1
|
Gonsalves AM, Baker SE, Jacob DW, Harper JL, Manrique‐Acevedo CM, Limberg JK. Effect of endothelin-1 on the blood pressure response to acute hypoxia and hyperoxia in healthy young men. Physiol Rep 2024; 12:e70004. [PMID: 39218615 PMCID: PMC11366443 DOI: 10.14814/phy2.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Endothelin-1 (ET-1) and its receptors are linked to increases in sensitivity of the chemoreceptors to hypoxic stress and the development of hypertension in preclinical models. We hypothesized ET receptor antagonism would lower resting blood pressure (BP) as well as the acute BP response to chemoreflex stress. Twenty-four men (31 ± 5 years, 26 ± 3 kg/m2) completed two study visits (control, bosentan). On each visit, BP was assessed under three conditions: (1) normoxia (FiO2 0.21), (2) chemoreflex excitation via hypoxia (FiO2 0.05-0.21), (3) chemoreflex inhibition via hyperoxia (FiO2 1.00). Bosentan increased plasma ET-1 (0.94 ± 0.90 to 1.27 ± 0.62 pg/mL, p = 0.004), supporting receptor blockade. Resting diastolic (73 ± 5 to 69 ± 7 mmHg, p = 0.007) and mean (93 ± 7 to 88 ± 7 mmHg, p = 0.005) BP were reduced following bosentan compared to control with no change in systolic BP (p = 0.507). The mean BP response to both acute hypoxia (-0.48 ± 0.38 to -0.25 ± 0.31 mmHg/%, p = 0.004) and hyperoxia (area under the curve -93 ± 108 to -27 ± 66 AU, p = 0.018) were attenuated following bosentan. Acute ET receptor inhibition attenuates the rise in BP during chemoreflex excitation as well as the fall in BP during chemoreflex inhibition in healthy young men. These data support a role for ET-1 in control of resting BP, possibly through a chemoreceptor-mediated mechanism.
Collapse
Affiliation(s)
- Anna M. Gonsalves
- Department of Nutrition and Exercise PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Sarah E. Baker
- Department of AnesthesiologyMayo ClinicRochesterMinnesotaUSA
| | - Dain W. Jacob
- Department of Nutrition and Exercise PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Jennifer L. Harper
- Department of Nutrition and Exercise PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Camila M. Manrique‐Acevedo
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMissouriUSA
- Department of MedicineUniversity of MissouriColumbiaMissouriUSA
- Research ServiceHarry S. Truman Memorial Veterans' HospitalColumbiaMissouriUSA
| | - Jacqueline K. Limberg
- Department of Nutrition and Exercise PhysiologyUniversity of MissouriColumbiaMissouriUSA
- Department of AnesthesiologyMayo ClinicRochesterMinnesotaUSA
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
2
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
3
|
Kuroda Y, Nonaka M, Kamikubo Y, Ogawa H, Murayama T, Kurebayashi N, Sakairi H, Miyano K, Komatsu A, Dodo T, Nakano-Ito K, Yamaguchi K, Sakurai T, Iseki M, Hayashida M, Uezono Y. Inhibition of endothelin A receptor by a novel, selective receptor antagonist enhances morphine-induced analgesia: Possible functional interaction of dimerized endothelin A and μ-opioid receptors. Biomed Pharmacother 2021; 141:111800. [PMID: 34175819 DOI: 10.1016/j.biopha.2021.111800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The misuse of opioids has led to an epidemic in recent times. The endothelin A receptor (ETAR) has recently attracted attention as a novel therapeutic target to enhance opioid analgesia. We hypothesized that endothelin A receptors may affect pain mechanisms by heterodimerization with μ opioid receptors. We examined the mechanisms of ETAR-mediated pain and the potential therapeutic effects of an ETAR antagonist, Compound-E, as an agent for analgesia. METHODS Real-time in vitro effect of Compound-E on morphine response was assessed in HEK293 cells expressing both endothelin A and μ opioid receptors through CellKey™ and cADDis cAMP assays. Endothelin A/μ opioid receptor dimerization was assessed by immunoprecipitation and live cell imaging. The in vivo effect of Compound-E was evaluated using a morphine analgesia mouse model that observed escape response behavior, body temperature, and locomotor activity. RESULTS In CellKey™ and cAMP assays, pretreatment of cells with endothelin-1 attenuated morphine-induced responses. These responses were improved by Compound-E, but not by BQ-123 nor by bosentan, an ETAR and endothelin B receptor antagonist. Dimerization of ETARs and μ opioid receptors was confirmed by Western blot and total internal reflection fluorescence microscopy in live cells. In vivo, Compound-E potentiated and prolonged the analgesic effects of morphine, enhanced hypothermia, and increased locomotor activity compared to morphine alone. CONCLUSION The results suggest that attenuation by endothelin-1 of morphine analgesia may be caused by dimerization of Endothelin A/μ opioid receptors. The novel ETAR antagonist Compound-E could be an effective adjunct to reduce opioid use.
Collapse
Affiliation(s)
- Yui Kuroda
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuji Kamikubo
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Haruo Ogawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hakushun Sakairi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Akane Komatsu
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Tetsushi Dodo
- Strategy Planning & Operations, Medicine Development Center, Eisai Co., Ltd., Ibaraki, Japan
| | - Kyoko Nakano-Ito
- Global Drug Safety, Medicine Development Center, Eisai Co., Ltd., Ibaraki, Japan
| | - Keisuke Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masako Iseki
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masakazu Hayashida
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan; Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Supportive and Palliative Care Research Support Office, National Center Hospital East, Chiba, Japan; Project for Supportive Care Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
4
|
Koyama Y. Endothelin ET B Receptor-Mediated Astrocytic Activation: Pathological Roles in Brain Disorders. Int J Mol Sci 2021; 22:ijms22094333. [PMID: 33919338 PMCID: PMC8122402 DOI: 10.3390/ijms22094333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
In brain disorders, reactive astrocytes, which are characterized by hypertrophy of the cell body and proliferative properties, are commonly observed. As reactive astrocytes are involved in the pathogenesis of several brain disorders, the control of astrocytic function has been proposed as a therapeutic strategy, and target molecules to effectively control astrocytic functions have been investigated. The production of brain endothelin-1 (ET-1), which increases in brain disorders, is involved in the pathophysiological response of the nervous system. Endothelin B (ETB) receptors are highly expressed in reactive astrocytes and are upregulated by brain injury. Activation of astrocyte ETB receptors promotes the induction of reactive astrocytes. In addition, the production of various astrocyte-derived factors, including neurotrophic factors and vascular permeability regulators, is regulated by ETB receptors. In animal models of Alzheimer’s disease, brain ischemia, neuropathic pain, and traumatic brain injury, ETB-receptor-mediated regulation of astrocytic activation has been reported to improve brain disorders. Therefore, the astrocytic ETB receptor is expected to be a promising drug target to improve several brain disorders. This article reviews the roles of ETB receptors in astrocytic activation and discusses its possible applications in the treatment of brain disorders.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada, Kobe 668-8558, Japan
| |
Collapse
|
5
|
Chen Y, Su X, Qin Q, Yu Y, Jia M, Zhang H, Li H, Pei L. New insights into phenotypic switching of VSMCs induced by hyperhomocysteinemia: Role of endothelin-1 signaling. Biomed Pharmacother 2020; 123:109758. [DOI: 10.1016/j.biopha.2019.109758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022] Open
|
6
|
Jaghoori A, Lamin V, Jacobczak R, Worthington M, Edwards J, Viana F, Stuklis R, Wilson DP, Beltrame JF. Sex differences in vascular reactivity of coronary artery bypass graft conduits. Heart Vessels 2020; 35:422-431. [PMID: 31576420 DOI: 10.1007/s00380-019-01508-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 09/20/2019] [Indexed: 11/29/2022]
Abstract
Females have increase in-hospital mortality and poorer outcomes following coronary artery bypass grafting (CABG). Biological differences in the reactivity of the graft conduits to circulating catecholamine may contribute to this sex difference. This study examined sex differences in the vasoconstrictor responses of internal mammary artery (IMA) and saphenous vein (SV) conduits to phenylephrine (PE) and endothelin-1 (ET-1). Functional IMA and SV were obtained from 78 male and 50 female patients undergoing CABG (67.7 ± 11 and 69 ± 10 years, respectively) and subjected to the following experimental conditions. (1) Concentration response curves for PE and ET-1 were generated in an intact IMA and SV and endothelium denuded IMA segments, (2) in the presence of the nitric oxide synthase inhibitor (L-NAME) or the cyclooxygenase inhibitor (indomethacin) in an endothelium-intact IMA and (3) the activity state (abundance and phosphorylation) of the α1-adrenergic receptor was investigated using Phos-tag™ western blot analysis. (1) Compared to male, female IMA and SV were hypersensitive to PE but not ET-1 (p < 0.05). The female IMA hypersensitivity response to PE was abolished following endothelial denudation, (2) persisted in the presence of L-NAME but was abolished in the presence of indomethacin and (3) there was no sex differences in the abundance and phosphorylation of the α1-adrenergic receptor in IMA. Female IMA and SV graft conduits are hypersensitive to α1-adrenergic stimuli. This endothelial cyclooxygenase pathway-mediated hypersensitivity may produce excessive IMA and SV graft constriction in females administered catecholamines and could contribute to their poorer CABG outcomes.
Collapse
Affiliation(s)
- Amenah Jaghoori
- Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Cardiology Unit, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, 28 Woodville Road, Woodville, SA, 5011, Australia
| | - Victor Lamin
- Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Cardiology Unit, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, 28 Woodville Road, Woodville, SA, 5011, Australia
| | - Rachel Jacobczak
- Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Michael Worthington
- D'Arcy Sutherland Cardiothoracic Surgical Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network, 1 Port Road, Adelaide, 5000, Australia
| | - James Edwards
- D'Arcy Sutherland Cardiothoracic Surgical Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network, 1 Port Road, Adelaide, 5000, Australia
| | - Fabiano Viana
- D'Arcy Sutherland Cardiothoracic Surgical Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network, 1 Port Road, Adelaide, 5000, Australia
| | - Robert Stuklis
- D'Arcy Sutherland Cardiothoracic Surgical Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network, 1 Port Road, Adelaide, 5000, Australia
| | - David P Wilson
- Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Cardiology Unit, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, 28 Woodville Road, Woodville, SA, 5011, Australia
| | - John F Beltrame
- Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
- Cardiology Unit, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, 28 Woodville Road, Woodville, SA, 5011, Australia.
| |
Collapse
|
7
|
Abstract
Discovered in 1987 as a potent endothelial cell-derived vasoconstrictor peptide, endothelin-1 (ET-1), the predominant member of the endothelin peptide family, is now recognized as a multifunctional peptide with cytokine-like activity contributing to almost all aspects of physiology and cell function. More than 30 000 scientific articles on endothelin were published over the past 3 decades, leading to the development and subsequent regulatory approval of a new class of therapeutics-the endothelin receptor antagonists (ERAs). This article reviews the history of the discovery of endothelin and its role in genetics, physiology, and disease. Here, we summarize the main clinical trials using ERAs and discuss the role of endothelin in cardiovascular diseases such as arterial hypertension, preecclampsia, coronary atherosclerosis, myocardial infarction in the absence of obstructive coronary artery disease (MINOCA) caused by spontaneous coronary artery dissection (SCAD), Takotsubo syndrome, and heart failure. We also discuss how endothelins contributes to diabetic kidney disease and focal segmental glomerulosclerosis, pulmonary arterial hypertension, as well as cancer, immune disorders, and allograft rejection (which all involve ETA autoantibodies), and neurological diseases. The application of ERAs, dual endothelin receptor/angiotensin receptor antagonists (DARAs), selective ETB agonists, novel biologics such as receptor-targeting antibodies, or immunization against ETA receptors holds the potential to slow the progression or even reverse chronic noncommunicable diseases. Future clinical studies will show whether targeting endothelin receptors can prevent or reduce disability from disease and improve clinical outcome, quality of life, and survival in patients.
Collapse
Affiliation(s)
- Matthias Barton
- From Molecular Internal Medicine, University of Zürich, Switzerland (M.B.)
- Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan (M.Y.)
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX (M.Y.)
| |
Collapse
|
8
|
|
9
|
Physiological role of endothelin-1 in flow-mediated vasodilatation in humans and impact of cardiovascular risk factors. J Hypertens 2017; 35:1204-1212. [PMID: 28441692 DOI: 10.1097/hjh.0000000000001307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The current study addressed the hypothesis that the local decrease in endothelin-1 (ET-1) bioavailability during sustained flow increases contributes to endothelium-dependent, flow-mediated dilatation (FMD) of conduit arteries and is altered in presence of cardiovascular risk factors. METHODS AND RESULTS In nine young healthy individuals, the decrease in local ET-1 plasma levels and radial artery FMD in response to hand skin heating (from 34 to 44 °C) was not affected by endothelin type A (ETA) receptor blockade, achieved using the brachial infusion of BQ-123 (100 nmol/min per l of forearm), as compared with physiological saline (0.9% NaCl) infusion. In contrast, endothelin type B (ETB) receptor blockade with BQ-788 (10 nmol/min per l) suppressed the decrease in plasma ET-1 during heating and reduced FMD, without altering nitric oxide release. The coinfusion of BQ-123 did not affect the inhibitory effect of ETB receptor blockade on the decrease in ET-1 plasma levels during heating but prevented the reduction in FMD. Basal radial artery parameters, systemic hemodynamics, and endothelium-independent dilatation to glyceryl trinitrate were not modified by ETA and/or ETB blockade. In a general population of 40 participants without treatment or major cardiovascular diseases, including the nine healthy individuals, the reduction in endothelin-1 level during heating was correlated with FMD (r = -0.55, P < 0.001) and decreased with increased age (r = 0.49, P = 0.001), mean arterial blood pressure (r = 0.48, P = 0.002), and total cholesterol level (r = 0.37, P = 0.024). CONCLUSION The uptake of endothelin-1 by ETB receptors contributes to conduit artery FMD, preventing its vasoconstrictor action mediated by ETA receptors. The alteration of this mechanism by cardiovascular risk factors may contribute to endothelial dysfunction.
Collapse
|
10
|
Karaca EE, Uzun F, Dileköz E, Öztürk Fincan GS, Ercan S, Kul O, Bağrıaçık EÜ, Or M. The effect of endothelin receptor antagonists in the endotoxin-induced uveitis rabbit model . Cutan Ocul Toxicol 2017; 37:133-138. [PMID: 28707522 DOI: 10.1080/15569527.2017.1355317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To investigate the effect of Bosentan (non-selective endothelin receptor antagonist) and BQ123 (ETA receptor antagonist) on intraocular inflammation in an endotoxin-induced uveitis (EIU) rabbit model. METHODS Uveitis was induced by intravitreal injection of lipopolysaccharide (LPS). The animals were divided into 7 groups and there were six rabbits in each group (saline, saline and ethanol, bosentan, BQ123, lipopolysaccharide (LPS), bosentan and LPS, BQ123 and LPS-injected groups). Bosentan and BQ123 were applied before LPS injection. Aqueous humour was collected at 24th hour post-injections and enucleation was performed for the evaluation of histopathological changes. RESULTS BQ123 decreased clinical score, cell counts and protein amount more than bosentan and it was significant for cell counts (p = 0.018). Bosentan significantly diminished inflammatory reactions more than BQ123 as shown in histopathological specimens (p = 0.002). CONCLUSIONS ETA receptor blockage is effective on uveitis treatment by its protective effect on blood aqueous barrier.
Collapse
Affiliation(s)
- Emine Esra Karaca
- a Department of Ophthalmology , Gazi University Medical School , Ankara , Turkey
| | - Feyzahan Uzun
- b Department of Ophthalmology , Recep Tayyip Erdogan University , Rize , Turkey
| | - Ergin Dileköz
- c Department of Medical Pharmacology , Gazi University Medical School , Ankara , Turkey
| | | | - Sevim Ercan
- d Department of Pharmacology , Gazi University Medical School , Ankara , Turkey
| | - Oğuz Kul
- e Kirikkale University, Faculty of Veterinary Medicine, Department of Veterinary Pathology , Kirikkale , Turkey
| | - Emin Ümit Bağrıaçık
- f Department of Immunology , Gazi University Medical School , Ankara , Turkey
| | - Meral Or
- a Department of Ophthalmology , Gazi University Medical School , Ankara , Turkey
| |
Collapse
|
11
|
Endothelial overexpression of endothelin-1 modulates aortic, carotid, iliac and renal arterial responses in obese mice. Acta Pharmacol Sin 2017; 38:498-512. [PMID: 28216625 DOI: 10.1038/aps.2016.138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/13/2016] [Indexed: 11/08/2022] Open
Abstract
Endothelin-1 (ET-1) is essential for mammalian development and life, but it has also been implicated in increased cardiovascular risk under pathophysiological conditions. The aim of this study was to determine the impact of endothelial overexpression of the prepro-endothelin-1 gene on endothelium-dependent and endothelium-independent responses in the conduit and renal arteries of lean and obese mice. Obesity was induced by high-fat-diet (HFD) consumption in mice with Tie-1 promoter-driven, endothelium-specific overexpression of the prepro-endothelin-1 gene (TEThet) and in wild-type (WT) littermates on a C57BL/6N background. Isometric tension was measured in rings (with endothelium) of the aorta (A), carotid (CA) and iliac (IA) arteries as well as the main (MRA) and segmental renal (SRA) arteries; all experiments were conducted in the absence or presence of L-NAME and/or the COX inhibitor meclofenamate. The release of prostacyclin and thromboxane A2 was measured by ELISA. In the MRA, TEThet per se increased contractions to endothelin-1, but the response was decreased in SRA in response to serotonin; there were also improved relaxations to acetylcholine but not insulin in the SRA in the presence of L-NAME. HFD per se augmented the contractions to endothelin-1 (MRA) and to the thromboxane prostanoid (TP) receptor agonist U46619 (CA, MRA) as well as facilitated relaxations to isoproterenol (A). The combination of HFD and TEThet overexpression increased the contractions of MRA and SRA to vasoconstrictors but not in the presence of meclofenamate; this combination also augmented further relaxations to isoproterenol in the A. Contractions to endothelin-1 in the IA were prevented by endothelin-A receptor antagonist BQ-123 but only attenuated in obese mice by BQ-788. The COX-1 inhibitor FR122047 abolished the contractions of CA to acetylcholine. The release of prostacyclin during the latter condition was augmented in samples from obese TEThet mice and abolished by FR122047. These findings suggest that endothelial TEThet overexpression in lean animals has minimal effects on vascular responsiveness. However, if comorbid with obesity, endothelin-1-modulated, prostanoid-mediated renal arterial dysfunction becomes apparent.
Collapse
|
12
|
Cardillo C, Mettimano M, Mores N, Koh KK, Campia U, Panza JA. Plasma levels of cell adhesion molecules during hyperinsulinemia and modulation of vasoactive mediators. Vasc Med 2016; 9:185-8. [PMID: 15675182 DOI: 10.1191/1358863x04vm546oa] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Endothelial expression of cell adhesion molecules (CAMs) plays an important role in atherosclerosis. Atherosclerosis is increased in hyperinsulinemic states, but whether insulin per se is proatherogenic remains unclear. To investigate the effects of hyperinsulinemia on CAM expression, plasma levels of ICAM-1, VCAM-1 and E-selectin were measured before and after forearm infusion of insulin in healthy subjects. Insulin administration for 2 h resulted in signifi-cant hyperinsulinemia, whereas no significant change was observed in soluble CAMs (all p > 0.05). Because insulin stimulates endothelial release of both endothelin-1 (ET-1) and nitric oxide (NO), which may modulate the expression of CAMs, we also investigated the response of CAMs to ET-1 receptor blockade, alone and in combination with NO synthesis inhibition. ET-1 receptor blockade during hyperinsulinemia resulted in a vasodilator response, but did not affect soluble CAMs (all p > 0.05). Superimposition of NO inhibition by l-NMMA reversed the vasodilator effect of ET-1 blockade, without affecting soluble CAMs (all p > 0.05). In conclusion, acute hyperinsulinemia, alone or during ET-1 and NO pathway blockade, does not affect soluble CAMs. These results do not support a direct effect of insulin on endothelial cells to affect leukocyte adhesiveness to the vascular wall.
Collapse
|
13
|
Chan EAW, Buckley B, Farraj AK, Thompson LC. The heart as an extravascular target of endothelin-1 in particulate matter-induced cardiac dysfunction. Pharmacol Ther 2016; 165:63-78. [PMID: 27222357 PMCID: PMC6390286 DOI: 10.1016/j.pharmthera.2016.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Exposure to particulate matter air pollution has been causally linked to cardiovascular disease in humans. Several broad and overlapping hypotheses describing the biological mechanisms by which particulate matter exposure leads to cardiovascular disease have been explored, although linkage with specific factors or genes remains limited. These hypotheses may or may not also lead to particulate matter-induced cardiac dysfunction. Evidence pointing to autocrine/paracrine signaling systems as modulators of cardiac dysfunction has increased interest in the emerging role of endothelins as mediators of cardiac function following particulate matter exposure. Endothelin-1, a well-described small peptide expressed in the pulmonary and cardiovascular systems, is best known for its ability to constrict blood vessels, although it can also induce extravascular effects. Research on the role of endothelins in the context of air pollution has largely focused on vascular effects, with limited investigation of responses resulting from the direct effects of endothelins on cardiac tissue. This represents a significant knowledge gap in air pollution health effects research, given the abundance of endothelin receptors found on cardiac tissue and the ability of endothelin-1 to modulate cardiac contractility, heart rate, and rhythm. The plausibility of endothelin-1 as a mediator of particulate matter-induced cardiac dysfunction is further supported by the therapeutic utility of certain endothelin receptor antagonists. The present review examines the possibility that endothelin-1 release caused by exposure to PM directly modulates extravascular effects on the heart, deleteriously altering cardiac function.
Collapse
Affiliation(s)
- Elizabeth A W Chan
- Oak Ridge Institute for Science and Education (ORISE) Fellow at the National Center for Environmental Assessment, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC, USA
| | - Barbara Buckley
- National Center for Environmental Assessment, U.S. EPA, Research Triangle Park, NC, USA
| | - Aimen K Farraj
- Environmental Public Health Division, U.S. EPA, Research Triangle Park, NC, USA
| | - Leslie C Thompson
- Environmental Public Health Division, U.S. EPA, Research Triangle Park, NC, USA.
| |
Collapse
|
14
|
Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 2016; 68:357-418. [PMID: 26956245 PMCID: PMC4815360 DOI: 10.1124/pr.115.011833] [Citation(s) in RCA: 502] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Kelly A Hyndman
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Neeraj Dhaun
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Christopher Southan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Donald E Kohan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Jennifer S Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David M Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David J Webb
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| |
Collapse
|
15
|
|
16
|
Abstract
All three members of the endothelin (ET) family of peptides, ET-1, ET-2, and ET-3, are expressed in the human kidney, with ET-1 being the predominant isoform. ET-1 and ET-2 bind to two G-protein-coupled receptors, ETA and ETB, whereas at physiological concentrations ET-3 has little affinity for the ET(A) receptor. The human kidney is unusual among the peripheral organs in expressing a high density of ET(B). The renal vascular endothelium only expresses the ET(B) subtype and ET-1 acts in an autocrine or paracrine manner to release vasodilators. Endothelial ETB in kidney, as well as liver and lungs, also has a critical role in scavenging ET-1 from the plasma. The third major function is ET-1 activation of ET(B) in in the nephron to reduce salt and water re-absorption. In contrast, ET(A) predominate on smooth muscle, causing vasoconstriction and mediating many of the pathophysiological actions of ET-1. The role of the two receptors has been delineated using highly selective ET(A) (BQ123, TAK-044) and ET(B) (BQ788) peptide antagonists. Nonpeptide antagonists, bosentan, macitentan, and ambrisentan, that are either mixed ET(A)/ET(B) antagonists or display ET(A) selectivity, have been approved for clinical use but to date are limited to pulmonary hypertension. Ambrisentan is in clinical trials in patients with type 2 diabetic nephropathy. This review summarizes ET-receptor antagonism in the human kidney, and considers the relative merits of selective versus nonselective antagonism in renal disease.
Collapse
Affiliation(s)
- Janet J Maguire
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke׳s Hospital, Cambridge, United Kingdom
| | - Anthony P Davenport
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke׳s Hospital, Cambridge, United Kingdom.
| |
Collapse
|
17
|
Ortiz-Capisano MC. Endothelin inhibits renin release from juxtaglomerular cells via endothelin receptors A and B via a transient receptor potential canonical-mediated pathway. Physiol Rep 2014; 2:2/12/e12240. [PMID: 25524278 PMCID: PMC4332218 DOI: 10.14814/phy2.12240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Renin is the rate-limiting step in the production of angiotensin II: a critical element in the regulation of blood pressure and in the pathogenesis of hypertension. Renin release from the juxtaglomerular (JG) cell is stimulated by the second messenger cAMP and inhibited by increases in calcium (Ca). Endothelins (ETs) inhibit renin release in a Ca-dependent manner. JG cells contain multiple isoforms of canonical transient receptor potential (TRPC) Ca-permeable channels. The proposed hypothesis is that endothelin inhibits renin release by activating TRPC store-operated Ca channels. RT-PCR and immunofluorescence revealed expression of both ETA and ETB receptors in mouse JG cells. Incubation of primary cultures of JG cells with ET-1 (10 nmol/L) decreased renin release by 28%. Addition of either an ETA or an ETB receptor blocker completely prevented the ET inhibition of renin release. Incubation with the TRPC blocker (SKF 96365, 50 μmol/L) completely reversed the Ca-mediated inhibition of renin release by ETs. These results suggest that endothelin inhibits renin release from JG cells via both ETA and ETB receptors, which leads to the activation of TRPC store-operated Ca channels.
Collapse
Affiliation(s)
- M Cecilia Ortiz-Capisano
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
18
|
Maguire JJ, Davenport AP. Endothelin@25 - new agonists, antagonists, inhibitors and emerging research frontiers: IUPHAR Review 12. Br J Pharmacol 2014; 171:5555-72. [PMID: 25131455 PMCID: PMC4290702 DOI: 10.1111/bph.12874] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/16/2022] Open
Abstract
Since the discovery of endothelin (ET)-1 in 1988, the main components of the signalling pathway have become established, comprising three structurally similar endogenous 21-amino acid peptides, ET-1, ET-2 and ET-3, that activate two GPCRs, ETA and ETB . Our aim in this review is to highlight the recent progress in ET research. The ET-like domain peptide, corresponding to prepro-ET-193-166 , has been proposed to be co-synthesized and released with ET-1, to modulate the actions of the peptide. ET-1 remains the most potent vasoconstrictor in the human cardiovascular system with a particularly long-lasting action. To date, the major therapeutic strategy to block the unwanted actions of ET in disease, principally in pulmonary arterial hypertension, has been to use antagonists that are selective for the ETA receptor (ambrisentan) or that block both receptor subtypes (bosentan). Macitentan represents the next generation of antagonists, being more potent than bosentan, with longer receptor occupancy and it is converted to an active metabolite; properties contributing to greater pharmacodynamic and pharmacokinetic efficacy. A second strategy is now being more widely tested in clinical trials and uses combined inhibitors of ET-converting enzyme and neutral endopeptidase such as SLV306 (daglutril). A third strategy based on activating the ETB receptor, has led to the renaissance of the modified peptide agonist IRL1620 as a clinical candidate in delivering anti-tumour drugs and as a pharmacological tool to investigate experimental pathophysiological conditions. Finally, we discuss biased signalling, epigenetic regulation and targeting with monoclonal antibodies as prospective new areas for ET research.
Collapse
Affiliation(s)
- J J Maguire
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
19
|
Brochu I, Houde M, Desbiens L, Simard E, Gobeil F, Semaan W, Bkaily G, D'Orléans-Juste P. High salt-induced hypertension in B2 knockout mice is corrected by the ETA antagonist, A127722. Br J Pharmacol 2014; 170:266-77. [PMID: 23713522 DOI: 10.1111/bph.12259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 05/12/2013] [Accepted: 05/17/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The contribution of endothelin-1 (ET-1) in a B2KO mouse model of a high salt-induced arterial hypertension was investigated. EXPERIMENTAL APPROACH Wild-type (WT) or B2KO mice receiving a normal diet (ND) or a high-salt diet (HSD) were monitored by radiotelemetry up to a maximum of 18 weeks. At the 12th week of diet, subgroups under ND or HSD received by gavage the ETA antagonist A127722 during 5 days. In addition, blood samples were collected and, following euthanasia, the lungs, heart and kidneys were extracted, homogenized and assayed for ET-1 by RIA. In a separate series of experiments, the ETA antagonist, BQ123 was tested against the pressor responses to a NOS inhibitor L-N(G)-nitroarginine methyl ester (L-NAME) in anaesthetized WT and B2KO mice. KEY RESULTS In B2KO, but not WT mice, 12 weeks of HSD triggered a maximal increase of the mean arterial pressure (MAP) of 19.1 ± 2.8 mmHg, which was corrected by A127722 to MAP levels found in B2KO mice under ND. Significant increases in immunoreactive ET-1 were detected only in the lungs of B2KO mice under HSD. On the other hand, metabolic studies showed that sodium urinary excretion was markedly reduced in B2KO compared with WT mice under ND. Finally, BQ123 (2 mg·kg(-1)) reduced by 50% the pressor response to L-NAME (2 mg·kg(-1)) in B2KO, but not WT mice under anaesthesia. CONCLUSIONS AND IMPLICATIONS Our results support the concept that functional B2 receptors oppose high salt-induced increments in MAP, which are corrected by an ETA receptor antagonist in this mouse model of experimental hypertension.
Collapse
Affiliation(s)
- I Brochu
- Department of Pharmacology, Medical School, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Barrett-O'Keefe Z, Ives SJ, Trinity JD, Morgan G, Rossman MJ, Donato AJ, Runnels S, Morgan DE, Gmelch BS, Bledsoe AD, Richardson RS, Wray DW. Endothelin-A-mediated vasoconstriction during exercise with advancing age. J Gerontol A Biol Sci Med Sci 2014; 70:554-65. [PMID: 24821105 DOI: 10.1093/gerona/glu065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/31/2014] [Indexed: 11/14/2022] Open
Abstract
The endothelin-1 vasoconstrictor pathway contributes to age-related elevations in resting peripheral vascular tone primarily through activation of the endothelin subtype A (ET(A)) receptor. However, the regulatory influence of ET(A)-mediated vasoconstriction during exercise in the elderly is unknown. Thus, in 17 healthy volunteers (n = 8 young, 24±2 years; n = 9 old, 70±2 years), we examined leg blood flow, mean arterial pressure, leg arterial-venous oxygen (O2) difference, and leg O2 consumption (VO2) at rest and during knee-extensor exercise before and after intra-arterial administration of the ET(A) antagonist BQ-123. During exercise, BQ-123 administration increased leg blood flow to a greater degree in the old (+29±5 mL/min/W) compared with the young (+16±3 mL/min/W). The increase in leg blood flow with BQ-123 was accompanied by an increase in leg VO2 in both groups, suggesting a reduced efficiency following ET(A) receptor blockade. Together, these findings have identified an age-related increase in ET(A)-mediated vasoconstrictor activity that persists during exercise, suggesting an important role of this pathway in the regulation of exercising skeletal muscle blood flow and maintenance of arterial blood pressure in the elderly.
Collapse
Affiliation(s)
- Zachary Barrett-O'Keefe
- Department of Exercise and Sport Science, University of Utah, Salt Lake City. Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Utah
| | - Stephen J Ives
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Utah. Department of Internal Medicine, University of Utah, Salt Lake City
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Utah. Department of Internal Medicine, University of Utah, Salt Lake City
| | - Garrett Morgan
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Utah
| | - Matthew J Rossman
- Department of Exercise and Sport Science, University of Utah, Salt Lake City. Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Utah
| | - Anthony J Donato
- Department of Exercise and Sport Science, University of Utah, Salt Lake City. Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Utah. Department of Internal Medicine, University of Utah, Salt Lake City. University of Utah Center on Aging, Salt Lake City
| | - Sean Runnels
- Department of Anesthesiology, University of Utah, Salt Lake City
| | - David E Morgan
- Department of Anesthesiology, University of Utah, Salt Lake City
| | | | - Amber D Bledsoe
- Department of Anesthesiology, University of Utah, Salt Lake City
| | - Russell S Richardson
- Department of Exercise and Sport Science, University of Utah, Salt Lake City. Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Utah. Department of Internal Medicine, University of Utah, Salt Lake City. University of Utah Center on Aging, Salt Lake City
| | - D Walter Wray
- Department of Exercise and Sport Science, University of Utah, Salt Lake City. Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Utah. Department of Internal Medicine, University of Utah, Salt Lake City. University of Utah Center on Aging, Salt Lake City.
| |
Collapse
|
21
|
Campia U, Matuskey LA, Tesauro M, Cardillo C, Panza JA. PPARγ activation does not affect endothelin activity in non-diabetic patients with hypertension or hypercholesterolemia. Atherosclerosis 2014; 234:436-40. [PMID: 24769306 DOI: 10.1016/j.atherosclerosis.2014.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/12/2014] [Accepted: 03/27/2014] [Indexed: 01/29/2023]
Abstract
OBJECTIVES This study tested the hypothesis that pioglitazone reduces endothelin-1 activity in the forearm vasculature in non-diabetic patients with hypertension or hypercholesterolemia and variable degrees of insulin resistance. METHODS We conducted a single center, randomized, double-blind, placebo controlled, cross-over trial in 80 patients with either hypertension or hypercholesterolemia and further classified as insulin-sensitive or insulin-resistant based on a published insulin sensitivity index. Participants received pioglitazone 45 mg daily or matching placebo for eight weeks. The main endpoint was the change in forearm vascular endothelin-1 activity, as assessed by intra-arterial infusion of the endothelin type A receptor blocker BQ-123, measured at the end of each 8-week treatment period. RESULTS Pioglitazone lowered plasma insulin (P < 0.001), improved insulin sensitivity (P < 0.001), increased HDL (P < 0.001), and reduced triglycerides (P = 0.003), free fatty acids (P = 0.005), and C-reactive protein (P = 0.001). However, pioglitazone did not affect the vasodilator response to BQ-123 in the whole group (P = 0.618) and in the diagnosis or insulin sensitivity subgroups. Hence, in non-diabetic patients with hypertension or hypercholesterolemia, PPARγ activation with pioglitazone does not affect endothelin-1 activity, despite enhancing insulin sensitivity and reducing plasma insulin and C-reactive protein levels. CONCLUSIONS In non-diabetic patients with hypertension or hypercholesterolemia, pioglitazone improves insulin sensitivity, lipid profile, and inflammation but does not affect endothelin activity. Our data suggest that the determinants of endothelin-1 vascular activity in vivo may differ and/or be more complex than those suggested by the results of previous in vitro studies.
Collapse
Affiliation(s)
- Umberto Campia
- MedStar Cardiovascular Research Network, MedStar Heart Institute, 110 Irving Street NW, Room NA-1041, Washington, DC 20010, USA.
| | - Linda A Matuskey
- MedStar Cardiovascular Research Network, MedStar Heart Institute, 110 Irving Street NW, Room NA-1041, Washington, DC 20010, USA
| | - Manfredi Tesauro
- System Medicine, University of Tor Vergata, Viale Oxford, 81, 00133 Rome, Italy
| | - Carmine Cardillo
- Internal Medicine, Catholic University, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Julio A Panza
- Westchester Medical Center, 100 Woods Road, Macy Pavilion, Room 102, Valhalla, NY, USA
| |
Collapse
|
22
|
Ardelt A. From bench-to-bedside in catastrophic cerebrovascular disease: development of drugs targeting the endothelin axis in subarachnoid hemorrhage-related vasospasm. Neurol Res 2013; 34:195-210. [DOI: 10.1179/1743132811y.0000000081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Labruijere S, Compeer MG, van den Bogaerdt AJ, van den Brink AM, De Mey JG, Danser AJ, Batenburg WW. Long-lasting physiological antagonism of calcitonin gene-related peptide towards endothelin-1 in rat mesenteric arteries and human coronary arteries. Eur J Pharmacol 2013; 720:303-9. [DOI: 10.1016/j.ejphar.2013.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/01/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
|
24
|
Zhang YH, Wu HJ, Che H, Sun HY, Cheng LC, Li X, Au WK, Tse HF, Li GR. Functional transient receptor potential canonical type 1 channels in human atrial myocytes. Pflugers Arch 2013; 465:1439-49. [PMID: 23686296 DOI: 10.1007/s00424-013-1291-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
Abstract
Transient receptor potential (TRP) channels are not well understood in human atrium, and the present study was therefore designed to investigate whether TRPC channels would mediate the nonselective cation current reported previously and are involved in the formation of store-operated Ca(2+) entry (SOCE) channels in human atrial myocytes using approaches of whole-cell patch voltage-clamp, RT-PCR, Western blotting, co-immunoprecipitation, and confocal scanning approaches, etc. We found that a nonselective cation current was recorded under K(+)-free conditions in human atrial myocytes, and the current was inhibited by the TRP channel blocker La(3+). Thapsigargin enhanced the current, and its effect was suppressed by La(3+) and prevented by pipette inclusion of anti-TRPC1 antibody. Endothlin-1 and angiotensin II enhanced the current that could be inhibited by La(3+). Gene and protein expression of TRPC1 channels were abundant in human atria. In addition, mRNA and protein of STIM1 and Orai1, components of SOCE channels, were abundantly expressed in human atria. Co-immunoprecipitation analysis demonstrated an interaction of TRPC1 with STIM1 and/or Orai1. Ca(2+) signaling mediated by SOCE channels was detected by a confocal microscopy technique. These results demonstrate the novel evidence that TRPC1 channels not only mediate the nonselective cation current, but also form SOCE channels in human atria as a component. TRPC1 channels can be activated by endothelin-1 or angiotensin II, which may be involved in the atrial electrical remodeling in patients with atrial fibrillation.
Collapse
Affiliation(s)
- Yan-Hui Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen G, Tanabe K, Yanagidate F, Kawasaki Y, Zhang L, Dohi S, Iida H. Intrathecal endothelin-1 has antinociceptive effects in rat model of postoperative pain. Eur J Pharmacol 2012; 697:40-6. [DOI: 10.1016/j.ejphar.2012.09.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/10/2012] [Accepted: 09/22/2012] [Indexed: 01/19/2023]
|
26
|
Compeer MG, Meens MJPMT, Hackeng TM, Neugebauer WA, Höltke C, De Mey JGR. Agonist-dependent modulation of arterial endothelinA receptor function. Br J Pharmacol 2012; 166:1833-45. [PMID: 22324472 DOI: 10.1111/j.1476-5381.2012.01896.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Endothelin-1 (ET-1) causes long-lasting vasoconstrictions. These can be prevented by ET(A) receptor antagonists but are only poorly reversed by these drugs. We tested the hypothesis that endothelin ET(A) receptors are susceptible to allosteric modulation by endogenous agonists and exogenous ligands. EXPERIMENTAL APPROACH Rat isolated mesenteric resistance arteries were pretreated with capsaicin and studied in wire myographs, in the presence of L-NAME and indomethacin to concentrate on arterial smooth muscle responses. KEY RESULTS Endothelins caused contractions with equal maximum but differing potency (ET-1 = ET-2 > ET-3). ET-1(1-15) neither mimicked nor antagonized these effects in the absence and presence of ET(16-21). 4(Ala) ET-1 (ET(B) agonist) and BQ788 (ET(B) antagonist) were without effects. BQ123 (peptide ET(A) antagonist) reduced the sensitivity and relaxed the contractile responses to endothelins. Both effects depended on the agonist (pK(B): ET-3 = ET-1 > ET-2; % relaxation: ET-3 = ET-2 > ET-1). Also, with PD156707 (non-peptide ET(A) antagonist) agonist-dependence and a discrepancy between preventive and inhibitory effects were observed. The latter was even more marked with bulky analogues of BQ123 and PD156707. CONCLUSIONS AND IMPLICATIONS These findings indicate allosteric modulation of arterial smooth muscle ET(A) receptor function by endogenous agonists and by exogenous endothelin receptor antagonists. This may have consequences for the diagnosis and pharmacotherapy of diseases involving endothelins.
Collapse
Affiliation(s)
- M G Compeer
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Barrett-O'Keefe Z, Ives SJ, Trinity JD, Morgan G, Rossman MJ, Donato AJ, Runnels S, Morgan DE, Gmelch BS, Bledsoe AD, Richardson RS, Wray DW. Taming the "sleeping giant": the role of endothelin-1 in the regulation of skeletal muscle blood flow and arterial blood pressure during exercise. Am J Physiol Heart Circ Physiol 2012; 304:H162-9. [PMID: 23103494 DOI: 10.1152/ajpheart.00603.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cardiovascular response to exercise is governed by a combination of vasodilating and vasoconstricting influences that optimize exercising muscle perfusion while protecting mean arterial pressure (MAP). The degree to which endogenous endothelin (ET)-1, the body's most potent vasoconstrictor, participates in this response is unknown. Thus, in eight young (24 ± 2 yr), healthy volunteers, we examined leg blood flow, MAP, tissue oxygenation, heart rate, leg arterial-venous O(2) difference, leg O(2) consumption, pH, and net ET-1 and lactate release at rest and during knee extensor exercise (0, 5, 10, 15, 20, and 30 W) before and after an intra-arterial infusion of BQ-123 [ET subtype A (ET(A)) receptor antagonist]. At rest, BQ-123 did not evoke a change in leg blood flow or MAP. During exercise, net ET-1 release across the exercising leg increased approximately threefold. BQ-123 increased leg blood flow by ~20% across all work rates (changes of 113 ± 76, 176 ± 83, 304 ± 108, 364 ± 130, 502 ± 117, and 570 ± 178 ml/min at 0, 5, 10, 15, 20, and 30 W, respectively) and attenuated the exercise-induced increase in MAP by ~6%. The increase in leg blood flow was accompanied by a ~9% increase in leg O(2) consumption with an unchanged arterial-venous O(2) difference and deoxyhemoglobin, suggesting a decline in intramuscular efficiency after ET(A) receptor blockade. Together, these findings identify a significant role of the ET-1 pathway in the cardiovascular response to exercise, implicating vasoconstriction via the ET(A) receptor as an important mechanism for both the restraint of blood flow in the exercising limb and maintenance of MAP in healthy, young adults.
Collapse
|
28
|
Compeer MG, Suylen DP, Hackeng TM, De Mey JG. Endothelin-1 and -2: Two amino acids matter. Life Sci 2012; 91:607-12. [DOI: 10.1016/j.lfs.2012.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 11/29/2022]
|
29
|
Kohan DE, Cleland JG, Rubin LJ, Theodorescu D, Barton M. Clinical trials with endothelin receptor antagonists: what went wrong and where can we improve? Life Sci 2012; 91:528-39. [PMID: 22967485 DOI: 10.1016/j.lfs.2012.07.034] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 02/07/2023]
Abstract
In the early 1990s, within three years of cloning of endothelin receptors, orally active endothelin receptor antagonists (ERAs) were tested in humans and the first clinical trial of ERA therapy in humans was published in 1995. ERAs were subsequently tested in clinical trials involving heart failure, pulmonary arterial hypertension, resistant arterial hypertension, stroke/subarachnoid hemorrhage and various forms of cancer. The results of most of these trials - except those for pulmonary arterial hypertension and scleroderma-related digital ulcers - were either negative or neutral. Problems with study design, patient selection, drug toxicity, and drug dosing have been used to explain or excuse failures. Currently, a number of pharmaceutical companies who had developed ERAs as drug candidates have discontinued clinical trials or further drug development. Given the problems with using ERAs in clinical medicine, at the Twelfth International Conference on Endothelin in Cambridge, UK, a panel discussion was held by clinicians actively involved in clinical development of ERA therapy in renal disease, systemic and pulmonary arterial hypertension, heart failure, and cancer. This article provides summaries from the panel discussion as well as personal perspectives of the panelists on how to proceed with further clinical testing of ERAs and guidance for researchers and decision makers in clinical drug development on where future research efforts might best be focused.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | | | | | | | | |
Collapse
|
30
|
|
31
|
|
32
|
|
33
|
POSTER COMMUNICATIONS. Br J Pharmacol 2012. [DOI: 10.1111/j.1476-5381.1992.tb16283.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
|
35
|
Modulation by endothelin-1 of spontaneous activity and membrane currents of atrioventricular node myocytes from the rabbit heart. PLoS One 2012; 7:e33448. [PMID: 22479400 PMCID: PMC3315568 DOI: 10.1371/journal.pone.0033448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/10/2012] [Indexed: 11/19/2022] Open
Abstract
Background The atrioventricular node (AVN) is a key component of the cardiac pacemaker-conduction system. Although it is known that receptors for the peptide hormone endothelin-1 (ET-1) are expressed in the AVN, there is very little information available on the modulatory effects of ET-1 on AVN electrophysiology. This study characterises for the first time acute modulatory effects of ET-1 on AVN cellular electrophysiology. Methods Electrophysiological experiments were conducted in which recordings were made from rabbit isolated AVN cells at 35–37°C using the whole-cell patch clamp recording technique. Results Application of ET-1 (10 nM) to spontaneously active AVN cells led rapidly (within ∼13 s) to membrane potential hyperpolarisation and cessation of spontaneous action potentials (APs). This effect was prevented by pre-application of the ETA receptor inhibitor BQ-123 (1 µM) and was not mimicked by the ETB receptor agonist IRL-1620 (300 nM). In whole-cell voltage-clamp experiments, ET-1 partially inhibited L-type calcium current (ICa,L) and rapid delayed rectifier K+ current (IKr), whilst it transiently activated the hyperpolarisation-activated current (If) at voltages negative to the pacemaking range, and activated an inwardly rectifying current that was inhibited by both tertiapin-Q (300 nM) and Ba2+ ions (2 mM); each of these effects was sensitive to ETA receptor inhibition. In cells exposed to tertiapin-Q, ET-1 application did not produce membrane potential hyperpolarisation or immediate cessation of spontaneous activity; instead, there was a progressive decline in AP amplitude and depolarisation of maximum diastolic potential. Conclusions Acutely applied ET-1 exerts a direct modulatory effect on AVN cell electrophysiology. The dominant effect of ET-1 in this study was activation of a tertiapin-Q sensitive inwardly rectifying K+ current via ETA receptors, which led rapidly to cell quiescence.
Collapse
|
36
|
Kobayashi K, Oishi S, Hayashi R, Tomita K, Kubo T, Tanahara N, Ohno H, Yoshikawa Y, Furuya T, Hoshino M, Fujii N. Structure–Activity Relationship Study of a CXC Chemokine Receptor Type 4 Antagonist, FC131, Using a Series of Alkene Dipeptide Isosteres. J Med Chem 2012; 55:2746-57. [DOI: 10.1021/jm2016914] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuya Kobayashi
- Graduate School of Pharmaceutical
Sciences, Kyoto University, Sakyo-ku, Kyoto
606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical
Sciences, Kyoto University, Sakyo-ku, Kyoto
606-8501, Japan
| | - Ryoko Hayashi
- Graduate School of Pharmaceutical
Sciences, Kyoto University, Sakyo-ku, Kyoto
606-8501, Japan
| | - Kenji Tomita
- Graduate School of Pharmaceutical
Sciences, Kyoto University, Sakyo-ku, Kyoto
606-8501, Japan
| | - Tatsuhiko Kubo
- Graduate School of Pharmaceutical
Sciences, Kyoto University, Sakyo-ku, Kyoto
606-8501, Japan
| | - Noriko Tanahara
- Graduate School of Pharmaceutical
Sciences, Kyoto University, Sakyo-ku, Kyoto
606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical
Sciences, Kyoto University, Sakyo-ku, Kyoto
606-8501, Japan
| | | | | | - Masaru Hoshino
- Graduate School of Pharmaceutical
Sciences, Kyoto University, Sakyo-ku, Kyoto
606-8501, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical
Sciences, Kyoto University, Sakyo-ku, Kyoto
606-8501, Japan
| |
Collapse
|
37
|
Ohanian J, Forman SP, Katzenberg G, Ohanian V. Endothelin-1 Stimulates Small Artery VCAM-1 Expression through p38MAPK-Dependent Neutral Sphingomyelinase. J Vasc Res 2012; 49:353-62. [DOI: 10.1159/000336649] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/10/2012] [Indexed: 01/21/2023] Open
|
38
|
Ha NH, Nair VS, Reddy DNS, Mudvari P, Ohshiro K, Ghanta KS, Pakala SB, Li DQ, Costa L, Lipton A, Badwe RA, Fuqua S, Wallon M, Prendergast GC, Kumar R. Lactoferrin-endothelin-1 axis contributes to the development and invasiveness of triple-negative breast cancer phenotypes. Cancer Res 2011; 71:7259-69. [PMID: 22006997 DOI: 10.1158/0008-5472.can-11-1143] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancer (TNBC) is characterized by the lack of expression of estrogen receptor-α (ER-α), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2). However, pathways responsible for downregulation of therapeutic receptors, as well as subsequent aggressiveness, remain unknown. In this study, we discovered that lactoferrin (Lf) efficiently downregulates levels of ER-α, PR, and HER-2 in a proteasome-dependent manner in breast cancer cells, and it accounts for the loss of responsiveness to ER- or HER-2-targeted therapies. Furthermore, we found that lactoferrin increases migration and invasiveness of both non-TNBC and TNBC cell lines. We discovered that lactoferrin directly stimulates the transcription of endothelin-1 (ET-1), a secreted proinvasive polypeptide that acts through a specific receptor, ET(A)R, leading to secretion of the bioactive ET-1 peptide. Interestingly, a therapeutic ET-1 receptor-antagonist blocked lactoferrin-dependent motility and invasiveness of breast cancer cells. The physiologic significance of this newly discovered Lf-ET-1 axis in the manifestation of TNBC phenotypes is revealed by elevated plasma and tissue lactoferrin and ET-1 levels in patients with TNBC compared with those in ER(+) cases. These findings describe the first physiologically relevant polypeptide as a functional determinant in downregulating all three therapeutic receptors in breast cancer, which uses another secreted ET-1 system to confer invasiveness. Results presented in this article provide proof-of-principle evidence in support of the therapeutic effectiveness of ET-1 receptor antagonist to completely block the lactoferrin-induced motility and invasiveness of the TNBC as well as non-TNBC cells, and thus, open a remarkable opportunity to treat TNBC by targeting the Lf-ET-1 axis using an approved developmental drug.
Collapse
Affiliation(s)
- Ngoc-Han Ha
- Department of Biochemistry and Molecular Biology and Global Cancer Genomic Consortium, The George Washington University, Washington, District of Columbia 20037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
De Mey JG, Compeer MG, Lemkens P, Meens MJ. ETA-receptor antagonists or allosteric modulators? Trends Pharmacol Sci 2011; 32:345-51. [DOI: 10.1016/j.tips.2011.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/27/2011] [Accepted: 02/28/2011] [Indexed: 01/14/2023]
|
40
|
Kaufman GN, Zaouter C, Valteau B, Sirois P, Moldovan F. Nociceptive tolerance is improved by bradykinin receptor B1 antagonism and joint morphology is protected by both endothelin type A and bradykinin receptor B1 antagonism in a surgical model of osteoarthritis. Arthritis Res Ther 2011; 13:R76. [PMID: 21575197 PMCID: PMC3218886 DOI: 10.1186/ar3338] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 05/16/2011] [Indexed: 12/16/2022] Open
Abstract
Introduction Endothelin-1, a vasoconstrictor peptide, influences cartilage metabolism mainly via endothelin receptor type A (ETA). Along with the inflammatory nonapeptide vasodilator bradykinin (BK), which acts via bradykinin receptor B1 (BKB1) in chronic inflammatory conditions, these vasoactive factors potentiate joint pain and inflammation. We describe a preclinical study of the efficacy of treatment of surgically induced osteoarthritis with ETA and/or BKB1 specific peptide antagonists. We hypothesize that antagonism of both receptors will diminish osteoarthritis progress and articular nociception in a synergistic manner. Methods Osteoarthritis was surgically induced in male rats by transection of the right anterior cruciate ligament. Animals were subsequently treated with weekly intra-articular injections of specific peptide antagonists of ETA and/or BKB1. Hind limb nociception was measured by static weight bearing biweekly for two months post-operatively. Post-mortem, right knee joints were analyzed radiologically by X-ray and magnetic resonance, and histologically by the OARSI histopathology assessment system. Results Single local BKB1 antagonist treatment diminished overall hind limb nociception, and accelerated post-operative recovery after disease induction. Both ETA and/or BKB1 antagonist treatments protected joint radiomorphology and histomorphology. Dual ETA/BKB1 antagonism was slightly more protective, as measured by radiology and histology. Conclusions BKB1 antagonism improves nociceptive tolerance, and both ETA and/or BKB1 antagonism prevents joint cartilage degradation in a surgical model of osteoarthritis. Therefore, they represent a novel therapeutic strategy: specific receptor antagonism may prove beneficial in disease management.
Collapse
Affiliation(s)
- Gabriel N Kaufman
- Orthopaedic Molecular Biology Laboratory, Sainte-Justine Hospital Research Centre, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| | | | | | | | | |
Collapse
|
41
|
Synthesis and biological evaluation of 3-(1H-indol-3-yl)pyrazole-5-carboxylic acid derivatives. Arch Pharm Res 2011; 34:343-55. [DOI: 10.1007/s12272-011-0301-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/17/2010] [Accepted: 08/22/2010] [Indexed: 11/25/2022]
|
42
|
Cirino M, Motz C, Maw J, Ford-Hutchinson AW, Yano M. BQ-153, a novel endothelin (ET)A antagonist, attenuates the renal vascular effects of endothelin-1. J Pharm Pharmacol 2011; 44:782-5. [PMID: 1360536 DOI: 10.1111/j.2042-7158.1992.tb05522.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Endothelin (ET)-l, leukotriene D4 and the thromboxane analogue, U-44069, were all shown to produce dose-dependent reductions in renal blood flow after direct injection into the renal artery of anaesthetized pigs. The effects of ET-1 differed from the other two mediators in that ET-1 caused a transient vasodilator followed by a prolonged vasoconstrictor response. The pressor response was not mediated by the secondary release of either leukotriene D4 or thromboxane A2 as evidenced by the lack of effect of appropriate receptor antagonist MK571 (3-{-2(7-chloro-2 quinolinyl) ethenyl}phenyl{3-(dimethylamino-3-oxopropyl)thio}methyl thio propionic acid) and L-670,596 respectively. This response, however, could be inhibited in a dose-dependent fashion by the selective ETA antagonist, BQ-153 (cyclo-d-sulphalanine-l-Pro-d-Val-l-Leu-d-Trp-). Following blockade by BQ-153 the vasodilator response was unaffected and a residual pressor response remained, suggesting that either or both of these effects were mediated either through an ETB or a novel, as yet undefined, endothelin receptor.
Collapse
Affiliation(s)
- M Cirino
- Department of Pharmacology, Merck Frosst Centre for Therapeutic Research, Kirkland, Québec, Canada
| | | | | | | | | |
Collapse
|
43
|
Kopp UC, Cicha MZ, Jones SY. Activation of endothelin A receptors contributes to impaired responsiveness of renal mechanosensory nerves in congestive heart failure. Can J Physiol Pharmacol 2011; 88:622-9. [PMID: 20628427 DOI: 10.1139/y10-035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increasing renal pelvic pressure results in PGE2-mediated release of substance P, leading to increases in afferent renal nerve activity (ARNA) and natriuresis, that is, a renorenal reflex response. The renorenal reflexes are impaired in congestive heart failure (CHF). Impairment of the renorenal reflexes may contribute to the increased renal sympathetic nerve activity and sodium retention in CHF. Endothelin (ET)-1 contributes to the pathological changes in cardiac and renal function in CHF. Therefore, we examined whether the ETA receptor antagonist BQ123 altered the responsiveness of renal mechanosensory nerves in CHF. The ARNA responses to increasing renal pelvic pressure were suppressed in CHF but not in sham-CHF rats. In CHF, increasing renal pelvic pressure by 7.5 mm Hg before and during renal pelvic perfusion with BQ123 increased ARNA 12% +/- 3% and 21% +/- 3% (p < 0.05 vs. vehicle). In isolated renal pelvises from CHF rats, PGE2 increased substance P release from 5 +/- 0 to 7 +/- 1 pg/min without BQ123 and from 4 +/- 1 to 9 +/- 1 pg/min with BQ123 in the bath (p < 0.01 vs. vehicle). BQ123 had no effect on the ARNA responses or substance P release in sham-CHF. In conclusion, activation of ETA receptors contributes to the impaired responsiveness of renal mechanosensory nerves in CHF rats by a mechanism(s) at the renal sensory nerve endings.
Collapse
Affiliation(s)
- Ulla C Kopp
- Department of Internal Medicine, Department of Veterans Affairs Medical Center, and University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
44
|
|
45
|
Morand-Contant M, Anand-Srivastava MB, Couture R. Kinin B1 receptor upregulation by angiotensin II and endothelin-1 in rat vascular smooth muscle cells: receptors and mechanisms. Am J Physiol Heart Circ Physiol 2010; 299:H1625-32. [DOI: 10.1152/ajpheart.00735.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress upregulates the kinin B1 receptor (B1R) in diabetes and hypertension. Since angiotensin II (ANG II) and endothelin-1 (ET-1) are increased in these disorders, this study aims at determining the role of these two prooxidative peptides in B1R expression in rat vascular smooth muscle cells (VSMC). In the A10 cell line and aortic VSMC, ANG II enhanced B1R protein expression in a concentration- and time-dependent manner (maximal at 1 μM and 6 h). In A10 cells, ANG II (1 μM) also increased B1R mRNA expression at 3 h and the activation of induced B1R with the agonist [Sar-d-Phe8]-des-Arg9-BK (10 nM, 5 min) significantly enhanced mitogen -activated protein kinase (MAPK1/2) phosphorylation. The enhancing effect of ANG II on B1R protein expression in A10 cells was normalized by the AT1 (losartan) but not by the AT2 (PD123319) receptor antagonist. Furthermore, it was inhibited by inhibitors of phosphatidylinositol 3-kinase (wortmannin) and NF-κB (MG132) but not of MAPK (PD098059). Whereas the ETB receptor antagonist (BQ788) had no effect, the ETA receptor antagonist (BQ123) blocked the effect of ANG II at 6–8 h but not at an early time point. BQ123 and BQ788 also blocked the increasing effect of ET-1 on B1R protein expression. Antioxidants ( N-acetyl-l-cysteine and diphenyleneiodonium) abolished ANG II- and ET-1-increased B1R protein expression. In conclusion, B1R induction is linked to oxidative stress and activation of phosphatidylinositol 3-kinase and NF-κB. The newly synthesized B1R is functional and can activate MAPK signaling in VSMC. The effect of ANG II is mediated by the AT1 receptor and the subsequent activation of ETA through ET-1 release.
Collapse
Affiliation(s)
- Marielle Morand-Contant
- Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Madhu B. Anand-Srivastava
- Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Réjean Couture
- Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
46
|
Li-Li Z, Xiao-Jie X. Three-dimensional Quantitative Structure-Activity Relationship Analyses of a Series of Butenolide ETA Antagonists. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.20030210310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Xu CB, Sun Y, Edvinsson L. Cardiovascular risk factors regulate the expression of vascular endothelin receptors. Pharmacol Ther 2010; 127:148-55. [DOI: 10.1016/j.pharmthera.2010.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
|
48
|
Díez M, Musri MM, Ferrer E, Barberà JA, Peinado VI. Endothelial progenitor cells undergo an endothelial-to-mesenchymal transition-like process mediated by TGFβRI. Cardiovasc Res 2010; 88:502-11. [DOI: 10.1093/cvr/cvq236] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
49
|
Meens MJPMT, Compeer MG, Hackeng TM, van Zandvoort MA, Janssen BJA, De Mey JGR. Stimuli of sensory-motor nerves terminate arterial contractile effects of endothelin-1 by CGRP and dissociation of ET-1/ET(A)-receptor complexes. PLoS One 2010; 5:e10917. [PMID: 20532232 PMCID: PMC2879375 DOI: 10.1371/journal.pone.0010917] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 04/30/2010] [Indexed: 01/08/2023] Open
Abstract
Background Endothelin-1 (ET-1), a long-acting paracrine mediator, is implicated in cardiovascular diseases but clinical trials with ET-receptor antagonists were not successful in some areas. We tested whether the quasi-irreversible receptor-binding of ET-1 (i) limits reversing effects of the antagonists and (ii) can be selectively dissociated by an endogenous counterbalancing mechanism. Methodology/Principal findings In isolated rat mesenteric resistance arteries, ETA-antagonists, endothelium-derived relaxing factors and synthetic vasodilators transiently reduced contractile effects of ET-1 but did not prevent persistent effects of the peptide. Stimuli of peri-vascular vasodilator sensory-motor nerves such as capsaicin not only reduced but also terminated long-lasting effects of ET-1. This was prevented by CGRP-receptor antagonists and was mimicked by exogenous calcitonin gene-related peptide (CGRP). Using 2-photon laser scanning microscopy in vital intact arteries, capsaicin and CGRP, but not ETA-antagonism, were observed to promote dissociation of pre-existing ET-1/ETA-receptor complexes. Conclusions Irreversible binding and activation of ETA-receptors by ET-1 (i) occur at an antagonist-insensitive site of the receptor and (ii) are selectively terminated by endogenously released CGRP. Hence, natural stimuli of sensory-motor nerves that stimulate release of endogenous CGRP can be considered for therapy of diseases involving ET-1.
Collapse
Affiliation(s)
- Merlijn J. P. M. T. Meens
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Matthijs G. Compeer
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Tilman M. Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marc A. van Zandvoort
- Department of Biomedical Technology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Ben J. A. Janssen
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Jo G. R. De Mey
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
50
|
de Andrade CR, Corrêa FMDA, de Oliveira AM. Aging and total stenosis triggers differential responses of carotid and basilar arteries to endothelin-1 and phenylephrine. J Smooth Muscle Res 2010; 45:307-21. [PMID: 20093799 DOI: 10.1540/jsmr.45.307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our aim was to investigate the effects of ageing on the vascular contractility of carotid and basilar arteries from guinea-pigs, in a model of total stenosis. Moreover, we attempted to identify whether total stenosis of the left common carotid (stenosed) in adult guinea-pigs, would affect the contractions of contralateral carotid (intact) and basilar arteries to different vasoconstrictors. With this purpose, the left carotid was occluded with a silk thread at a position close to its origin. Vascular reactivity experiments using standard muscle bath were performed 7, 15, 30, and 90 days after carotid occlusion. Reactivity of carotid and basilar arteries to endothelin-1, phenylephrine and KCl was reduced with ageing in naive guinea-pigs. The endothelin-1 and KCl-induced contractions were unaltered in arteries from SHAM-operated animals. Moreover, phenylephrine-induced contractions were reduced in both carotids from 7 days SHAM-operated guinea-pigs, when compared to naive group. Stenosis induced progressive reduction in the contraction induced by endothelin-1, phenylephrine and KCl in the stenosed carotid, when compared to their respective age-matched naive and SHAM groups. Interestingly, an increased contractile-response to vasoconstrictor agents in all the contralateral carotids was observed. Stenosis (30 and 90 days) also induced an increase in the contractions induced by endothelin-1 in the basilar artery. Conversely, phenylephrine and KCl-induced contractions were reduced in basilar arteries 7, 15, 30 and 90 days after stenosis. These results showed that stenosis in adult guinea-pigs induce alterations of vascular reactivity in arteries distant from the site of injury. Thus, in spite of the common use of contralateral carotid as control, it must be aware of the potential alteration induced by stenosis in the vascular motility of such vessels. Additionally, it was verified a relationship between the period of stenosis and the alterations in the vascular reactivity to these vasoconstrictors.
Collapse
Affiliation(s)
- Claudia Roberta de Andrade
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | |
Collapse
|