1
|
Bender W, Zhang Y, Corbett A, Chu C, Grier A, Wang L, Qiu X, McCall MN, Topham DJ, Walsh EE, Mariani TJ, Scheuermann R, Caserta MT, Anderson CS. Association of disease severity and genetic variation during primary Respiratory Syncytial Virus infections. BMC Med Genomics 2024; 17:165. [PMID: 38898440 PMCID: PMC11188216 DOI: 10.1186/s12920-024-01930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Respiratory Syncytial Virus (RSV) disease in young children ranges from mild cold symptoms to severe symptoms that require hospitalization and sometimes result in death. Studies have shown a statistical association between RSV subtype or phylogenic lineage and RSV disease severity, although these results have been inconsistent. Associations between variation within RSV gene coding regions or residues and RSV disease severity has been largely unexplored. METHODS Nasal swabs from children (< 8 months-old) infected with RSV in Rochester, NY between 1977-1998 clinically presenting with either mild or severe disease during their first cold-season were used. Whole-genome RSV sequences were obtained using overlapping PCR and next-generation sequencing. Both whole-genome phylogenetic and non-phylogenetic statistical approaches were performed to associate RSV genotype with disease severity. RESULTS The RSVB subtype was statistically associated with disease severity. A significant association between phylogenetic clustering of mild/severe traits and disease severity was also found. GA1 clade sequences were associated with severe disease while GB1 was significantly associated with mild disease. Both G and M2-2 gene variation was significantly associated with disease severity. We identified 16 residues in the G gene and 3 in the M2-2 RSV gene associated with disease severity. CONCLUSION These results suggest that phylogenetic lineage and the genetic variability in G or M2-2 genes of RSV may contribute to disease severity in young children undergoing their first infection.
Collapse
Affiliation(s)
- William Bender
- Division of Infectious Disease, Department of Medicine, School of Medicine and Dentistry, University of Rochester, University of Rochester Medical Center, Rochester, NY, USA
| | - Yun Zhang
- J. Craig Venter Institute, San Diego, CA, USA
| | - Anthony Corbett
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Chinyi Chu
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Alexander Grier
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward E Walsh
- Division of Infectious Disease, Department of Medicine, School of Medicine and Dentistry, University of Rochester, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas J Mariani
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Mary T Caserta
- Division of Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher S Anderson
- Division of Infectious Disease, Department of Medicine, School of Medicine and Dentistry, University of Rochester, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
2
|
Lee HE, Cho AH, Hwang JH, Kim JW, Yang HR, Ryu T, Jung Y, Lee S. Development, High-Throughput Profiling, and Biopanning of a Large Phage Display Single-Domain Antibody Library. Int J Mol Sci 2024; 25:4791. [PMID: 38732011 PMCID: PMC11083953 DOI: 10.3390/ijms25094791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Immunoglobulin G-based monoclonal antibodies (mAbs) have been effective in treating various diseases, but their large molecular size can limit their penetration of tissue and efficacy in multifactorial diseases, necessitating the exploration of alternative forms. In this study, we constructed a phage display library comprising single-domain antibodies (sdAbs; or "VHHs"), known for their small size and remarkable stability, using a total of 1.6 × 109 lymphocytes collected from 20 different alpacas, resulting in approximately 7.16 × 1010 colonies. To assess the quality of the constructed library, next-generation sequencing-based high-throughput profiling was performed, analyzing approximately 5.65 × 106 full-length VHH sequences, revealing 92% uniqueness and confirming the library's diverse composition. Systematic characterization of the library revealed multiple sdAbs with high affinity for three therapeutically relevant antigens. In conclusion, our alpaca sdAb phage display library provides a versatile resource for diagnostics and therapeutics. Furthermore, the library's vast natural VHH antibody repertoire offers insights for generating humanized synthetic sdAb libraries, further advancing sdAb-based therapeutics.
Collapse
Affiliation(s)
- Hee Eon Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Ah Hyun Cho
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Jae Hyeon Hwang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Ji Woong Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Taehoon Ryu
- ATG Lifetech Inc., Seoul 08507, Republic of Korea; (T.R.); (Y.J.)
| | - Yushin Jung
- ATG Lifetech Inc., Seoul 08507, Republic of Korea; (T.R.); (Y.J.)
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
- Department of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
3
|
De Boer RJ, Kesmir C, Perelson AS, Borghans JAM. Is the exquisite specificity of lymphocytes generated by thymic selection or due to evolution? Front Immunol 2024; 15:1266349. [PMID: 38605941 PMCID: PMC11008227 DOI: 10.3389/fimmu.2024.1266349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
We have previously argued that the antigen receptors of T and B lymphocytes evolved to be sufficiently specific to avoid massive deletion of clonotypes by negative selection. Their optimal 'specificity' level, i.e., probability of binding any particular epitope, was shown to be inversely related to the number of self-antigens that the cells have to be tolerant to. Experiments have demonstrated that T lymphocytes also become more specific during negative selection in the thymus, because cells expressing the most crossreactive receptors have the highest likelihood of binding a self-antigen, and hence to be tolerized (i.e., deleted, anergized, or diverted into a regulatory T cell phenotype). Thus, there are two -not mutually exclusive- explanations for the exquisite specificity of T cells, one involving evolution and the other thymic selection. To better understand the impact of both, we extend a previously developed mathematical model by allowing for T cells with very different binding probabilities in the pre-selection repertoire. We confirm that negative selection tends to tolerize the most crossreactive clonotypes. As a result, the average level of specificity in the functional post-selection repertoire depends on the number of self-antigens, even if there is no evolutionary optimization of binding probabilities. However, the evolutionary optimal range of binding probabilities in the pre-selection repertoire also depends on the number of self-antigens. Species with more self antigens need more specific pre-selection repertoires to avoid excessive loss of T cells during thymic selection, and hence mount protective immune responses. We conclude that both evolution and negative selection are responsible for the high level of specificity of lymphocytes.
Collapse
Affiliation(s)
- Rob J. De Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Can Kesmir
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Alan S. Perelson
- Department of Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - José A. M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
4
|
Porebski BT, Balmforth M, Browne G, Riley A, Jamali K, Fürst MJLJ, Velic M, Buchanan A, Minter R, Vaughan T, Holliger P. Rapid discovery of high-affinity antibodies via massively parallel sequencing, ribosome display and affinity screening. Nat Biomed Eng 2024; 8:214-232. [PMID: 37814006 DOI: 10.1038/s41551-023-01093-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/23/2023] [Indexed: 10/11/2023]
Abstract
Developing therapeutic antibodies is laborious and costly. Here we report a method for antibody discovery that leverages the Illumina HiSeq platform to, within 3 days, screen in the order of 108 antibody-antigen interactions. The method, which we named 'deep screening', involves the clustering and sequencing of antibody libraries, the conversion of the DNA clusters into complementary RNA clusters covalently linked to the instrument's flow-cell surface on the same location, the in situ translation of the clusters into antibodies tethered via ribosome display, and their screening via fluorescently labelled antigens. By using deep screening, we discovered low-nanomolar nanobodies to a model antigen using 4 × 106 unique variants from yeast-display-enriched libraries, and high-picomolar single-chain antibody fragment leads for human interleukin-7 directly from unselected synthetic repertoires. We also leveraged deep screening of a library of 2.4 × 105 sequences of the third complementarity-determining region of the heavy chain of an anti-human epidermal growth factor receptor 2 (HER2) antibody as input for a large language model that generated new single-chain antibody fragment sequences with higher affinity for HER2 than those in the original library.
Collapse
Affiliation(s)
| | | | | | - Aidan Riley
- Biologics Engineering, AstraZeneca, Cambridge, UK
| | | | - Maximillian J L J Fürst
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | | | | | - Ralph Minter
- Biologics Engineering, AstraZeneca, Cambridge, UK
- Alchemab Therapeutics, London, UK
| | | | | |
Collapse
|
5
|
Dudzic P, Chomicz D, Kończak J, Satława T, Janusz B, Wrobel S, Gawłowski T, Jaszczyszyn I, Bielska W, Demharter S, Spreafico R, Schulte L, Martin K, Comeau SR, Krawczyk K. Large-scale data mining of four billion human antibody variable regions reveals convergence between therapeutic and natural antibodies that constrains search space for biologics drug discovery. MAbs 2024; 16:2361928. [PMID: 38844871 PMCID: PMC11164219 DOI: 10.1080/19420862.2024.2361928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
The naïve human antibody repertoire has theoretical access to an estimated > 1015 antibodies. Identifying subsets of this prohibitively large space where therapeutically relevant antibodies may be found is useful for development of these agents. It was previously demonstrated that, despite the immense sequence space, different individuals can produce the same antibodies. It was also shown that therapeutic antibodies, which typically follow seemingly unnatural development processes, can arise independently naturally. To check for biases in how the sequence space is explored, we data mined public repositories to identify 220 bioprojects with a combined seven billion reads. Of these, we created a subset of human bioprojects that we make available as the AbNGS database (https://naturalantibody.com/ngs/). AbNGS contains 135 bioprojects with four billion productive human heavy variable region sequences and 385 million unique complementarity-determining region (CDR)-H3s. We find that 270,000 (0.07% of 385 million) unique CDR-H3s are highly public in that they occur in at least five of 135 bioprojects. Of 700 unique therapeutic CDR-H3, a total of 6% has direct matches in the small set of 270,000. This observation extends to a match between CDR-H3 and V-gene call as well. Thus, the subspace of shared ('public') CDR-H3s shows utility for serving as a starting point for therapeutic antibody design.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Lukas Schulte
- Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Kyle Martin
- Biotherapeutics Discovery, Boehringer Ingelheim, Ridgefield, CT, USA
| | - Stephen R. Comeau
- Biotherapeutics Discovery, Boehringer Ingelheim, Ridgefield, CT, USA
| | | |
Collapse
|
6
|
Qi L, Bennett E, Isalan M. A Directed Evolution Protocol for Engineering Minimal Transcription Factors, Based on CIS Display. Methods Mol Biol 2024; 2774:1-13. [PMID: 38441754 DOI: 10.1007/978-1-0716-3718-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Directed evolution is an efficient strategy for obtaining desired biomolecules. Since the 1990s, the emergence of display techniques has enabled high-throughput screening of functional proteins. However, classical methods require library construction by plasmid cloning and are limited by transformation efficiencies, typically limiting library sizes to ~106-107 variants. More recently, in vitro techniques have emerged that avoid cloning, allowing library sizes of >1012 members. One of these, CIS display, is a DNA-based display technique which allows high-throughput selection of biomolecules in vitro. CIS display creates the genotype-phenotype link required for selection by a DNA replication initiator protein, RepA, that binds exclusively to the template from which it has been expressed. This method has been successfully used to evolve new protein-protein interactions but has not been used before to select DNA-binding proteins, which are major components in mammalian synthetic biology. In this chapter, we describe a directed evolution method using CIS display to efficiently select functional DNA-binding proteins from pools of nonbinding proteins. The method is illustrated by enriching the minimal transcription factor Cro from a low starting frequency (1 in 109). This protocol is also applicable to engineering other DNA-binding proteins or transcription factors from combinatorial libraries.
Collapse
Affiliation(s)
- Lin Qi
- Department of Life Sciences, Imperial College London, London, UK
| | - Emily Bennett
- Department of Life Sciences, Imperial College London, London, UK
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
7
|
Puglioli S, Oehler S, Prati L, Scheuermann J, Bassi G, Cazzamalli S, Neri D, Favalli N. Impact of library input on the hit discovery rate in DNA-encoded chemical library selections. Chem Sci 2023; 14:12026-12033. [PMID: 37969600 PMCID: PMC10631129 DOI: 10.1039/d3sc03688j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/29/2023] [Indexed: 11/17/2023] Open
Abstract
DNA-encoded chemical libraries (DELs) are powerful drug discovery tools, enabling the parallel screening of millions of DNA-barcoded compounds. We investigated how the DEL input affects the hit discovery rate in DEL screenings. Evaluation of selection fingerprints revealed that the use of approximately 105 copies of each library member is required for the confident identification of nanomolar hits, using generally applicable methodologies.
Collapse
Affiliation(s)
- Sara Puglioli
- Philochem AG, R&D Department 8112 Otelfingen Switzerland
| | | | - Luca Prati
- Philochem AG, R&D Department 8112 Otelfingen Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Zürich Switzerland
| | - Gabriele Bassi
- Philochem AG, R&D Department 8112 Otelfingen Switzerland
| | | | - Dario Neri
- Philochem AG, R&D Department 8112 Otelfingen Switzerland
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Zürich Switzerland
| | | |
Collapse
|
8
|
Chardès V, Mazzolini A, Mora T, Walczak AM. Evolutionary stability of antigenically escaping viruses. Proc Natl Acad Sci U S A 2023; 120:e2307712120. [PMID: 37871216 PMCID: PMC10622963 DOI: 10.1073/pnas.2307712120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/24/2023] [Indexed: 10/25/2023] Open
Abstract
Antigenic variation is the main immune escape mechanism for RNA viruses like influenza or SARS-CoV-2. While high mutation rates promote antigenic escape, they also induce large mutational loads and reduced fitness. It remains unclear how this cost-benefit trade-off selects the mutation rate of viruses. Using a traveling wave model for the coevolution of viruses and host immune systems in a finite population, we investigate how immunity affects the evolution of the mutation rate and other nonantigenic traits, such as virulence. We first show that the nature of the wave depends on how cross-reactive immune systems are, reconciling previous approaches. The immune-virus system behaves like a Fisher wave at low cross-reactivities, and like a fitness wave at high cross-reactivities. These regimes predict different outcomes for the evolution of nonantigenic traits. At low cross-reactivities, the evolutionarily stable strategy is to maximize the speed of the wave, implying a higher mutation rate and increased virulence. At large cross-reactivities, where our estimates place H3N2 influenza, the stable strategy is to increase the basic reproductive number, keeping the mutation rate to a minimum and virulence low.
Collapse
Affiliation(s)
- Victor Chardès
- Laboratoire de Physique de l’École Normale Supérieure, CNRS, Paris Sciences & Lettres University, Sorbonne Université, and Université Paris-Cité, 75005Paris, France
- Center for Computational Biology, Flatiron Institute, New York, NY10010
| | - Andrea Mazzolini
- Laboratoire de Physique de l’École Normale Supérieure, CNRS, Paris Sciences & Lettres University, Sorbonne Université, and Université Paris-Cité, 75005Paris, France
| | - Thierry Mora
- Laboratoire de Physique de l’École Normale Supérieure, CNRS, Paris Sciences & Lettres University, Sorbonne Université, and Université Paris-Cité, 75005Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de Physique de l’École Normale Supérieure, CNRS, Paris Sciences & Lettres University, Sorbonne Université, and Université Paris-Cité, 75005Paris, France
| |
Collapse
|
9
|
Fischman S, Levin I, Rondeau JM, Štrajbl M, Lehmann S, Huber T, Nimrod G, Cebe R, Omer D, Kovarik J, Bernstein S, Sasson Y, Demishtein A, Shlamkovich T, Bluvshtein O, Grossman N, Barak-Fuchs R, Zhenin M, Fastman Y, Twito S, Vana T, Zur N, Ofran Y. "Redirecting an anti-IL-1β antibody to bind a new, unrelated and computationally predicted epitope on hIL-17A". Commun Biol 2023; 6:997. [PMID: 37773269 PMCID: PMC10542344 DOI: 10.1038/s42003-023-05369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
Antibody engineering technology is at the forefront of therapeutic antibody development. The primary goal for engineering a therapeutic antibody is the generation of an antibody with a desired specificity, affinity, function, and developability profile. Mature antibodies are considered antigen specific, which may preclude their use as a starting point for antibody engineering. Here, we explore the plasticity of mature antibodies by engineering novel specificity and function to a pre-selected antibody template. Using a small, focused library, we engineered AAL160, an anti-IL-1β antibody, to bind the unrelated antigen IL-17A, with the introduction of seven mutations. The final redesigned antibody, 11.003, retains favorable biophysical properties, binds IL-17A with sub-nanomolar affinity, inhibits IL-17A binding to its cognate receptor and is functional in a cell-based assay. The epitope of the engineered antibody can be computationally predicted based on the sequence of the template antibody, as is confirmed by the crystal structure of the 11.003/IL-17A complex. The structures of the 11.003/IL-17A and the AAL160/IL-1β complexes highlight the contribution of germline residues to the paratopes of both the template and re-designed antibody. This case study suggests that the inherent plasticity of antibodies allows for re-engineering of mature antibodies to new targets, while maintaining desirable developability profiles.
Collapse
Affiliation(s)
| | - Itay Levin
- Biolojic Design LTD, Rehovot, Israel
- Enzymit LTD, Ness Ziona, Israel
| | | | | | - Sylvie Lehmann
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Thomas Huber
- Novartis Institutes for Biomedical Research, Basel, Switzerland
- Ridgelinediscovery, Basel, Switzerland
| | | | - Régis Cebe
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dotan Omer
- Biolojic Design LTD, Rehovot, Israel
- EmendoBio Inc., Rehovot, Israel
| | - Jiri Kovarik
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | - Alik Demishtein
- Biolojic Design LTD, Rehovot, Israel
- Anima Biotech, Ramat-Gan, Israel
| | | | - Olga Bluvshtein
- Biolojic Design LTD, Rehovot, Israel
- Enzymit LTD, Ness Ziona, Israel
| | | | | | | | | | - Shir Twito
- Biolojic Design LTD, Rehovot, Israel
- Enzymit LTD, Ness Ziona, Israel
| | - Tal Vana
- Biolojic Design LTD, Rehovot, Israel
| | - Nevet Zur
- Biolojic Design LTD, Rehovot, Israel
| | - Yanay Ofran
- Biolojic Design LTD, Rehovot, Israel
- The Goodman Faculty of Life Sciences, Nanotechnology Building, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
10
|
Choi HL, Yang HR, Shin HG, Hwang K, Kim JW, Lee JH, Ryu T, Jung Y, Lee S. Generation and Next-Generation Sequencing-Based Characterization of a Large Human Combinatorial Antibody Library. Int J Mol Sci 2023; 24:ijms24066011. [PMID: 36983085 PMCID: PMC10057307 DOI: 10.3390/ijms24066011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Antibody phage display is a key technology for the discovery and development of target-specific monoclonal antibodies (mAbs) for use in research, diagnostics, and therapy. The construction of a high-quality antibody library, with larger and more diverse antibody repertoires, is essential for the successful development of phage display-derived mAbs. In this study, a large human combinatorial single-chain variable fragment library (1.5 × 1011 colonies) was constructed from Epstein-Barr virus-infected human peripheral blood mononuclear cells stimulated with a combination of two of the activators of human B cells, the Toll-like receptor 7/8 agonist R848 and interleukin-2. Next-generation sequencing analysis with approximately 1.9 × 106 and 2.7 × 106 full-length sequences of heavy chain variable (VH) and κ light chain variable (Vκ) domains, respectively, revealed that the library consists of unique VH (approximately 94%) and Vκ (approximately 91%) sequences with greater diversity than germline sequences. Lastly, multiple unique mAbs with high affinity and broad cross-species reactivity could be isolated from the library against two therapeutically relevant target antigens, validating the library quality. These findings suggest that the novel antibody library we have developed may be useful for the rapid development of target-specific phage display-derived recombinant human mAbs for use in therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Hye Lim Choi
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Kyusang Hwang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ji Woong Kim
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ji Hyun Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Taehoon Ryu
- ATG Lifetech Inc., Seoul 08507, Republic of Korea
| | - Yushin Jung
- ATG Lifetech Inc., Seoul 08507, Republic of Korea
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Department of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
11
|
Drees A, Trinh TL, Fischer M. The Influence of Protein Charge and Molecular Weight on the Affinity of Aptamers. Pharmaceuticals (Basel) 2023; 16:ph16030457. [PMID: 36986556 PMCID: PMC10054347 DOI: 10.3390/ph16030457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Aptamers offer several advantages over antibodies. However, to ensure high affinity and specificity, a better understanding of the interactions between the nucleic-acid-based aptamers and their targets is mandatory. Therefore, we investigated the influence of two physical properties of proteins-molecular mass and charge-on the affinity of nucleic-acid-based aptamers. For this purpose, first, the affinity of two random oligonucleotides towards twelve proteins was determined. No binding was observed for proteins with a negative net charge towards the two oligonucleotides, while up to nanomolar affinity was determined for positively charged proteins with a high pI value. Second, a literature analysis comprising 369 aptamer-peptide/protein pairs was performed. The dataset included 296 different target peptides and proteins and is thus currently one of the largest databases for aptamers for proteins and peptides. The targets considered covered isoelectric points of 4.1-11.8 and a molecular weight range of 0.7-330 kDa, while the dissociation constants ranged from 50 fM to 29.5 µM. This also revealed a significant inverse correlation between the protein's isoelectric point and the affinity of aptamers. In contrast, no trend was observed between the affinity and the molecular weight of the target protein with either approach.
Collapse
Affiliation(s)
- Alissa Drees
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Tung Lam Trinh
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Center for Hybrid Nanostructures (CHyN), Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
12
|
García-Valiente R, Merino Tejero E, Stratigopoulou M, Balashova D, Jongejan A, Lashgari D, Pélissier A, Caniels TG, Claireaux MAF, Musters A, van Gils MJ, Rodríguez Martínez M, de Vries N, Meyer-Hermann M, Guikema JEJ, Hoefsloot H, van Kampen AHC. Understanding repertoire sequencing data through a multiscale computational model of the germinal center. NPJ Syst Biol Appl 2023; 9:8. [PMID: 36927990 PMCID: PMC10019394 DOI: 10.1038/s41540-023-00271-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Sequencing of B-cell and T-cell immune receptor repertoires helps us to understand the adaptive immune response, although it only provides information about the clonotypes (lineages) and their frequencies and not about, for example, their affinity or antigen (Ag) specificity. To further characterize the identified clones, usually with special attention to the particularly abundant ones (dominant), additional time-consuming or expensive experiments are generally required. Here, we present an extension of a multiscale model of the germinal center (GC) that we previously developed to gain more insight in B-cell repertoires. We compare the extent that these simulated repertoires deviate from experimental repertoires established from single GCs, blood, or tissue. Our simulations show that there is a limited correlation between clonal abundance and affinity and that there is large affinity variability among same-ancestor (same-clone) subclones. Our simulations suggest that low-abundance clones and subclones, might also be of interest since they may have high affinity for the Ag. We show that the fraction of plasma cells (PCs) with high B-cell receptor (BcR) mRNA content in the GC does not significantly affect the number of dominant clones derived from single GCs by sequencing BcR mRNAs. Results from these simulations guide data interpretation and the design of follow-up experiments.
Collapse
Affiliation(s)
- Rodrigo García-Valiente
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Elena Merino Tejero
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Maria Stratigopoulou
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
| | - Daria Balashova
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Danial Lashgari
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Aurélien Pélissier
- IBM Research Zurich, 8803, Rüschlikon, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Tom G Caniels
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Mathieu A F Claireaux
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Anne Musters
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands
| | - Marit J van Gils
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | | | - Niek de Vries
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands
| | - Michael Meyer-Hermann
- Department for Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jeroen E J Guikema
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Pathology, Lymphoma and Myeloma Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Huub Hoefsloot
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Antoine H C van Kampen
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands.
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands.
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Garg AK, Mitra T, Schips M, Bandyopadhyay A, Meyer-Hermann M. Amount of antigen, T follicular helper cells and affinity of founder cells shape the diversity of germinal center B cells: A computational study. Front Immunol 2023; 14:1080853. [PMID: 36993964 PMCID: PMC10042134 DOI: 10.3389/fimmu.2023.1080853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
A variety of B cell clones seed the germinal centers, where a selection stringency expands the fitter clones to generate higher affinity antibodies. However, recent experiments suggest that germinal centers often retain a diverse set of B cell clones with a range of affinities and concurrently carry out affinity maturation. Amid a tendency to flourish germinal centers with fitter clones, how several B cell clones with differing affinities can be concurrently selected remains poorly understood. Such a permissive selection may allow non-immunodominant clones, which are often rare and of low-affinity, to somatically hypermutate and result in a broad and diverse B cell response. How the constituent elements of germinal centers, their quantity and kinetics may modulate diversity of B cells, has not been addressed well. By implementing a state-of-the-art agent-based model of germinal center, here, we study how these factors impact temporal evolution of B cell clonal diversity and its underlying balance with affinity maturation. While we find that the extent of selection stringency dictates clonal dominance, limited antigen availability on follicular dendritic cells is shown to expedite the loss of diversity of B cells as germinal centers mature. Intriguingly, the emergence of a diverse set of germinal center B cells depends on high affinity founder cells. Our analysis also reveals a substantial number of T follicular helper cells to be essential in balancing affinity maturation with clonal diversity, as a low number of T follicular helper cells impedes affinity maturation and also contracts the scope for a diverse B cell response. Our results have implications for eliciting antibody responses to non-immunodominant specificities of the pathogens by controlling the regulators of the germinal center reaction, thereby pivoting a way for vaccine development to generate broadly protective antibodies.
Collapse
Affiliation(s)
- Amar K. Garg
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tanmay Mitra
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- *Correspondence: Tanmay Mitra, ; Michael Meyer-Hermann,
| | - Marta Schips
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Arnab Bandyopadhyay
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Tanmay Mitra, ; Michael Meyer-Hermann,
| |
Collapse
|
14
|
Mlynarczyk C, Teater M, Pae J, Chin CR, Wang L, Arulraj T, Barisic D, Papin A, Hoehn KB, Kots E, Ersching J, Bandyopadhyay A, Barin E, Poh HX, Evans CM, Chadburn A, Chen Z, Shen H, Isles HM, Pelzer B, Tsialta I, Doane AS, Geng H, Rehman MH, Melnick J, Morgan W, Nguyen DTT, Elemento O, Kharas MG, Jaffrey SR, Scott DW, Khelashvili G, Meyer-Hermann M, Victora GD, Melnick A. BTG1 mutation yields supercompetitive B cells primed for malignant transformation. Science 2023; 379:eabj7412. [PMID: 36656933 PMCID: PMC10515739 DOI: 10.1126/science.abj7412] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 12/12/2022] [Indexed: 01/21/2023]
Abstract
Multicellular life requires altruistic cooperation between cells. The adaptive immune system is a notable exception, wherein germinal center B cells compete vigorously for limiting positive selection signals. Studying primary human lymphomas and developing new mouse models, we found that mutations affecting BTG1 disrupt a critical immune gatekeeper mechanism that strictly limits B cell fitness during antibody affinity maturation. This mechanism converted germinal center B cells into supercompetitors that rapidly outstrip their normal counterparts. This effect was conferred by a small shift in MYC protein induction kinetics but resulted in aggressive invasive lymphomas, which in humans are linked to dire clinical outcomes. Our findings reveal a delicate evolutionary trade-off between natural selection of B cells to provide immunity and potentially dangerous features that recall the more competitive nature of unicellular organisms.
Collapse
Affiliation(s)
- Coraline Mlynarczyk
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Matt Teater
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Juhee Pae
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Christopher R. Chin
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biomedicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Ling Wang
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Theinmozhi Arulraj
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Darko Barisic
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Antonin Papin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kenneth B. Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Ekaterina Kots
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jonatan Ersching
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Arnab Bandyopadhyay
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ersilia Barin
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Hui Xian Poh
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Chiara M. Evans
- Molecular Pharmacology Program and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Zhengming Chen
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Hao Shen
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Hannah M. Isles
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Benedikt Pelzer
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ioanna Tsialta
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ashley S. Doane
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Muhammad Hassan Rehman
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medicine–Qatar, Doha, Qatar
| | - Jonah Melnick
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Wyatt Morgan
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Diu T. T. Nguyen
- Molecular Pharmacology Program and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine and Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Michael G. Kharas
- Molecular Pharmacology Program and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samie R. Jaffrey
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - George Khelashvili
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Gabriel D. Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Ari Melnick
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
15
|
Huang RR, Kierny M, Volgina V, Iwashima M, Miller C, Kay BK. Construction of an Ultra-Large Phage Display Library by Kunkel Mutagenesis and Rolling Circle Amplification. Methods Mol Biol 2023; 2702:205-226. [PMID: 37679621 DOI: 10.1007/978-1-0716-3381-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
An important contributor to the successful generation of recombinant affinity reagents via phage display is a large and diverse library. We describe, herein, the application of Kunkel mutagenesis and rolling circle amplification (RCA) to the construction of a 1.1 × 1011 member library, with only 26 electroporations, and isolation of low- to sub-nanomolar monobodies to a number of protein targets, including human COP9 signalosome subunit 5 (COPS5), HIV-1 Rev. binding protein-like protein (HRBL), X-ray repair cross-complementing 5/6 (Ku70/80) heterodimer, the receptor-binding domain (RBD) of SARS-CoV-2, and transforming growth factor beta 1 (TGF-β1).
Collapse
Affiliation(s)
| | | | - Veronica Volgina
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Makio Iwashima
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | | | | |
Collapse
|
16
|
Arulraj T, Binder SC, Meyer-Hermann M. Antibody Mediated Intercommunication of Germinal Centers. Cells 2022; 11:cells11223680. [PMID: 36429109 PMCID: PMC9688628 DOI: 10.3390/cells11223680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Antibody diversification and selection of B cells occur in dynamic structures called germinal centers (GCs). Passively administered soluble antibodies regulate the GC response by masking the antigen displayed on follicular dendritic cells (FDCs). This suggests that GCs might intercommunicate via naturally produced soluble antibodies, but the role of such GC-GC interactions is unknown. In this study, we performed in silico simulations of interacting GCs and predicted that intense interactions by soluble antibodies limit the magnitude and lifetime of GC responses. With asynchronous GC onset, we observed a higher inhibition of late formed GCs compared to early ones. We also predicted that GC-GC interactions can lead to a bias in the epitope recognition even in the presence of equally dominant epitopes due to differences in founder cell composition or initiation timing of GCs. We show that there exists an optimal range for GC-GC interaction strength that facilitates the affinity maturation towards an incoming antigenic variant during an ongoing GC reaction. These findings suggest that GC-GC interactions might be a contributing factor to the unexplained variability seen among individual GCs and a critical factor in the modulation of GC response to antigenic variants during viral infections.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
| | - Sebastian C. Binder
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Correspondence:
| |
Collapse
|
17
|
Two complementary features of humoral immune memory confer protection against the same or variant antigens. Proc Natl Acad Sci U S A 2022; 119:e2205598119. [PMID: 36006981 PMCID: PMC9477401 DOI: 10.1073/pnas.2205598119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We study an important question in immunology: How is B cell–mediated immune memory recalled upon reexposure to the same or variant antigens? We find that, upon reexposure to the same antigen, high-affinity memory B cells are selectively expanded outside germinal centers (GCs) to quickly provide the best protection possible. Memory B cells also enter GCs and over time produce the highest-affinity antibodies, but GCs also generate diverse B cells, some with low antigen affinity. Upon exposure to a variant antigen, these low-affinity clones can exhibit high affinity for the variant. These clones are expanded rapidly outside the GC to confer immediate protection. Over longer times, secondary GCs produce high-affinity clones tailored for the variant antigen. The humoral immune response, a key arm of adaptive immunity, consists of B cells and their products. Upon infection or vaccination, B cells undergo a Darwinian evolutionary process in germinal centers (GCs), resulting in the production of antibodies and memory B cells. We developed a computational model to study how humoral memory is recalled upon reinfection or booster vaccination. We find that upon reexposure to the same antigen, affinity-dependent selective expansion of available memory B cells outside GCs (extragerminal center compartments [EGCs]) results in a rapid response made up of the best available antibodies. Memory B cells that enter secondary GCs can undergo mutation and selection to generate even more potent responses over time, enabling greater protection upon subsequent exposure to the same antigen. GCs also generate a diverse pool of B cells, some with low antigen affinity. These results are consistent with our analyses of data from humans vaccinated with two doses of a COVID-19 vaccine. Our results further show that the diversity of memory B cells generated in GCs is critically important upon exposure to a variant antigen. Clones drawn from this diverse pool that cross-react with the variant are rapidly expanded in EGCs to provide the best protection possible while new secondary GCs generate a tailored response for the new variant. Based on a simple evolutionary model, we suggest that the complementary roles of EGC and GC processes we describe may have evolved in response to complex organisms being exposed to evolving pathogen families for millennia.
Collapse
|
18
|
Abstract
Antibodies and T cell receptors (TCRs) are the fundamental building blocks of adaptive immunity. Repertoire-scale functionality derives from their epitope-binding properties, just as macroscopic properties like temperature derive from microscopic molecular properties. However, most approaches to repertoire-scale measurement, including sequence diversity and entropy, are not based on antibody or TCR function in this way. Thus, they potentially overlook key features of immunological function. Here we present a framework that describes repertoires in terms of the epitope-binding properties of their constituent antibodies and TCRs, based on analysis of thousands of antibody-antigen and TCR-peptide-major-histocompatibility-complex binding interactions and over 400 high-throughput repertoires. We show that repertoires consist of loose overlapping classes of antibodies and TCRs with similar binding properties. We demonstrate the potential of this framework to distinguish specific responses vs. bystander activation in influenza vaccinees, stratify cytomegalovirus (CMV)-infected cohorts, and identify potential immunological "super-agers." Classes add a valuable dimension to the assessment of immune function.
Collapse
|
19
|
Arulraj T, Binder SC, Meyer-Hermann M. Investigating the Mechanism of Germinal Center Shutdown. Front Immunol 2022; 13:922318. [PMID: 35911680 PMCID: PMC9329532 DOI: 10.3389/fimmu.2022.922318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Germinal centers (GCs) are transient structures where affinity maturation of B cells gives rise to high affinity plasma and memory cells. The mechanism of GC shutdown is unclear, despite being an important phenomenon maintaining immune homeostasis. In this study, we used a mathematical model to identify mechanisms that can independently promote contraction of GCs leading to shutdown. We show that GC shutdown can be promoted by antigen consumption by B cells, antigen masking by soluble antibodies, alterations in follicular dendritic cell (FDC) network area, modulation of immune complex cycling rate constants, alterations in T follicular helper signaling, increased terminal differentiation and reduced B cell division capacity. Proposed mechanisms promoted GC contraction by ultimately decreasing the number of B cell divisions and recycling cells. Based on the in-silico predictions, we suggest a combination of experiments that can be potentially employed by future studies to unravel the mechanistic basis of GC shutdown such as measurements of the density of pMHC presentation of B cells, FDC network size per B cell, fraction of cells expressing differentiation markers. We also show that the identified mechanisms differentially affect the efficiency of GC reaction estimated based on the quantity and quality of resulting antibodies.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian C. Binder
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Michael Meyer-Hermann,
| |
Collapse
|
20
|
Yan Z, Qi H, Lan Y. The role of geometric features in a germinal center. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:8304-8333. [PMID: 35801467 DOI: 10.3934/mbe.2022387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The germinal center (GC) is a self-organizing structure produced in the lymphoid follicle during the T-dependent immune response and is an important component of the humoral immune system. However, the impact of the special structure of GC on antibody production is not clear. According to the latest biological experiments, we establish a spatiotemporal stochastic model to simulate the whole self-organization process of the GC including the appearance of two specific zones: the dark zone (DZ) and the light zone (LZ), the development of which serves to maintain an effective competition among different cells and promote affinity maturation. A phase transition is discovered in this process, which determines the critical GC volume for a successful growth in both the stochastic and the deterministic model. Further increase of the volume does not make much improvement on the performance. It is found that the critical volume is determined by the distance between the activated B cell receptor (BCR) and the target epitope of the antigen in the shape space. The observation is confirmed in both 2D and 3D simulations and explains partly the variability of the observed GC size.
Collapse
Affiliation(s)
- Zishuo Yan
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Hai Qi
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Yueheng Lan
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
21
|
From affinity selection to kinetic selection in Germinal Centre modelling. PLoS Comput Biol 2022; 18:e1010168. [PMID: 35658003 PMCID: PMC9200358 DOI: 10.1371/journal.pcbi.1010168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 06/15/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Affinity maturation is an evolutionary process by which the affinity of antibodies (Abs) against specific antigens (Ags) increases through rounds of B-cell proliferation, somatic hypermutation, and positive selection in germinal centres (GC). The positive selection of B cells depends on affinity, but the underlying mechanisms of affinity discrimination and affinity-based selection are not well understood. It has been suggested that selection in GC depends on both rapid binding of B-cell receptors (BcRs) to Ags which is kinetically favourable and tight binding of BcRs to Ags, which is thermodynamically favourable; however, it has not been shown whether a selection bias for kinetic properties is present in the GC. To investigate the GC selection bias towards rapid and tight binding, we developed an agent-based model of GC and compared the evolution of founder B cells with initially identical low affinities but with different association/dissociation rates for Ag presented by follicular dendritic cells in three Ag collection mechanisms. We compared an Ag collection mechanism based on association/dissociation rates of B-cell interaction with presented Ag, which includes a probabilistic rupture of bonds between the B-cell and Ag (Scenario-1) with a reference scenario based on an affinity-based Ag collection mechanism (Scenario-0). Simulations showed that the mechanism of Ag collection affects the GC dynamics and the GC outputs concerning fast/slow (un)binding of B cells to FDC-presented Ags. In particular, clones with lower dissociation rates outcompete clones with higher association rates in Scenario-1, while remaining B cells from clones with higher association rates reach higher affinities. Accordingly, plasma cell and memory B cell populations were biased towards B-cell clones with lower dissociation rates. Without such probabilistic ruptures during the Ag extraction process (Scenario-2), the selective advantage for clones with very low dissociation rates diminished, and the affinity maturation level of all clones decreased to the reference level. Adaptive immunity is one of the vital defence mechanisms of the human body to fight virtually unlimited types of pathogens by producing antigen-specific high-affinity antibodies that bind to pathogens and neutralise them or mark them for further elimination. Affinity is a quantity used to measure and report the strength of interaction between antibodies and antigens that depends both on how fast antibodies bind to antigens (association rate) and how long the bond lasts (dissociation rate). The affinity of produced antibodies for a specific antigen increases in germinal centres through a process called affinity maturation, during which B cells with higher affinities have a competitive advantage and get positively selected to differentiate to antibody-producing plasma cells. Our research shows that the mechanism by which B cells capture Ag affects GC dynamics and GC output with respect to B-cell receptor kinetics. Notably, in a mechanism where rupture of CC-FDC bonds is possible during Ag extraction, B-cell clones with low dissociation rates outcompete clones with high association rates over time. Understanding how B cells get selected in germinal centres could help to develop an optimised and effective immune response against a disease through vaccination for a fast-operating and long-lasting immune response.
Collapse
|
22
|
Affinity maturation for an optimal balance between long-term immune coverage and short-term resource constraints. Proc Natl Acad Sci U S A 2022; 119:2113512119. [PMID: 35177475 PMCID: PMC8872716 DOI: 10.1073/pnas.2113512119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
Humoral immunity relies on the mutation and selection of B cells to better recognize pathogens. This affinity maturation process produces cells with diverse recognition capabilities. Examining optimal immune strategies that maximize the long-term immune coverage at a minimal metabolic cost, we show when the immune system should mount a de novo response rather than rely on existing memory cells. Our theory recapitulates known modes of the B cell response, predicts the empirical form of the distribution of clone sizes, and rationalizes as a trade-off between metabolic and immune costs the antigenic imprinting effects that limit the efficacy of vaccines (original antigenic sin). Our predictions provide a framework to interpret experimental results that could be used to inform vaccination strategies. In order to target threatening pathogens, the adaptive immune system performs a continuous reorganization of its lymphocyte repertoire. Following an immune challenge, the B cell repertoire can evolve cells of increased specificity for the encountered strain. This process of affinity maturation generates a memory pool whose diversity and size remain difficult to predict. We assume that the immune system follows a strategy that maximizes the long-term immune coverage and minimizes the short-term metabolic costs associated with affinity maturation. This strategy is defined as an optimal decision process on a finite dimensional phenotypic space, where a preexisting population of cells is sequentially challenged with a neutrally evolving strain. We show that the low specificity and high diversity of memory B cells—a key experimental result—can be explained as a strategy to protect against pathogens that evolve fast enough to escape highly potent but narrow memory. This plasticity of the repertoire drives the emergence of distinct regimes for the size and diversity of the memory pool, depending on the density of de novo responding cells and on the mutation rate of the strain. The model predicts power-law distributions of clonotype sizes observed in data and rationalizes antigenic imprinting as a strategy to minimize metabolic costs while keeping good immune protection against future strains.
Collapse
|
23
|
Padmanabhan P, Desikan R, Dixit NM. Modeling how antibody responses may determine the efficacy of COVID-19 vaccines. NATURE COMPUTATIONAL SCIENCE 2022; 2:123-131. [PMID: 38177523 DOI: 10.1038/s43588-022-00198-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 01/20/2022] [Indexed: 01/06/2024]
Abstract
Predicting the efficacy of COVID-19 vaccines would aid vaccine development and usage strategies, which is of importance given their limited supplies. Here we develop a multiscale mathematical model that proposes mechanistic links between COVID-19 vaccine efficacies and the neutralizing antibody (NAb) responses they elicit. We hypothesized that the collection of all NAbs would constitute a shape space and that responses of individuals are random samples from this space. We constructed the shape space by analyzing reported in vitro dose-response curves of ~80 NAbs. Sampling NAb subsets from the space, we recapitulated the responses of convalescent patients. We assumed that vaccination would elicit similar NAb responses. We developed a model of within-host SARS-CoV-2 dynamics, applied it to virtual patient populations and, invoking the NAb responses above, predicted vaccine efficacies. Our predictions quantitatively captured the efficacies from clinical trials. Our study thus suggests plausible mechanistic underpinnings of COVID-19 vaccines and generates testable hypotheses for establishing them.
Collapse
Affiliation(s)
- Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.
| | - Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
- Certara QSP, Certara UK Limited, Sheffield, UK
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India.
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
24
|
Slabodkin A, Chernigovskaya M, Mikocziova I, Akbar R, Scheffer L, Pavlović M, Bashour H, Snapkov I, Mehta BB, Weber CR, Gutierrez-Marcos J, Sollid LM, Haff IH, Sandve GK, Robert PA, Greiff V. Individualized VDJ recombination predisposes the available Ig sequence space. Genome Res 2021; 31:2209-2224. [PMID: 34815307 PMCID: PMC8647828 DOI: 10.1101/gr.275373.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
The process of recombination between variable (V), diversity (D), and joining (J) immunoglobulin (Ig) gene segments determines an individual's naive Ig repertoire and, consequently, (auto)antigen recognition. VDJ recombination follows probabilistic rules that can be modeled statistically. So far, it remains unknown whether VDJ recombination rules differ between individuals. If these rules differed, identical (auto)antigen-specific Ig sequences would be generated with individual-specific probabilities, signifying that the available Ig sequence space is individual specific. We devised a sensitivity-tested distance measure that enables inter-individual comparison of VDJ recombination models. We discovered, accounting for several sources of noise as well as allelic variation in Ig sequencing data, that not only unrelated individuals but also human monozygotic twins and even inbred mice possess statistically distinguishable immunoglobulin recombination models. This suggests that, in addition to genetic, there is also nongenetic modulation of VDJ recombination. We demonstrate that population-wide individualized VDJ recombination can result in orders of magnitude of difference in the probability to generate (auto)antigen-specific Ig sequences. Our findings have implications for immune receptor-based individualized medicine approaches relevant to vaccination, infection, and autoimmunity.
Collapse
Affiliation(s)
- Andrei Slabodkin
- Department of Immunology and Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology and Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| | - Ivana Mikocziova
- Department of Immunology and Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| | - Rahmad Akbar
- Department of Immunology and Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| | - Lonneke Scheffer
- Department of Informatics, University of Oslo, 0373 Oslo, Norway
| | - Milena Pavlović
- Department of Informatics, University of Oslo, 0373 Oslo, Norway
| | - Habib Bashour
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Igor Snapkov
- Department of Immunology and Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| | - Brij Bhushan Mehta
- Department of Immunology and Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | | | - Ludvig M Sollid
- Department of Immunology and Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| | | | | | - Philippe A Robert
- Department of Immunology and Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| | - Victor Greiff
- Department of Immunology and Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
25
|
Robert PA, Arulraj T, Meyer-Hermann M. Ymir: A 3D structural affinity model for multi-epitope vaccine simulations. iScience 2021; 24:102979. [PMID: 34485861 PMCID: PMC8405928 DOI: 10.1016/j.isci.2021.102979] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 07/10/2021] [Accepted: 08/11/2021] [Indexed: 11/05/2022] Open
Abstract
Vaccine development is challenged by the hierarchy of immunodominance between target antigen epitopes and the emergence of antigenic variants by pathogen mutation. The strength and breadth of antibody responses relies on selection and mutation in the germinal center and on the structural similarity between antigens. Computational methods for assessing the breadth of germinal center responses to multivalent antigens are critical to speed up vaccine development. Yet, such methods have poorly reflected the 3D antigen structure and antibody breadth. Here, we present Ymir, a new 3D-lattice-based framework that calculates in silico antibody-antigen affinities. Key physiological properties naturally emerge from Ymir such as affinity jumps, cross-reactivity, and differential epitope accessibility. We validated Ymir by replicating known features of germinal center dynamics. We show that combining antigens with mutated but structurally related epitopes enhances vaccine breadth. Ymir opens a new avenue for understanding vaccine potency based on the structural relationship between vaccine antigens.
Collapse
Affiliation(s)
- Philippe A. Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
| | - Theinmozhi Arulraj
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
- Centre for Individualised Infection Medicine (CIIM), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
26
|
Meyer-Hermann M. A molecular theory of germinal center B cell selection and division. Cell Rep 2021; 36:109552. [PMID: 34433043 DOI: 10.1016/j.celrep.2021.109552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/06/2021] [Accepted: 07/27/2021] [Indexed: 01/30/2023] Open
Abstract
The selection of B cells (BCs) in germinal centers (GCs) is pivotal to the generation of high-affinity antibodies and memory BCs, but it lacks global understanding. Based on the idea of a single Tfh-cell signal that controls BC selection and division, experiments appear contradictory. Here, we use the current knowledge on the molecular pathways of GC BCs to develop a theory of GC BC selection and division based on the dynamics of molecular factors. This theory explains the seemingly contradictory experiments by the separation of signals for BC fate decision from signals controlling the number of BC divisions. Three model variants are proposed and experiments are predicted that allow one to distinguish those. Understanding information processing in molecular BC states is critical for targeted immune interventions, and the proposed theory implies that selection and division can be controlled independently in GC reactions.
Collapse
Affiliation(s)
- Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Rebenring 56, Braunschweig 38106, Germany; Centre for Individualised Infection Medicine (CIIM), Hannover, Germany; Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| |
Collapse
|
27
|
Sheng J, Wang S. Coevolutionary transitions emerging from flexible molecular recognition and eco-evolutionary feedback. iScience 2021; 24:102861. [PMID: 34401660 PMCID: PMC8353512 DOI: 10.1016/j.isci.2021.102861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/16/2021] [Accepted: 07/13/2021] [Indexed: 01/16/2023] Open
Abstract
Highly mutable viruses evolve to evade host immunity that exerts selective pressure and adapts to viral dynamics. Here, we provide a framework for identifying key determinants of the mode and fate of viral-immune coevolution by linking molecular recognition and eco-evolutionary dynamics. We find that conservation level and initial diversity of antigen jointly determine the timing and efficacy of narrow and broad antibody responses, which in turn control the transition between viral persistence, clearance, and rebound. In particular, clearance of structurally complex antigens relies on antibody evolution in a larger antigenic space than where selection directly acts; viral rebound manifests binding-mediated feedback between ecology and rapid evolution. Finally, immune compartmentalization can slow viral escape but also delay clearance. This work suggests that flexible molecular binding allows a plastic phenotype that exploits potentiating neutral variations outside direct contact, opening new and shorter paths toward highly adaptable states. A scale-crossing framework identifies key determinants of viral-immune coevolution Fast specific response influences slow broad response by shaping antigen dynamics Antibody footprint shift enables breadth acquisition and viral clearance Model explains divergent kinetics and outcomes of HCV infection in humans
Collapse
Affiliation(s)
- Jiming Sheng
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shenshen Wang
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
28
|
Arulraj T, Binder SC, Meyer-Hermann M. In Silico Analysis of the Longevity and Timeline of Individual Germinal Center Reactions in a Primary Immune Response. Cells 2021; 10:cells10071736. [PMID: 34359906 PMCID: PMC8306527 DOI: 10.3390/cells10071736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Germinal centers (GCs) are transient structures in the secondary lymphoid organs, where B cells undergo affinity maturation to produce high affinity memory and plasma cells. The lifetime of GC responses is a critical factor limiting the extent of affinity maturation and efficiency of antibody responses. While the average lifetime of overall GC reactions in a lymphoid organ is determined experimentally, the lifetime of individual GCs has not been monitored due to technical difficulties in longitudinal analysis. In silico analysis of the contraction phase of GC responses towards primary immunization with sheep red blood cells suggested that if individual GCs had similar lifetimes, the data would be consistent only when new GCs were formed until a very late phase after immunization. Alternatively, there could be a large variation in the lifetime of individual GCs suggesting that both long and short-lived GCs might exist in the same lymphoid organ. Simulations predicted that such differences in the lifetime of GCs could arise due to variations in antigen availability and founder cell composition. These findings identify the potential factors limiting GC lifetime and contribute to an understanding of overall GC responses from the perspective of individual GCs in a primary immune response.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany; (T.A.); (S.C.B.)
| | - Sebastian C. Binder
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany; (T.A.); (S.C.B.)
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany; (T.A.); (S.C.B.)
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Correspondence:
| |
Collapse
|
29
|
Favalli N, Bassi G, Pellegrino C, Millul J, De Luca R, Cazzamalli S, Yang S, Trenner A, Mozaffari NL, Myburgh R, Moroglu M, Conway SJ, Sartori AA, Manz MG, Lerner RA, Vogt PK, Scheuermann J, Neri D. Stereo- and regiodefined DNA-encoded chemical libraries enable efficient tumour-targeting applications. Nat Chem 2021; 13:540-548. [PMID: 33833446 PMCID: PMC8405038 DOI: 10.1038/s41557-021-00660-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/10/2021] [Indexed: 02/01/2023]
Abstract
The encoding of chemical compounds with amplifiable DNA tags facilitates the discovery of small-molecule ligands for proteins. To investigate the impact of stereo- and regiochemistry on ligand discovery, we synthesized a DNA-encoded library of 670,752 derivatives based on 2-azido-3-iodophenylpropionic acids. The library was selected against multiple proteins and yielded specific ligands. The selection fingerprints obtained for a set of protein targets of pharmaceutical relevance clearly showed the preferential enrichment of ortho-, meta- or para-regioisomers, which was experimentally verified by affinity measurements in the absence of DNA. The discovered ligands included novel selective enzyme inhibitors and binders to tumour-associated antigens, which enabled conditional chimeric antigen receptor T-cell activation and tumour targeting.
Collapse
Affiliation(s)
- Nicholas Favalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Christian Pellegrino
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | | | | | | | - Su Yang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Anika Trenner
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Nour L Mozaffari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Mustafa Moroglu
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Richard A Lerner
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, USA
| | - Peter K Vogt
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
| |
Collapse
|
30
|
Manrubia S, Cuesta JA, Aguirre J, Ahnert SE, Altenberg L, Cano AV, Catalán P, Diaz-Uriarte R, Elena SF, García-Martín JA, Hogeweg P, Khatri BS, Krug J, Louis AA, Martin NS, Payne JL, Tarnowski MJ, Weiß M. From genotypes to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary dynamics. Phys Life Rev 2021; 38:55-106. [PMID: 34088608 DOI: 10.1016/j.plrev.2021.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022]
Abstract
Understanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the structure induced in the space of genotypes by sequences mapped to molecular structures, has revealed important facts that deeply affect the dynamical description of evolutionary processes. Empirical evidence supporting the fundamental relevance of features such as phenotypic bias is mounting as well, while the synthesis of conceptual and experimental progress leads to questioning current assumptions on the nature of evolutionary dynamics-cancer progression models or synthetic biology approaches being notable examples. This work delves with a critical and constructive attitude into our current knowledge of how genotypes map onto molecular phenotypes and organismal functions, and discusses theoretical and empirical avenues to broaden and improve this comprehension. As a final goal, this community should aim at deriving an updated picture of evolutionary processes soundly relying on the structural properties of genotype spaces, as revealed by modern techniques of molecular and functional analysis.
Collapse
Affiliation(s)
- Susanna Manrubia
- Department of Systems Biology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain; Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
| | - José A Cuesta
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain; Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BiFi), Universidad de Zaragoza, Spain; UC3M-Santander Big Data Institute (IBiDat), Getafe, Madrid, Spain
| | - Jacobo Aguirre
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain; Centro de Astrobiología, CSIC-INTA, ctra. de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Sebastian E Ahnert
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK; The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, UK
| | | | - Alejandro V Cano
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pablo Catalán
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain; Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain
| | - Ramon Diaz-Uriarte
- Department of Biochemistry, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (UAM-CSIC), Madrid, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas, I(2)SysBio (CSIC-UV), València, Spain; The Santa Fe Institute, Santa Fe, NM, USA
| | | | - Paulien Hogeweg
- Theoretical Biology and Bioinformatics Group, Utrecht University, the Netherlands
| | - Bhavin S Khatri
- The Francis Crick Institute, London, UK; Department of Life Sciences, Imperial College London, London, UK
| | - Joachim Krug
- Institute for Biological Physics, University of Cologne, Köln, Germany
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | - Nora S Martin
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, UK; Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Joshua L Payne
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Marcel Weiß
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, UK; Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
Ganti RS, Chakraborty AK. Mechanisms underlying vaccination protocols that may optimally elicit broadly neutralizing antibodies against highly mutable pathogens. Phys Rev E 2021; 103:052408. [PMID: 34134229 DOI: 10.1103/physreve.103.052408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 04/01/2021] [Indexed: 01/16/2023]
Abstract
Effective prophylactic vaccines usually induce the immune system to generate potent antibodies that can bind to an antigen and thus prevent it from infecting host cells. B cells produce antibodies by a Darwinian evolutionary process called affinity maturation (AM). During AM, the B cell population evolves in response to the antigen to produce antibodies that bind specifically and strongly to the antigen. Highly mutable pathogens pose a major challenge to the development of effective vaccines because antibodies that are effective against one strain of the virus may not protect against a mutant strain. Antibodies that can protect against diverse strains of a mutable pathogen have high "breadth" and are called broadly neutralizing antibodies (bnAbs). In spite of extensive studies, an effective vaccination strategy that can generate bnAbs in humans does not exist for any highly mutable pathogen. Here we study a minimal model to explore the mechanisms underlying how the selection forces imposed by antigens can be optimally chosen to guide AM to maximize the evolution of bnAbs. For logistical reasons, only a finite number of antigens can be administered in a finite number of vaccinations; that is, guiding the nonequilibrium dynamics of AM to produce bnAbs must be accomplished nonadiabatically. The time-varying Kullback-Leibler divergence (KLD) between the existing B cell population distribution and the fitness landscape imposed by antigens is a quantitative metric of the thermodynamic force acting on B cells. If this force is too small, adaptation is minimal. If the force is too large, contrary to expectations, adaptation is not faster; rather, the B cell population is extinguished for reasons that we describe. We define the conditions necessary for the force to be set optimally such that the flux of B cells from low to high breadth states is maximized. Even in this case we show why the dynamics of AM prevent perfect adaptation. If two shots of vaccination are allowed, the optimal protocol is characterized by a relatively low optimal KLD during the first shot that appropriately increases the diversity of the B cell population so that the surviving B cells have a high chance of evolving into bnAbs upon subsequently increasing the KLD during the second shot. Phylogenetic tree analysis further reveals the evolutionary pathways that lead to bnAbs. The connections between the mechanisms revealed by our analyses and recent simulation studies of bnAb evolution, the problem of generalist versus specialist evolution, and learning theory are discussed.
Collapse
Affiliation(s)
- Raman S Ganti
- Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Arup K Chakraborty
- Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
- Department of Chemical Engineering, Department of Physics, and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
32
|
Schnaack OH, Nourmohammad A. Optimal evolutionary decision-making to store immune memory. eLife 2021; 10:61346. [PMID: 33908347 PMCID: PMC8116052 DOI: 10.7554/elife.61346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
The adaptive immune system provides a diverse set of molecules that can mount specific responses against a multitude of pathogens. Memory is a key feature of adaptive immunity, which allows organisms to respond more readily upon re-infections. However, differentiation of memory cells is still one of the least understood cell fate decisions. Here, we introduce a mathematical framework to characterize optimal strategies to store memory to maximize the utility of immune response over an organism's lifetime. We show that memory production should be actively regulated to balance between affinity and cross-reactivity of immune receptors for an effective protection against evolving pathogens. Moreover, we predict that specificity of memory should depend on the organism's lifespan, and shorter lived organisms with fewer pathogenic encounters should store more cross-reactive memory. Our framework provides a baseline to gauge the efficacy of immune memory in light of an organism's coevolutionary history with pathogens.
Collapse
Affiliation(s)
- Oskar H Schnaack
- Max Planck Institute for Dynamics and Self-organization, Göttingen, Germany.,Department of Physics, University of Washington, Seattle, United States
| | - Armita Nourmohammad
- Max Planck Institute for Dynamics and Self-organization, Göttingen, Germany.,Department of Physics, University of Washington, Seattle, United States.,Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
33
|
Arulraj T, Binder SC, Meyer-Hermann M. Rate of Immune Complex Cycling in Follicular Dendritic Cells Determines the Extent of Protecting Antigen Integrity and Availability to Germinal Center B Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:1436-1442. [PMID: 33608455 DOI: 10.4049/jimmunol.2001355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/22/2021] [Indexed: 01/02/2023]
Abstract
Follicular dendritic cells (FDCs) retain immune complexes (ICs) for prolonged time periods and are important for germinal center (GC) reactions. ICs undergo periodic cycling in FDCs, a mechanism supporting an extended half-life of Ag. Based on experimental data, we estimated that the average residence time of PE-ICs on FDC surface and interior were 21 and 36 min, respectively. GC simulations show that Ag cycling might impact GC dynamics because of redistribution of Ag on the FDC surface and by protecting Ag from degradation. Ag protection and influence on GC dynamics varied with Ag cycling time and total Ag concentration. Simulations predict that blocking Ag cycling terminates the GC reaction and decreases plasma cell production. Considering that cycling of Ag could be a target for the modulation of GC reactions, our findings highlight the importance of understanding the mechanism and regulation of IC cycling in FDCs.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
| | - Sebastian C Binder
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany.,Centre for Individualized Infection Medicine, 30625 Hannover, Germany; and
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany; .,Centre for Individualized Infection Medicine, 30625 Hannover, Germany; and.,Institute for Biochemistry, Biotechnology and Bioinformatics, Braunschweig University of Technology, 38106 Braunschweig, Germany
| |
Collapse
|
34
|
Jones E, Sheng J, Carlson J, Wang S. Aging-induced fragility of the immune system. J Theor Biol 2021; 510:110473. [PMID: 32941914 PMCID: PMC7487974 DOI: 10.1016/j.jtbi.2020.110473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/03/2023]
Abstract
The adaptive and innate branches of the vertebrate immune system work in close collaboration to protect organisms from harmful pathogens. As an organism ages its immune system undergoes immunosenescence, characterized by declined performance or malfunction in either immune branch, which can lead to disease and death. In this study we develop a mathematical framework of coupled innate and adaptive immune responses, namely the integrated immune branch (IIB) model. This model describes dynamics of immune components in both branches, uses a shape-space representation to encode pathogen-specific immune memory, and exhibits three steady states - health, septic death, and chronic inflammation - qualitatively similar to clinically-observed immune outcomes. In this model, the immune system (initialized in the health state) is subjected to a sequence of pathogen encounters, and we use the number of prior pathogen encounters as a proxy for the "age" of the immune system. We find that repeated pathogen encounters may trigger a fragility in which any encounter with a novel pathogen will cause the system to irreversibly switch from health to chronic inflammation. This transition is consistent with the onset of "inflammaging", a condition observed in aged individuals who experience chronic low-grade inflammation even in the absence of pathogens. The IIB model predicts that the onset of chronic inflammation strongly depends on the history of encountered pathogens; the timing of onset differs drastically when the same set of infections occurs in a different order. Lastly, the coupling between the innate and adaptive immune branches generates a trade-off between rapid pathogen clearance and a delayed onset of immunosenescence. Overall, by considering the complex feedback between immune compartments, our work suggests potential mechanisms for immunosenescence and provides a theoretical framework at the system level and on the scale of an organism's lifetime to account for clinical observations.
Collapse
Affiliation(s)
- Eric Jones
- Department of Physics, University of California, Santa Barbara, CA 93106, USA.
| | - Jiming Sheng
- Department of Physics & Astronomy, University of California, Los Angeles, CA 90095, USA
| | - Jean Carlson
- Department of Physics, University of California, Santa Barbara, CA 93106, USA
| | - Shenshen Wang
- Department of Physics & Astronomy, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
35
|
Merino Tejero E, Lashgari D, García-Valiente R, Gao X, Crauste F, Robert PA, Meyer-Hermann M, Martínez MR, van Ham SM, Guikema JEJ, Hoefsloot H, van Kampen AHC. Multiscale Modeling of Germinal Center Recapitulates the Temporal Transition From Memory B Cells to Plasma Cells Differentiation as Regulated by Antigen Affinity-Based Tfh Cell Help. Front Immunol 2021; 11:620716. [PMID: 33613551 PMCID: PMC7892951 DOI: 10.3389/fimmu.2020.620716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 01/10/2023] Open
Abstract
Germinal centers play a key role in the adaptive immune system since they are able to produce memory B cells and plasma cells that produce high affinity antibodies for an effective immune protection. The mechanisms underlying cell-fate decisions are not well understood but asymmetric division of antigen, B-cell receptor affinity, interactions between B-cells and T follicular helper cells (triggering CD40 signaling), and regulatory interactions of transcription factors have all been proposed to play a role. In addition, a temporal switch from memory B-cell to plasma cell differentiation during the germinal center reaction has been shown. To investigate if antigen affinity-based Tfh cell help recapitulates the temporal switch we implemented a multiscale model that integrates cellular interactions with a core gene regulatory network comprising BCL6, IRF4, and BLIMP1. Using this model we show that affinity-based CD40 signaling in combination with asymmetric division of B-cells result in switch from memory B-cell to plasma cell generation during the course of the germinal center reaction. We also show that cell fate division is unlikely to be (solely) based on asymmetric division of Ag but that BLIMP1 is a more important factor. Altogether, our model enables to test the influence of molecular modulations of the CD40 signaling pathway on the production of germinal center output cells.
Collapse
Affiliation(s)
- Elena Merino Tejero
- Bioinformatics Laboratory, Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Danial Lashgari
- Bioinformatics Laboratory, Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Rodrigo García-Valiente
- Bioinformatics Laboratory, Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, China
| | | | - Philippe A Robert
- Department for Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department for Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Huub Hoefsloot
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Antoine H C van Kampen
- Bioinformatics Laboratory, Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands.,Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
36
|
Remmel JL, Ackerman ME. Rationalizing Random Walks: Replicating Protective Antibody Trajectories. Trends Immunol 2021; 42:186-197. [PMID: 33514459 DOI: 10.1016/j.it.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
'Reverse vaccinology 2.0' aims to rationally reproduce template antibody responses, such as broadly neutralizing antibodies against human immunodeficiency virus-1. While observations of antibody convergence across individuals support the assumption that responses may be replicated, the diversity of humoral immunity and the process of antibody selection are rooted in stochasticity. Drawing from experience with in vitro antibody engineering by directed evolution, we consider how antibody selection may be driven, as in germline-targeting vaccine approaches to elicit broadly neutralizing antibodies and illustrate the potential consequences of over-defining a template antibody response. We posit that the prospective definition of template antibody responses and the odds of replicating them must be considered within the randomness of humoral immunity.
Collapse
Affiliation(s)
- Jennifer L Remmel
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
37
|
Ferrara F, Teixeira AA, Naranjo L, Erasmus MF, D'Angelo S, Bradbury ARM. Exploiting next-generation sequencing in antibody selections - a simple PCR method to recover binders. MAbs 2021; 12:1701792. [PMID: 31829073 PMCID: PMC7009332 DOI: 10.1080/19420862.2019.1701792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Antibody discovery using invitro display technologies such as phage and/or yeast display has become acornerstone in many research and development projects, including the creation of new drugs for clinical use. Traditionally, after the selection phase, random clones are isolated for binding validation and Sanger sequencing. More recently, next-generation sequencing (NGS) technology has allowed deeper insight into the antibody population after aselection campaign, enabling the identification of many more specific binders. However, this approach only provides the DNA sequences of potential binders, the properties of which need to be fully elucidated by obtaining corresponding clones and expressing them for further validation. Here we present arapid novel method to harvest potential clones identified by NGS that uses asimple PCR and yeast recombination approach. The protocol was tested in selections against three different targets and was able to recover clones at an abundance level that would be impractical to identify using traditional methods.
Collapse
Affiliation(s)
| | - Andre A Teixeira
- Specifica Inc., Santa Fe, NM, USA.,Bioscience Division, New Mexico Consortium, Los Alamos, NM, USA
| | | | | | | | | |
Collapse
|
38
|
Norman RA, Ambrosetti F, Bonvin AMJJ, Colwell LJ, Kelm S, Kumar S, Krawczyk K. Computational approaches to therapeutic antibody design: established methods and emerging trends. Brief Bioinform 2020; 21:1549-1567. [PMID: 31626279 PMCID: PMC7947987 DOI: 10.1093/bib/bbz095] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/07/2019] [Accepted: 07/05/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies are proteins that recognize the molecular surfaces of potentially noxious molecules to mount an adaptive immune response or, in the case of autoimmune diseases, molecules that are part of healthy cells and tissues. Due to their binding versatility, antibodies are currently the largest class of biotherapeutics, with five monoclonal antibodies ranked in the top 10 blockbuster drugs. Computational advances in protein modelling and design can have a tangible impact on antibody-based therapeutic development. Antibody-specific computational protocols currently benefit from an increasing volume of data provided by next generation sequencing and application to related drug modalities based on traditional antibodies, such as nanobodies. Here we present a structured overview of available databases, methods and emerging trends in computational antibody analysis and contextualize them towards the engineering of candidate antibody therapeutics.
Collapse
|
39
|
Pélissier A, Akrout Y, Jahn K, Kuipers J, Klein U, Beerenwinkel N, Rodríguez Martínez M. Computational Model Reveals a Stochastic Mechanism behind Germinal Center Clonal Bursts. Cells 2020; 9:E1448. [PMID: 32532145 PMCID: PMC7349200 DOI: 10.3390/cells9061448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Germinal centers (GCs) are specialized compartments within the secondary lymphoid organs where B cells proliferate, differentiate, and mutate their antibody genes in response to the presence of foreign antigens. Through the GC lifespan, interclonal competition between B cells leads to increased affinity of the B cell receptors for antigens accompanied by a loss of clonal diversity, although the mechanisms underlying clonal dynamics are not completely understood. We present here a multi-scale quantitative model of the GC reaction that integrates an intracellular component, accounting for the genetic events that shape B cell differentiation, and an extracellular stochastic component, which accounts for the random cellular interactions within the GC. In addition, B cell receptors are represented as sequences of nucleotides that mature and diversify through somatic hypermutations. We exploit extensive experimental characterizations of the GC dynamics to parameterize our model, and visualize affinity maturation by means of evolutionary phylogenetic trees. Our explicit modeling of B cell maturation enables us to characterise the evolutionary processes and competition at the heart of the GC dynamics, and explains the emergence of clonal dominance as a result of initially small stochastic advantages in the affinity to antigen. Interestingly, a subset of the GC undergoes massive expansion of higher-affinity B cell variants (clonal bursts), leading to a loss of clonal diversity at a significantly faster rate than in GCs that do not exhibit clonal dominance. Our work contributes towards an in silico vaccine design, and has implications for the better understanding of the mechanisms underlying autoimmune disease and GC-derived lymphomas.
Collapse
Affiliation(s)
- Aurélien Pélissier
- IBM Research Zurich, 8803 Rüschlikon, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; (K.J.); (J.K.); (N.B.)
| | | | - Katharina Jahn
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; (K.J.); (J.K.); (N.B.)
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; (K.J.); (J.K.); (N.B.)
| | - Ulf Klein
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds LS9 7TF, UK;
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; (K.J.); (J.K.); (N.B.)
| | | |
Collapse
|
40
|
Sachdeva V, Husain K, Sheng J, Wang S, Murugan A. Tuning environmental timescales to evolve and maintain generalists. Proc Natl Acad Sci U S A 2020; 117:12693-12699. [PMID: 32457160 PMCID: PMC7293598 DOI: 10.1073/pnas.1914586117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Natural environments can present diverse challenges, but some genotypes remain fit across many environments. Such "generalists" can be hard to evolve, outcompeted by specialists fitter in any particular environment. Here, inspired by the search for broadly neutralizing antibodies during B cell affinity maturation, we demonstrate that environmental changes on an intermediate timescale can reliably evolve generalists, even when faster or slower environmental changes are unable to do so. We find that changing environments on timescales comparable with evolutionary transients in a population enhance the rate of evolving generalists from specialists, without enhancing the reverse process. The yield of generalists is further increased in more complex dynamic environments, such as a "chirp" of increasing frequency. Our work offers design principles for how nonequilibrium fitness "seascapes" can dynamically funnel populations to genotypes unobtainable in static environments.
Collapse
Affiliation(s)
- Vedant Sachdeva
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL 60627
| | - Kabir Husain
- Department of Physics, The University of Chicago, Chicago, IL 60627
| | - Jiming Sheng
- Department of Physics and Astronomy, The University of California, Los Angeles, CA 90095
| | - Shenshen Wang
- Department of Physics and Astronomy, The University of California, Los Angeles, CA 90095
| | - Arvind Murugan
- Department of Physics, The University of Chicago, Chicago, IL 60627;
| |
Collapse
|
41
|
Abstract
Liquid neural networks (or 'liquid brains') are a widespread class of cognitive living networks characterized by a common feature: the agents (ants or immune cells, for example) move in space. Thus, no fixed, long-term agent-agent connections are maintained, in contrast with standard neural systems. How is this class of systems capable of displaying cognitive abilities, from learning to decision-making? In this paper, the collective dynamics, memory and learning properties of liquid brains is explored under the perspective of statistical physics. Using a comparative approach, we review the generic properties of three large classes of systems, namely: standard neural networks (solid brains), ant colonies and the immune system. It is shown that, despite their intrinsic physical differences, these systems share key properties with standard neural systems in terms of formal descriptions, but strongly depart in other ways. On one hand, the attractors found in liquid brains are not always based on connection weights but instead on population abundances. However, some liquid systems use fluctuations in ways similar to those found in cortical networks, suggesting a relevant role for criticality as a way of rapidly reacting to external signals. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
- Jordi Piñero
- 1 ICREA-Complex Systems Lab, Universitat Pompeu Fabra , 08003 Barcelona , Spain.,2 Institut de Biologia Evolutiva (CSIC-UPF) , Psg Maritim Barceloneta, 37, 08003 Barcelona , Spain
| | - Ricard Solé
- 1 ICREA-Complex Systems Lab, Universitat Pompeu Fabra , 08003 Barcelona , Spain.,2 Institut de Biologia Evolutiva (CSIC-UPF) , Psg Maritim Barceloneta, 37, 08003 Barcelona , Spain.,3 Santa Fe Institute , 1399 Hyde Park Road, Santa Fe, NM 87501 , USA
| |
Collapse
|
42
|
Abstract
Antigenic cartography is a powerful method that allows for the calculation of antigenic distances between influenza viruses or sera and their positioning on a map, by quantifying raw data from hemagglutination inhibition assays. As a consequence, the antigenic drift of influenza viruses over time can be visualized in a straightforward manner. Antigenic cartography is not only useful in the research of influenza virus evolution but also in the surveillance of influenza viruses. Most importantly, antigenic cartography plays a very important role in vaccine updating decisions, since by calculating the antigenic distances between a vaccine strain and circulating strains, an informed decision can be made on whether the distances are large enough to warrant a vaccine update or not. Recent improvements in antigenic cartography calculations have significantly improved its accuracy.
Collapse
|
43
|
Rivoire O. Parsimonious evolutionary scenario for the origin of allostery and coevolution patterns in proteins. Phys Rev E 2020; 100:032411. [PMID: 31640027 DOI: 10.1103/physreve.100.032411] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 12/16/2022]
Abstract
Proteins display generic properties that are challenging to explain by direct selection, notably allostery, the capacity to be regulated through long-range effects, and evolvability, the capacity to adapt to new selective pressures. An evolutionary scenario is proposed where proteins acquire these two features indirectly as a by-product of their selection for a more fundamental property, exquisite discrimination, the capacity to bind discriminatively very similar ligands. Achieving this task is shown to typically require proteins to undergo a conformational change. We argue that physical and evolutionary constraints impel this change to be controlled by a group of sites extending from the binding site. Proteins can thus acquire a latent potential for allosteric regulation and evolutionary adaptation because of long-range effects that initially arise as evolutionary spandrels. This scenario accounts for the groups of conserved and coevolving residues observed in multiple sequence alignments. However, we propose that most pairs of coevolving and contacting residues inferred from such alignments have a different origin, related to thermal stability. A physical model is presented that illustrates this evolutionary scenario and its implications. The scenario can be implemented in experiments of protein evolution to directly test its predictions.
Collapse
Affiliation(s)
- Olivier Rivoire
- Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
44
|
Gupta R, Luan J, Chakrabartty S, Scheller EL, Morrissey J, Singamaneni S. Refreshable Nanobiosensor Based on Organosilica Encapsulation of Biorecognition Elements. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5420-5428. [PMID: 31913006 PMCID: PMC7255420 DOI: 10.1021/acsami.9b17506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Implantable and wearable biosensors that enable monitoring of biophysical and biochemical parameters over long durations are highly attractive for early and presymptomatic diagnosis of pathological conditions and timely clinical intervention. Poor stability of antibodies used as biorecognition elements and the lack of effective methods to refresh the biosensors upon demand without severely compromising the functionality of the biosensor remain significant challenges in realizing protein biosensors for long-term monitoring. Here, we introduce a novel method involving organosilica encapsulation of antibodies for preserving their biorecognition capability under harsh conditions, typically encountered during the sensor refreshing process, and elevated temperature. Specifically, a simple aqueous rinsing step using sodium dodecyl sulfate (SDS) solution refreshes the biosensor by dissociating the antibody-antigen interactions. Encapsulation of the antibodies with an organosilica layer is shown to preserve the biorecognition capability of otherwise unstable antibodies during the SDS treatment, thus ultimately facilitating the refreshability of the biosensor over multiple cycles. Harnessing this method, we demonstrate the refreshability of plasmonic biosensors for anti-IgG (model bioanalyte) and neutrophil gelatinase-associated lipocalin (NGAL) (a biomarker for acute and chronic kidney injury). The novel encapsulation approach demonstrated can be easily extended to other transduction platforms to realize refreshable biosensors for monitoring of protein biomarkers over long durations.
Collapse
Affiliation(s)
- Rohit Gupta
- Institute of Materials Science and Engineering and Department of Mechanical Engineering and Materials Science , Washington University in St. Louis , St. Louis , Missouri 63130 , United States
| | - Jingyi Luan
- Institute of Materials Science and Engineering and Department of Mechanical Engineering and Materials Science , Washington University in St. Louis , St. Louis , Missouri 63130 , United States
| | - Shantanu Chakrabartty
- Department of Electrical and Systems Engineering , Washington University in St. Louis , St. Louis , Missouri 63130 , United States
| | - Erica L Scheller
- Department of Medicine, Division of Bone and Mineral Diseases , Washington University in St. Louis , St. Louis , Missouri 63110 , United States
| | - Jeremiah Morrissey
- Department of Anesthesiology , Washington University in St. Louis , St. Louis , Missouri 63110 , United States
- Siteman Cancer Center , Washington University in St. Louis , St. Louis , Missouri 63110 , United States
| | - Srikanth Singamaneni
- Institute of Materials Science and Engineering and Department of Mechanical Engineering and Materials Science , Washington University in St. Louis , St. Louis , Missouri 63130 , United States
- Siteman Cancer Center , Washington University in St. Louis , St. Louis , Missouri 63110 , United States
| |
Collapse
|
45
|
Abstract
The origins of the various elements in the human antibody repertoire have been and still are subject to considerable uncertainty. Uncertainty in respect of whether the various elements have always served a specific defense function or whether they were co-opted from other organismal roles to form a crude naïve repertoire that then became more complex as combinatorial mechanisms were added. Estimates of the current size of the human antibody naïve repertoire are also widely debated with numbers anywhere from 10 million members, based on experimentally derived numbers, to in excess of one thousand trillion members or more, based on the different sequences derived from theoretical combinatorial calculations. There are questions that are relevant at both ends of this number spectrum. At the lower bound it could be questioned whether this is an insufficient repertoire size to counter all the potential antigen-bearing pathogens. At the upper bound the question is rather simpler: How can any individual interrogate such an astronomical number of antibody-bearing B cells in a timeframe that is meaningful? This review evaluates the evolutionary aspects of the adaptive immune system, the calculations that lead to the large repertoire estimates, some of the experimental evidence pointing to a more restricted repertoire whose variation appears to derive from convergent 'structure and specificity features', and includes a theoretical model that seems to support it. Finally, a solution that may reconcile the size difference anomaly, which is still a hot subject of debate, is suggested.
Collapse
|
46
|
Meyer-Hermann M. Injection of Antibodies against Immunodominant Epitopes Tunes Germinal Centers to Generate Broadly Neutralizing Antibodies. Cell Rep 2019; 29:1066-1073.e5. [DOI: 10.1016/j.celrep.2019.09.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/19/2019] [Accepted: 09/18/2019] [Indexed: 12/28/2022] Open
|
47
|
Burnett DL, Reed JH, Christ D, Goodnow CC. Clonal redemption and clonal anergy as mechanisms to balance B cell tolerance and immunity. Immunol Rev 2019; 292:61-75. [DOI: 10.1111/imr.12808] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Deborah L. Burnett
- Garvan Institute of Medical Research Darlinghurst NSW Australia
- St Vincent's Clinical School UNSW Sydney Darlinghurst NSW Australia
| | - Joanne H. Reed
- Garvan Institute of Medical Research Darlinghurst NSW Australia
- St Vincent's Clinical School UNSW Sydney Darlinghurst NSW Australia
| | - Daniel Christ
- Garvan Institute of Medical Research Darlinghurst NSW Australia
- St Vincent's Clinical School UNSW Sydney Darlinghurst NSW Australia
| | - Christopher C. Goodnow
- Garvan Institute of Medical Research Darlinghurst NSW Australia
- St Vincent's Clinical School UNSW Sydney Darlinghurst NSW Australia
| |
Collapse
|
48
|
Yan L, Neher RA, Shraiman BI. Phylodynamic theory of persistence, extinction and speciation of rapidly adapting pathogens. eLife 2019; 8:e44205. [PMID: 31532393 PMCID: PMC6809594 DOI: 10.7554/elife.44205] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 09/14/2019] [Indexed: 11/13/2022] Open
Abstract
Rapidly evolving pathogens like influenza viruses can persist by changing their antigenic properties fast enough to evade the adaptive immunity, yet they rarely split into diverging lineages. By mapping the multi-strain Susceptible-Infected-Recovered model onto the traveling wave model of adapting populations, we demonstrate that persistence of a rapidly evolving, Red-Queen-like state of the pathogen population requires long-ranged cross-immunity and sufficiently large population sizes. This state is unstable and the population goes extinct or 'speciates' into two pathogen strains with antigenic divergence beyond the range of cross-inhibition. However, in a certain range of evolutionary parameters, a single cross-inhibiting population can exist for times long compared to the time to the most recent common ancestor ([Formula: see text]) and gives rise to phylogenetic patterns typical of influenza virus. We demonstrate that the rate of speciation is related to fluctuations of [Formula: see text] and construct a 'phase diagram' identifying different phylodynamic regimes as a function of evolutionary parameters.
Collapse
Affiliation(s)
- Le Yan
- Kavli Institute for Theoretical PhysicsUniversity of California, Santa BarbaraSanta BarbaraUnited States
| | - Richard A Neher
- BiozentrumUniversity of Basel, Swiss Institute for BioinformaticsBaselSwitzerland
| | - Boris I Shraiman
- Kavli Institute for Theoretical PhysicsUniversity of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
49
|
Arulraj T, Binder SC, Robert PA, Meyer-Hermann M. Synchronous Germinal Center Onset Impacts the Efficiency of Antibody Responses. Front Immunol 2019; 10:2116. [PMID: 31555300 PMCID: PMC6742702 DOI: 10.3389/fimmu.2019.02116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 08/22/2019] [Indexed: 12/25/2022] Open
Abstract
The germinal center reaction is an important target for modulating antibody responses. Antibody production from germinal centers is regulated by a negative feedback mechanism termed antibody feedback. By imposing antibody feedback, germinal centers can interact and regulate the output of other germinal centers. Using an agent-based model of the germinal center reaction, we studied the impact of antibody feedback on kinetics and efficiency of a germinal center. Our simulations predict that high feedback of antibodies from germinal centers reduces the production of plasma cells and subsequently the efficiency of the germinal center reaction by promoting earlier termination. Affinity maturation is only weakly improved by increased antibody feedback and ultimately interrupted because of premature termination of the reaction. The model predicts that the asynchronous onset and changes in number of germinal centers could alter the efficiency of antibody response due to changes in feedback by soluble antibodies. Consequently, late initialized germinal centers have a compromised output due to higher antibody feedback from the germinal centers formed earlier. The results demonstrate potential effects of germinal center intercommunication and highlight the importance of understanding germinal center interactions for optimizing the antibody response, in particular, in the elderly and in the context of vaccination.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian C Binder
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Individualized Infection Medicine (CIIM), Hanover, Germany
| | - Philippe A Robert
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Individualized Infection Medicine (CIIM), Hanover, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
50
|
Almagro JC, Pedraza-Escalona M, Arrieta HI, Pérez-Tapia SM. Phage Display Libraries for Antibody Therapeutic Discovery and Development. Antibodies (Basel) 2019; 8:antib8030044. [PMID: 31544850 PMCID: PMC6784186 DOI: 10.3390/antib8030044] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/24/2023] Open
Abstract
Phage display technology has played a key role in the remarkable progress of discovering and optimizing antibodies for diverse applications, particularly antibody-based drugs. This technology was initially developed by George Smith in the mid-1980s and applied by John McCafferty and Gregory Winter to antibody engineering at the beginning of 1990s. Here, we compare nine phage display antibody libraries published in the last decade, which represent the state of the art in the discovery and development of therapeutic antibodies using phage display. We first discuss the quality of the libraries and the diverse types of antibody repertoires used as substrates to build the libraries, i.e., naïve, synthetic, and semisynthetic. Second, we review the performance of the libraries in terms of the number of positive clones per panning, hit rate, affinity, and developability of the selected antibodies. Finally, we highlight current opportunities and challenges pertaining to phage display platforms and related display technologies.
Collapse
Affiliation(s)
- Juan C Almagro
- GlobalBio, Inc., 320, Cambridge, MA 02138, USA.
- UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico.
| | - Martha Pedraza-Escalona
- CONACyT-UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| | - Hugo Iván Arrieta
- CONACyT-UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| | - Sonia Mayra Pérez-Tapia
- CONACyT-UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| |
Collapse
|