficits have been reported. They include decreases in motor neuron and pyramidal cell densities, while neocortical parvalbumin (parv)-containing neurons are thought to be free of Lewy bodies and spared in DLB. However, elevated parv levels are found in the cerebrospinal fluid of patients suffering from dementia with Lewy bodies. We performed an immunohistochemical analysis of hippocampal parv-immunoreactive neurons in well-characterised DLB cases and from controls using a specific antibody against the calcium binding protein. In addition, an analysis of the regional and cellular distribution of alpha-synuclein was carried out. Subfield and laminar distribution of parv-immunoreactive (ir) neurons on the hippocampus in subjects with DLB and controls were present exclusively as non-granule cells of the dentate gyrus (DG)/hilus and non-pyramidal cells of CA1, CA2, CA3 and CA4 areas of the hippocampus. The distribution patterns did not differ qualitatively between DLB and controls. Quantitative estimation of parv-ir neuron density revealed significant decreases in the dentate (DG)/hilus region as well as in the CA1 subfield. Double immunolabelling experiments showed that only 2% of parv expressing interneurons were laden with alpha-synuclein immunoreactive material. No significant changes were found for the total neuron densities in DLB cases. Our results show a partial loss of parv-expressing hippocampal interneurons in DLB, which might be the result of long-lasting calcium overload in combination with a proposed impaired mitochondrial function. It remains to be elucidated if the numerical decrease of this particular subset of hippocampal interneurons has consequences for the gamma (20-80 Hz) frequency activity in DLB patients.
Collapse
|
19
|
Blazquez-Llorca L, Garcia-Marin V, Defelipe J. Pericellular innervation of neurons expressing abnormally hyperphosphorylated tau in the hippocampal formation of Alzheimer's disease patients. Front Neuroanat 2010; 4:20. [PMID: 20631843 PMCID: PMC2903190 DOI: 10.3389/fnana.2010.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 04/28/2010] [Indexed: 12/16/2022] Open
Abstract
Neurofibrillary tangles (NFT) represent one of the main neuropathological features in the cerebral cortex associated with Alzheimer's disease (AD). This neurofibrillary lesion involves the accumulation of abnormally hyperphosphorylated or abnormally phosphorylated microtubule-associated protein tau into paired helical filaments (PHF-tau) within neurons. We have used immunocytochemical techniques and confocal microscopy reconstructions to examine the distribution of PHF-tau-immunoreactive (ir) cells, and their perisomatic GABAergic and glutamatergic innervations in the hippocampal formation and adjacent cortex of AD patients. Furthermore, correlative light and electron microscopy was employed to examine these neurons and the perisomatic synapses. We observed two patterns of staining in PHF-tau-ir neurons, pattern I (without NFT) and pattern II (with NFT), the distribution of which varies according to the cortical layer and area. Furthermore, the distribution of both GABAergic and glutamatergic terminals around the soma and proximal processes of PHF-tau-ir neurons does not seem to be altered as it is indistinguishable from both control cases and from adjacent neurons that did not contain PHF-tau. At the electron microscope level, a normal looking neuropil with typical symmetric and asymmetric synapses was observed around PHF-tau-ir neurons. These observations suggest that the synaptic connectivity around the perisomatic region of these PHF-tau-ir neurons was apparently unaltered.
Collapse
Affiliation(s)
- Lidia Blazquez-Llorca
- Laboratorio de Circuitos Corticales (Centro de Tecnología Biomédica), Universidad Politécnica de Madrid Madrid, Spain
| | | | | |
Collapse
|
20
|
Takahashi H, Brasnjevic I, Rutten BPF, Van Der Kolk N, Perl DP, Bouras C, Steinbusch HWM, Schmitz C, Hof PR, Dickstein DL. Hippocampal interneuron loss in an APP/PS1 double mutant mouse and in Alzheimer's disease. Brain Struct Funct 2010; 214:145-60. [PMID: 20213270 PMCID: PMC3038332 DOI: 10.1007/s00429-010-0242-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 01/27/2010] [Indexed: 01/26/2023]
Abstract
Hippocampal atrophy and neuron loss are commonly found in Alzheimer's disease (AD). However, the underlying molecular mechanisms and the fate in the AD hippocampus of subpopulations of interneurons that express the calcium-binding proteins parvalbumin (PV) and calretinin (CR) has not yet been properly assessed. Using quantitative stereologic methods, we analyzed the regional pattern of age-related loss of PV- and CR-immunoreactive (ir) neurons in the hippocampus of mice that carry M233T/L235P knocked-in mutations in presenilin-1 (PS1) and overexpress a mutated human beta-amyloid precursor protein (APP), namely, the APP(SL)/PS1 KI mice, as well as in APP(SL) mice and PS1 KI mice. We found a loss of PV-ir neurons (40-50%) in the CA1-2, and a loss of CR-ir neurons (37-52%) in the dentate gyrus and hilus of APP(SL)/PS1 KI mice. Interestingly, comparable PV- and CR-ir neuron losses were observed in the dentate gyrus of postmortem brain specimens obtained from patients with AD. The loss of these interneurons in AD may have substantial functional repercussions on local inhibitory processes in the hippocampus.
Collapse
Affiliation(s)
- Hisaaki Takahashi
- Department of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands. Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands. Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Matsuyama, Ehime 791-0295, Japan
| | - Ivona Brasnjevic
- Department of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands. Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands. European Graduate School of Neuroscience (EURON), 6200 MD Maastricht, The Netherlands
| | - Bart P. F. Rutten
- Department of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands. Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands. European Graduate School of Neuroscience (EURON), 6200 MD Maastricht, The Netherlands
| | - Nicolien Van Der Kolk
- Department of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands. Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands. European Graduate School of Neuroscience (EURON), 6200 MD Maastricht, The Netherlands
| | - Daniel P. Perl
- Department of Pathology (Neuropathology), Mount Sinai School of Medicine, New York, NY 10029, USA. Department of Neuroscience, Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1065, New York, NY 10029, USA
| | - Constantin Bouras
- Department of Psychiatry, University of Geneva School of Medicine, 1225 Geneva, Switzerland. Department of Neuroscience, Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1065, New York, NY 10029, USA
| | - Harry W. M. Steinbusch
- Department of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands. Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands. European Graduate School of Neuroscience (EURON), 6200 MD Maastricht, The Netherlands
| | - Christoph Schmitz
- Department of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands. Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands. European Graduate School of Neuroscience (EURON), 6200 MD Maastricht, The Netherlands. Department of Neuroscience, Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1065, New York, NY 10029, USA
| | - Patrick R. Hof
- Department of Neuroscience, Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1065, New York, NY 10029, USA
| | - Dara L. Dickstein
- Department of Neuroscience, Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1065, New York, NY 10029, USA
| |
Collapse
|
21
|
Garcia-Marin V, Blazquez-Llorca L, Rodriguez JR, Boluda S, Muntane G, Ferrer I, Defelipe J. Diminished perisomatic GABAergic terminals on cortical neurons adjacent to amyloid plaques. Front Neuroanat 2009; 3:28. [PMID: 19949482 PMCID: PMC2784678 DOI: 10.3389/neuro.05.028.2009] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/06/2009] [Indexed: 12/19/2022] Open
Abstract
One of the main pathological hallmarks of Alzheimer's disease (AD) is the accumulation of plaques in the cerebral cortex, which may appear either in the neuropil or in direct association with neuronal somata. Since different axonal systems innervate the dendritic (mostly glutamatergic) and perisomatic (mostly GABAergic) regions of neurons, the accumulation of plaques in the neuropil or associated with the soma might produce different alterations to synaptic circuits. We have used a variety of conventional light, confocal and electron microscopy techniques to study their relationship with neuronal somata in the cerebral cortex from AD patients and APP/PS1 transgenic mice. The main finding was that the membrane surfaces of neurons (mainly pyramidal cells) in contact with plaques lack GABAergic perisomatic synapses. Since these perisomatic synapses are thought to exert a strong influence on the output of pyramidal cells, their loss may lead to the hyperactivity of the neurons in contact with plaques. These results suggest that plaques modify circuits in a more selective manner than previously thought.
Collapse
Affiliation(s)
- Virginia Garcia-Marin
- Laboratorio de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Attems J, Preusser M, Grosinger-Quass M, Wagner L, Lintner F, Jellinger K. Calcium-binding protein secretagogin-expressing neurones in the human hippocampus are largely resistant to neurodegeneration in Alzheimer's disease. Neuropathol Appl Neurobiol 2007; 34:23-32. [PMID: 17961140 DOI: 10.1111/j.1365-2990.2007.00854.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pathological findings in Alzheimer's disease (AD) are partly attributed to alterations in calcium-binding protein (CBP) functions. We showed previously that immunoreactivity of secretagogin, a recently cloned CBP, in the human hippocampus is restricted to pyramidal neurones and that the amount of immunoreactive neurones does not differ between AD cases and controls. In this study we investigate the influence of hippocampal tau pathology on secretagogin expression in more details. The study group consisted of 26 cases with different degrees of neuropathologically confirmed AD pathology. Sections were incubated separately with secretagogin- and tau-specific antibodies, respectively. The amount of immunoreactive neurones and integral optical densities were assessed. In addition, double immunofluorescence for both secretagogin and tau was performed. No difference with respect to secretagogin immunoreactivity was observed in different stages of AD pathology, and similarly no significant associations were seen between the amount of secretagogin and tau immunoreactivity in the different hippocampal subfields. Double immunofluorescence revealed that both proteins rarely colocalize because only 5.3% of tau and 2.9% of secretagogin immunoreactive neurones, respectively, showed colocalization. Because there are no differences in the amount of hippocampal secretagogin expression between AD cases and controls (as we have shown previously), the lack of an association between the amount of secretagogin expression and tau burden together with the low frequency of colocalization of tau and secretagogin in the human hippocampus, suggest that secretagogin-expressing neurones are largely resistant to neurodegeneration in AD.
Collapse
Affiliation(s)
- J Attems
- Institute of Pathology, Otto Wagner Hospital, Baumgartner Hoehe, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
23
|
Baig S, Wilcock GK, Love S. Loss of perineuronal net N-acetylgalactosamine in Alzheimer's disease. Acta Neuropathol 2005; 110:393-401. [PMID: 16133543 DOI: 10.1007/s00401-005-1060-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 06/09/2005] [Accepted: 06/20/2005] [Indexed: 12/22/2022]
Abstract
The perineuronal net (PN), a specialised region of extracellular matrix, is interposed between the neuronal cell surface and astrocytic processes. It is involved in the buffering of ions, in the development, stabilisation and remodelling of synapses and in the regulating the neuronal microenvironment particularly around the parvalbumin-positive GABAergic neurons. We have investigated the relative preservation of Wisteria floribunda agglutinin (WFA)-positive PNs and parvalbumin-positive neurons in Alzheimer's disease (AD), and the relationship of WFA-positive PNs to parenchymal tau, amyloid beta-peptide (Abeta) and MHC class II antigen (a marker of activated microglia), in paraffin sections of 100 cases with AD and 45 controls. The density of PNs that could be labelled with WFA, which binds to the N-acetylgalactosamine (GalNAc) residues of chondroitin sulphate proteoglycans, was reduced by about 2/3 in AD (P<0.001). In contrast, the density of parvalbumin-positive neurons did not differ significantly between AD and controls. Combined fluorescence imaging showed granular disintegration of WFA labelling around some parvalbumin-positive neurons. There was no significant difference in the amount of phosphorylated tau, Abeta or MHC class II antigen in areas with and without WFA-positive PNs. In AD, there is marked loss of PN GalNAc that is not topographically related to neurofibrillary pathology, parenchymal Abeta load or activated microglia. Although the parvalbumin-positive neurons themselves are relatively spared, the loss of PN GalNAc, which maintains a polyanionic microenvironment around neurons, is likely to impair the function of these inhibitory interneurons. This could in turn lead to increased activity of the glutamatergic and other neurons onto which they synapse.
Collapse
Affiliation(s)
- Shabnam Baig
- Department of Clinical Science at North Bristol, Care of the Elderly, Frenchay Hospital, University of Bristol, Bristol, UK.
| | | | | |
Collapse
|
24
|
Calcium binding proteins in selective vulnerability of motor neurons. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
25
|
Thom M, Martinian L, Parnavelas JG, Sisodiya SM. Distribution of Cortical Interneurons in Grey Matter Heterotopia in Patients with Epilepsy. Epilepsia 2004; 45:916-23. [PMID: 15270756 DOI: 10.1111/j.0013-9580.2004.46603.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Grey matter heterotopia are well-defined malformations of the cortex often associated with severe epilepsy. Defects have been identified in genes, including DCX and FLN1, that influence radial migration of postmitotic cells from the ventricular zone to the cortical plate. A proportion of cortical gamma-aminobutyric acid (GABA)-containing interneurons may arise from the ganglionic eminence of the ventral telencephalon. We aimed to identify the subtypes and localisation of interneurons within grey matter heterotopia relative to cortex. METHODS By using quantitative immunohistochemistry, we studied the density and distribution of interneurons within six cases of grey matter heterotopia in postmortem tissue from patients with epilepsy. RESULTS In many cases, a suggestion of focal rudimentary laminar arrangement and small reelin-positive cells was identified within the heterotopia. Immunohistochemistry for glutamic acid decarboxylase(65/57), parvalbumin, calbindin, and calretinin showed inhibitory neurons of all subtypes represented within the heterotopia, and of normal morphology. The mean densities of interneurons were overall similar to those of the overlying cortex, but the interneurons showed less organisation and were more randomly orientated compared with cortex. CONCLUSIONS Interneurons within heterotopia probably arise from the ventricular zone, but their abnormal local organization may influence the epileptogenicity of these lesions.
Collapse
Affiliation(s)
- Maria Thom
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom.
| | | | | | | |
Collapse
|
26
|
Thom M, Harding BN, Lin WR, Martinian L, Cross H, Sisodiya SM. Cajal-Retzius cells, inhibitory interneuronal populations and neuropeptide Y expression in focal cortical dysplasia and microdysgenesis. Acta Neuropathol 2003; 105:561-9. [PMID: 12734663 DOI: 10.1007/s00401-003-0673-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2002] [Revised: 12/05/2002] [Accepted: 12/11/2002] [Indexed: 02/04/2023]
Abstract
Focal cortical dysplasia (FCD) and microdysgenesis (MD) are likely to represent abnormalities of radial neuronal migration during cortical development. We investigated the distribution of reelin-positive Cajal-Retzius cells, known to be important in the later stages of radial neuronal migration and cortical organization, in 12 surgical cases of both MD and FCD. Quantitation revealed significantly higher numbers of these cells in MD cases compared to controls. As the majority of cortical interneurones arise via tangential rather than radial migration, we studied the distribution and morphology of inhibitory interneuronal subsets immunolabelled for calbindin, parvalbumin and calretinin within these malformations. Frequent findings were a reduction of inhibitory interneurones in the region of FCD and abnormally localised hypertrophic or multipolar calbindin-positive interneurones in both FCD and MD. Neuropeptide Y immunostaining showed a striking increase in the density of the superficial plexus of fibres in both MD and FCD cases in addition to labelling of dysplastic neurones, which may represent an adaptive anti-convulsant mechanism to dampen down seizure propagation.
Collapse
Affiliation(s)
- M Thom
- Department of Clinical and Experimental Epilepsy, Division of Neuropathology, Institute of Neurology, Queen Square, WC1N 3BG, London, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Sisó S, Tort S, Aparici C, Pérez L, Vidal E, Pumarola M. Abnormal neuronal expression of the calcium-binding proteins, parvalbumin and calbindin D-28k, in aged dogs. J Comp Pathol 2003; 128:9-14. [PMID: 12531682 DOI: 10.1053/jcpa.2002.0597] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Disturbances of the gamma-aminobutyric acid (GABA) neurotransmitter system have been implicated in chronic degenerative neurological disease. Cognitive dysfunction and neuron loss are features in older dogs. GABAergic neurons also show immunoreactivity for specific calcium-binding proteins. Immunohistochemistry was used to study the neuronal expression of calbindin D-28k and parvalbumin in different areas of the brain in 13 dogs, aged between 2 and 13.5 years. Calbindin expression was found only in the cerebellum. There were significant differences in the quantity and distribution of neurons expressing these proteins between geriatric and adult brains. Parvalbumin- and calbindin-expressing neurons are relatively sensitive to degeneration in the cerebellum of older dogs. Parvalbumin labelling was associated with dystrophic structures that are commonly associated with ageing.
Collapse
Affiliation(s)
- S Sisó
- Priocat Laboratory, Centre de Recerca en Sanitat Animal, Campus Bellaterra, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Krenz I, Kalkan D, Wevers A, de Vos RA, Steur EN, Lindstrom J, Pilz K, Nowacki S, Schütz U, Moser N, Witter B, Schröder H. Parvalbumin-containing interneurons of the human cerebral cortex express nicotinic acetylcholine receptor proteins. J Chem Neuroanat 2001; 21:239-46. [PMID: 11382535 DOI: 10.1016/s0891-0618(01)00112-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cholinergic fibers from the basal forebrain are known to contact cholinoceptive cortical pyramidal neurons. Recent electrophysiological studies have revealed that nicotinic acetylcholine receptors are also present in human cerebrocortical interneurons. A direct visualization of nicotinic receptor subunits in cortical interneurons has, however, not yet been performed. We have applied double-immunofluorescence using antibodies against parvalbumin --a marker for the Chandelier and basket cell subpopulation of interneurons--and to the alpha4 and alpha7 subunit proteins of the nicotinic acetylcholine receptor. The vast majority of the parvalbuminergic interneurons was immunoreactive for the alpha4 and the alpha7 nicotinic acetylcholine receptor. Provided these receptors would be functional--as suggested by recent electrophysiological findings--the connectivity pattern of cholinergic afferents appears much more complex than thought before. Not only direct cholinergic impact on cortical projection neurons but also the indirect modulation of these by cholinergic corticopetal fibers contacting intrinsic cortical cells would be possible.
Collapse
Affiliation(s)
- I Krenz
- Department of Anatomy/Neuroanatomy, University of Köln, J. Stelzmann-Strasse 9, D-50931 Koln, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yokoo H, Isoda K, Yamanouchi H, Sasaki A, Hirato J, Nakazato Y, Miwa Y. Cerebellar basket cells of Creutzfeldt-Jakob disease: immunohistochemical and ultrastructural study. Pathol Int 2000; 50:291-6. [PMID: 10849314 DOI: 10.1046/j.1440-1827.2000.01038.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To elucidate possible abnormalities of cerebellar basket cells of Creutzfeldt-Jakob disease (CJD), seven sporadic cases were examined neuropathologically. Recently, parvalbumin-positive, GABAergic cerebral interneurons have been demonstrated to show early, selective loss in CJD, and the phenomenon is postulated as a cause of characteristic neurological symptoms of CJD. In this study, however, we demonstrated that the basket cells, cerebellar counterparts, were resistant even in patients with severe brain atrophy, and their processes showed intense argyrophilia and immunopositivity to phosphorylated neurofilament. They can newly be listed as CJD-resistant neurons similar to those of the hippocampus and brainstem nuclei. The mechanism to escape cell loss is of great interest, and there might be unknown factors modulating susceptibility within parvalbumin-positive neuronal subgroups. Furthermore, one case showed abnormal positivity with hematoxylin, crystal violet and pyronin in the basket cells. The pyronin positivity was reduced after ribonuclease digestion, suggesting that the causative substance was composed of RNA. Ultrastructurally, the fibers contained free ribosomes and amorphous electron-dense deposits. To our knowledge, such a finding has also not been previously reported.
Collapse
Affiliation(s)
- H Yokoo
- First Department of Pathology, Gunma University School of Medicine, Maebashi, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Brückner G, Hausen D, Härtig W, Drlicek M, Arendt T, Brauer K. Cortical areas abundant in extracellular matrix chondroitin sulphate proteoglycans are less affected by cytoskeletal changes in Alzheimer's disease. Neuroscience 1999; 92:791-805. [PMID: 10426522 DOI: 10.1016/s0306-4522(99)00071-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the human brain, the distribution of perineuronal nets occurring as lattice-like neuronal coatings of extracellular matrix proteoglycans ensheathing several types of non-pyramidal neurons and subpopulations of pyramidal cells in the cerebral cortex is largely unknown. Since proteoglycans are presumably involved in the pathogenesis of Alzheimer's disease, we analysed the distribution pattern of extracellular chondroitin sulphate proteoglycans in cortical areas, including primary motor, primary auditory and several prefrontal and temporal association areas, in normal human brains and in those showing neuropathological criteria of Alzheimer's disease. In both groups, neurons with perineuronal nets were most numerous in the primary motor cortex (approximately 10% in Brodmann's area 4) and in the primary auditory cortex as a representative of the primary sensory areas. Their number was lower in secondary and higher order association areas. Net-associated pyramidal cells occurred predominantly in layers III and V in motor areas, as well as throughout lower parts of layer III in the primary auditory cortex and neocortical association areas. In the entorhinal cortex, net-associated pyramidal cells were extremely rare. In brains showing hallmarks of Alzheimer's disease, the characteristic patterns of hyperphosphorylated tau protein, stained with the AT8 antibody, largely excluded the zones abundant in perineuronal nets and neuropil-associated chondroitin sulphate proteoglycans. As shown in double-stained sections, pyramidal and non-pyramidal neurons ensheathed by perineuronal nets were virtually unaffected by the formation of neurofibrillary tangles even in severely damaged regions. The distribution patterns of amyloid B deposits overlapped but showed no congruence with that of the extracellular chondroitin sulphate proteoglycans. It can be concluded that low susceptibility of neurons and cortical areas to neurofibrillary changes corresponds with high proportions of aggregating chondroitin sulphate proteoglycans in the neuronal microenvironment.
Collapse
Affiliation(s)
- G Brückner
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Mikkonen M, Alafuzoff I, Tapiola T, Soininen H, Miettinen R. Subfield- and layer-specific changes in parvalbumin, calretinin and calbindin-D28K immunoreactivity in the entorhinal cortex in Alzheimer's disease. Neuroscience 1999; 92:515-32. [PMID: 10408601 DOI: 10.1016/s0306-4522(99)00047-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The entorhinal cortex, which is involved in neural systems related to memory, is selectively degenerated in early Alzheimer's disease. Here, we examined neuropathological changes in the eight entorhinal subfields in post mortem Alzheimer's disease subjects using Thionin and Bielschowsky stains and parvalbumin, calretinin and calbindin-D28k immunohistochemistry. Both histological stains revealed the most dramatic cell loss and neurofibrillary tangle formation to be in layers II and V of the lateral, intermediate and caudal subfields. In accordance, immunohistochemical staining showed that neurons and fibres that contain calcium-binding proteins were also more frequently altered in these subfields than in the rostromedial subfields. Detailed analysis further revealed that non-principal cells containing parvalbumin or calbindin-D28k showed morphological alterations early in the entorhinal pathology of Alzheimer's disease, whereas non-principal neurons containing calretinin were better preserved even in Alzheimer's disease patients with severe entorhinal pathology. The degeneration of parvalbumin-immunoreactive neurons and basket-like networks and calbindin-positive non-principal neurons was observed mainly in layer II, where the calretinin-positive non-principal neurons formed aggregates especially at late stages of the disease. The pyramidal-shaped neurons containing either calretinin or calbindin-D28k were often preserved, although morphological alterations were observed. Our findings indicate that specific subfields of the entorhinal cortex involving neurons that contain distinct calcium-binding proteins are differentially vulnerable in Alzheimer's disease. This could have an impact on the topographically organized inputs and outputs of the entorhinal cortex in Alzheimer's patients.
Collapse
Affiliation(s)
- M Mikkonen
- Department of Neuroscience and Neurology, Kuopio University Hospital and University of Kuopio, Finland
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Leuba G, Kraftsik R, Saini K. Quantitative distribution of parvalbumin, calretinin, and calbindin D-28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases. Exp Neurol 1998; 152:278-91. [PMID: 9710527 DOI: 10.1006/exnr.1998.6838] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The distribution of parvalbumin (PV), calretinin (CR), and calbindin (CB) immunoreactive neurons was studied with the help of an image analysis system (Vidas/Zeiss) in the primary visual area 17 and associative area 18 (Brodmann) of Alzheimer and control brains. In neither of these areas was there a significant difference between Alzheimer and control groups in the mean number of PV, CR, or CB immunoreactive neuronal profiles, counted in a cortical column going from pia to white matter. Significant differences in the mean densities (numbers per square millimeter of cortex) of PV, CR, and CB immunoreactive neuronal profiles were not observed either between groups or areas, but only between superficial, middle, and deep layers within areas 17 and 18. The optical density of the immunoreactive neuropil was also similar in Alzheimer and controls, correlating with the numerical density of immunoreactive profiles in superficial, middle, and deep layers. The frequency distribution of neuronal areas indicated significant differences between PV, CR, and CB immunoreactive neuronal profiles in both areas 17 and 18, with more large PV than CR and CB positive profiles. There were also significantly more small and less large PV and CR immunoreactive neuronal profiles in Alzheimer than in controls. Our data show that, although the brain pathology is moderate to severe, there is no prominent decrease of PV, CR and CB positive neurons in the visual cortex of Alzheimer brains, but only selective changes in neuronal perikarya.
Collapse
Affiliation(s)
- G Leuba
- University Psychogeriatrics Hospital, Lausanne, CH-1008, Switzerland
| | | | | |
Collapse
|
34
|
Brady DR, Mufson EJ. Parvalbumin-immunoreactive neurons in the hippocampal formation of Alzheimer's diseased brain. Neuroscience 1997; 80:1113-25. [PMID: 9284064 DOI: 10.1016/s0306-4522(97)00068-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The number and topographic distribution of immunocytochemically stained parvalbumin interneurons was determined in the hippocampal formation of control and Alzheimer's diseased brain. In control hippocampus, parvalbumin interneurons were aspiny and pleomorphic, with extensive dendritic arbors. In dentate gyrus, parvalbumin cells, as well as a dense plexus of fibers and puncta, were associated with the granule cell layer. A few cells also occupied the molecular layer. In strata oriens and pyramidale of CA1-CA3 subfields, parvalbumin neurons gave rise to dendrites that extended into adjacent strata. Densely stained puncta and beaded fibers occupied stratum pyramidale, with less dense staining in adjacent strata oriens and radiatum. Virtually no parvalbumin profiles were observed in stratum lacunosum-moleculare or the alveus. Numerous polymorphic parvalbumin neurons and a dense plexus of fibers and puncta characterized the deep layer of the subiculum and the lamina principalis externa of the presubiculum. In Alzheimer's diseased hippocampus, there was an approximate 60% decrease in the number of parvalbumin interneurons in the dentate gyrus/CA4 subfield (P<0.01) and subfields CA1-CA2 (P<0.01). In contrast, parvalbumin neurons did not statistically decline in subfields CA3, subiculum or presubiculum in Alzheimer's diseased brains relative to controls. Concurrent staining with Thioflavin-S histochemistry did not reveal degenerative changes within parvalbumin-stained profiles. These findings reveal that parvalbumin interneurons within specific hippocampal subfields are selectively vulnerable in Alzheimer's disease. This vulnerability may be related to their differential connectivity, e.g., those regions connectionally related to the cerebral cortex (dentate gyrus and CA1) are more vulnerable than those regions connectionally related to subcortical loci (subiculum and presubiculum).
Collapse
Affiliation(s)
- D R Brady
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | | |
Collapse
|
35
|
Abstract
Previous immunocytochemical studies in the cerebral cortex of various species have shown that the calcium-binding protein calretinin (CR) labels specific subpopulations of nonspiny nonpyramidal cells (interneurons). The present study attempts to characterize morphologically and chemically the microcircuitry of CR-immunoreactive (CR-ir) neurons in the human temporal neocortex. Postembedding immunocytochemistry for CR and GABA and combination immunocytochemistry for CR and nonphosphorylated neurofilament protein (NPNFP) or for CR and the calcium-binding proteins parvalbumin (PV) and calbindin (CB) showed CR multiterminal endings frequently innervating the distal apical dendrite or the cell body and proximal dendrites of NPNFP-ir or CB-ir pyramidal cells, respectively. Cell bodies of interneurons immunoreactive for CB or PV were innervated only occasionally by CR multiterminal endings, whereas certain GABA neurons were surrounded by them. Furthermore, CR-ir axon terminals formed either symmetrical (the majority) or asymmetrical synapses with a variety of postsynaptic elements. These results indicate that different subpopulations of CR interneurons exist that are specialized for selective innervation of somatic or dendritic regions of certain pyramidal and nonpyramidal neurons.
Collapse
|
36
|
Sampson VL, Morrison JH, Vickers JC. The cellular basis for the relative resistance of parvalbumin and calretinin immunoreactive neocortical neurons to the pathology of Alzheimer's disease. Exp Neurol 1997; 145:295-302. [PMID: 9184132 DOI: 10.1006/exnr.1997.6433] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The vulnerability of nerve cells to the neurofibrillary pathology of Alzheimer's disease (AD) may be determined by the presence within them of certain cytoskeletal proteins. Fluorescence multiple labeling was used to assess the vulnerability of two separate subpopulations of nonpyramidal neurons in the superior frontal gyrus, distinguished by their content of the calcium-binding proteins parvalbumin (PV) and calretinin (CR), to the neuropathology of AD. In AD, counterstaining PV- and CR-labeled sections with thioflavine S demonstrated that the great majority of these cells did not contain neurofibrillary tangles, except for the large CR-immunoreactive neurons in layer I. This latter group of cells was also characterized as containing neurofilament (NF) triplet proteins, whereas other CR-labeled cortical neurons were not immunoreactive for NF. There was also a small AD-related increase in the proportion of PV-labeled cells showing NF protein immunoreactivity (1-9% of the total population in AD cases compared to 0-0.4% in non-AD cases), which likewise may be linked to the susceptibility of a minute proportion (0-0.7%) of these neurons to form neurofibrillary tangles in AD. These data are further evidence that the presence of NF in cortical nerve cells is linked to their vulnerability to the pathological process underlying AD.
Collapse
Affiliation(s)
- V L Sampson
- Division of Pathology, Clinical School, University of Tasmania, Hobart, Australia
| | | | | |
Collapse
|
37
|
del Río MR, DeFelipe J. Colocalization of parvalbumin and calbindin D-28k in neurons including chandelier cells of the human temporal neocortex. J Chem Neuroanat 1997; 12:165-73. [PMID: 9141648 DOI: 10.1016/s0891-0618(96)00191-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chandelier cells are cortical GABAergic interneurons with a unique synaptic specificity enabling them to exert a strong inhibitory influence on pyramidal cells. By using immunocytochemistry for the calcium-binding protein calbindin D-28k in the human temporal neocortex, we have found numerous immunoreactive processes that were identified as chandelier cell axon terminals. This was a striking find since in previous immunocytochemical studies of the primate neocortex, chandelier cell axon terminals had been shown to be immunoreactive for another calcium-binding protein, parvalbumin, and colocalization studies indicate that parvalbumin and calbindin are present in almost completely separate neuronal populations. Here, we present double-label immunofluorescence experiments showing that parvalbumin and calbindin immunoreactivities are colocalized in certain neurons that include a subpopulation of chandelier cells whose cell bodies are located mainly in layers V and VI of the human temporal neocortex. The results suggest a selective laminar distribution of neurochemical subtypes of chandelier cells which is a peculiar feature of the organization of the human neocortex.
Collapse
|
38
|
Marco P, Sola RG, Ramón y Cajal S, DeFelipe J. Loss of inhibitory synapses on the soma and axon initial segment of pyramidal cells in human epileptic peritumoural neocortex: implications for epilepsy. Brain Res Bull 1997; 44:47-66. [PMID: 9288831 DOI: 10.1016/s0361-9230(97)00090-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The peritumoural neocortex removed from epileptic patients represents an important region for research because of its possible relationship to the generation, maintenance, and propagation of seizures. The peritumoural neocortex removed from an epileptic patient showing a regrowth of an anaplastic astrocytoma was examined in detail using immunocytochemistry for gamma-aminobutyric acid, glutamic acid decarboxylase, parvalbumin, nonphosphorylated neurofilament protein, glial fibrillary acidic protein, and histocompatibility antigen HLA-DR. The patterns of immunostaining were compared with the cytoarchitecture and myeloarchitecture in adjacent sections, and with the patterns of immunostaining observed in normal control neocortex. Furthermore, quantitative electron microscopy was used to compare the synaptic densities of presumptive excitatory and inhibitory synapses between regions showing different grades of cytoarchitectural and neurochemical alterations in the peritumoural neocortex, and to compare these regions with normal neocortex. A variety of changes in synaptic circuits in the peritumoural neocortex was found, but it appears that neurons within the less abnormal-looking regions were involved in altered synaptic circuits that might contribute to epileptic activity. In these regions, the most prominent change was the loss of inhibitory synapses on the soma and axon initial segment of pyramidal cells, but numerous excitatory synapses were present on their dendrites that would make these neurons hyperexcitable. However, the most abnormal regions histologically were likely a primary zone for progression of the tumour, with many surviving neurones, but which received and formed very few synapses; thus, they were probably unrelated to the initiation, maintenance, or propagation of seizures.
Collapse
Affiliation(s)
- P Marco
- Department of Neuropathology, Instituto Cajal, Madrid, Spain
| | | | | | | |
Collapse
|
39
|
Abstract
Calcium-binding proteins containing local circuit neurons are distributed ubiquitously in the human cerebral cortex where they colocalize with a subpopulation of cells that contain GABA. Several reports using a variety of pathological models, including Alzheimer's disease (AD), have suggested that cells containing calcium-binding proteins are resistant to pathological insults. In this report, we test the hypothesis that AD pathology can differentially affect parvalbumin-containing cells depending on their location in the entorhinal cortex and the state of projection neurons with which they are associated. Using cases with different quantities of AD pathology, we determined the density of immunostaining for parvalbumin in the entorhinal cortex, and we correlated this with the concomitant pathological lesions in the various layers of this cortex. Our results show a clear decrease in parvalbumin immunostaining in some parts of the entorhinal cortex when AD neuropathological markers are present. As the density of pathological markers in the entorhinal cortex becomes greater and more widespread, there is a decrease of parvalbumin immunostaining in additional layers, although in all cases, some cells persist. Parvalbumin-containing neurons are clearly vulnerable in AD, but not because of neurofibrillary tangle formation. Instead, they are rendered vulnerable only after substantial loss of projection neurons; only then do they, too, become part of the lesion.
Collapse
|
40
|
Pauls TL, Cox JA, Berchtold MW. The Ca2+(-)binding proteins parvalbumin and oncomodulin and their genes: new structural and functional findings. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1306:39-54. [PMID: 8611623 DOI: 10.1016/0167-4781(95)00221-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- T L Pauls
- Institute of Histology and General Embryology, University of Fribourg, Switzerland
| | | | | |
Collapse
|
41
|
Blümcke I, Eggli P, Celio MR. Relationship between astrocytic processes and "perineuronal nets" in rat neocortex. Glia 1995; 15:131-40. [PMID: 8567064 DOI: 10.1002/glia.440150205] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
"Perineuronal nets" (PNs) ensheath a subtype of inhibitory neurons in the mammalian neocortex. In the light of the proposal that PNs consist of glial processes, we have analyzed the relationship between intracellularly injected glial cells and PNs in the rat neocortex. Glial cells were injected iontophoretically with Lucifer Yellow in lightly fixed tissue slices and PNs were visualized with the lectin from Vicia villosa. Using confocal laser scanning microscopy, glial processes and PNs were identified as distinct structures. Lectin labeling was consistently associated with the extracellular space interposed between LY-labeling was consistently associated with the extracellular space interposed between LY-labeled astrocyte processes and neurons. Of the different types of glial cells injected, only the densely-ramifying protoplasmic astrocytes extended processes which could be traced to contact PNs. These protoplasmic astrocytes also sent out processes to adjacent neurons not ensheathed by PNs, and to capillaries. The present data strongly suggests that PNs do not consist of glial processes but rather support the idea that PNs represent specialized extracellular material interposed between the surface of some inhibitory interneurons and astrocytic processes.
Collapse
Affiliation(s)
- I Blümcke
- Department of Histology and General Embryology, University of Fribourg, Switzerland
| | | | | |
Collapse
|
42
|
Ferrer I, Olivé M, Rivera R, Pou A, Narberhaus B, Ugarte A. Hereditary spastic paraparesis with dementia, amyotrophy and peripheral neuropathy. A neuropathological study. Neuropathol Appl Neurobiol 1995; 21:255-61. [PMID: 7477734 DOI: 10.1111/j.1365-2990.1995.tb01057.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hereditary, probably autosomal recessive, spastic paraparesis in two siblings was associated with dementia of frontal lobe type, amyotrophy and peripheral sensory and motor polyneuropathy. Neuropathological findings correlate with neurological deficits, although neuron loss in the caudate and putamen, substantia nigra, and loss of Purkinje cells were clinically silent. Loss of neurons occurred in all cortical layers of the prefrontal lobe and superior temporal gyrus. Immunohistochemical studies showed reduced parvalbumin immunoreactivity in dendrites, and reduced numbers of calbindin D28k-immunoreactive cells, thus suggesting involvement of cortical local-circuit neurons. Myelin loss, ubiquitin-immunoreactive granular deposits, and nerve fibre degeneration in the white matter of the frontal lobes and corpus callosum were also observed. Cerebral and subcortical white matter abnormalities, together with atrophy of the thalamic dorsomedial complex and anterior nucleus, may have accounted for the development of severe dementia in this patient.
Collapse
Affiliation(s)
- I Ferrer
- Unidad Neuropatología, Hospital Príncipes España, Universidad Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Wakabayashi K, Hansen LA, Masliah E. Cortical Lewy body-containing neurons are pyramidal cells: laser confocal imaging of double-immunolabeled sections with anti-ubiquitin and SMI32. Acta Neuropathol 1995; 89:404-8. [PMID: 7618438 DOI: 10.1007/bf00307643] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To characterize neurons containing cortical Lewy bodies (LBs), vibratome sections of the superior temporal cortex from eight patients with the LB variant of Alzheimer's disease (LBV) were double-immunolabeled with anti-ubiquitin (a marker of LBs) and anti-nonphosphorylated neurofilament (SMI32; a marker of pyramidal cells) or parvalbumin (PV; a marker of interneurons) and were viewed with a laser-scanning confocal microscope. Almost all (96.1%) the LB-containing neurons were positive for SMI32, but not for PV. Furthermore, the average numbers of SMI32-immunoreactive neurons in layers 3 and 5 were 63% and 77% of those in controls, respectively. PV-immunoreactive neurons showed a greater than 40% decrease. These findings indicate that cortical LB-containing neurons are pyramidal cells and suggest that in LBV, there may be some differences in the degenerative processes effecting pyramidal cells and interneurons.
Collapse
Affiliation(s)
- K Wakabayashi
- Department of Neurosciences, University of California at San Diego, La Jolla 92093-0624, USA
| | | | | |
Collapse
|
44
|
|
45
|
Krzywkowski P, De Bilbao F, Senut MC, Lamour Y. Age-related changes in parvalbumin- and GABA-immunoreactive cells in the rat septum. Neurobiol Aging 1995; 16:29-40. [PMID: 7723933 DOI: 10.1016/0197-4580(95)80005-c] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The calcium binding protein parvalbumin is present in GABAergic neurons of the medial septum-diagonal band of Broca (MS-DBB) region that project to the hippocampal formation. We examined the distribution pattern, the number, and the morphological features of the parvalbumin-containing cells (parv+) in the MS-DBB region of 2- to 3-, 8- to 9-, 15- to 16-, and 26- to 27-month-old Sprague-Dawley rats. A significant reduction in the number of parv+ cells was observed as a function of age. The mean somal area of the parv+ cells was significantly reduced in the 26- to 27-month-old rats. A significant reduction in the number of parv+ cells was also observed in the 26- to 27-month-old rats in the cingulate cortex, but not in the striatum or the hippocampal formation. No significant age-related changes were observed in the number of the GABA-immunoreactive cells in the MS-DBB region nor in the cingulate cortex. In conclusion, there is an age-related decrease in the number of parv+ cells, with no change in the number of GABA-immunoreactive cells in the MS-DBB region of the rat. Because GABA and parvalbumin are colocalized in the MS-DBB neurons, the results suggest that the level of parvalbumin is decreased, but that the cells are not lost.
Collapse
|
46
|
Gutierrez C, Cusick CG. Effects of chronic monocular enucleation on calcium binding proteins calbindin-D28k and parvalbumin in the lateral geniculate nucleus of adult rhesus monkeys. Brain Res 1994; 651:300-10. [PMID: 7922579 DOI: 10.1016/0006-8993(94)90710-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The calcium binding proteins parvalbumin and calbindin-D28k were localized immunocytochemically within the lateral geniculate nucleus of adult monkeys at 1-7 months after monocular enucleation. Within the deafferented magno- and parvocellular layers, parvalbumin and calbindin-D28k immunoreactive fibers were depleted at all post-enucleation times. The neuronal staining for parvalbumin was similar in numerical density and intensity between the deafferented and intact layers. In hemispheres examined at 5 and 7 months post-enucleation, parvalbumin-immunoreactive fibers were also lost within the deprived ocular dominance bands in layers IVA, IVC and VI of the visual cortex, suggesting that cellular expression or axonal transport of parvalbumin may be decreased in the deafferented geniculate laminae. While the intact magno- and parvocellular layers contained very few neurons that were immunoreactive for calbindin-D28k, the density of calbindin-D28k-positive neurons increased in these layers after deafferentation. The counts of calbindin-D28k and parvalbumin immunostained neurons were not statistically different at 4-7 months post-enucleation. Because virtually all magno- and parvocellular projection neurons express parvalbumin, many parvalbumin neurons that normally do not contain calbindin-D28k may co-express this in response to injury. The findings suggest that long-term deafferentation imposes additional calcium buffering requirements on lateral geniculate neurons.
Collapse
Affiliation(s)
- C Gutierrez
- Neurosciences Training Program, Tulane University School of Medicine, New Orleans, LA 70112-2699
| | | |
Collapse
|
47
|
Ferrer I, Oliver B, Russi A, Casas R, Rivera R. Parvalbumin and calbindin-D28k immunocytochemistry in human neocortical epileptic foci. J Neurol Sci 1994; 123:18-25. [PMID: 8064311 DOI: 10.1016/0022-510x(94)90198-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Serial sections of cortical resection of 30 patients suffering from drug-resistant epilepsy were processed for parvalbumin and calbindin-D28k immunocytochemistry to determine local circuit neuron populations. Our findings indicate that there is not a simple mechanism to explain neocortical epileptic foci. On the basis of the present results it can be suggested that: (1) reduced percentage of local circuit neurons in the vicinity of neoplasms may account for a decreased intracortical inhibition. (2) Abnormal morphology and distribution of local circuit neurons may result in abnormal cortical inhibition in patients with focal cortical dysplasia, and, probably, in other focal migrational disorders, including neuronal nests in the white matter. (3) Increased percentages of immunoreactive local circuit neurons and fibers in focal neocortical necrosis (cavernous angiomas), diffuse hypoxic encephalopathy, and hippocampus in patients with temporal lobe epilepsy due to mesial sclerosis, may play a role in epilepsy. These neurons can be activated by reduced excitatory inputs, or they may establish abnormal synaptic contacts with other inhibitory neurons. (4) Lack of consistent morphologic abnormalities in the neocortex of patients with temporal lobe epilepsy, and in patients with cryptogenetic frontal lobe epilepsy, suggests that electrically abnormal neocortical foci in these cases are probably epiphenomena.
Collapse
Affiliation(s)
- I Ferrer
- Unidad de Neuropatología Hospital Príncipes de España, Universidad de Barcelona, Spain
| | | | | | | | | |
Collapse
|
48
|
Del Río MR, DeFelipe J. A study of SMI 32-stained pyramidal cells, parvalbumin-immunoreactive chandelier cells, and presumptive thalamocortical axons in the human temporal neocortex. J Comp Neurol 1994; 342:389-408. [PMID: 7517410 DOI: 10.1002/cne.903420307] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Immunocytochemical studies in the primate neocortex have shown that particular populations of pyramidal cells can be identified by antibody SMI 32 that recognizes a nonphosphorylated epitope of neurofilament protein, while chandelier cells (a powerful type of cortical inhibitory interneuron) and presumptive thalamocortical axons can be identified by antibodies directed against the calcium-binding protein parvalbumin (PV). We used these antibodies in correlative light and electron microscopic immunocytochemical studies to analyze certain aspects of the synaptic circuitry of human temporal neocortex. In sections cut in the tangential plane, many PV-immunoreactive chandelier cell axon terminals and apical dendrites of SMI 32-stained pyramidal cells were distributed in small clusters. Combination of immunocytochemistry for PV and SMI 32 revealed four subpopulations of pyramidal cells with regard to the immunocytochemical staining by SMI 32 and the innervation of their axon initial segments by PV-positive or -negative chandelier cell axon terminals, but there were differences in the concentration and proportion of these subpopulations by layers. Furthermore, we present electron microscopic evidence suggesting that the characteristic layer III dense band of PV-immunoreactive puncta is made up mainly of presumptive thalamocortical axon terminals. Besides, coincidence was found between the dense PV-immunoreactive band and the dendritic plexus formed by the SMI 32-stained pyramidal cells in the lower half of layer III, which leads us to think that they are probably a major target of PV-immunoreactive thalamic terminations.
Collapse
|
49
|
Hof PR, Nimchinsky EA, Buée-Scherrer V, Buée L, Nasrallah J, Hottinger AF, Purohit DP, Loerzel AJ, Steele JC, Delacourte A. Amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam: quantitative neuropathology, immunohistochemical analysis of neuronal vulnerability, and comparison with related neurodegenerative disorders. Acta Neuropathol 1994; 88:397-404. [PMID: 7847067 DOI: 10.1007/bf00389490] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Amyotrophic lateral sclerosis/parkinsonism-dementia complex (lytico-bodig) is a chronic neurodegenerative disorder with high prevalence among the native Chamorro population of Guam. Neuropathological, biochemical, and immunohistochemical analyses were performed on a relatively large series of Guamanian cases and compared to Alzheimer's disease cases. Thioflavin S and antibodies to amyloid beta A4 and tau proteins were used for analysis of pathological changes, and antibodies to the calcium-binding proteins parvalbumin and calretinin, and to a nonphosphorylated epitope on neurofilament protein to study select neuronal populations. A differential distribution of neurofibrillary tangles was observed in the neocortex of Guamanian cases compared to Alzheimer's disease cases, with much higher lesion counts in supragranular than in infragranular layers. Also, Guamanian cases with predominant parkinsonism had generally higher neurofibrillary tangle densities than cases with predominant amyotrophic lateral sclerosis. In addition, there was a certain degree of heterogeneity, qualitatively and quantitatively, in the biochemical distribution of tau proteins among Guamanian and Alzheimer's disease cases as revealed by Western blot analysis. Previous studies have suggested that the clinical symptomatology observed in patients suffering from Alzheimer's disease is related to the dramatic loss of specific corticocortically projecting neurons in the neocortex. Interestingly, a subset of neurofilament-rich pyramidal neurons known to be dramatically affected in Alzheimer's disease appears to be resistant in lytico-bodig. Finally, as in Alzheimer's disease, calcium-binding protein-containing interneurons are not affected. These data suggest that the set of projection neurons affected in Guamanian cases may not correspond to those involved in Alzheimer's disease, and that both disorders are characterized by specific patterns of neuronal vulnerability.
Collapse
Affiliation(s)
- P R Hof
- Department of Neurobiology, Mount Sinai School of Medicine, New York, NY 10029
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ferrer I, Casas R, Rivera R. Parvalbumin-immunoreactive cortical neurons in Creutzfeldt-Jakob disease. Ann Neurol 1993; 34:864-6. [PMID: 8250537 DOI: 10.1002/ana.410340617] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Massive abnormalities of parvalbumin-immunoreactive cortical neurons were observed in the cerebral biopsy samples of 3 patients with Creutzfeldt-Jakob disease. Immunoreactive cells had reduced and short, often fragmented, dendrites, and large numbers of dendritic varicosities were observed. Since parvalbumin-immunoreactive neurons are the most important inhibitory cells in the cerebral cortex, the damage to these neurons may account, in part, for the impaired cortical function, and may play a role in the appearance of myoclonus and electroencephalographic patterns in patients with Creutzfeldt-Jakob disease.
Collapse
Affiliation(s)
- I Ferrer
- Unidad de Neuropatología, Hospital Príncipes de España, Universidad de Barcelona
| | | | | |
Collapse
|