1
|
Babaliari E, Kavatzikidou P, Xydias D, Psilodimitrakopoulos S, Ranella A, Stratakis E. Flow-Induced Shear Stress Combined with Microtopography Inhibits the Differentiation of Neuro-2a Cells. MICROMACHINES 2025; 16:341. [PMID: 40141952 PMCID: PMC11945430 DOI: 10.3390/mi16030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/01/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025]
Abstract
Considering that neurological injuries cannot typically self-recover, there is a need to develop new methods to study neuronal outgrowth in a controllable manner in vitro. In this study, a precise flow-controlled microfluidic system featuring custom-designed chambers that integrate laser-microstructured polyethylene terephthalate (PET) substrates comprising microgrooves (MGs) was developed to investigate the combined effect of shear stress and topography on Neuro-2a (N2a) cells' behavior. The MGs were positioned parallel to the flow direction and the response of N2a cells was evaluated in terms of growth and differentiation. Our results demonstrate that flow-induced shear stress could inhibit the differentiation of N2a cells. This microfluidic system could potentially be used as a new model system to study the impact of shear stress on cell differentiation.
Collapse
Affiliation(s)
- Eleftheria Babaliari
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece; (E.B.); (P.K.); (D.X.); (S.P.)
| | - Paraskevi Kavatzikidou
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece; (E.B.); (P.K.); (D.X.); (S.P.)
| | - Dionysios Xydias
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece; (E.B.); (P.K.); (D.X.); (S.P.)
- Department of Materials Science and Technology, University of Crete, 70013 Crete, Greece
| | - Sotiris Psilodimitrakopoulos
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece; (E.B.); (P.K.); (D.X.); (S.P.)
| | - Anthi Ranella
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece; (E.B.); (P.K.); (D.X.); (S.P.)
| | - Emmanuel Stratakis
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece; (E.B.); (P.K.); (D.X.); (S.P.)
- Department of Physics, University of Crete, 70013 Crete, Greece
| |
Collapse
|
2
|
Gu Y, Tang T, Qiu M, Wang H, Ampofo E, Menger MD, Laschke MW. Clioquinol inhibits angiogenesis by promoting VEGFR2 degradation and synergizes with AKT inhibition to suppress triple-negative breast cancer vascularization. Angiogenesis 2025; 28:13. [PMID: 39899169 PMCID: PMC11790708 DOI: 10.1007/s10456-024-09965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/12/2024] [Indexed: 02/04/2025]
Abstract
Inhibition of angiogenesis, either as monotherapy or in conjunction with other treatments, holds significant promise in cancer treatment. However, the limited efficacy of clinically approved anti-angiogenic agents underscores the urgent need for the development of novel drugs and therapeutic strategies. In this study, we demonstrate the highly selective inhibitory effects of clioquinol, a topical antifungal and antibiotic agent, on the angiogenic activity of endothelial cells (ECs) in a series of in vitro angiogenesis assays. Moreover, clioquinol effectively suppressed blood vessel formation in ex vivo aortic ring and in vivo Matrigel plug assays. Mechanistic studies revealed that clioquinol directly binds to the ATP-binding site of vascular endothelial growth factor receptor 2 (VEGFR2), promoting its degradation through both proteasome and lysosome pathways. This led to the down-regulation of the downstream extracellular signal-regulated kinase (ERK) pathway. In addition, the combination with the AKT inhibitor MK-2206 synergistically boosted the anti-angiogenic efficacy of clioquinol in vitro and in an in vivo dorsal skinfold chamber model of triple-negative breast cancer (TNBC), leading to the suppression of TNBC growth. Accordingly, clioquinol, either alone or in combination with AKT inhibitors, represents a promising therapeutic agent for future anti-angiogenic cancer treatment.
Collapse
Affiliation(s)
- Yuan Gu
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saarland, Germany.
| | - Tianci Tang
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saarland, Germany
| | - Moqin Qiu
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saarland, Germany
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Hongmei Wang
- Shaanxi University of Chinese Medicine, Shaanxi, 712046, China
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saarland, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saarland, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saarland, Germany
| |
Collapse
|
3
|
Alevizakos V, Friederichs A, Rahlf B, Gellrich NC, Jehn P, Schiller M. Effects of Preparation Technique on Periosteal Microcirculation After Autologous Bone Augmentation in an Animal Model. J ORAL IMPLANTOL 2025; 51:14-20. [PMID: 39654262 DOI: 10.1563/aaid-joi-d-24-00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
This controlled in vivo experimental study examines the impact of 2 periosteum preparation techniques on microcirculation during bone augmentation with isogenic bone grafts in rats. Twenty female Lewis rats were divided into 2 groups (n = 10 each). In one group, the periosteum was prepared with a conventional periosteal elevator; in the other, a piezoelectric device was used. After graft implantation at calvarial sites, intravital microscopy was performed postoperation (day 0) and on days 3, 8, and 28 immediately to assess microvascular parameters: functional capillary density, blood flow velocity, and vessel diameter. Statistical analysis was conducted using analysis of variance on ranks with P < .05. The piezoelectric device group showed higher mean values for functional capillary density, blood flow velocity, and vessel diameter than the conventional instrument group, though differences were not statistically significant. This study suggests that periosteum preparation with a piezoelectric device does not significantly differ from conventional methods regarding microcirculatory outcomes. Either method appears viable for preserving microcirculatory integrity during bone augmentation. Further research in larger models and clinical contexts is recommended to confirm these findings.
Collapse
Affiliation(s)
- Vasilios Alevizakos
- Danube Private University, Department of Dentistry, Research Center for Digital Technologies in Dentistry and CAD/CAM, Steiner Landstrasse 124, 3500 Krems an der Donau, Austria
| | - Aileen Friederichs
- Hannover Medical School, Department of Oral and Maxillofacial Surgery, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Björn Rahlf
- Hannover Medical School, Department of Oral and Maxillofacial Surgery, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Nils-Claudius Gellrich
- Hannover Medical School, Department of Oral and Maxillofacial Surgery, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Philipp Jehn
- Hannover Medical School, Department of Oral and Maxillofacial Surgery, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Marcus Schiller
- Hannover Medical School, Department of Oral and Maxillofacial Surgery, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
4
|
Bonomi F, Limido E, Weinzierl A, Ampofo E, Harder Y, Menger MD, Laschke MW. Nanofat Improves Vascularization and Tissue Integration of Dermal Substitutes without Affecting Their Biocompatibility. J Funct Biomater 2024; 15:294. [PMID: 39452592 PMCID: PMC11508499 DOI: 10.3390/jfb15100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Dermal substitutes require sufficient tissue integration and vascularization to be successfully covered with split-thickness skin grafts. To rapidly achieve this, we provide the proof of principle for a novel vascularization strategy with high translational potential. Nanofat was generated from subcutaneous adipose tissue of green fluorescence protein (GFP)+ C57BL/6J donor mice and seeded onto small samples (4 mm in diameter) of the clinically approved dermal substitute Integra®. These samples and non-seeded controls were then implanted into full-thickness skin defects in the dorsal skinfold chamber of C57BL/6J wild-type mice and analyzed by intravital fluorescence microscopy, histology and immunohistochemistry over a 14-day period. Nanofat-seeded dermal substitutes exhibited an accelerated vascularization, as indicated by a significantly higher functional microvessel density on days 10 and 14 when compared to controls. This was primarily caused by the reassembly of GFP+ microvascular fragments inside the nanofat into microvascular networks. The improved vascularization promoted integration of the implants into the surrounding host tissue, which finally exhibited an increased formation of a collagen-rich granulation tissue. There were no marked differences in the inflammatory host tissue reaction to nanofat-seeded and control implants. These findings demonstrate that nanofat significantly improves the in vivo performance of dermal substitutes without affecting their biocompatibility.
Collapse
Affiliation(s)
- Francesca Bonomi
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (F.B.); (E.L.); (A.W.); (E.A.); (M.D.M.)
| | - Ettore Limido
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (F.B.); (E.L.); (A.W.); (E.A.); (M.D.M.)
- Department of Surgery, Ospedale Beata Vergine Mendrisio, Ente Ospedaliero Cantonale (EOC), 6850 Mendrisio, Switzerland
| | - Andrea Weinzierl
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (F.B.); (E.L.); (A.W.); (E.A.); (M.D.M.)
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (F.B.); (E.L.); (A.W.); (E.A.); (M.D.M.)
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), 1005 Lausanne, Switzerland;
- Faculty of Biology and Medicine, University of Lausanne (UNIL), 1005 Lausanne, Switzerland
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (F.B.); (E.L.); (A.W.); (E.A.); (M.D.M.)
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (F.B.); (E.L.); (A.W.); (E.A.); (M.D.M.)
| |
Collapse
|
5
|
Halvorson BD, Ward AD, Murrell D, Lacefield JC, Wiseman RW, Goldman D, Frisbee JC. Regulation of Skeletal Muscle Resistance Arteriolar Tone: Temporal Variability in Vascular Responses. J Vasc Res 2024; 61:269-297. [PMID: 39362208 DOI: 10.1159/000541169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/25/2024] [Indexed: 10/05/2024] Open
Abstract
INTRODUCTION A full understanding of the integration of the mechanisms of vascular tone regulation requires an interrogation of the temporal behavior of arterioles across vasoactive challenges. Building on previous work, the purpose of the present study was to start to interrogate the temporal nature of arteriolar tone regulation with physiological stimuli. METHODS We determined the response rate of ex vivo proximal and in situ distal resistance arterioles when challenged by one-, two-, and three-parameter combinations of five major physiological stimuli (norepinephrine, intravascular pressure, oxygen, adenosine [metabolism], and intralumenal flow). Predictive machine learning models determined which factors were most influential in controlling the rate of arteriolar responses. RESULTS Results indicate that vascular response rate is dependent on the intensity of the stimulus used and can be severely hindered by altered environments, caused by application of secondary or tertiary stimuli. Advanced analytics suggest that adrenergic influences were dominant in predicting proximal arteriolar response rate compared to metabolic influences in distal arterioles. CONCLUSION These data suggest that the vascular response rate to physiologic stimuli can be strongly influenced by the local environment. Translating how these effects impact vascular networks is imperative for understanding how the microcirculation appropriately perfuses tissue across conditions.
Collapse
Affiliation(s)
- Brayden D Halvorson
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Aaron D Ward
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Departments of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Donna Murrell
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Departments of Oncology, University of Western Ontario, London, Ontario, Canada
| | - James C Lacefield
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- School of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
| | - Robert W Wiseman
- Departments of Physiology and Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Daniel Goldman
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jefferson C Frisbee
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
von Glinski M, Voigt M, Sogorski A, Wallner C, Dadras M, Behr B, Lehnhardt M, Goertz O. Influence of Remote Ischemic Conditioning and Nitrogen Monoxide on Angiogenesis and Microcirculation in a Mouse Ear Burn Model. J Surg Res 2024; 293:347-356. [PMID: 37806221 DOI: 10.1016/j.jss.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/25/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Remote ischemic conditioning (RIC) has been shown to improve tissue resilience against ischemia. The aim of this study was to investigate the influence of RIC and its key factor, nitrogen monoxide (NO), on angiogenesis in a burn wound. MATERIALS AND METHODS A unilateral burn injury on the ear of hairless mice (n = 48) was generated via a hot air jet in a contact-free manner. In four randomized groups, including the control (NoRIC group), RIC alone (RIConly group), RIC plus NO donor (ISDN group), and RIC plus NO synthase inhibitor (L-NAME group), the impact on angiogenesis, vessel diameter, blood flow, edema formation, and leukocyte-endothelial-cell interaction was evaluated over a 12-d period using intravital fluorescence microscopy. RESULTS Tissue perfusion was significantly improved by RIC (Day 3: ISDN group showed 182% and RIConly group showed 200% of baseline [BL], P < 0.001), while angiogenesis was not improved by RIC (nonperfused area on Day 12: mean 52% of BL in all groups, P >0.05). The application of ISDN did not further enhance the positive effect of RIC, whereas the application of L-NAME neutralized the effect of RIC. The most pronounced edema formation was observed in the RIConly group (mean 145% of BL, P ≤0.001), while the NoRIC group showed the least edema formation (Day 12: 117% of BL). CONCLUSIONS RIC led to increased tissue perfusion, which did not result in improved angiogenesis, which may have been due to increased edema formation after RIC performance. The results of the present study do not support the establishment of a causal therapy strategy for burn wounds, including RIC.
Collapse
Affiliation(s)
- Maxi von Glinski
- Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | - Maria Voigt
- Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Alexander Sogorski
- Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Christoph Wallner
- Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Mehran Dadras
- Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Bjoern Behr
- Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Ole Goertz
- Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany; Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Martin-Luther Hospital, Berlin, Germany
| |
Collapse
|
7
|
Halvorson BD, Bao Y, Ward AD, Goldman D, Frisbee JC. Regulation of Skeletal Muscle Resistance Arteriolar Tone: Integration of Multiple Mechanisms. J Vasc Res 2023; 60:245-272. [PMID: 37769627 DOI: 10.1159/000533316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/27/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION Physiological system complexity represents an imposing challenge to gaining insight into how arteriolar behavior emerges. Further, mechanistic complexity in arteriolar tone regulation requires that a systematic determination of how these processes interact to alter vascular diameter be undertaken. METHODS The present study evaluated the reactivity of ex vivo proximal and in situ distal resistance arterioles in skeletal muscle with challenges across the full range of multiple physiologically relevant stimuli and determined the stability of responses over progressive alterations to each other parameter. The five parameters chosen for examination were (1) metabolism (adenosine concentration), (2) adrenergic activation (norepinephrine concentration), (3) myogenic activation (intravascular pressure), (4) oxygen (superfusate PO2), and (5) wall shear rate (altered intraluminal flow). Vasomotor tone of both arteriole groups following challenge with individual parameters was determined; subsequently, responses were determined following all two- and three-parameter combinations to gain deeper insight into how stimuli integrate to change arteriolar tone. A hierarchical ranking of stimulus significance for establishing arteriolar tone was performed using mathematical and statistical analyses in conjunction with machine learning methods. RESULTS Results were consistent across methods and indicated that metabolic and adrenergic influences were most robust and stable across all conditions. While the other parameters individually impact arteriolar tone, their impact can be readily overridden by the two dominant contributors. CONCLUSION These data suggest that mechanisms regulating arteriolar tone are strongly affected by acute changes to the local environment and that ongoing investigation into how microvessels integrate stimuli regulating tone will provide a more thorough understanding of arteriolar behavior emergence across physiological and pathological states.
Collapse
Affiliation(s)
- Brayden D Halvorson
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Yuki Bao
- Department of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
| | - Aaron D Ward
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, London, Ontario, Canada
- Department of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
| | - Jefferson C Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| |
Collapse
|
8
|
Ernst BP, Heinrich UR, Fries M, Meuser R, Rader T, Eckrich J, Stauber RH, Strieth S. Cochlear implantation impairs intracochlear microcirculation and counteracts iNOS induction in guinea pigs. Front Cell Neurosci 2023; 17:1189980. [PMID: 37448696 PMCID: PMC10336219 DOI: 10.3389/fncel.2023.1189980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Preservation of residual hearing remains a great challenge during cochlear implantation. Cochlear implant (CI) electrode array insertion induces changes in the microvasculature as well as nitric oxide (NO)-dependent vessel dysfunction which have been identified as possible mediators of residual hearing loss after cochlear implantation. Methods A total of 24 guinea pigs were randomized to receive either a CI (n = 12) or a sham procedure (sham) by performing a cochleostomy without electrode array insertion (n = 12). The hearing threshold was determined using frequency-specific compound action potentials. To gain visual access to the stria vascularis, a microscopic window was created in the osseous cochlear lateral wall. Cochlear blood flow (CBF) and cochlear microvascular permeability (CMP) were evaluated immediately after treatment, as well as after 1 and 2 h, respectively. Finally, cochleae were resected for subsequent immunohistochemical analysis of the iNOS expression. Results The sham control group showed no change in mean CBF after 1 h (104.2 ± 0.7%) and 2 h (100.8 ± 3.6%) compared to baseline. In contrast, cochlear implantation resulted in a significant continuous decrease in CBF after 1 h (78.8 ± 8.1%, p < 0.001) and 2 h (60.6 ± 11.3%, p < 0.001). Additionally, the CI group exhibited a significantly increased CMP (+44.9% compared to baseline, p < 0.0001) and a significant increase in median hearing threshold (20.4 vs. 2.5 dB SPL, p = 0.0009) compared to sham after 2 h. Intriguingly, the CI group showed significantly lower iNOS-expression levels in the organ of Corti (329.5 vs. 54.33 AU, p = 0.0003), stria vascularis (596.7 vs. 48.51 AU, p < 0.0001), interdental cells (564.0 vs. 109.1 AU, p = 0.0003) and limbus fibrocytes (119.4 vs. 18.69 AU, p = 0.0286). Conclusion Mechanical and NO-dependent microvascular dysfunction seem to play a pivotal role in residual hearing loss after CI electrode array insertion. This may be facilitated by the implantation associated decrease in iNOS expression. Therefore, stabilization of cochlear microcirculation could be a therapeutic strategy to preserve residual hearing.
Collapse
Affiliation(s)
| | - Ulf-Rüdiger Heinrich
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Mathias Fries
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Regina Meuser
- Institute for Medical Biometry, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tobias Rader
- Division of Audiology, Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Roland H. Stauber
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| |
Collapse
|
9
|
Weinzierl A, Harder Y, Schmauss D, Menger MD, Laschke MW. Microvascular Fragments Protect Ischemic Musculocutaneous Flap Tissue from Necrosis by Improving Nutritive Tissue Perfusion and Suppressing Apoptosis. Biomedicines 2023; 11:biomedicines11051454. [PMID: 37239125 DOI: 10.3390/biomedicines11051454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Microvascular fragments (MVF) derived from enzymatically digested adipose tissue are functional vessel segments that have been shown to increase the survival rate of surgical flaps. However, the underlying mechanisms have not been clarified so far. To achieve this, we raised random-pattern musculocutaneous flaps on the back of wild-type mice and mounted them into dorsal skinfold chambers. The flaps were injected with MVF that were freshly isolated from green fluorescent protein-positive (GFP+) donor mice or saline solution (control). On days 1, 3, 5, 7, and 10 after surgery, intravital fluorescence microscopy was performed for the quantitative assessment of angiogenesis, nutritive blood perfusion, and flap necrosis. Subsequently, the flaps were analyzed by histology and immunohistochemistry. The injection of MVF reduced necrosis of the ischemic flap tissue by ~20%. When compared to controls, MVF-injected flaps also displayed a significantly higher functional capillary density and number of newly formed microvessels in the transition zone, where vital tissue bordered on necrotic tissue. Immunohistochemical analyses revealed a markedly lower number of cleaved caspase-3+ apoptotic cells in the transition zone of MVF-injected flaps and a significantly increased number of CD31+ microvessels in both the flaps' base and transition zone. Up to ~10% of these microvessels were GFP+, proving their origin from injected MVF. These findings demonstrate that MVF reduce flap necrosis by increasing angiogenesis, improving nutritive tissue perfusion, and suppressing apoptosis. Hence, the injection of MVF may represent a promising strategy to reduce ischemia-induced flap necrosis in future clinical practice.
Collapse
Affiliation(s)
- Andrea Weinzierl
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Daniel Schmauss
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| |
Collapse
|
10
|
The Endothelial Glycocalyx and Retinal Hemodynamics. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2022; 29:663-677. [PMID: 36548208 PMCID: PMC9785437 DOI: 10.3390/pathophysiology29040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/20/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Previous studies suggest that the endothelial glycocalyx adds to vascular resistance, inhibits thrombosis, and is critical for regulating homogeneous blood flow and ensuring uniform red blood cell (RBC) distribution. However, these functions and consequences of the glycocalyx have not been examined in the retina. We hypothesize that the endothelial glycocalyx is a critical regulator of retinal hemodynamics and perfusion and decreases the propensity for retinal thrombus formation. METHODS Hyaluronidase and heparinase, which are endothelial glycocalyx-degrading enzymes, were infused into mice. Fluorescein isothiocyanate-dextran (2000 kDa) was injected to measure lumen diameter, while RBC velocity and distribution were measured using fluorescently labeled RBCs. The diameters and velocities were used to calculate retinal blood flow and shear rates. Mean circulation time was calculated by measuring the difference between arteriolar and venular mean transit times. Rose Bengal dye was infused, followed by illumination with a green light to induce thrombosis. RESULTS The acute infusion of hyaluronidase and heparinase led to significant increases in both arteriolar (7%) and venular (16%) diameters in the retina, with a tendency towards increased arteriolar velocity. In addition, the degradation caused a significant decrease in the venular shear rate (14%). The enzyme infusion resulted in substantial increases in total retinal blood flow (26%) and retinal microhematocrit but no changes in the mean circulation time through the retina. We also observed an enhanced propensity for retinal thrombus formation with the removal of the glycocalyx. CONCLUSIONS Our data suggest that acute degradation of the glycocalyx can cause significant changes in retinal hemodynamics, with increases in vessel diameter, blood flow, microhematocrit, pro-thrombotic conditions, and decreases in venular shear rate.
Collapse
|
11
|
Halvorson BD, Menon NJ, Goldman D, Frisbee SJ, Goodwill AG, Butcher JT, Stapleton PA, Brooks SD, d'Audiffret AC, Wiseman RW, Lombard JH, Brock RW, Olfert IM, Chantler PD, Frisbee JC. The development of peripheral microvasculopathy with chronic metabolic disease in obese Zucker rats: a retrograde emergence? Am J Physiol Heart Circ Physiol 2022; 323:H475-H489. [PMID: 35904886 PMCID: PMC9448278 DOI: 10.1152/ajpheart.00264.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
The study of peripheral vasculopathy with chronic metabolic disease is challenged by divergent contributions from spatial (the level of resolution or specific tissue being studied) and temporal origins (evolution of the developing impairments in time). Over many years of studying the development of skeletal muscle vasculopathy and its functional implications, we may be at the point of presenting an integrated conceptual model that addresses these challenges within the obese Zucker rat (OZR) model. At the early stages of metabolic disease, where systemic markers of elevated cardiovascular disease risk are present, the only evidence of vascular dysfunction is at postcapillary and collecting venules, where leukocyte adhesion/rolling is elevated with impaired venular endothelial function. As metabolic disease severity and duration increases, reduced microvessel density becomes evident as well as increased variability in microvascular hematocrit. Subsequently, hemodynamic impairments to distal arteriolar networks emerge, manifesting as increasing perfusion heterogeneity and impaired arteriolar reactivity. This retrograde "wave of dysfunction" continues, creating a condition wherein deficiencies to the distal arteriolar, capillary, and venular microcirculation stabilize and impairments to proximal arteriolar reactivity, wall mechanics, and perfusion distribution evolve. This proximal arteriolar dysfunction parallels increasing failure in fatigue resistance, hyperemic responses, and O2 uptake within self-perfused skeletal muscle. Taken together, these results present a conceptual model for the retrograde development of peripheral vasculopathy with chronic metabolic disease and provide insight into the timing and targeting of interventional strategies to improve health outcomes.NEW & NOTEWORTHY Working from an established database spanning multiple scales and times, we studied progression of peripheral microvascular dysfunction in chronic metabolic disease. The data implicate the postcapillary venular endothelium as the initiating site for vasculopathy. Indicators of dysfunction, spanning network structures, hemodynamics, vascular reactivity, and perfusion progress in an insidious retrograde manner to present as functional impairments to muscle blood flow and performance much later. The silent vasculopathy progression may provide insight into clinical treatment challenges.
Collapse
Affiliation(s)
- Brayden D Halvorson
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Nithin J Menon
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Stephanie J Frisbee
- Department Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Adam G Goodwill
- Department of Integrative Medical Sciences, Northeastern Ohio Medical University, Rootstown, Ohio
| | - Joshua T Butcher
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - Steven D Brooks
- Laboratory of Malaria and Vector Research, Physiology Unit, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | | | - Robert W Wiseman
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Department of Radiology, Michigan State University, East Lansing, Michigan
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert W Brock
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - I Mark Olfert
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
| | - Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
12
|
Brassinin Promotes the Degradation of Tie2 and FGFR1 in Endothelial Cells and Inhibits Triple-Negative Breast Cancer Angiogenesis. Cancers (Basel) 2022; 14:cancers14143540. [PMID: 35884601 PMCID: PMC9318525 DOI: 10.3390/cancers14143540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Brassinin is a natural compound enriched in several commonly consumed vegetables, such as broccoli and cabbages. It shows potent anti-cancer activity against several cancers. However, its effects on triple-negative breast cancer (TNBC), an aggressive subtype with limited treatment options, remain elusive so far. Therefore, we investigated the effects of brassinin on TNBC angiogenesis and growth. Our results demonstrate that brassinin inhibits TNBC growth preferentially through inhibiting the angiogenic activity of endothelial cells (ECs). Additional in-vitro analyses revealed that this effect may be mediated by brassinin-stimulated degradation of two pivotal angiogenesis-related receptors in ECs: Tie2 and fibroblast growth factor receptor 1. These findings provide novel insights into the cellular and molecular mechanisms underlying the anti-cancer activity of brassinin and indicate that this phytochemical may be a promising lead compound or drug candidate for TNBC treatment. Abstract Brassinin, a phytoalexin derived from cruciferous vegetables, has been reported to exhibit anti-cancer activity in multiple cancer types. However, its effects on triple-negative breast cancer (TNBC) development and the underlying mechanisms have not been elucidated so far. In this study, we demonstrated in vitro that brassinin preferentially reduces the viability of endothelial cells (ECs) when compared to other cell types of the tumor microenvironment, including TNBC cells, pericytes, and fibroblasts. Moreover, brassinin at non-cytotoxic doses significantly suppressed the proliferation, migration, tube formation, and spheroid sprouting of ECs. It also efficiently inhibited angiogenesis in an ex-vivo aortic ring assay and an in-vivo Matrigel plug assay. Daily intraperitoneal injection of brassinin significantly reduced tumor size, microvessel density, as well as the perfusion of tumor microvessels in a dorsal skinfold chamber model of TNBC. Mechanistic analyses showed that brassinin selectively stimulates the degradation of Tie2 and fibroblast growth factor receptor 1 in ECs, leading to the down-regulation of the AKT and extracellular signal-regulated kinase pathways. These findings demonstrate a preferential and potent anti-angiogenic activity of brassinin, which may be the main mechanism of its anti-tumor action. Accordingly, this phytochemical represents a promising candidate for the future anti-angiogenic treatment of TNBC.
Collapse
|
13
|
Bromelain Protects Critically Perfused Musculocutaneous Flap Tissue from Necrosis. Biomedicines 2022; 10:biomedicines10061449. [PMID: 35740469 PMCID: PMC9220030 DOI: 10.3390/biomedicines10061449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Bromelain has previously been shown to prevent ischemia-induced necrosis in different types of tissues. In the present study, we, therefore, evaluated for the first time, the tissue-protective effects of bromelain in musculocutaneous flaps in mice. Adult C57BL/6N mice were randomly assigned to a bromelain treatment group and a control group. The animals were treated daily with intraperitoneal injections of 20 mg/kg bromelain or saline (control), starting 1 h before the flap elevation throughout a 10-day observation period. The random-pattern musculocutaneous flaps were raised on the backs of the animals and mounted into a dorsal skinfold chamber. Angiogenesis, nutritive blood perfusion and flap necrosis were quantitatively analyzed by means of repeated intravital fluorescence microscopy over 10 days after surgery. After the last microscopy, the flaps were harvested for additional histological and immunohistochemical analyses. Bromelain reduced necrosis of the critically perfused flap tissue by ~25%. The bromelain-treated flaps also exhibited a significantly higher functional microvessel density and an elevated formation of newly developed microvessels in the transition zone between the vital and necrotic tissues when compared to the controls. Immunohistochemical analyses demonstrated a markedly lower invasion of the myeloperoxidase-positive neutrophilic granulocytes and a significantly reduced number of cleaved caspase 3-positive apoptotic cells in the transition zone of bromelain-treated musculocutaneous flaps. These findings indicate that bromelain prevents flap necrosis by maintaining nutritive tissue perfusion and by suppressing ischemia-induced inflammation and apoptosis. Hence, bromelain may represent a promising compound to prevent ischemia-induced flap necrosis in clinical practice.
Collapse
|
14
|
Kloos B, Bertlich M, Spiegel JL, Freytag S, Lauer SK, Canis M, Weiss BG, Ihler F. Low Dose Betahistine in Combination With Selegiline Increases Cochlear Blood Flow in Guinea Pigs. Ann Otol Rhinol Laryngol 2022; 132:519-526. [PMID: 35656811 PMCID: PMC10108341 DOI: 10.1177/00034894221098803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Betahistine is frequently used in the pharmacotherapy for Menière's Disease (MD). Little is known about its mode of action and prescribed dosages vary. While betahistine had an increasing effect on cochlear microcirculation in earlier studies, low dose betahistine of 0.01 mg/kg bw or less was not able to effect this. Selegiline inhibits monoaminooxidase B and therefore potentially the breakdown of betahistine. The goal of this study was to examine whether the addition of selegiline to low dose betahistine leads to increased cochlear blood flow. METHODS Twelve Dunkin-Hartley guinea pigs were anesthetized, the cochlea was exposed and a window opened to the stria vascularis. Blood plasma was visualized by injecting fluoresceinisothiocyanate-dextrane and vessel diameter and erythrocyte velocity were evaluated over 20 minutes. One group received low dose betahistine (0.01 mg/kg bw) and selegiline (1 mg/kg bw) i.v. while the other group received only selegiline (1 mg/kg bw) and saline (0.9% NaCl) as placebo i.v. RESULTS Cochlear microcirculation increased significantly (P < .001) in guinea pigs treated with low dose betahistine combined with selegiline by up to 58.3 ± 38.7% above baseline over a period of up to 11 minutes. In one guinea pig, the increase was 104.6%. Treatment with Selegiline alone did not affect microcirculation significantly. CONCLUSIONS Low dose betahistine increased cochlear microcirculation significantly when combined with selegiline. This should be investigated in further studies regarding dose-effect relation in comparison to betahistine alone. Side effects, in particular regarding circulation, should be considered carefully in view of the clinical applicability of a combination therapy in patients with MD.
Collapse
Affiliation(s)
- Benedikt Kloos
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany.,Institute of Surgical Research, Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Vertigo and Dizziness (DSGZ), LMU Munich, Munich, Germany
| | - Mattis Bertlich
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany.,Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Jennifer L Spiegel
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany
| | - Saskia Freytag
- Molecular Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Susanne K Lauer
- Clinic for Small Animal Surgery and Reproduction, LMU Munich, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany
| | - Bernhard G Weiss
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany
| | - Friedrich Ihler
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany.,Institute of Surgical Research, Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Vertigo and Dizziness (DSGZ), LMU Munich, Munich, Germany.,Department of Ear, Nose and Throat Diseases, Head and Neck Surgery, Greifswald, Germany
| |
Collapse
|
15
|
Weinzierl A, Harder Y, Schmauss D, Menger MD, Laschke MW. Boosting Tissue Vascularization: Nanofat as a Potential Source of Functional Microvessel Segments. Front Bioeng Biotechnol 2022; 10:820835. [PMID: 35186904 PMCID: PMC8854281 DOI: 10.3389/fbioe.2022.820835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Nanofat is increasingly applied in plastic surgery for the improvement of scar quality and skin rejuvenation. However, little is known about the underlying regenerative mechanisms. Therefore, we herein investigated nanofat grafts in a murine dorsal skinfold chamber model. Nanofat generated from subcutaneous, inguinal adipose tissue of green fluorescent protein (GFP)+ C57BL/6 male and female donor mice was injected intracutaneously into dorsal skinfold chambers of gender-matched GFP− wild-type mice. The vascularization and tissue composition of the grafted nanofat were analyzed by means of intravital fluorescence microscopy, histology and immunohistochemistry over an observation period of 14 days. The freshly generated nanofat consisted of small fragments of perilipin+ adipocytes surrounded by Sirius red+ collagen fibers and still contained intact CD31+/GFP+ vessel segments. After transplantation into the dorsal skinfold chamber, these vessel segments survived and developed interconnections to the surrounding CD31+/GFP− host microvasculature. Accordingly, the grafted nanofat rapidly vascularized and formed new microvascular networks with a high functional microvessel density on day 14 without marked differences between male and female mice. Even though further research is needed to confirm these findings, the present study suggests that nanofat boosts tissue vascularization. Thus, nanofat may represent a versatile resource for many applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Andrea Weinzierl
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
- *Correspondence: Andrea Weinzierl,
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Daniel Schmauss
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
16
|
Weinzierl A, Harder Y, Schmauss D, Ampofo E, Menger MD, Laschke MW. Improved Vascularization and Survival of White Compared to Brown Adipose Tissue Grafts in the Dorsal Skinfold Chamber. Biomedicines 2021; 10:biomedicines10010023. [PMID: 35052704 PMCID: PMC8772698 DOI: 10.3390/biomedicines10010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Fat grafting is a frequently applied procedure in plastic surgery for volume reconstruction. Moreover, the transplantation of white adipose tissue (WAT) and brown adipose tissue (BAT) increasingly gains interest in preclinical research for the treatment of obesity-related metabolic defects. Therefore, we herein directly compared the vascularization capacity and survival of WAT and BAT grafts. For this purpose, size-matched grafts isolated from the inguinal WAT pad and the interscapular BAT depot of C57BL/6N donor mice were syngeneically transplanted into the dorsal skinfold chamber of recipient animals. The vascularization and survival of the grafts were analyzed by means of intravital fluorescence microscopy, histology, and immunohistochemistry over an observation period of 14 days. WAT grafts showed an identical microvascular architecture and functional microvessel density as native WAT. In contrast, BAT grafts developed an erratic microvasculature with a significantly lower functional microvessel density when compared to native BAT. Accordingly, they also contained a markedly lower number of CD31-positive microvessels, which was associated with a massive loss of perilipin-positive adipocytes. These findings indicate that in contrast to WAT grafts, BAT grafts exhibit an impaired vascularization capacity and survival, which may be due to their higher metabolic demand. Hence, future studies should focus on the establishment of strategies to improve the engraftment of transplanted BAT.
Collapse
Affiliation(s)
- Andrea Weinzierl
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (E.A.); (M.D.M.); (M.W.L.)
- Correspondence:
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland; (Y.H.); (D.S.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Daniel Schmauss
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland; (Y.H.); (D.S.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (E.A.); (M.D.M.); (M.W.L.)
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (E.A.); (M.D.M.); (M.W.L.)
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (E.A.); (M.D.M.); (M.W.L.)
| |
Collapse
|
17
|
Eckrich J, Ruan Y, Jiang S, Frenis K, Rodriguez-Blanco G, Maas AP, Jimenez MTB, Kuntic M, Oelze M, Hahad O, Li H, Steven S, Strieth S, von Kriegsheim A, Münzel T, Daiber A, Gericke A, Ernst BP. In vivo analysis of noise dependent activation of white blood cells and microvascular dysfunction in mice. MethodsX 2021; 8:101540. [PMID: 34754808 PMCID: PMC8563683 DOI: 10.1016/j.mex.2021.101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022] Open
Abstract
This article contains supporting information on data collection for the research article entitled “Aircraft noise exposure drives the activation of white blood cells and induces microvascular dysfunction in mice” by Eckrich et al. We found that noise-induced stress triggered microvascular dysfunction via involvement of innate immune-derived reactive oxygen species. In this article, we present the instrumentation of mice with dorsal skinfold chambers for in vivo microscopic imaging of blood flow, interaction of leukocytes with the vascular wall (also by fluorescent labelling of blood cells) and vessel diameter. In addition, we explain the preparation of cerebral arterioles for measurement of vascular reactivity in vitro.visualization of noise-dependent effects in dorsal skinfold chamber. in vivo microscopy of noise-dependent activation of white blood cells. analysis of noise-dependent microvascular dysfunction in dorsal skinfold chamber and cannulated cerebral arterioles.
Collapse
Affiliation(s)
- Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Yue Ruan
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Subao Jiang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Katie Frenis
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | | | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | | |
Collapse
|
18
|
Quercetin Completely Ameliorates Hypoxia-Reoxygenation-Induced Pathophysiology Severity in NY1DD Transgenic Sickle Mice: Intrinsic Mild Steady State Pathophysiology of the Disease in NY1DD Is Also Reversed. Biomolecules 2021; 11:biom11101473. [PMID: 34680105 PMCID: PMC8533533 DOI: 10.3390/biom11101473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/29/2022] Open
Abstract
The vaso-occlusive crisis (VOC) is a major complication of sickle cell disease (SCD); thus, strategies to ameliorate vaso-occlusive episodes are greatly needed. We evaluated the therapeutic benefits of quercetin in a SCD transgenic sickle mouse model. This disease model exhibited very mild disease pathophysiology in the steady state. The severity of the disease in the NY1DD mouse was amplified by subjecting mice to 18 h of hypoxia followed by 3 h of reoxygenation. Quercetin (200 mg/kg body weight) administered to hypoxia challenged NY1DD mice in a single intraperitoneal (i.p.) dose at the onset of reoxygenation completely ameliorated all hypoxia reoxygenation (H/R)-induced pathophysiology. Additionally, it ameliorated the mild intrinsic steady state pathophysiology. These results are comparable with those seen with semisynthetic supra plasma expanders. In control mice, C57BL/6J, hypoxia reoxygenation-induced vaso-occlusion was at significantly lower levels than in NY1DD mice, reflecting the role of sickle hemoglobin (HbS) in inducing vaso-occlusion; however, the therapeutic benefits from quercetin were significantly muted. We suggest that these findings represent a unique genotype of the NY1DD mice, i.e., the presence of high oxygen affinity red blood cells (RBCs) with chimeric HbS, composed of mouse α-chain and human βS-chain, as well as human α-chain and mouse β-chain (besides HbS). The anti-anemia therapeutic benefits from high oxygen affinity RBCs in these mice exert disease severity modifications that synergize with the therapeutic benefits of quercetin. Combining the therapeutic benefits of high oxygen affinity RBCs generated in situ by chemical or genetic manipulation with the therapeutic benefits of antiadhesive therapies is a novel approach to treat sickle cell patients with severe pathophysiology.
Collapse
|
19
|
Weiss BG, Freytag S, Kloos B, Haubner F, Sharaf K, Spiegel JL, Canis M, Ihler F, Bertlich M. Cannabinoid Receptor 2 Agonism is Capable of Preventing Lipopolysaccharide Induced Decreases of Cochlear Microcirculation - A Potential Approach for Inner Ear Pathologies. Otol Neurotol 2021; 42:e1396-e1401. [PMID: 34267099 DOI: 10.1097/mao.0000000000003280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS The ability of JWH-133, an agonist at the cannabinoid receptor 2, to abrogate the effects of lipopolysaccharide on cochlear microcirculation was investigated. BACKGROUND Cochlear inflammation and subsequent impairment of microcirculation is part of numerous pathologies affecting inner ear function, including suppurative labyrinthitis, noise trauma, and sudden sensorineural hearing loss. One way of causing cochlear inflammation is exposing the cochlea to lipopolysaccharide, a bacterial endotoxin. METHODS Twenty Dunkin-hartley guinea pigs were divided into four groups of five animals each. Two groups received topic treatment with JWH-133 and two received treatment with placebo. One group that had been treated with JWH-133 and one with placebo were then exposed to lipopolysaccharide or placebo, respectively. Cochlear microcirculation was quantified before, in between and after treatments by in vivo fluorescence microscopy. RESULTS Significantly different changes in cochlear blood flow were only seen in the group that was treated with placebo and subsequently lipopolysaccharide. Every other group showed no significant change in cochlear blood flow. CONCLUSION JWH-133 is capable of abrogating the effects of lipopolysaccharide on cochlear microcirculation. It may therefore be clinical interest in treating numerous inflammation associated cochlear pathologies.
Collapse
Affiliation(s)
- Bernhard G Weiss
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Marchioninistr. 15
- Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Marchioninistr. 27, 81377 Munich, Germany
| | - Saskia Freytag
- Population Health and Immunity Division, Walter and Eliza Hall Institute, 1G Royal Parade
- Department of Medical Biology, University of Melbourne, 3052, Parkville, Australia
| | - Benedikt Kloos
- Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Marchioninistr. 27, 81377 Munich, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Marchioninistr. 15
| | - Kariem Sharaf
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Marchioninistr. 15
- Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Marchioninistr. 27, 81377 Munich, Germany
| | - Jennifer Lee Spiegel
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Marchioninistr. 15
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Marchioninistr. 15
- Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Marchioninistr. 27, 81377 Munich, Germany
| | - Friedrich Ihler
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Marchioninistr. 15
- Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Marchioninistr. 27, 81377 Munich, Germany
| | - Mattis Bertlich
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Marchioninistr. 15
- Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Marchioninistr. 27, 81377 Munich, Germany
| |
Collapse
|
20
|
Eckrich J, Frenis K, Rodriguez-Blanco G, Ruan Y, Jiang S, Bayo Jimenez MT, Kuntic M, Oelze M, Hahad O, Li H, Gericke A, Steven S, Strieth S, von Kriegsheim A, Münzel T, Ernst BP, Daiber A. Aircraft noise exposure drives the activation of white blood cells and induces microvascular dysfunction in mice. Redox Biol 2021; 46:102063. [PMID: 34274810 PMCID: PMC8313840 DOI: 10.1016/j.redox.2021.102063] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Epidemiological studies showed that traffic noise has a dose-dependent association with increased cardiovascular morbidity and mortality. Whether microvascular dysfunction contributes significantly to the cardiovascular health effects by noise exposure remains to be established. The connection of inflammation and immune cell interaction with microvascular damage and functional impairment is also not well characterized. Male C57BL/6J mice or gp91phox−/y mice with genetic deletion of the phagocytic NADPH oxidase catalytic subunit (gp91phox or NOX-2) were used at the age of 8 weeks, randomly instrumented with dorsal skinfold chambers and exposed or not exposed to aircraft noise for 4 days. Proteomic analysis (using mass spectrometry) revealed a pro-inflammatory phenotype induced by noise exposure that was less pronounced in noise-exposed gp91phox−/y mice. Using in vivo fluorescence microscopy, we found a higher number of adhesive leukocytes in noise-exposed wild type mice. Dorsal microvascular diameter (by trend), red blood cell velocity, and segmental blood flow were also decreased by noise exposure indicating microvascular constriction. All adverse effects on functional parameters were normalized or improved at least by trend in noise-exposed gp91phox−/y mice. Noise exposure also induced endothelial dysfunction in cerebral microvessels, which was associated with higher oxidative stress burden and inflammation, as measured using video microscopy. We here establish a link between a pro-inflammatory phenotype of plasma, activation of circulating leukocytes and microvascular dysfunction in mice exposed to aircraft noise. The phagocytic NADPH oxidase was identified as a central player in the underlying pathophysiological mechanisms. Noise exposure induces a pro-thrombo-inflammatory phenotype in mouse plasma. Aircraft noise increases leukocyte-endothelium interactions in dorsal microvessels. Noise decreases segmental blood flow/red blood cell velocity in dorsal microvessels. Noise increases cerebral microvascular dysfunction and oxidative stress. Nox2 deficiency (gp91phox-/y) improves noise-induced adverse effects.
Collapse
Affiliation(s)
- Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Katie Frenis
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | | | - Yue Ruan
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Subao Jiang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | | | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | | | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | | | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
21
|
Schroeder M, Viezens L, Sündermann J, Hettenhausen S, Hauenherm G, Wellbrock J, Mussawy H, Kossow K, Schaefer C. Preclinical Quantification of Prostate Cancer-Associated Vascular Alterations in the Bone Microenvironment in vivo. Eur Surg Res 2021; 61:188-200. [PMID: 33626542 DOI: 10.1159/000514224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Prostate cancer has a special predilection to form bone metastases. Despite the known impact of the microvascular network on tumour growth and its dependence on the organ-specific microenvironment, the characteristics of the tumour vasculature in bone remain unknown. METHODS The cell lines LNCaP, DU145, and PC3 were implanted into the femurs of NSG mice to examine the microvascular properties of prostate cancer in bone. Tumour growth and the functional and morphological alterations of the microvasculature were analysed for 21 days in vivo using a transparent bone chamber and fluorescence microscopy. RESULTS Vascular density was significantly lower in tumour-bearing bone than in non-tumour-bearing bone, with a marked loss of small vessels. Accelerated blood flow velocity led to increased volumetric blood flow per vessel, but overall perfusion was not affected. All of the prostate cancer cell lines had similar vascular patterns, with more pronounced alterations in rapidly growing tumours. Despite minor differences between the prostate cancer cell lines associated with individual growth behaviours, the same overall pattern was observed and showed strong similarity to that of tumours growing in soft tissue. DISCUSSION The increase in blood flow velocity could be a specific characteristic of prostate cancer or the bone microenvironment.
Collapse
Affiliation(s)
- Malte Schroeder
- Department of Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, .,Department of Spine Surgery, Klinikum Bad Bramstedt, Bad Bramstedt, Germany,
| | - Lennart Viezens
- Department of Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jördis Sündermann
- Department of Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Svenja Hettenhausen
- Department of Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerrit Hauenherm
- Department of Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Haematology, Oncology and Stem Cell Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Haider Mussawy
- Department of Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Kossow
- Centre of Psychosocial Medicine, Institute and Policlinics of Medical Psychology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Schaefer
- Department of Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Spine Surgery, Klinikum Bad Bramstedt, Bad Bramstedt, Germany
| |
Collapse
|
22
|
Babaliari E, Kavatzikidou P, Mitraki A, Papaharilaou Y, Ranella A, Stratakis E. Combined effect of shear stress and laser-patterned topography on Schwann cell outgrowth: synergistic or antagonistic? Biomater Sci 2021; 9:1334-1344. [PMID: 33367414 DOI: 10.1039/d0bm01218a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although the peripheral nervous system exhibits a higher rate of regeneration than that of the central nervous system through a spontaneous regeneration after injury, the functional recovery is fairly infrequent and misdirected. Thus, the development of successful methods to guide neuronal outgrowth, in vitro, is of great importance. In this study, a precise flow controlled microfluidic system with specific custom-designed chambers, incorporating laser-microstructured polyethylene terephthalate (PET) substrates comprising microgrooves, was fabricated to assess the combined effect of shear stress and topography on Schwann cells' behavior. The microgrooves were positioned either parallel or perpendicular to the direction of the flow inside the chambers. Additionally, the cell culture results were combined with computational flow simulations to calculate accurately the shear stress values. Our results demonstrated that wall shear stress gradients may be acting either synergistically or antagonistically depending on the substrate groove orientation relative to the flow direction. The ability to control cell alignment in vitro could potentially be used in the fields of neural tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Eleftheria Babaliari
- Foundation for Research and Technology - Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.) Vassilika Vouton, 70013 Heraklion, Greece.
| | | | | | | | | | | |
Collapse
|
23
|
Ihler F, Freytag S, Kloos B, Spiegel JL, Haubner F, Canis M, Weiss BG, Bertlich M. Lipopolysaccharide decreases cochlear blood flow dose dependently in a guinea pig animal model via TNF signaling. Microcirculation 2021; 28:e12681. [PMID: 33501679 DOI: 10.1111/micc.12681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To evaluate the effect of Lipopolysaccharide (LPS), a bacterial endotoxin on cochlear microcirculation, and its mode of action. METHODS Twenty-five Dunkin-Hartley guinea pigs were divided into five groups of five animals each. After surgical preparation, cochlear microcirculation was quantified by in vivo fluorescence microscopy. Placebo or LPS (1 mg, 10 µg, and 100 ng) was applied topically, and microcirculation was measured before and twice after application. A fifth group was pretreated with etanercept, a tumor necrosis factor (TNF) antagonist, and afterward the lowest LPS concentrations that yielded significant results (10 µg) were applied. RESULTS In the groups that had been treated with 1 mg and 10 µg LPS, a significant drop in cochlear microcirculation was observed after 30 (.791 ± .089 Arbitrary Units (AU), compared to baseline, and .888 ± .071AU) and 60 (.756 ± .101 AU and .817 ± .124 AU, respectively) minutes. The groups that had been treated with 100 ng LPS and that had been pretreated with etanercept showed no significant change in cochlear blood flow compared to placebo. CONCLUSION Lipopolysaccharide shows a dose-dependent effect on cochlear microcirculation; this effect can already be observed after 30 min. Pretreatment with etanercept can abrogate this effect, indicating that TNF mediates the effect of LPS on cochlear microcirculation.
Collapse
Affiliation(s)
- Friedrich Ihler
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Munich, Germany
| | - Saskia Freytag
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Vic., Australia
| | - Benedikt Kloos
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Munich, Germany
| | - Jennifer Lee Spiegel
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Munich, Germany
| | - Bernhard G Weiss
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Munich, Germany
| | - Mattis Bertlich
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Munich, Germany
| |
Collapse
|
24
|
Roberts TG, Cox SJ, Lewis AL, Jones SA. Characterisation and optimisation of foams for varicose vein sclerotherapy. Biorheology 2021; 57:77-85. [PMID: 33459690 DOI: 10.3233/bir-201004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Foam sclerotherapy is the process of using an aqueous foam to deliver surfactant to a varicose vein to damage vein wall endothelial cells, causing the vein to spasm, collapse and ultimately be re-absorbed into the body. Aqueous foams are complex fluids that can exhibit a significant yield stress and high effective viscosity which depend on their composition, particularly the bubble size and liquid fraction. OBJECTIVE To characterise the properties of foams used for varicose vein sclerotherapy and determine their effectiveness in the displacement of blood during sclerotherapy. METHODS Foams are modelled as yield stress fluids and their flow profiles in a model vein are predicted. Values of the yield stress are determined from experimental data for three different foams using the Sauter mean of the bubble size distribution. Along with the measured liquid fraction of the foams, this information is collected into a Bingham number which entirely characterises the process of sclerotherapy. RESULTS Polydispersity in bubble size has a strong effect on the yield stress of a foam and the Sauter mean of the size distribution better captures the effects of a few large bubbles. Reducing the polydispersity increases the yield stress, and a higher yield stress results in a larger plug region moving along the vein, which is more effective in displacing blood. The width of the plug region is proportional to the Bingham number, which also has a quadratic dependence on the liquid fraction of the foam. Assuming typical values for the rate of injection of a foam, we predict that for a vein of diameter 5 mm, the most effective foams have low liquid fraction, a narrow size distribution, and a Bingham number B ≈ 4.5. CONCLUSIONS The Sauter mean radius provides the most appropriate measure of the bubble size for sclerotherapy and the Bingham number then provides a simple measure of the efficacy of foam sclerotherapy in a vein of a given size, and explains the ability of different foams to remove varicose veins. Foams containing small bubbles, with a narrow size distribution, and a low liquid fraction are beneficial for sclerotherapy.
Collapse
Affiliation(s)
- T G Roberts
- Department of Mathematics, Aberystwyth University, UK
| | - S J Cox
- Department of Mathematics, Aberystwyth University, UK
| | - A L Lewis
- Biocompatibles UK Ltd, a Boston Scientific Company, Lakeview, Camberley, Surrey, UK
| | - S A Jones
- Biocompatibles UK Ltd, a Boston Scientific Company, Lakeview, Camberley, Surrey, UK
| |
Collapse
|
25
|
Cell seeding accelerates the vascularization of tissue engineering constructs in hypertensive mice. Hypertens Res 2020; 44:23-35. [PMID: 32778779 DOI: 10.1038/s41440-020-0524-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 11/08/2022]
Abstract
Rapid blood vessel ingrowth into transplanted constructs represents the key requirement for successful tissue engineering. Seeding three-dimensional scaffolds with suitable cells is an approved technique for this challenge. Since a plethora of patients suffer from widespread diseases that limit the capacity of neoangiogenesis (e.g., hypertension), we investigated the incorporation of cell-seeded poly-L-lactide-co-glycolide scaffolds in hypertensive (BPH/2J, group A) and nonhypertensive (BPN/3J, group B) mice. Collagen-coated scaffolds (A1 and B1) were additionally seeded with osteoblast-like (A2 and B2) and mesenchymal stem cells (A3 and B3). After implantation into dorsal skinfold chambers, inflammation and newly formed microvessels were measured using repetitive intravital fluorescence microscopy for 2 weeks. Apart from a weak inflammatory response in all groups, significantly increased microvascular densities were found in cell-seeded scaffolds (day 14, A2: 192 ± 12 cm/cm2, A3: 194 ± 10 cm/cm2, B2: 249 ± 19 cm/cm2, B3: 264 ± 17 cm/cm2) when compared with controls (A1: 129 ± 10 cm/cm2, B1: 185 ± 8 cm/cm2). In this context, hypertensive mice showed reduced neoangiogenesis in comparison with nonhypertensive animals. Therefore, seeding approved scaffolds with organ-specific or pluripotent cells is a very promising technique for tissue engineering in hypertensive organisms.
Collapse
|
26
|
Munoz CJ, Lucas A, Williams AT, Cabrales P. A Review on Microvascular Hemodynamics: The Control of Blood Flow Distribution and Tissue Oxygenation. Crit Care Clin 2020; 36:293-305. [PMID: 32172814 DOI: 10.1016/j.ccc.2019.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The microcirculation is a complex network of vessels ranging from as large as 100 μm to as small as 5 μm. This complex network is responsible for the regulation of oxygen to the surrounding tissues and ensures metabolite washout. With a more complete understanding of the microcirculation's physiologic and pathologic tendencies, engineers can create new solutions to combat blood pathologies and shock-related diseases. Over the last number of decades a grown interest in the microcirculation has resulted in the development of fundamental techniques to quantify the microvasculature flow and the release of oxygen to tissues.
Collapse
Affiliation(s)
- Carlos J Munoz
- Department of Bioengineering, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Alfredo Lucas
- Department of Bioengineering, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Alexander T Williams
- Department of Bioengineering, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA.
| |
Collapse
|
27
|
Schöps M, Clauser JC, Menne MF, Faßbänder D, Schmitz-Rode T, Steinseifer U, Arens J. Ghost Cells for Mechanical Circulatory Support In Vitro Testing: A Novel Large Volume Production. Biotechnol J 2020; 15:e1900239. [PMID: 31904165 DOI: 10.1002/biot.201900239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/10/2019] [Indexed: 11/09/2022]
Abstract
The aim of this work is to establish a large volume batch production system to produce sufficient volumes of ghost cells to facilitate hemolysis testing of mechanical circulatory support devices. A volume of more than 405 mL with a hematocrit of at least 28% is required to perform in vitro hemolysis testing of mechanical circulatory support devices according to international standards. The established ghost cell production method performed at the institute is limited to 3.1 mL of concentrated cells, that is, cells with 100% hematocrit, due to predominantly manual process steps. Through semi-automation of the existing method by using the large volume batch production system, productivity is increased 60-fold to 188 mL while almost doubling process efficiency to 23.5%. Time-consuming manual work such as pipetting is now supported by sensor-based process engineering. With the help of the large volume batch production system, the objective of producing large quantities of ghost cells is successfully achieved. Thus, this work lays the foundation for spatially resolved hemolysis evaluation of mechanical circulatory support devices in combination with the small-scale fluorescent hemolysis detection method.
Collapse
Affiliation(s)
- Malte Schöps
- Department of Cardiovascular Engineering , Institute of Applied Medical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Johanna C Clauser
- Department of Cardiovascular Engineering , Institute of Applied Medical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Matthias F Menne
- Department of Cardiovascular Engineering , Institute of Applied Medical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Dennis Faßbänder
- Department of Cardiovascular Engineering , Institute of Applied Medical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Thomas Schmitz-Rode
- Department of Cardiovascular Engineering , Institute of Applied Medical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering , Institute of Applied Medical Engineering, RWTH Aachen University, 52074, Aachen, Germany.,Department of Mechanical and Aerospace Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Melbourne, Australia
| | - Jutta Arens
- Department of Cardiovascular Engineering , Institute of Applied Medical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| |
Collapse
|
28
|
Angiogenic effects of mesenchymal stem cells in combination with different scaffold materials. Microvasc Res 2020; 127:103925. [DOI: 10.1016/j.mvr.2019.103925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/14/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022]
|
29
|
Gniesmer S, Brehm R, Hoffmann A, de Cassan D, Menzel H, Hoheisel AL, Glasmacher B, Willbold E, Reifenrath J, Wellmann M, Ludwig N, Tavassol F, Zimmerer R, Gellrich NC, Kampmann A. In vivo analysis of vascularization and biocompatibility of electrospun polycaprolactone fibre mats in the rat femur chamber. J Tissue Eng Regen Med 2019; 13:1190-1202. [PMID: 31025510 PMCID: PMC6771623 DOI: 10.1002/term.2868] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
In orthopaedic medicine, connective tissues are often affected by traumatic or degenerative injuries, and surgical intervention is required. Rotator cuff tears are a common cause of shoulder pain and disability among adults. The development of graft materials for bridging the gap between tendon and bone after chronic rotator cuff tears is essentially required. The limiting factor for the clinical success of a tissue engineering construct is a fast and complete vascularization of the construct. Otherwise, immigrating cells are not able to survive for a longer period of time, resulting in the failure of the graft material. The femur chamber allows the observation of microhaemodynamic parameters inside implants located in close vicinity to the femur in repeated measurements in vivo. We compared a porous polymer patch (a commercially available porous polyurethane‐based scaffold from Biomerix™) with electrospun polycaprolactone (PCL) fibre mats and chitosan (CS)‐graft‐PCL modified electrospun PCL (CS‐g‐PCL) fibre mats in vivo. By means of intravital fluorescence microscopy, microhaemodynamic parameters were analysed repetitively over 20 days at intervals of 3 to 4 days. CS‐g‐PCL modified fibre mats showed a significantly increased vascularization at Day 10 compared with Day 6 and at Day 14 compared with the porous polymer patch and the unmodified PCL fibre mats at the same day. These results could be verified by histology. In conclusion, a clear improvement in terms of vascularization and biocompatibility is achieved by graft‐copolymer modification compared with the unmodified material.
Collapse
Affiliation(s)
- Sarah Gniesmer
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany.,NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Ralph Brehm
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andrea Hoffmann
- NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Department of Orthopedic Surgery, Laboratory for Biomechanics and Biomaterials, Graded Implants and Regenerative Strategies, Hannover Medical School, Hannover, Germany
| | - Dominik de Cassan
- Institute for Technical Chemistry, University of Technology, Braunschweig, Germany
| | - Henning Menzel
- Institute for Technical Chemistry, University of Technology, Braunschweig, Germany
| | - Anna-Lena Hoheisel
- NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Institute for Multiphase Processes, Leibniz University of Hannover, Hannover, Germany
| | - Birgit Glasmacher
- NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Institute for Multiphase Processes, Leibniz University of Hannover, Hannover, Germany
| | - Elmar Willbold
- NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Department of Orthopedic Surgery, Hannover Medical School, Hannover, Germany
| | - Janin Reifenrath
- NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Department of Orthopedic Surgery, Hannover Medical School, Hannover, Germany
| | - Mathias Wellmann
- Department of Orthopedic Surgery, Hannover Medical School, Hannover, Germany
| | - Nils Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Frank Tavassol
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Ruediger Zimmerer
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Nils-Claudius Gellrich
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Andreas Kampmann
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany.,NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| |
Collapse
|
30
|
Ebel S, Hübner L, Köhler B, Kropf S, Preim B, Jung B, Grothoff M, Gutberlet M. Validation of two accelerated 4D flow MRI sequences at 3 T: a phantom study. Eur Radiol Exp 2019; 3:10. [PMID: 30806827 PMCID: PMC6391502 DOI: 10.1186/s41747-019-0089-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/01/2019] [Indexed: 12/15/2022] Open
Abstract
Background Four-dimensional (4D) flow magnetic resonance imaging (MRI) sequences with advanced parallel imaging have the potential to reduce scan time with equivalent image quality and accuracy compared with standard two-dimensional (2D) flow MRI. We compared 4D flow to standard 2D flow sequences using a constant and pulsatile flow phantom at 3 T. Methods Two accelerated 4D flow sequences (GRAPPA2 and k-t-GRAPPA5) were evaluated regarding the concordance of flow volumes, flow velocities, and reproducibility as well as dependency on measuring plane and velocity encoding (Venc). The calculated flow volumes and peak velocities of the phantom were used as reference standard. Flow analysis was performed using the custom-made software “Bloodline”. Results No significant differences in flow volume were found between the 2D, both 4D flow MRI sequences, and the pump reference (p = 0.994) or flow velocities (p = 0.998) in continuous and pulsatile flow. An excellent correlation (R = 0.99–1.0) with a reference standard and excellent reproducibility of measurements (R = 0.99) was achieved for all sequences. A Venc overestimated by up to two times had no impact on flow measurements. However, misaligned measuring planes led to an increasing underestimation of flow volume and mean velocity in 2D flow accuracy, while both 4D flow measurements were not affected. Scan time was significantly shorter for k-t-GRAPPA5 (1:54 ± 0:01 min, mean ± standard deviation) compared to GRAPPA2 (3:56 ± 0:02 min) (p = 0.002). Conclusions Both 4D flow sequences demonstrated equal agreement with 2D flow measurements, without impact of Venc overestimation and plane misalignment. The highly accelerated k-t-GRAPPA5 sequence yielded results similar to those of GRAPPA2.
Collapse
Affiliation(s)
- Sebastian Ebel
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig Strümpellstrasse 39, 04289, Leipzig, Germany.
| | - Lisa Hübner
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig Strümpellstrasse 39, 04289, Leipzig, Germany
| | - Benjamin Köhler
- Department of Simulations and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Siegfried Kropf
- Institute for Biometrics and Medical Informatics, University of Magdeburg, Magdeburg, Germany
| | - Bernhard Preim
- Department of Simulations and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Bernd Jung
- Department of Diagnostic, Interventional and Paediatric Radiology, University of Bern, Bern, Switzerland
| | - Matthias Grothoff
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig Strümpellstrasse 39, 04289, Leipzig, Germany
| | - Matthias Gutberlet
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig Strümpellstrasse 39, 04289, Leipzig, Germany
| |
Collapse
|
31
|
Goldman D, Farid Z, Jackson DN. A streak length-based method for quantifying red blood cell flow in skeletal muscle arteriolar networks. Microcirculation 2019; 26:e12532. [DOI: 10.1111/micc.12532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/21/2018] [Accepted: 01/21/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Goldman
- Department of Medical Biophysics; Schulich School of Medicine and Dentistry; The University of Western Ontario; London Ontario Canada
- School of Biomedical Engineering; The University of Western Ontario; London Ontario Canada
- Department of Applied Mathematics; The University of Western Ontario; London Ontario Canada
| | - Zahra Farid
- Department of Medical Biophysics; Schulich School of Medicine and Dentistry; The University of Western Ontario; London Ontario Canada
| | - Dwayne N. Jackson
- Department of Medical Biophysics; Schulich School of Medicine and Dentistry; The University of Western Ontario; London Ontario Canada
- School of Biomedical Engineering; The University of Western Ontario; London Ontario Canada
| |
Collapse
|
32
|
Meng F, Kaul D, Thangaswamy S, Bhutoria S, Gerfen G, Branch C, Intaglietta M, Acharya SA. Semisynthetic supra plasma expanders: a new class of therapeutics to improve microcircualtion in sickle cell anaemia. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:73-82. [DOI: 10.1080/21691401.2018.1543194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Fantao Meng
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MA, USA
| | - Dhananjaya Kaul
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Savita Bhutoria
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gary Gerfen
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Craig Branch
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marcos Intaglietta
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Seetharama A. Acharya
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
33
|
Frisbee JC, Lewis MT, Kasper JD, Chantler PD, Wiseman RW. Type 2 diabetes mellitus in the Goto-Kakizaki rat impairs microvascular function and contributes to premature skeletal muscle fatigue. J Appl Physiol (1985) 2018; 126:626-637. [PMID: 30571284 DOI: 10.1152/japplphysiol.00751.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite extensive investigation into the impact of metabolic disease on vascular function and, by extension, tissue perfusion and organ function, interpreting results for specific risk factors can be complicated by the additional risks present in most models. To specifically determine the impact of type 2 diabetes without obesity on skeletal muscle microvascular structure/function and on active hyperemia with elevated metabolic demand, we used 17-wk-old Goto-Kakizaki (GK) rats to study microvascular function at multiple levels of resolution. Gracilis muscle arterioles demonstrated blunted dilation to acetylcholine (both ex vivo proximal and in situ distal arterioles) and elevated shear (distal arterioles only). All other alterations to reactivity appeared to reflect compromised endothelial function associated with increased thromboxane (Tx)A2 production and oxidant stress/inflammation rather than alterations to vascular smooth muscle function. Structural changes to the microcirculation of GK rats were confined to reduced microvessel density of ~12%, with no evidence for altered vascular wall mechanics. Active hyperemia with either field stimulation of in situ cremaster muscle or electrical stimulation via the sciatic nerve for in situ gastrocnemius muscle was blunted in GK rats, primarily because of blunted functional dilation of skeletal muscle arterioles. The blunted active hyperemia was associated with impaired oxygen uptake (V̇o2) across the muscle and accelerated muscle fatigue. Acute interventions to reduce oxidant stress (TEMPOL) and TxA2 action (SQ-29548) or production (dazmegrel) improved muscle perfusion, V̇o2, and muscle performance. These results suggest that type 2 diabetes mellitus in GK rats impairs skeletal muscle arteriolar function apparently early in the progression of the disease and potentially via an increased reactive oxygen species/inflammation-induced TxA2 production/action on network function as a major contributing mechanism. NEW & NOTEWORTHY The impact of type 2 diabetes mellitus on vascular structure/function remains an area lacking clarity. Using diabetic Goto-Kakizaki rats before the development of other risk factors, we determined alterations to vascular structure/function and skeletal muscle active hyperemia. Type 2 diabetes mellitus reduced arteriolar endothelium-dependent dilation associated with increased thromboxane A2 generation. Although modest microvascular rarefaction was evident, there were no other alterations to vascular structure/function. Skeletal muscle active hyperemia was blunted, although it improved after antioxidant or anti-thromboxane A2 treatment.
Collapse
Affiliation(s)
- Jefferson C Frisbee
- Department of Medical Biophysics, Western University , London, Ontario , Canada
| | - Matthew T Lewis
- Department of Physiology, Michigan State University , East Lansing, Michigan
| | - Jonathan D Kasper
- Department of Physiology, Michigan State University , East Lansing, Michigan
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University , Morgantown, West Virginia
| | - Robert W Wiseman
- Department of Physiology, Michigan State University , East Lansing, Michigan.,Department of Radiology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
34
|
Gianni-Barrera R, Butschkau A, Uccelli A, Certelli A, Valente P, Bartolomeo M, Groppa E, Burger MG, Hlushchuk R, Heberer M, Schaefer DJ, Gürke L, Djonov V, Vollmar B, Banfi A. PDGF-BB regulates splitting angiogenesis in skeletal muscle by limiting VEGF-induced endothelial proliferation. Angiogenesis 2018; 21:883-900. [PMID: 30014172 PMCID: PMC6208885 DOI: 10.1007/s10456-018-9634-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/01/2018] [Indexed: 12/11/2022]
Abstract
VEGF induces normal or aberrant angiogenesis depending on its dose in the microenvironment around each producing cell in vivo. This transition depends on the balance between VEGF-induced endothelial stimulation and PDGF-BB-mediated pericyte recruitment, and co-expression of PDGF-BB normalizes aberrant angiogenesis despite high VEGF doses. We recently found that VEGF over-expression induces angiogenesis in skeletal muscle through an initial circumferential vascular enlargement followed by longitudinal splitting, rather than sprouting. Here we investigated the cellular mechanism by which PDGF-BB co-expression normalizes VEGF-induced aberrant angiogenesis. Monoclonal populations of transduced myoblasts, expressing similarly high levels of VEGF alone or with PDGF-BB, were implanted in mouse skeletal muscles. PDGF-BB co-expression did not promote sprouting and angiogenesis that occurred through vascular enlargement and splitting. However, enlargements were significantly smaller in diameter, due to a significant reduction in endothelial proliferation, and retained pericytes, which were otherwise lost with high VEGF alone. A time-course of histological analyses and repetitive intravital imaging showed that PDGF-BB co-expression anticipated the initiation of vascular enlargement and markedly accelerated the splitting process. Interestingly, quantification during in vivo imaging suggested that a global reduction in shear stress favored the initiation of transluminal pillar formation during VEGF-induced splitting angiogenesis. Quantification of target gene expression showed that VEGF-R2 signaling output was significantly reduced by PDGF-BB co-expression compared to VEGF alone. In conclusion, PDGF-BB co-expression prevents VEGF-induced aberrant angiogenesis by modulating VEGF-R2 signaling and endothelial proliferation, thereby limiting the degree of circumferential enlargement and enabling efficient completion of vascular splitting into normal capillary networks despite high VEGF doses.
Collapse
Affiliation(s)
- R Gianni-Barrera
- Department of Biomedicine, Basel University Hospital, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
- Department of Surgery, University Hospital, Basel, Switzerland.
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany.
| | - A Butschkau
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
| | - A Uccelli
- Department of Biomedicine, Basel University Hospital, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Department of Surgery, University Hospital, Basel, Switzerland
| | - A Certelli
- Department of Biomedicine, Basel University Hospital, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Department of Surgery, University Hospital, Basel, Switzerland
| | - P Valente
- Department of Biomedicine, Basel University Hospital, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Department of Surgery, University Hospital, Basel, Switzerland
| | - M Bartolomeo
- Department of Biomedicine, Basel University Hospital, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Department of Surgery, University Hospital, Basel, Switzerland
| | - E Groppa
- Department of Biomedicine, Basel University Hospital, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Department of Surgery, University Hospital, Basel, Switzerland
- The Biomedical Research Centre, The University of British Columbia, Vancouver, Canada
| | - M G Burger
- Department of Biomedicine, Basel University Hospital, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Department of Surgery, University Hospital, Basel, Switzerland
| | - R Hlushchuk
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - M Heberer
- Department of Biomedicine, Basel University Hospital, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Department of Surgery, University Hospital, Basel, Switzerland
| | - D J Schaefer
- Department of Surgery, University Hospital, Basel, Switzerland
| | - L Gürke
- Department of Surgery, University Hospital, Basel, Switzerland
| | - V Djonov
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - B Vollmar
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
| | - A Banfi
- Department of Biomedicine, Basel University Hospital, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
- Department of Surgery, University Hospital, Basel, Switzerland.
| |
Collapse
|
35
|
Lasch M, Nekolla K, Klemm AH, Buchheim JI, Pohl U, Dietzel S, Deindl E. Estimating hemodynamic shear stress in murine peripheral collateral arteries by two-photon line scanning. Mol Cell Biochem 2018; 453:41-51. [PMID: 30128948 DOI: 10.1007/s11010-018-3430-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
Changes in wall shear stress of blood vessels are assumed to be an important component of many physiological and pathophysiological processes. However, due to technical limitations experimental in vivo data are rarely available. Here, we investigated two-photon excitation fluorescence microscopy as an option to measure vessel diameter as well as blood flow velocities in a murine hindlimb model of arteriogenesis (collateral artery growth). Using line scanning at high frequencies, we measured the movement of blood cells along the vessel axis. We found that peak systolic blood flow velocity averaged 9 mm/s and vessel diameter 42 µm in resting collaterals. Induction of arteriogenesis by femoral artery ligation resulted in a significant increase in centerline peak systolic velocity after 1 day with an average of 51 mm/s, whereas the averaged luminal diameter of collaterals (52 µm) changed much less. Thereof calculations revealed a significant fourfold increase in hemodynamic wall shear rate. Our results indicate that two-photon line scanning is a suitable tool to estimate wall shear stress e.g., in experimental animal models, such as of arteriogenesis, which may not only help to understand the relevance of mechanical forces in vivo, but also to adjust wall shear stress in ex vivo investigations on isolated vessels as well as cell culture experiments.
Collapse
Affiliation(s)
- Manuel Lasch
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377, Munich, Germany.,Department of Otorhinolaryngology, Head & Neck Surgery, Klinikum der Universität München, Ludwig- Maximilians-Universität München, Munich, Germany
| | - Katharina Nekolla
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Anna H Klemm
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377, Munich, Germany.,Core Facility Bioimaging at the Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Judith-Irina Buchheim
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377, Munich, Germany.,Department of Anesthesiology, Laboratory for Stress and Immunity, Hospital of the University of the LMU Munich, Munich, Germany
| | - Ulrich Pohl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377, Munich, Germany.,Core Facility Bioimaging at the Biomedical Center, LMU Munich, Planegg-Martinsried, Germany.,German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Steffen Dietzel
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377, Munich, Germany.,Core Facility Bioimaging at the Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377, Munich, Germany.
| |
Collapse
|
36
|
Babaliari E, Petekidis G, Chatzinikolaidou M. A Precisely Flow-Controlled Microfluidic System for Enhanced Pre-Osteoblastic Cell Response for Bone Tissue Engineering. Bioengineering (Basel) 2018; 5:bioengineering5030066. [PMID: 30103544 PMCID: PMC6164058 DOI: 10.3390/bioengineering5030066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/03/2018] [Accepted: 08/09/2018] [Indexed: 12/27/2022] Open
Abstract
Bone tissue engineering provides advanced solutions to overcome the limitations of currently used therapies for bone reconstruction. Dynamic culturing of cell-biomaterial constructs positively affects the cell proliferation and differentiation. In this study, we present a precisely flow-controlled microfluidic system employed for the investigation of bone-forming cell responses cultured on fibrous collagen matrices by applying two flow rates, 30 and 50 μL/min. We characterized the collagen substrates morphologically by means of scanning electron microscopy, investigated their viscoelastic properties, and evaluated the orientation, proliferation and osteogenic differentiation capacity of pre-osteoblastic cells cultured on them. The cells are oriented along the direction of the flow at both rates, in contrast to a random orientation observed under static culture conditions. The proliferation of cells after 7 days in culture was increased at both flow rates, with the flow rate of 50 μL/min indicating a significant increase compared to the static culture. The alkaline phosphatase activity after 7 days increased at both flow rates, with the rate of 30 μL/min indicating a significant enhancement compared to static conditions. Our results demonstrate that precisely flow-controlled microfluidic cell culture provides tunable control of the cell microenvironment that directs cellular activities involved in bone regeneration.
Collapse
Affiliation(s)
- Eleftheria Babaliari
- Department of Materials Science and Technology, University of Crete, Crete 70013, Greece.
- Foundation for Research and Technology-Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), Crete 70013, Greece.
| | - George Petekidis
- Department of Materials Science and Technology, University of Crete, Crete 70013, Greece.
- Foundation for Research and Technology-Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), Crete 70013, Greece.
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Crete 70013, Greece.
- Foundation for Research and Technology-Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), Crete 70013, Greece.
| |
Collapse
|
37
|
Lemaster KA, Frisbee SJ, Dubois L, Tzemos N, Wu F, Lewis MT, Wiseman RW, Frisbee JC. Chronic atorvastatin and exercise can partially reverse established skeletal muscle microvasculopathy in metabolic syndrome. Am J Physiol Heart Circ Physiol 2018; 315:H855-H870. [PMID: 29932769 DOI: 10.1152/ajpheart.00193.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has long been known that chronic metabolic disease is associated with a parallel increase in the risk for developing peripheral vascular disease. Although more clinically relevant, our understanding about reversing established vasculopathy is limited compared with our understanding of the mechanisms and development of impaired vascular structure/function under these conditions. Using the 13-wk-old obese Zucker rat (OZR) model of metabolic syndrome, where microvascular dysfunction is sufficiently established to contribute to impaired skeletal muscle function, we imposed a 7-wk intervention of chronic atorvastatin treatment, chronic treadmill exercise, or both. By 20 wk of age, untreated OZRs manifested a diverse vasculopathy that was a central contributor to poor muscle performance, perfusion, and impaired O2 exchange. Atorvastatin or exercise, with the combination being most effective, improved skeletal muscle vascular metabolite profiles (i.e., nitric oxide, PGI2, and thromboxane A2 bioavailability), reactivity, and perfusion distribution at both individual bifurcations and within the entire microvascular network versus responses in untreated OZRs. However, improvements to microvascular structure (i.e., wall mechanics and microvascular density) were less robust. The combination of the above improvements to vascular function with interventions resulted in an improved muscle performance and O2 transport and exchange versus untreated OZRs, especially at moderate metabolic rates (3-Hz twitch contraction). These results suggest that specific interventions can improve specific indexes of function from established vasculopathy, but either this process was incomplete after 7-wk duration or measures of vascular structure are either resistant to reversal or require better-targeted interventions. NEW & NOTEWORTHY We used atorvastatin and/or chronic exercise to reverse established microvasculopathy in skeletal muscle of rats with metabolic syndrome. With established vasculopathy, atorvastatin and exercise had moderate abilities to reverse dysfunction, and the combined application of both was more effective at restoring function. However, increased vascular wall stiffness and reduced microvessel density were more resistant to reversal. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/reversal-of-microvascular-dysfunction/ .
Collapse
Affiliation(s)
- Kent A Lemaster
- Department of Medical Biophysics, University of Western Ontario , London, Ontario , Canada
| | - Stephanie J Frisbee
- Department of Pathology and Laboratory Medicine, University of Western Ontario , London, Ontario , Canada
| | - Luc Dubois
- Division of Vascular Surgery, University of Western Ontario , London, Ontario , Canada
| | - Nikolaos Tzemos
- Division of Cardiology, University of Western Ontario , London, Ontario , Canada
| | - Fan Wu
- DMPK, Nonclinical Development, Celgene Corporation, Summit, New Jersey
| | - Matthew T Lewis
- Department of Physiology, Michigan State University , East Lansing, Michigan
| | - Robert W Wiseman
- Department of Physiology, Michigan State University , East Lansing, Michigan
| | - Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario , London, Ontario , Canada
| |
Collapse
|
38
|
Tang J, Erdener SE, Li B, Fu B, Sakadzic S, Carp SA, Lee J, Boas DA. Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography. JOURNAL OF BIOPHOTONICS 2018; 11:10.1002/jbio.201700070. [PMID: 28700129 PMCID: PMC5766442 DOI: 10.1002/jbio.201700070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/05/2017] [Accepted: 07/05/2017] [Indexed: 05/18/2023]
Abstract
Quantitative measurements of intravascular microscopic dynamics, such as absolute blood flow velocity, shear stress and the diffusion coefficient of red blood cells (RBCs), are fundamental in understanding the blood flow behavior within the microcirculation, and for understanding why diffuse correlation spectroscopy (DCS) measurements of blood flow are dominantly sensitive to the diffusive motion of RBCs. Dynamic light scattering-optical coherence tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained three-dimensional volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of ~0.1 to 0.5 × 10-6 mm2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion.
Collapse
Affiliation(s)
- Jianbo Tang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Corresponding Author: Jianbo Tang,
| | - Sefik Evren Erdener
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Sava Sakadzic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Stefan A. Carp
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Jonghwan Lee
- School of Engineering, Institute for Brain Science, Brown University, Providence, Rhode Island 02912, USA
| | - David A. Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
39
|
Abstract
The microvasculature plays a central role in the pathophysiology of hemorrhagic shock and is also involved in arguably all therapeutic attempts to reverse or minimize the adverse consequences of shock. Microvascular studies specific to hemorrhagic shock were reviewed and broadly grouped depending on whether data were obtained on animal or human subjects. Dedicated sections were assigned to microcirculatory changes in specific organs, and major categories of pathophysiological alterations and mechanisms such as oxygen distribution, ischemia, inflammation, glycocalyx changes, vasomotion, endothelial dysfunction, and coagulopathy as well as biomarkers and some therapeutic strategies. Innovative experimental methods were also reviewed for quantitative microcirculatory assessment as it pertains to changes during hemorrhagic shock. The text and figures include representative quantitative microvascular data obtained in various organs and tissues such as skin, muscle, lung, liver, brain, heart, kidney, pancreas, intestines, and mesentery from various species including mice, rats, hamsters, sheep, swine, bats, and humans. Based on reviewed findings, a new integrative conceptual model is presented that includes about 100 systemic and local factors linked to microvessels in hemorrhagic shock. The combination of systemic measures with the understanding of these processes at the microvascular level is fundamental to further develop targeted and personalized interventions that will reduce tissue injury, organ dysfunction, and ultimately mortality due to hemorrhagic shock. Published 2018. Compr Physiol 8:61-101, 2018.
Collapse
Affiliation(s)
- Ivo Torres Filho
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| |
Collapse
|
40
|
Sorg H, Grambow E, Eckl E, Vollmar B. Oxytocin effects on experimental skin wound healing. Innov Surg Sci 2017; 2:219-232. [PMID: 31579755 PMCID: PMC6754027 DOI: 10.1515/iss-2017-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/14/2017] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Oxytocin (OXY) has significant effects on mammalian behavior. Next to its role in lactation and social interactions, it is described to support better wound healing as well. However, direct OXY effects on wound healing and the regeneration of the microvascular network are still not clarified. We therefore examined the effects of OXY and an OXY receptor antagonist [atosiban (ATO)] on skin wound healing, focusing on epithelialization and neovascularization. METHODS Skin wound healing has been assessed using intravital fluorescence microscopy in a model of full dermal thickness wounds in the dorsal skin fold chamber of hairless mice. Animals received repetitive low or high doses of OXY or ATO. Morphological and cellular characterization of skin tissue repair was performed by histology and in vitro cell assays. RESULTS The assessment of skin tissue repair using this therapy regimen showed that OXY and ATO had no major influence on epithelialization, neovascularization, wound cellularity, or inflammation. Moreover, OXY and ATO did neither stimulate nor deteriorate keratinocyte or fibroblast migration and proliferation. CONCLUSION In summary, this study is the first to demonstrate that OXY application does not impair skin wound healing or cell behavior. However, until now, the used transmitter system seems not to be clarified in detail, and it might be proposed that it is associated with the stress response of the organism to various stimuli.
Collapse
Affiliation(s)
- Heiko Sorg
- Institute for Experimental Surgery, University Medicine Rostock, Schillingallee 69a, 18057 Rostock, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Alfried Krupp Krankenhaus, Essen, Germany
| | - Eberhard Grambow
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Erik Eckl
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
41
|
Bertlich M, Ihler F, Weiss BG, Freytag S, Strupp M, Jakob M, Canis M. Role of capillary pericytes and precapillary arterioles in the vascular mechanism of betahistine in a guinea pig inner ear model. Life Sci 2017; 187:17-21. [DOI: 10.1016/j.lfs.2017.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 10/19/2022]
|
42
|
Klein M, Laschke MW, Holstein JH, Histing T, Pohlemann T, Menger MD, Garcia P. Mechanical and biological characterization of alkaline substituted orthophosphate bone substitutes containing meta- and diphosphates. ACTA ACUST UNITED AC 2017; 12:055007. [PMID: 28691695 DOI: 10.1088/1748-605x/aa7e80] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite the growing knowledge on the mechanisms of fracture healing, bone defects often do not heal in a timely manner. Clinically, tricalcium phosphate (TCP) bone substitutes are used to fill bone defects and promote bone healing. However, the degradation rate of these implants is often too slow for sufficient bone replacement. The use of calcium phosphate material with the crystalline phase Ca10[K/Na](PO4)7 containing different amounts of di- and metaphosphates may overcome this problem, because these materials show an accelerated degradation. Therefore, we generated alkaline substituted Ca-P scaffolds with different amounts of ortho-, di- and metaphosphates. The degradation of these materials was analyzed in TRIS-HCl buffer solution in vitro. Moreover, we measured the compressive strength and porosity of the scaffolds by micro-CT analysis. The biocompatibility of the scaffolds was evaluated in vivo in the mouse dorsal skinfold chamber by means of intravital fluorescence microscopy and histology. We found that higher amounts of incorporated di- and metaphosphates increase the degradation rate and compressive strength of the scaffolds without inducing a stronger leukocytic inflammatory host tissue reaction after implantation. Histological analyses confirmed the good biocompatibility of the scaffolds containing di- and metaphosphates. In summary, this study demonstrates that the compressive strength and degradation rate of Ca-P scaffolds can be improved by incorporation of di- and metaphosphates without affecting their good biocompatibility. Hence, this material modification may be particularly beneficial for the treatment of metaphyseal bone defects in weight bearing locations.
Collapse
Affiliation(s)
- Moritz Klein
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Kirrberger Str. 1, D-66421 Homburg/Saar, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Fingolimod (FTY-720) is Capable of Reversing Tumor Necrosis Factor Induced Decreases in Cochlear Blood Flow. Otol Neurotol 2017; 38:1213-1216. [DOI: 10.1097/mao.0000000000001510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Tumor Necrosis Factor-induced Decrease of Cochlear Blood Flow Can Be Reversed by Etanercept or JTE-013. Otol Neurotol 2017; 37:e203-8. [PMID: 27295443 DOI: 10.1097/mao.0000000000001095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS This study aimed to quantify the effects of tumor necrosis factor (TNF) inhibitor Etanercept and sphingosine-1-phosphate receptor 2 antagonist JTE-013 on cochlear blood flow in guinea pigs after TNF-induced decrease. BACKGROUND Sudden sensorineural hearing loss is a common cause for disability and reduced quality of life. Good understanding of the pathophysiology and strong evidence-based therapy concepts are still missing. In various inner ear disorders, inflammation and impairment of cochlear blood flow (CBF) have been considered factors in the pathophysiology. A central mediator of inflammation and microcirculation in the cochlea is TNF. S1P acts downstream in one TNF pathway. METHODS Cochlea lateral wall vessels were exposed surgically and assessed by intravital microscopy in guinea pigs in vivo. Twenty-eight animals were randomly distributed into four groups of seven each. Exposed vessels were superfused by TNF (5.0 ng/ml) and afterward repeatedly either by Etanercept (1.0 μg/ml), JTE-013 (10 μmol/L), or vehicle (0.9 % NaCl solution or ethanol: phosphate-buffered saline buffer, respectively). RESULTS After decreasing CBF with TNF (p <0.001, two-way RM ANOVA), both treatments reversed CBF, compared with vehicle (p <0.001, two-way RM ANOVA). The comparison of the vehicle groups showed no difference (p = 0.969, two-way RM ANOVA), while there was also no difference between the treatment groups (p = 0.850, two-way RM ANOVA). CONCLUSION Both Etanercept and JTE-013 reverse the decreasing effect of TNF on cochlear blood flow and, therefore, TNF and the S1P-signalling pathway might be targets for treatment of microcirculation-related hearing loss.
Collapse
|
45
|
Lemaster KA, Farid Z, Brock RW, Shrader CD, Goldman D, Jackson DN, Frisbee JC. Altered post-capillary and collecting venular reactivity in skeletal muscle with metabolic syndrome. J Physiol 2017; 595:5159-5174. [PMID: 28556909 DOI: 10.1113/jp274291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/26/2017] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS With the development of the metabolic syndrome, both post-capillary and collecting venular dilator reactivity within the skeletal muscle of obese Zucker rats (OZR) is impaired. The impaired dilator reactivity in OZR reflects a loss in venular nitric oxide and PGI2 bioavailability, associated with the chronic elevation in oxidant stress. Additionally, with the impaired dilator responses, a modest increase in adrenergic constriction combined with an elevated thromboxane A2 production may contribute to impaired functional dilator and hyperaemic responses at the venular level. For the shift in skeletal muscle venular function with development of the metabolic syndrome, issues such as aggregate microvascular perfusion resistance, mass transport and exchange within with capillary networks, and fluid handling across the microcirculation are compelling avenues for future investigation. ABSTRACT While research into vascular outcomes of the metabolic syndrome has focused on arterial/arteriolar and capillary levels, investigation into venular function and how this impacts responses has received little attention. Using the in situ cremaster muscle of obese Zucker rats (OZR; with lean Zucker rats (LZR) as controls), we determined indices of venular function. At ∼17 weeks of age, skeletal muscle post-capillary venular density was reduced by ∼20% in LZR vs. OZR, although there was no evidence of remodelling of the venular wall. Venular tone at ∼25 μm (post-capillary) and ∼75 μm (collecting) diameter was elevated in OZR vs. LZR. Venular dilatation to acetylcholine was blunted in OZR vs. LZR due to increased oxidant stress-based loss of nitric oxide bioavailability (post-capillary) and increased α1 - (and α2 -) mediated constrictor tone (collecting). Venular constrictor responses in OZR were comparable to LZR for most stimuli, although constriction to α1 -adrenoreceptor stimulation was elevated. In response to field stimulation of the cremaster muscle (0.5, 1, 3 Hz), venular dilator and hyperaemic responses to lower frequencies were blunted in OZR, but responses at 3 Hz were similar between strains. Venous production of TxA2 was higher in OZR than LZR and significantly higher than PGI2 production in either following arachidonic acid challenge. These results suggest that multi-faceted alterations to skeletal muscle venular function in OZR may contribute to alterations in upstream capillary pressure profiles and the transcapillary exchange of solutes and water under conditions of metabolic syndrome.
Collapse
Affiliation(s)
- Kent A Lemaster
- Department of Medical Biophysics, Transdisciplinary Program in Vascular Health, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Zahra Farid
- Department of Medical Biophysics, Transdisciplinary Program in Vascular Health, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Robert W Brock
- Departments of Physiology and Pharmacology, West Virginia University HSC, Morgantown, WV, USA
| | - Carl D Shrader
- Family Medicine, West Virginia University HSC, Morgantown, WV, USA
| | - Daniel Goldman
- Department of Medical Biophysics, Transdisciplinary Program in Vascular Health, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Dwayne N Jackson
- Department of Medical Biophysics, Transdisciplinary Program in Vascular Health, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jefferson C Frisbee
- Department of Medical Biophysics, Transdisciplinary Program in Vascular Health, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
46
|
Donndorf P, Abubaker S, Vollmar B, Rimmbach C, Steinhoff G, Kaminski A. Therapeutic progenitor cell application for tissue regeneration: Analyzing the impact of toll-like receptor signaling on c-kit + cell migration following ischemia-reperfusion injury in vivo. Microvasc Res 2017; 112:87-92. [DOI: 10.1016/j.mvr.2017.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/23/2017] [Accepted: 03/27/2017] [Indexed: 02/08/2023]
|
47
|
Drug-induced Defibrinogenation as New Treatment Approach of Acute Hearing Loss in an Animal Model for Inner Ear Vascular Impairment. Otol Neurotol 2017; 38:648-654. [DOI: 10.1097/mao.0000000000001400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Gao W. Quantitative depth-resolved microcirculation imaging with optical coherence tomography angiography (Part Ι): Blood flow velocity imaging. Microcirculation 2017; 25:e12375. [PMID: 28419622 DOI: 10.1111/micc.12375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/11/2017] [Indexed: 12/20/2022]
Abstract
The research goal of the microvascular network imaging with OCT angiography is to achieve depth-resolved blood flow and vessel imaging in vivo in the clinical management of patents. In this review, we review the main phenomena that have been explored in OCT to image the blood flow velocity vector and the vessels of the microcirculation within living tissues. Parameters that limit the accurate measurements of blood flow velocity are then considered. Finally, initial clinical diagnosis applications and future developments of OCT flow images are discussed.
Collapse
Affiliation(s)
- Wanrong Gao
- Department of Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.,MIIT Key Laboratory of Advanced soIid Laser, Nanjing University of science and Technology, Nanjing, Jiangsu, China
| |
Collapse
|
49
|
CD24+ tumor-initiating cells from oral squamous cell carcinoma induce initial angiogenesis in vivo. Microvasc Res 2017; 112:101-108. [PMID: 28344048 DOI: 10.1016/j.mvr.2017.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND In oral squamous cell carcinoma (OSCC), a minor subset of cancer stem cells has been identified using the surface marker CD24. The CD24+ cell population is involved in initiating, maintaining, and expanding tumor growth, but has not been reported to be involved in angiogenesis to date. METHODS NOD/SCID mice were equipped with dorsal skinfold chambers and gelatin sponges seeded with CD24+, CD24-, and unsorted cancer cells suspended in Matrigel® were implanted. Following intravital fluorescence microscopy, specimens were examined by immunohistology. RESULTS Sponges seeded with CD24+ cells showed a significantly higher functional capillary density than those seeded with CD24- cells. The presence of endothelial cells was confirmed by immunohistochemistry for CD31. CONCLUSION For the first time, CD24+ tumorigenic cells with angiogenic potential, which were isolated from OSCC, were characterized. Our findings provide a promising in vivo model to facilitate the development of therapeutic agents against cancer stem cells and their angiogenic pathways.
Collapse
|
50
|
Lemaster K, Jackson D, Goldman D, Frisbee JC. Insidious incrementalism: The silent failure of the microcirculation with increasing peripheral vascular disease risk. Microcirculation 2017; 24. [DOI: 10.1111/micc.12332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/02/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Kent Lemaster
- Department of Physiology and Pharmacology; Schulich School of Medicine and Dentistry; University of Western Ontario; London ON Canada
| | - Dwayne Jackson
- Department of Medical Biophysics; Schulich School of Medicine and Dentistry; University of Western Ontario; London ON Canada
| | - Daniel Goldman
- Department of Medical Biophysics; Schulich School of Medicine and Dentistry; University of Western Ontario; London ON Canada
| | - Jefferson C. Frisbee
- Department of Medical Biophysics; Schulich School of Medicine and Dentistry; University of Western Ontario; London ON Canada
| |
Collapse
|