1
|
Dynamic Role of Phospholipases A2 in Health and Diseases in the Central Nervous System. Cells 2021; 10:cells10112963. [PMID: 34831185 PMCID: PMC8616333 DOI: 10.3390/cells10112963] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Phospholipids are major components in the lipid bilayer of cell membranes. These molecules are comprised of two acyl or alkyl groups and different phospho-base groups linked to the glycerol backbone. Over the years, substantial interest has focused on metabolism of phospholipids by phospholipases and the role of their metabolic products in mediating cell functions. The high levels of polyunsaturated fatty acids (PUFA) in the central nervous system (CNS) have led to studies centered on phospholipases A2 (PLA2s), enzymes responsible for cleaving the acyl groups at the sn-2 position of the phospholipids and resulting in production of PUFA and lysophospholipids. Among the many subtypes of PLA2s, studies have centered on three major types of PLA2s, namely, the calcium-dependent cytosolic cPLA2, the calcium-independent iPLA2 and the secretory sPLA2. These PLA2s are different in their molecular structures, cellular localization and, thus, production of lipid mediators with diverse functions. In the past, studies on specific role of PLA2 on cells in the CNS are limited, partly because of the complex cellular make-up of the nervous tissue. However, understanding of the molecular actions of these PLA2s have improved with recent advances in techniques for separation and isolation of specific cell types in the brain tissue as well as development of sensitive molecular tools for analyses of proteins and lipids. A major goal here is to summarize recent studies on the characteristics and dynamic roles of the three major types of PLA2s and their oxidative products towards brain health and neurological disorders.
Collapse
|
2
|
Rodríguez-Berdini L, Ferrero GO, Bustos Plonka F, Cardozo Gizzi AM, Prucca CG, Quiroga S, Caputto BL. The moonlighting protein c-Fos activates lipid synthesis in neurons, an activity that is critical for cellular differentiation and cortical development. J Biol Chem 2020; 295:8808-8818. [PMID: 32385110 DOI: 10.1074/jbc.ra119.010129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 04/28/2020] [Indexed: 01/07/2023] Open
Abstract
Differentiation of neuronal cells is crucial for the development and function of the nervous system. This process involves high rates of membrane expansion, during which the synthesis of membrane lipids must be tightly regulated. In this work, using a variety of molecular and biochemical assays and approaches, including immunofluorescence microscopy and FRET analyses, we demonstrate that the proto-oncogene c-Fos (c-Fos) activates cytoplasmic lipid synthesis in the central nervous system and thereby supports neuronal differentiation. Specifically, in hippocampal primary cultures, blocking c-Fos expression or its activity impairs neuronal differentiation. When examining its subcellular localization, we found that c-Fos co-localizes with endoplasmic reticulum markers and strongly interacts with lipid-synthesizing enzymes, whose activities were markedly increased in vitro in the presence of recombinant c-Fos. Of note, the expression of c-Fos dominant-negative variants capable of blocking its lipid synthesis-activating activity impaired neuronal differentiation. Moreover, using an in utero electroporation model, we observed that neurons with blocked c-Fos expression or lacking its AP-1-independent activity fail to initiate cortical development. These results highlight the importance of c-Fos-mediated activation of lipid synthesis for proper nervous system development.
Collapse
Affiliation(s)
- Lucia Rodríguez-Berdini
- Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas), Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gabriel Orlando Ferrero
- Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas), Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florentyna Bustos Plonka
- Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas), Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrés Mauricio Cardozo Gizzi
- Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas), Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - César Germán Prucca
- Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas), Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Santiago Quiroga
- Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas), Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Beatriz Leonor Caputto
- Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas), Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
3
|
Yang B, Fritsche KL, Beversdorf DQ, Gu Z, Lee JC, Folk WR, Greenlief CM, Sun GY. Yin-Yang Mechanisms Regulating Lipid Peroxidation of Docosahexaenoic Acid and Arachidonic Acid in the Central Nervous System. Front Neurol 2019; 10:642. [PMID: 31275232 PMCID: PMC6591372 DOI: 10.3389/fneur.2019.00642] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Phospholipids in the central nervous system (CNS) are rich in polyunsaturated fatty acids (PUFAs), particularly arachidonic acid (ARA) and docosahexaenoic acid (DHA). Besides providing physical properties to cell membranes, these PUFAs are metabolically active and undergo turnover through the “deacylation-reacylation (Land's) cycle”. Recent studies suggest a Yin-Yang mechanism for metabolism of ARA and DHA, largely due to different phospholipases A2 (PLA2s) mediating their release. ARA and DHA are substrates of cyclooxygenases and lipoxygenases resulting in an array of lipid mediators, which are pro-inflammatory and pro-resolving. The PUFAs are susceptible to peroxidation by oxygen free radicals, resulting in the production of 4-hydroxynonenal (4-HNE) from ARA and 4-hydroxyhexenal (4-HHE) from DHA. These alkenal electrophiles are reactive and capable of forming adducts with proteins, phospholipids and nucleic acids. The perceived cytotoxic and hormetic effects of these hydroxyl-alkenals have impacted cell signaling pathways, glucose metabolism and mitochondrial functions in chronic and inflammatory diseases. Due to the high levels of DHA and ARA in brain phospholipids, this review is aimed at providing information on the Yin-Yang mechanisms for regulating these PUFAs and their lipid peroxidation products in the CNS, and implications of their roles in neurological disorders.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry, University of Missouri, Columbia, MO, United States
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - David Q Beversdorf
- Departments of Radiology, Neurology and Psychological Sciences, and the Thompson Center, Columbia, MO, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, United States
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - William R Folk
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - C Michael Greenlief
- Department of Chemistry, University of Missouri, Columbia, MO, United States
| | - Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| |
Collapse
|
4
|
Tong W, Shah D, Xu J, Diehl JA, Hans A, Hannink M, Sun GY. Involvement of lipid mediators on cytokine signaling and induction of secretory phospholipase A2 in immortalized astrocytes (DITNC). J Mol Neurosci 1999; 12:89-99. [PMID: 10527453 DOI: 10.1007/bf02736923] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Our previous studies demonstrated the ability of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha) and interleukin 1beta (IL-1beta), to stimulate NFkappaB/DNA binding and synthesis of secretory phospholipase A2 (sPLA2) in immortalized astrocytes (DITNC). In this study, we examined possible involvement of lipid mediators in the cytokine action. Using [14C]serine to label sphingomyelin and ceramide in these cells, subsequent exposure of cells to cytokines did not result in alteration of sphingomyelin/ceramide ratio. Furthermore, neither exogenous sphingomyelinase nor cell-permeable ceramides could stimulate NFkappaB/DNA binding. On the other hand, C-2 ceramide (0.3 microM) as well as other lipid mediators, such as lysophosphatidylcholine and arachidonic acid, were able to elicit a small increase in sPLA2 and potentiate the induction of sPLA2 by TNF-alpha. When DITNC cells were prelabeled with [32P]Pi, an increase in labeled phosphatidic acid (PA) was observed on treatment of cells with IL-1beta (200 U/mL). However, despite the ability of phorbol myristate acetate (PMA) to stimulate phospholipase D (PLD) and synthesis of phosphatidylethanol (PEt) in these cells, PLD activity was not affected by IL-1beta. With the [32P]labeled cells, however, PA-phosphohydrolase inhibitors, such as chlorpromazine and propranolol, could elicit large increases in labeled PA, indicating active PA metabolism in these cells. Cytokines also caused an increase in levels of diacylglycerol (DG) in these cells, although the source of this lipid pool is presently not understood. Taken together, these results provide evidence for the participation of PA and DG in cytokine signaling activity. Furthermore, although cytokines did not cause the release of ceramide, lipid mediators, such as lysophospholipids, and AA could modulate cytokine-mediated induction of sPLA2 in astrocytes.
Collapse
Affiliation(s)
- W Tong
- Biochemistry Department, University of Missouri, Columbia 65212, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Singh AK, Jiang Y. Quantitative chromatographic analysis of inositol phospholipids and related compounds. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1995; 671:255-80. [PMID: 8520695 DOI: 10.1016/0378-4347(94)00558-m] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The metabolism of phospholipids and the mobilization of second messengers such as inositol-1,4,5-trisphosphate, 1,2-diacylglycerol (DAG) and arachidonic acid (AA) from phospholipids is commonly studied by radiolabelling phospholipids with [3H]myo-inositol or [32P]ATP and measuring the incorporation of radioactivity in different phospholipids or their hydrolysis products. However, for the radiolabelling method to accurately reflect changes in the compound's mass, it is essential that the tissue is labelled to isotopic equilibrium which is difficult to achieve. To circumvent the disadvantages of the radiolabelling method, several analytical procedures have been developed for the mass analysis of phospholipids and inositolphosphates (IPs). Quantitation of the mass or the radiolabelling of phospholipids is a complex multi-step procedure that involves quantitative isolation of phospholipids, fractionation of individual phospholipids and either determination of radioactivity in each component or the measurement of their mass. Phospholipids, DAG and AA are extracted from tissue sample with organic solvents such as chloroform-methanol (2:1) containing HCl or formic acid. The extract is separated by TLC, cartridge-column chromatography or HPLC on a reversed-phase column. Phospholipids are quantitated by measuring inorganic phosphate, absorption at 200 nm or mass spectrometry. Inositol phosphates are extracted with perchloric acid or trichloroacetic acid and separated by ion-exchange cartridge-column or HPLC with an ion-exchange column. IPs are quantitated by measuring inorganic phosphate or by using enzymatic reaction, metal-dye coupling, NMR or mass spectrometry.
Collapse
Affiliation(s)
- A K Singh
- Department of Veterinary Diagnostic Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul 55108, USA
| | | |
Collapse
|
6
|
Myher JJ, Kuksis A. General strategies in chromatographic analysis of lipids. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1995; 671:3-33. [PMID: 8520698 DOI: 10.1016/0378-4347(95)00178-l] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lipid extracts of natural sources contain a large number of lipid classes and molecular species. Completely reproducible samples are obtained only with great care and skill. Analytical methods other than chromatography and/or mass spectrometry are of little use for resolution and identification of lipid molecules even in simple mixtures. The analytical information desired governs the selection of the chromatographic and mass spectrometric method, which determine the sample preparation and derivative needed. Usually a combination of chromatographic methods is necessary to identify specific species of lipids. The recent development of soft ionization techniques, that are readily interfaced with mass spectrometers, have greatly simplified the sample preparation and have largely eliminated the need for derivatization. Because these techniques require expensive equipment and dedicated operators, the methods selected must be consistent with the true analytical needs and the available resources. Although personal preference cannot be eliminated entirely, the general strategies outlined below should help to reduce the number of possibilities facing a lipid analyst to a few practical choices.
Collapse
Affiliation(s)
- J J Myher
- Banting and Best Department of Medical Research, University of Toronto, Canada
| | | |
Collapse
|
7
|
Moring J, Niego LA, Ganley LM, Trumbore MW, Herbette LG. Interaction of the NMDA receptor noncompetitive antagonist MK-801 with model and native membranes. Biophys J 1994; 67:2376-86. [PMID: 7696477 PMCID: PMC1225622 DOI: 10.1016/s0006-3495(94)80724-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
MK-801, a noncompetitive antagonist of the NMDA (N-methyl-D-aspartate) receptor, has protective effects against excitotoxicity and ethanol withdrawal seizures. We have determined membrane/buffer partition coefficients (Kp[mem]) of MK-801 and its rates of association with and dissociation from membranes. Kp[mem] (+/- SD) = 1137 (+/- 320) in DOPC membranes and 485 (+/- 99) in synaptoneurosomal (SNM) lipid membranes from rat cerebral cortex (unilamellar vesicles). In multilamellar vesicles, Kp[mem] was higher: 3374 (+/- 253) in DOPC and 6879 (+/- 947) in SNM. In cholesterol/DOPC membranes, Kp[mem] decreased as the cholesterol content increased. MK-801 associated with and dissociated from membranes rapidly. Addition of ethanol to SNM did not affect Kp[mem]. MK-801 decreased the cooperative unit size of DMPC membranes. The decrease was smaller than that caused by 1,4-dihydropyridine drugs, indicating a weaker interaction with the hydrocarbon core. Small angle x-ray diffraction, with multilayer autocorrelation difference function modeling, indicated that MK-801 in a cholesterol/DOPC membrane (mole ratio = 0.6) causes a perturbation at approximately 16.0 A from the bilayer center. In bilayers of cholesterol/DOPC = 0.15 (mole ratio) or pure DOPC, the perturbation caused by MK-801 was more complex. The physical chemical interactions of MK-801 with membranes in vitro are consistent with a fast onset and short duration of action in vivo.
Collapse
Affiliation(s)
- J Moring
- Department of Psychiatry, University of Connecticut Health Center, Farmington 06030
| | | | | | | | | |
Collapse
|
8
|
Lin TA, Zhang JP, Sun GY. The cholinergic receptor-linked phosphoinositide metabolism in mouse cerebrum and cerebellum in vivo. Brain Res 1993; 622:169-76. [PMID: 8242355 DOI: 10.1016/0006-8993(93)90816-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cholinergic receptor-linked poly-phosphoinositide hydrolysis was studied in mouse cerebrum and cerebellum after prelabeling the brain with [3H]inositol. I.p. injection of Li (8 meq/kg) to C57Bl/6J mice for 4 h resulted in 14- and five-fold increases in [3H]inositol-labeled inositol monophosphate (IP1) in cerebrum and cerebellum, respectively. The labeled inositol bisphosphate (IP2) was also increased 83 and 19% in cerebrum and cerebellum, respectively. Prior injection of atropine (100 mg/kg) resulted in inhibition of Li-induced increases in labeled IP1 by 74 and 56% in cerebrum and cerebellum, respectively. Administration of pilocarpine (20 mg/kg) to the Li-treated mice for 30 min resulted in further increases in labeled IP1 and IP2 and a concomitant decrease in labeled inositol in cerebrum but not in cerebellum. Mass measurements of IP1 and IP2 isomers by HPLC revealed that inositol 1-monophosphate (Ins(1)P), inositol 4-monophosphate (Ins(4)P) and inositol 1,4-bisphosphate (Ins(1,4)P2) were all increased by pilocarpine administration in the Li-treated mouse cerebrum. The effects of pilocarpine administration in mouse cerebrum (increases in IP1 and IP2) could be completely inhibited by preinjection of atropine. Atropine injection also decreased the levels of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. Surprisingly, a decrease in Ins(1,4,5)P3 level was also found in non-Li-treated mice after pilocarpine administration (30 mg/kg, 10-40 min). Except for the increase (20%) in [32P]-labeled PIP in the cerebrum, Li or Li together with pilocarpine administration did not alter the levels of [3H]inositol or [32P]phosphate-labeled phosphoinositides.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T A Lin
- Department of Biochemistry, School of Medicine, University of Missouri, Columbia 65212
| | | | | |
Collapse
|
9
|
Mallinger AG, Yao JK, Brown AS, Dippold CS. Analysis of complex mixtures of phospholipid classes from cell membranes using two-dimensional thin-layer chromatography and scanning laser densitometry. JOURNAL OF CHROMATOGRAPHY 1993; 614:67-75. [PMID: 8496287 DOI: 10.1016/0378-4347(93)80224-r] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Increasing recognition of the important roles served by membrane phospholipids in cellular metabolic and signal transduction processes has stimulated interest in examining potential phospholipid abnormalities in patients with psychiatric disorders. This report describes a method, based on several novel modifications of existing techniques, for concurrently analyzing nanomolar amounts of nine phospholipid classes in a single aliquot of membrane extract. With this method, diverse phospholipid classes are first separated by two-dimensional thin-layer chromatography, and then determined using two-dimensional scanning laser densitometry. The method is able to quantitate even small amounts of specific phospholipid classes, corresponding to < 10 ng of lipid phosphorus. The sensitivity of this method allows it to be readily applied to clinical studies involving membranes from cell types that are obtainable only in small quantities.
Collapse
Affiliation(s)
- A G Mallinger
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, PA 15312
| | | | | | | |
Collapse
|
10
|
Lin TA, Zhang JP, Sun GY. Metabolism of inositol 1,4,5-trisphosphate in mouse brain due to decapitation ischemic insult: effects of acute lithium administration and temporal relationship to diacylglycerols, free fatty acids and energy metabolites. Brain Res 1993; 606:200-6. [PMID: 8490717 DOI: 10.1016/0006-8993(93)90985-v] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous studies have shown that global cerebral ischemia induced by decapitation leads to the stimulated hydrolysis of poly-phosphoinositides. In this study, the decapitation model was used to further examine the temporal events related to metabolism of Ins(1,4,5)P3 and the release of diacylglycerols (DGs) and free fatty acids (FFAs) in the mouse brain. Since lithium administration is known to inhibit inositol monophosphatase activity in brain, the effects of acute lithium injection on Ins(1,4,5)P3 metabolism were also examined. Cerebral ischemia induced by decapitation of C57 Bl/6J mice resulted in transient increases of Ins(1,4,5)P3, Ins(1,4)P2 and Ins(4)P which peaked at 35, 65 and 125 s, respectively. The level of Ins(1)P, however, was not altered. Mice administered lithium by intraperitoneal injection (8 meq/kg for 4 h) gave rise to a 40- and 4-fold increase in levels of Ins(1)P, Ins(4)P, respectively, a 20% increase in levels of Ins(1,4)P2 but no apparent changes in the levels of Ins(1,4,5)P3. Decapitation also induced an increase in the levels of DGs and FFAs. Unlike the transient appearance of Ins(1,4,5)P3, however, DG levels increased steadily for 2 min and then reached a plateau whereas the FFAs showed a lag time of 35 s prior to a biphasic increase. During the initial 2 min after decapitation, there was a preferential increase in the DG species containing 18:0 and 20:4. Lithium administration did not alter the decapitation-induced release of DG and FFA. As expected, decapitation gave rise to a rapid decrease in the levels of phosphocreatine and ATP and the decline in ATP was marked by a transient appearance of ADP and a concomitant increase in AMP.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T A Lin
- Biochemistry Department, University of Missouri, School of Medicine, Columbia 65212
| | | | | |
Collapse
|
11
|
Kunievsky B, Bazan NG, Yavin E. Generation of arachidonic acid and diacylglycerol second messengers from polyphosphoinositides in ischemic fetal brain. J Neurochem 1992; 59:1812-9. [PMID: 1328530 DOI: 10.1111/j.1471-4159.1992.tb11014.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Intracerebral administration of [3H]arachidonic acid ([3H]ArA) into 19-20-day-old rat embryos, resulted in a rapid incorporation of label into brain lipids. One hour after injection, 55.6 +/- 8.2, 18.0 +/- 3.4, and 13.7 +/- 1.3% of the total radioactivity was associated with phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine, respectively. Approximately 10% of radioactivity was found acylated in neutral lipids of which free ArA comprised only 1.5 +/- 0.2% of the total radioactivity. Complete restriction of the maternal-fetal circulation for < or = 40 min did not affect the rate of [3H]ArA incorporation (t1/2 = 2 min) into fetal brain lipids, suggesting an effective acylation mechanism that proceeds irrespective of the impaired blood flow. After a short restriction period (5 min), the radioactivity in diacylglycerol was elevated by 50%. After a longer restriction period (20 min), the radioactivity in the free fatty acid and diacylglycerol fractions increased to values of 130 and 87%, respectively. Polyphosphoinositides prelabeled with either [3H]ArA or 32P were rapidly degraded after 5 min of ischemia. After 20 min, the decrease in phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate radioactivity was 47 and 70%, respectively. Double labeling of phospholipids with [14C]palmitic acid and [3H]ArA indicated a preferential loss of [3H]ArA within the polyphosphoinositide species after 20 min, but not after 5 min of ischemia. The specific activity of [14C]palmitate remained unchanged. The current data suggest phospholipase C-mediated diacylglycerol formation at the beginning of the insult followed by a phospholipase A2-mediated ArA liberation at a later time, both enzymes presumably acting preferentially on polyphosphoinositide species.
Collapse
Affiliation(s)
- B Kunievsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
12
|
Singh AK. Quantitative analysis of inositol lipids and inositol phosphates in synaptosomes and microvessels by column chromatography: comparison of the mass analysis and the radiolabelling methods. JOURNAL OF CHROMATOGRAPHY 1992; 581:1-10. [PMID: 1429990 DOI: 10.1016/0378-4347(92)80441-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chromatographic methods that measure both the mass and the radiolabelling of various inositol lipids and inositol phosphates in tissues have been developed. The mass of phosphatidylinositol (PtdIns), phosphatidylinositol-4-monophosphate [PtdIns(4)P] and phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] was quantitated by measuring the inorganic phosphate, whereas inositol monophosphate (IP), inositol bisphosphate (IP2), inositol trisphosphate (IP3) and inositol tetrakisphosphate (IP4) were quantitated by using an enzymic method. The radiolabelling of various inositol lipids and inositol phosphates was determined by incubating the tissue samples with [3H]myo-inositol, separating individual inositol lipids and inositol phosphates, and measuring the radioactivity in each compound. Although the mass analysis method was sensitive enough to measure low levels of inositol lipids or inositol phosphates, the method was laborious and time-consuming. Compared with the enzymic method, the radiolabelling method was simple and fast, but it gave variable results. This study demonstrated differences in inositol lipid and inositol phosphate levels by radiolabelling and mass measurements, and agonist-stimulated phosphatidylinositol turnover of synaptosomes versus the blood-brain barrier as represented by microvessels. Although the mass of PtdIns, PtdIns(4)P and PtdIns(4,5)P2 was comparable in synaptosomes and microvessels, the incorporation of [3H]myo-inositol into phosphorylated PtdIns in microvessels was less than that in synaptosomes.
Collapse
Affiliation(s)
- A K Singh
- Department of Veterinary Diagnostic Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul 55108
| |
Collapse
|
13
|
Lin TN, Liu TH, Xu J, Hsu CY, Sun GY. Brain polyphosphoinositide metabolism during focal ischemia in rat cortex. Stroke 1991; 22:495-8. [PMID: 1850877 DOI: 10.1161/01.str.22.4.495] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using a rat model of stroke, we examined the effects of focal cerebral ischemia on the metabolism of polyphosphoinositides by injecting 32Pi into both the left and right cortices. After equilibration of the label for 2-3 hours, ischemia induced a significant decrease (p less than 0.001) in the concentrations of labeled phosphatidyl 4,5-bisphosphates (66-78%) and phosphatidylinositol 4-phosphate (64-67%) in the right middle cerebral artery cortex of four rats. The phospholipid labeling pattern in the left middle cerebral artery cortex, which sustained only mild ischemia and no permanent tissue damage, was not different from that of two sham-operated controls. However, when 32Pi was injected 1 hour after the ischemic insult, there was a significant decrease (p less than 0.01) in the incorporation of label into the phospholipids in both cortices of four ischemic rats compared with four sham-operated controls. Furthermore, differences in the phospholipid labeling pattern were observed in the left cortex compared with the sham-operated controls. The change in labeling pattern was attributed to the partial reduction in blood flow following ligation of the common carotid arteries. We provide a sensitive procedure for probing the effects of focal cerebral ischemia on the polyphosphoinositide signaling pathway in the brain, which may play an important role in the pathogenesis of tissue injury.
Collapse
Affiliation(s)
- T N Lin
- Biochemistry Department, University of Missouri, Columbia 65212
| | | | | | | | | |
Collapse
|
14
|
Navidi M, Yoa FG, Sun GY. Brief chronic effects of lithium administration on rat brain phosphoinositides and phospholipids. J Neurosci Res 1991; 28:428-33. [PMID: 1649922 DOI: 10.1002/jnr.490280316] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lithium is known to exert its biochemical action on cells and tissues by inhibiting the enzymic conversion of inositol monophosphates to inositol. However, it is not clear whether this inhibitory action may lead to changes in the de novo biosynthesis of phosphatidylinositol and its phosphorylated derivatives. This biosynthetic scheme may have an important bearing with regard to the receptor-mediated signal transduction mechanism involving hydrolysis of polyphosphoinositides and release of inositol trisphosphate as second messenger for mobilization of intracellular calcium. In this study, the effects of brief chronic lithium administration on metabolism of brain phosphoinositides and other phospholipids were examined using the radiotracer technique with 32Pi as precursor. Sprague Dawley rats that were treated with lithium (3-4 meq/kg body wt) twice daily for 2-6 days consistently indicated an increase in the labeling of phosphatidylinositol 4,5-bisphosphates and a decrease in labeling of phosphatidylinositols and phosphatidylethanolamines. These phospholipid changes were found in both cortex and hippocampus and appeared to occur primarily in the synaptosomal fraction. Although the extent of the phospholipid changes could vary depending on both duration and dose levels of the lithium administered, these results demonstrated subtle effects of lithium on depressing the biosynthesis of phosphatidylinositol as well as phosphatidylethanolamine but perhaps a compensative increase in the synthesis of the phosphatidylinositol 4,5-bisphosphates.
Collapse
Affiliation(s)
- M Navidi
- Biochemistry Department, University of Missouri, Columbia 65212
| | | | | |
Collapse
|
15
|
Lin TN, Sun GY, Premkumar N, MacQuarrie RA, Carter SR. Decapitation-induced changes in inositol phosphates in rat brain. Biochem Biophys Res Commun 1990; 167:1294-301. [PMID: 2322275 DOI: 10.1016/0006-291x(90)90664-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Decapitation resulted in a time-dependent production of inositol phosphates in rat brain. This production was analyzed by measuring both the radioactivity and the concentrations of inositol phosphates generated from [3H]inositol-labeled phospholipids. Both measurements produced the same time-dependent changes, including a rapid decrease in inositol 1,4,5-trisphosphate within 1.5 min, a 6-fold increase in inositol 1,4-bisphosphate to a maximum at 1.5 min, a 5-fold rise in inositol 4-monophosphate to a maximum at 2.5 min, and little change in inositol 1-monophosphate. The temporal changes in the mass and radioactivity of these compounds, together with the decrease in labeling of phosphatidylinositol 4,5-bisphosphates, support the idea that the inositol phosphates originate from the hydrolysis of phosphatidylinositol 4,5-bisphosphates and not from either the direct hydrolysis of phosphatidylinositol 4-phosphates or phosphatidylinositols.
Collapse
Affiliation(s)
- T N Lin
- Department of Biochemistry, University of Missouri, Columbia 65203
| | | | | | | | | |
Collapse
|
16
|
Simonsson P, Sun GY, Aradottir S, Alling C. Bradykinin effects on phospholipid metabolism and its relation to arachidonic acid turnover in neuroblastoma x glioma hybrid cells (NG 108-15). Cell Signal 1989; 1:587-98. [PMID: 2518358 DOI: 10.1016/0898-6568(89)90067-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In neuroblastoma x glioma hybrid cells (NG 108-15) labelled with [32P]-trisodium phosphate, [3H]-inositol and [14C]-arachidonic acid, bradykinin stimulated the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) while it had no effect on the release of [14C]-arachidonic acid (AA). The effect on PIP2 was time- and dose-dependent with a maximal effect on [3H]-inositol- and [32P]-labelled cells after 10-30 s of stimulation with 10(-6) M bradykinin. However, the hydrolysis of [14C]-AA labelled PIP2 was delayed compared to the effect on [3H]- and [14C]-PIP2 and was not detectable until after 60 s of stimulation. Bradykinin stimulation resulted in an increased formation of [3H]-inositol phosphates (IP) and [32P]- and [14C]-phosphatidic acid (PA) but the time course for PA formation did not follow the time-course for PIP2 hydrolysis. A reduced labelling of [32P]- and [14C]-phosphatidylcholine was also found in stimulated cells suggesting that PA may derive from other sources than PIP2. In conclusion, our results indicate that bradykinin activates phospholipase C, but not phospholipase A2, in NG 108-15 cells.
Collapse
Affiliation(s)
- P Simonsson
- Department of Psychiatry and Neurochemistry, Lund University, Sweden
| | | | | | | |
Collapse
|