1
|
Koekkoek LL, van der Gun LL, Serlie MJ, la Fleur SE. The Clash of Two Epidemics: the Relationship Between Opioids and Glucose Metabolism. Curr Diab Rep 2022; 22:301-310. [PMID: 35593927 PMCID: PMC9188528 DOI: 10.1007/s11892-022-01473-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW We are currently in the midst of a global opioid epidemic. Opioids affect many physiological processes, but one side effect that is not often taken into consideration is the opioid-induced alteration in blood glucose levels. RECENT FINDINGS This review shows that the vast majority of studies report that opioid stimulation increases blood glucose levels. In addition, plasma levels of the endogenous opioid β-endorphin rise in response to low blood glucose. In contrast, in hyperglycaemic baseline conditions such as in patients with type 2 diabetes mellitus (T2DM), opioid stimulation lowers blood glucose levels. Furthermore, obesity itself alters sensitivity to opioids, changes opioid receptor expression and increases plasma β-endorphin levels. Thus, opioid stimulation can have various side effects on glycaemia that should be taken into consideration upon prescribing opioid-based medication, and more research is needed to unravel the interaction between obesity, glycaemia and opioid use.
Collapse
Affiliation(s)
- Laura L Koekkoek
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands
- Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands
| | - Luna L van der Gun
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands
- Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands
| | - Susanne E la Fleur
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands.
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands.
- Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands.
| |
Collapse
|
2
|
Yang D, Hou X, Yang G, Li M, Zhang J, Han M, Zhang Y, Liu Y. Effects of the POMC System on Glucose Homeostasis and Potential Therapeutic Targets for Obesity and Diabetes. Diabetes Metab Syndr Obes 2022; 15:2939-2950. [PMID: 36186941 PMCID: PMC9521683 DOI: 10.2147/dmso.s380577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The hypothalamus is indispensable in energy regulation and glucose homeostasis. Previous studies have shown that pro-opiomelanocortin neurons receive both central neuronal signals, such as α-melanocyte-stimulating hormone, β-endorphin, and adrenocorticotropic hormone, as well as sense peripheral signals such as leptin, insulin, adiponectin, glucagon-like peptide-1, and glucagon-like peptide-2, affecting glucose metabolism through their corresponding receptors and related signaling pathways. Abnormalities in these processes can lead to obesity, type 2 diabetes, and other metabolic diseases. However, the mechanisms by which these signal molecules fulfill their role remain unclear. Consequently, in this review, we explored the mechanisms of these hormones and signals on obesity and diabetes to suggest potential therapeutic targets for obesity-related metabolic diseases. Multi-drug combination therapy for obesity and diabetes is becoming a trend and requires further research to help patients to better control their blood glucose and improve their prognosis.
Collapse
Affiliation(s)
- Dan Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xintong Hou
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Guimei Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mengnan Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jian Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Minmin Han
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Yi Zhang, Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China, Email
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Yunfeng Liu, Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China, Tel +86 18703416196, Email
| |
Collapse
|
3
|
Singh P, Sharma B, Gupta S, Sharma BM. In vivo and in vitro attenuation of naloxone-precipitated experimental opioid withdrawal syndrome by insulin and selective KATP channel modulator. Psychopharmacology (Berl) 2015; 232:465-75. [PMID: 25059539 DOI: 10.1007/s00213-014-3680-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/02/2014] [Indexed: 12/01/2022]
Abstract
RATIONALE Opiate exposure for longer duration develops state of dependence in humans and animals, which is revealed by signs and symptoms of withdrawal precipitated by opioid receptor antagonists. The sudden withdrawal of opioids produces a withdrawal syndrome in opioid-dependent subjects. Insulin and ATP-sensitive potassium (KATP) channel-mediated glucose homeostasis have been shown to modulate morphine withdrawal. OBJECTIVE Present study has been structured to investigate the role of insulin and pharmacological modulator of KATP channel (gliclazide) in experimental morphine withdrawal syndrome, both invivo and invitro. METHODS In this study, naloxone-precipitated morphine withdrawal syndrome in mice (invivo) as well as in rat ileum (invitro) were utilized to assess opioid withdrawal phenomenon. Morphine withdrawal syndromes like jumping and rearing frequency, forepaw licking, circling, fore paw tremor, wet dog shake, sneezing, overall morphine withdrawal severity (OMWS), serum glucose, brain malondialdehyde (MDA), glutathione (GSH), nitrite/nitrate, and calcium (Ca(+2)) were assessed. RESULTS Naloxone has significantly increased morphine withdrawal syndrome, both invivo and invitro. Insulin and gliclazide have significantly attenuated, naloxone induced behavioral changes like jumping and rearing frequency, forepaw licking, wet dog shake, sneezing, straightening, circling, OMWS, and various biochemical impairments such as serum glucose, brain MDA, GSH, nitrite/nitrate, and Ca(+2) in morphine-dependent animals (invivo). In vitro, insulin and gliclazide have significantly reduced naloxone-induced contraction in morphine-withdrawn rat ileum preparation. CONCLUSIONS Insulin and gliclazide (KATP channel blocker) have attenuated naloxone-precipitated morphine withdrawal syndrome, both invivo and invitro. Thus, insulin and KATP channel modulation may provide new avenues for research in morphine withdrawal.
Collapse
Affiliation(s)
- Prabhat Singh
- Neuropharmacology Laboratory, Department of Pharmacology, School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, 250103, Uttar Pradesh, India
| | | | | | | |
Collapse
|
5
|
Abstract
Endogenous opioid peptides are the basis of a diverse system of complex neuroregulatory and endocrine mechanisms. While relatively quiescent in the resting state, these peptides are released during intense stimulation and modify, in a number of ways, circulatory homeostatic mechanisms. The endogenous opioids, primarily via endorphins and enkephalins, are capable of influencing circulatory responses to stress at the behavioral, the endocrinological, and the neural level. Recent research in humans and animals has described several roles for opioids in regulation of the circulatory stress response, and has also provided clues about the significance of opioid dysregulation in the pathophysiology of stress. Increased understanding of the basic mechanisms of stress and endogenous opioids will clarify the potential roles of opioids in important pharmacologic and behaviorally based therapeutics.
Collapse
Affiliation(s)
- J A McCubbin
- Department of Behavioral Science, University of Kentucky College of Medicine, Lexington 40536-0086
| |
Collapse
|