1
|
Albertini RJ, Carson ML, Kirman CR, Gargas ML. 1,3-Butadiene: II. Genotoxicity profile. Crit Rev Toxicol 2010; 40 Suppl 1:12-73. [PMID: 20868267 DOI: 10.3109/10408444.2010.507182] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1,3-Butadiene’s (BD’s) major electrophilic metabolites 1,2-epoxy-3-butene (EB), 1,2-dihydroxy-3,4-epoxybutane (EBD), and 1,2,3,4-diepoxybutane (DEB) are responsible for both its mutagenicity and carcinogenicity. EB, EBD, and DEB are DNA reactive, forming a variety of adducts. All three metabolites are genotoxic in vitro and in vivo, with relative mutagenic potencies of DEB >> EB > EBD. DEB also effectively produces gene deletions and chromosome aberrations. BD’s greater mutagenicity and carcinogenicity in mice over rats as well as its failure to induce chromosome-level mutations in vivo in rats appear to be due to greater production of DEB in mice. Concentrations of EB and DEB in vivo in humans are even lower than in rats. Although most studies of BD-exposed humans have failed to find increases in gene mutations, one group has reported positive findings. Reasons for these discordant results are examined. BD-related chromosome aberrations have never been demonstrated in humans except for the possible production of micronuclei in lymphocytes of workers exposed to extremely high levels of BD in the workplace. The relative potencies of the BD metabolites, their relative abundance in the different species, and the kinds of mutations they can induce are major considerations in BD’s overall genotoxicity profile.
Collapse
Affiliation(s)
- Richard J Albertini
- Pathology Department, College of Medicine, University of Vermont, Burlington, Vermont, USA
| | | | | | | |
Collapse
|
2
|
Hughes K, Meek ME, Walker M, Beauchamp R. 1,3-Butadiene: exposure estimation, hazard characterization, and exposure-response analysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2003; 6:55-83. [PMID: 12587254 DOI: 10.1080/10937400306478] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
1,3-Butadiene has been assessed as a Priority Substance under the Canadian Environmental Protection Act. The general population in Canada is exposed to 1,3-butadiene primarily through ambient air. Inhaled 1,3-butadiene is carcinogenic in both mice and rats, inducing tumors at multiple sites at all concentrations tested in all identified studies. In addition, 1,3-butadiene is genotoxic in both somatic and germ cells of rodents. It also induces adverse effects in the reproductive organs of female mice at relatively low concentrations. The greater sensitivity in mice than in rats to induction of these effects by 1,3-butadiene is likely related to species differences in metabolism to active epoxide metabolites. Exposure to 1,3-butadiene in the occupational environment has been associated with the induction of leukemia; there is also some limited evidence that 1,3-butadiene is genotoxic in exposed workers. Therefore, in view of the weight of evidence of available epidemiological and toxicological data, 1,3-butadiene is considered highly likely to be carcinogenic, and likely to be genotoxic, in humans. Estimates of the potency of butadiene to induce cancer have been derived on the basis of both epidemiological investigation and bioassays in mice and rats. Potencies to induce ovarian effects have been estimated on the basis of studies in mice. Uncertainties have been delineated, and, while there are clear species differences in metabolism, estimates of potency to induce effects are considered justifiably conservative in view of the likely variability in metabolism across the population related to genetic polymorphism for enzymes for the critical metabolic pathway.
Collapse
Affiliation(s)
- K Hughes
- Existing Substances Division, Environmental Health Directorate, Health Canada, Environmental Health Centre, Tunney's Pasture PL0802B1, Ottawa, Ontario, Canada K1A 0L2
| | | | | | | |
Collapse
|
3
|
Hughes K, Meek ME, Walker M. Health risk assessment of 1,3-butadiene as a Priority Substance in Canada. Chem Biol Interact 2001; 135-136:109-35. [PMID: 11397385 DOI: 10.1016/s0009-2797(01)00173-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1,3-Butadiene was included in the second list of Priority Substances to be assessed under the Canadian Environmental Protection Act. Potential hazards to human health were characterized on the basis of critical examination of available data on health effects in experimental animals and occupationally exposed human populations, as well as information on mode of action. Based on consideration of all relevant data identified as of April 1998, butadiene was considered highly likely to be carcinogenic to humans, and likely to be a somatic and germ cell genotoxicant in humans. In addition, butadiene may also be a reproductive toxicant in humans. Estimates of the potency of butadiene to induce these effects have been derived on the basis of quantitation of observed exposure-response relationships for the purposes of characterization of risk to the general population in Canada exposed to butadiene in the ambient environment.
Collapse
Affiliation(s)
- K Hughes
- Environmental Health Directorate, Health Canada, Tunney's Pasture PL0802B1, Ottawa, Ontario, Canada K1A 0L2.
| | | | | |
Collapse
|
4
|
Erexson GL, Tindall KR. Micronuclei and gene mutations in transgenic big Blue((R)) mouse and rat fibroblasts after exposure to the epoxide metabolites of 1, 3-butadiene. Mutat Res 2000; 472:105-17. [PMID: 11113703 DOI: 10.1016/s1383-5718(00)00136-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1,3-Butadiene (BD) is a commodity compound and by-product in the manufacture of synthetic rubber that elicits a differential carcinogenic response in rodents after chronic exposure. Mice are up to approximately 1000-fold more sensitive to the tumorigenicity of inhaled BD than rats, thereby confounding human risk assessment analyses. Rodent transgenic in vivo and in vitro models have been recently utilized for generating genetic toxicology data in support of risk assessment studies. However, studies have not been extended to investigate multiple endpoints of genetic damage using in vitro transgenic models. The goal of this study was to evaluate possible differences in the production of genetic damage in transgenic Big Blue((R)) mouse (BBM1) and rat (BBR1) fibroblasts exposed to three predominant epoxide metabolites of BD. Analyses of cytotoxicity, micronucleus (MN) formation, cII mutant frequency (MF) and apoptosis were assessed after in vitro exposure of BBM1 and BBR1 cells exposed to various concentrations of butadiene monoepoxide (BMO), diepoxybutane (DEB) and butadiene diolepoxide (BDE). Both BMO and DEB reduced cell survival in BBM1 and BBR1 cells. However, BDE decreased cell survival only in BBM1 cells at the concentrations evaluated. Concentration-dependent increases in the formation of MN was observed in both BBM1 and BBR1 cells, with DEB being the most potent followed by BDE and then BMO. The dose-response for mutations induced at the cII locus was essentially equal after DEB exposure of BBM1 and BBR1 fibroblasts. In contrast, the cII MF was significantly increased only in BBM1 cells after exposure to either BMO or BDE. These data demonstrate a differential genetic response for gene mutations but not for MN formation in transgenic BBM1 and BBR1 fibroblasts and suggest a rodent species-specific difference in the persistence of DNA damage that results in gene mutations. In addition, apoptosis was observed in BBR1 cells but not in BBM1 cells when treated with any of the three BD epoxide metabolites. This response may partially explain the differential response to mutations induced by BMO and BDE. These data offer insight into specific differences in mouse and rat cells with respect to their response to BD epoxide metabolites. Such data may help to explain the different tumorigenicity results observed in rodent BD carcinogenicity studies.
Collapse
Affiliation(s)
- G L Erexson
- Molecular Mutagenesis Group, Laboratory of Environmental Carcinogenesis and Mutagenesis, National Institute of Environmental Health Science, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
5
|
Jackson MA, Stack HF, Rice JM, Waters MD. A review of the genetic and related effects of 1,3-butadiene in rodents and humans. Mutat Res 2000; 463:181-213. [PMID: 11018742 DOI: 10.1016/s1383-5742(00)00056-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this paper, the metabolism and genetic toxicity of 1,3-butadiene (BD) and its oxidative metabolites in humans and rodents is reviewed with attention to newer data that have been published since the latest evaluation of BD by the International Agency for Research on Cancer (IARC). The oxidative metabolism of BD in mice, rats and humans is compared with emphasis on the major pathways leading to the reactive intermediates 1,2-epoxy-3-butene (EB), 1,2:3, 4-diepoxybutane (DEB), and 3,4-epoxy-1,2-butanediol (EBdiol). Results from recent studies of DNA and hemoglobin adducts indicate that EBdiol may play a more significant role in the toxicity of BD than previously thought. All three metabolites are capable of reacting with macromolecules, such as DNA and hemoglobin, and have been shown to induce a variety of genotoxic effects in mice and rats as well as in human cells in vitro. DEB is clearly the most potent of these genotoxins followed by EB, which in turn is more potent than EBdiol. Studies of mutations in lacI and lacZ mice and of the Hprt mutational spectrum in rodents and humans show that mutations at G:C base pairs are critical events in the mutagenicity of BD. In-depth analyses of the mutational spectra induced by BD and/or its oxidative metabolites should help to clarify which metabolite(s) are associated with specific mutations in each animal species and which mutational events contribute to BD-induced carcinogenicity. While the quantitative relationship between exposure to BD, its genotoxicity, and the induction of cancer in occupationally exposed humans remains to be fully established, there is sufficient data currently available to demonstrate that 1,3-butadiene is a probable human carcinogen.
Collapse
Affiliation(s)
- M A Jackson
- Alpha-Gamma Technologies Inc., Raleigh, NC 27609, USA
| | | | | | | |
Collapse
|
6
|
Kligerman AD, DeMarini DM, Doerr CL, Hanley NM, Milholland VS, Tennant AH. Comparison of cytogenetic effects of 3,4-epoxy-1-butene and 1,2:3, 4-diepoxybutane in mouse, rat and human lymphocytes following in vitro G0 exposures. Mutat Res 1999; 439:13-23. [PMID: 10029668 DOI: 10.1016/s1383-5718(98)00170-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To understand better the species differences in carcinogenicity caused by 1,3-butadiene (BD), we exposed G0 lymphocytes (either splenic or peripheral blood) from rats, mice and humans to 3, 4-epoxy-1-butene (EB) (20 to 931 microM) or 1,2:3,4-diepoxybutane (DEB) (2.5 to 320 uM), two of the suspected active metabolites of BD. Short EB exposures induced little measurable cytogenetic damage in either rat, mouse, or human G0 lymphocytes as measured by either sister chromatid exchange (SCE) or chromosome aberration (CA) analyses. However, DEB was a potent inducer of both SCEs and CAs in G0 splenic and peripheral blood lymphocytes. A comparison of the responses among species showed that the rat and mouse were approximately equisensitive to the cytogenetic damaging effects of DEB, but the situation for the human subjects was more complex. The presence of the GSTT1-1 gene (expressed in the erythrocytes) reduced the relative sensitivity of the lymphocytes to the SCE-inducing effects of DEB. However, additional factors also appear to influence the genotoxic response of humans to DEB. This study is the first direct comparison of the genotoxicity of EB and DEB in the cells from all three species.
Collapse
Affiliation(s)
- A D Kligerman
- Environmental Carcinogenesis Division (MD-68), US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Bond JA, Himmelstein MW, Seaton M, Boogaard P, Medinsky MA. Metabolism of butadiene by mice, rats, and humans: a comparison of physiologically based toxicokinetic model predictions and experimental data. Toxicology 1996; 113:48-54. [PMID: 8901882 DOI: 10.1016/0300-483x(96)03426-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
1,3-Butadiene is a carcinogen in rats and mice, with mice being substantially more sensitive than rats. Our recent research is directed toward obtaining a better understanding of the cancer risk of butadiene in humans by evaluating species-dependent differences in the formation of the toxic metabolites epoxybutene and diepoxybutane. The recent data include in vitro studies on butadiene metabolism using tissues from humans, rats, and mice as well as experimental data and physiological model predictions for butadiene in blood and butadiene epoxides in blood, lung, and liver after exposure of rats and mice to inhaled butadiene. The findings suggest that humans would be more like rats and less like mice regarding the formation of butadiene epoxides. These research findings permit a reassessment of some default options that are used in carcinogen risk assessments. The research approach employed can be a useful strategy for developing mechanistic and toxicokinetic data to supplant default assumptions used in carcinogen risk assessments.
Collapse
Affiliation(s)
- J A Bond
- Chemical Industry Institute of Toxicology, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
8
|
Kligerman AD, Doerr CL, Milholland VS, Tennant AH. Cytogenetic effects of butadiene metabolites in rat and mouse splenocytes following in vitro exposures. Toxicology 1996; 113:336-40. [PMID: 8901921 DOI: 10.1016/0300-483x(96)03469-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As a first step in investigating the genotoxic effects of the principal metabolites of 1,3-butadiene (BD) in both rats and mice, splenocytes (which have little mixed function oxidase activity) from each specimen were exposed to a series of concentrations of either 3,4-epoxy-1-butene (EB) (20 to 931 microM) or 1,2:3,4-diepoxybutane (DEB) (2.5 to 160 microM) for 1 h. The splenocytes were then washed, cultured, and stimulated to divide with concanavalin A, and metaphases were analyzed for the induction of sister chromatid exchanges (SCEs) and chromosome aberrations (CAs). In addition, cells from some experiments were taken after exposure but before culture, and subjected to the single cell gel (SCG) assay to measure DNA damage in the form of DNA strand breakage and/or alkaline-labile sites. Initial studies indicate that EB does not induce cytogenetic damage in either rat or mouse G0 splenocytes. However, DEB was an extremely potent SCE- and CA-inducer in both species with no species differences apparent. Neither DEB nor EB produced any statistically significant DNA-damaging effects as measured by the SCG assay.
Collapse
Affiliation(s)
- A D Kligerman
- U.S. Environmental Protection Agency, Environmental Carcinogenesis Division, Research Triangle Park, NC 27711, USA
| | | | | | | |
Collapse
|
9
|
Bond JA, Himmelstein MW, Medinsky MA. The use of toxicologic data in mechanistic risk assessment: 1,3-butadiene as a case study. Int Arch Occup Environ Health 1996; 68:415-20. [PMID: 8891778 DOI: 10.1007/bf00377862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The National Research Council (NRC) recently published a report. Science and Judgment in Risk Assessment, that critiqued the current approaches to characterizing human cancer risks from exposure to chemicals. One issue raised in the report relates to the use of default options for quantitation of cancer risks. Default options are general guidelines that can be used for risk assessment when specific information about a chemical is absent. Research on 1,3-butadiene represents an interesting case study in which existing knowledge on this chemical indicates that two default options may no longer be tenable: (1) humans are as sensitive as the most sensitive animal species, and (2) the rate of metabolism is a function of body surface area rather than inherent species differences in metabolic capacity. Butadiene, a major commodity chemical used in the production of synthetic rubber, is listed as one of 189 hazardous air pollutants under the 1990 Clean Air Act Amendments. Butadiene is a carcinogen in rats and mice, with mice being substantially more sensitive than rats. The extent to which butadiene poses a cancer risk to humans exposed to this chemical is uncertain. Butadiene requires metabolic activation to DNA-reactive epoxides to exert its mutagenic and carcinogenic effects. Research is directed toward obtaining a better understanding of the cancer risks of butadiene in humans by evaluating species-dependent differences in the formation of the toxic butadiene epoxide metabolites, epoxybutene and diepoxybutane. The data include in-vitro studies on butadiene metabolism using tissues from humans, rats, and mice as well as experimental data and physiological model predictions for butadiene in blood and butadiene epoxides in blood, lung, and liver after exposure of rats and mice to inhaled butadiene. The findings suggest that humans are more like rats and less like mice regarding the formation of butadiene epoxides. The research approach employed can be a useful strategy for developing mechanistic and toxicokinetic data to supplant default options used in carcinogen risk assessments for butadiene.
Collapse
Affiliation(s)
- J A Bond
- Chemical Industry Institute of Toxicology, Research Triangle Park, NC 27709-2137, USA
| | | | | |
Collapse
|
10
|
Tucker JD, Auletta A, Cimino MC, Dearfield KL, Jacobson-Kram D, Tice RR, Carrano AV. Sister-chromatid exchange: second report of the Gene-Tox Program. Mutat Res 1993; 297:101-80. [PMID: 7687323 DOI: 10.1016/0165-1110(93)90001-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This paper reviews the ability of a number of chemicals to induce sister-chromatid exchanges (SCEs). The SCE data for animal cells in vivo and in vitro, and human cells in vitro are presented in 6 tables according to their relative effectiveness. A seventh table summarizes what is known about the effects of specific chemicals on SCEs for humans exposed in vivo. The data support the concept that SCEs provide a useful indication of exposure, although the mechanism and biological significance of SCE formation still remain to be elucidated.
Collapse
Affiliation(s)
- J D Tucker
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA 94551
| | | | | | | | | | | | | |
Collapse
|
11
|
Recio L, Osterman-Golkar S, Csanády GA, Turner MJ, Myhr B, Moss O, Bond JA. Determination of mutagenicity in tissues of transgenic mice following exposure to 1,3-butadiene and N-ethyl-N-nitrosourea. Toxicol Appl Pharmacol 1992; 117:58-64. [PMID: 1440614 DOI: 10.1016/0041-008x(92)90217-g] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1,3-Butadiene (BD) is carcinogenic in the B6C3F1 mouse in multiple organs, including lung and liver. We conducted a study to measure the frequency of BD mutations in mouse tissues using a transgenic mouse (Muta mouse; MM). MM is a BALB/c x DBA/2 (CD2F1) mouse that has a bacteriophage lambda shuttle vector with the target gene lacZ integrated into the mouse genome. Mice were exposed by inhalation to 625 ppm BD (6 hr/day) for 5 days and the lacZ- mutant frequency (mf) was determined in lung, bone marrow, and liver. The lacZ- mf in lung increased twofold above air-exposed control animals, but the bone marrow and liver samples did not exhibit an increase above background. N-ethyl-N-nitrosourea (250 mg/kg ip) was mutagenic in all three tissues examined. Studies on the biotransformation of BD using MM liver microsomes showed that the ratio between the rates of BD bioactivation to BD monoepoxide (BMO) and hydrolysis of BMO by epoxide hydrolases was approximately 40% less than this ratio using B6C3F1 mouse liver microsomes. Quantitation of adducts of BMO to N-terminal valine in hemoglobin (Hb) in the MM revealed an adduct level of 3.7 pmol/mg globin. Using this value, the predicted Hb adduct level in MM would be approximately one-half of that measured in the B6C3F1 mouse following similar exposures. These results indicate that BD induces mutations in vivo in a known murine target tissue, but strain differences in the biotransformation of BD should be considered in comparing the susceptibility of transgenic mouse strains to mutation.
Collapse
Affiliation(s)
- L Recio
- Chemical Industry Institute of Toxicology, Research Triangle Park, North Carolina 27709
| | | | | | | | | | | | | |
Collapse
|
12
|
Sasiadek M, Norppa H, Sorsa M. 1,3-Butadiene and its epoxides induce sister-chromatid exchanges in human lymphocytes in vitro. Mutat Res 1991; 261:117-21. [PMID: 1922154 DOI: 10.1016/0165-1218(91)90057-s] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sister-chromatid exchanges (SCEs) were induced in human lymphocytes by 1,3-butadiene and its epoxides 3,4-epoxy-1-butene and 1,2:3,4-diepoxybutane. After a pulse treatment of 2 h, 1,3-butadiene produced a weak but reproducible increase in SCEs both with and without S9 mix. The response was similar in cultures of whole blood and of isolated lymphocytes. The 2 epoxide metabolites of butadiene, studied in whole-blood lymphocyte cultures without exogenous metabolic activation, were highly active SCE inducers. The lowest effective concentrations of butadiene, monoepoxybutene, and diepoxybutane were 2000 microM, 25 microM and 0.5 microM, respectively. A slight but dose-dependent increase in SCEs was also observed without an exogenous metabolic system after a 48-h treatment with 1,3-butadiene. Already the lowest concentration tested (500 microM) was effective. Again, the response was similar in cultures of whole blood and isolated lymphocytes, suggesting that the lymphocytes are capable of metabolically activating 1,3-butadiene.
Collapse
Affiliation(s)
- M Sasiadek
- Institute of Occupational Health, Helsinki, Finland
| | | | | |
Collapse
|
13
|
Sasiadek M, Järventaus H, Sorsa M. Sister-chromatid exchanges induced by 1.3-butadiene and its epoxides in CHO cells. Mutat Res 1991; 263:47-50. [PMID: 2034239 DOI: 10.1016/0165-7992(91)90033-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sister-chromatid exchanges (SCEs) were analyzed in CHO cells after pulse treatment with 1,3-butadiene, 3,4-epoxy-1-butene (monoepoxybutene) and 1,2:3,4-diepoxybutane (diepoxybutane). A weak dose effect was observed after exposure to 1,3-butadiene but only in the presence of S9 mix. Monoepoxybutene and diepoxybutane were highly effective in inducing SCEs at concentrations of 0.1-1 microM both in the presence and in the absence of S9 mix. At higher concentrations the response was more pronounced without S9 mix.
Collapse
Affiliation(s)
- M Sasiadek
- Institute of Occupational Health, Helsinki, Finland
| | | | | |
Collapse
|
14
|
Morales-Ramírez P, Rodríguez-Reyes R, Vallarino-Kelly T. Fate of DNA lesions that elicit sister-chromatid exchanges. Mutat Res 1990; 232:77-88. [PMID: 2117709 DOI: 10.1016/0027-5107(90)90113-i] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Using 3-way differential staining (TWD) of sister chromatids, the fate of DNA lesions involved in sister-chromatid exchange (SCE) formation was determined in murine bone marrow cells in vivo, after treatment with either mitomycin C (MMC) or cyclophosphamide (CP). Both MMC (2.6 mg/kg b.w.) and CP (7 mg/kg b.w.) induced an SCE frequency near the expected in the 2 subsequent cell divisions, but the frequency of SCE occurring at the same locus in successive cell divisions was substantially lower than expected. The results are compared with previous data obtained after exposure to gamma-rays. A model of SCE induction is proposed.
Collapse
Affiliation(s)
- P Morales-Ramírez
- Departamento de Radiobiología, Instituto Nacional de Investigaciones Nucleares, Mexico D.F., Mexico
| | | | | |
Collapse
|
15
|
Turnbull D, Rodricks JV, Brett SM. Assessment of the potential risk to workers from exposure to 1,3-butadiene. ENVIRONMENTAL HEALTH PERSPECTIVES 1990; 86:159-71. [PMID: 2205486 PMCID: PMC1567753 DOI: 10.1289/ehp.9086159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The available epidemiologic data provide equivocal evidence that 1,3-butadiene is carcinogenic in humans; some available studies suggest that the lymphopoietic system is a target, but there are inconsistencies among studies in the types of tumors associated with 1,3-butadiene exposure, and there is no evidence of a relationship between length of exposure and cancer risk, as one might expect if there was a true causal relationship between 1,3-butadiene exposure and cancer risk. The available chronic animal studies, however, show an increase in tumor incidence associated with exposure to high concentrations of 1,3-butadiene. In addition to the general uncertainty of the relevance of animal data to humans, there are several additional reasons why the National Toxicology Program's mouse study may not be appropriate for assessing possible human risks. These include: a) the possible involvement of a species-specific tumor virus (MuLV) in the response in mice; b) apparent differences between mice and humans in the rate of metabolism of 1,3-butadiene to reactive epoxides that may be proximate carcinogens; c) use of high dose levels that caused excess early mortality; and d) exposure of animals to 1,3-butadiene for only about half their lifetime. While recognizing the uncertainty in using the available animal data for risk assessment, we have performed low-dose extrapolation of the data to examine the implications of the data if humans were as sensitive as rats or mice to 1,3-butadiene, and to examine how the predictions of the animal data compare to that observed in the epidemiologic studies. With the mouse data, because the study was of less than lifetime duration, we have used the Hartley-Sielken time-to-tumor model to permit estimation of lifetime risk from the less than lifetime exposure of the study. With the rat data, we have used three plausible models for assessing low-dose risk: the multistage model, the Weibull model, and the Mantel-Bryan probit model. With both the rat and mouse data, we used information on how much 1,3-butadiene is retained by animals exposed to various concentrations of the chemical. This improves the accuracy of the low-dose extrapolation. When extrapolated to low-dose levels, mice appear to be at greater risk (by a factor of 5-fold to 40-fold) than rats. Some of this difference (a factor 3-fold to 5-fold) may be due to the faster rate of metabolism of 1,3-butadiene to, and higher blood levels of, epoxide derivatives in mice than in rats.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D Turnbull
- Environ Corporation, Arlington, VA 22203
| | | | | |
Collapse
|
16
|
Conner MK, Guzzie PJ, Neft RE. Temporal SCE and cytotoxicity responses of murine cells following in vivo treatment with MNU or L-PAM. Mutat Res 1989; 224:135-42. [PMID: 2797032 DOI: 10.1016/0165-1218(89)90147-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Time-dependent SCE responses of bone marrow and cultured spleen lymphocytes of BDF1 mice to in vivo treatment with MNU or L-PAM were studied. L-PAM was generally more active than MNU in producing elevated SCEs. Increases of 4-5 times control levels were produced in lymphocytes cultured at 1 or 24 h after i.p. injection of 4.95 mumoles/kg of L-PAM whereas an approximately 3-fold increase was produced by an acute injection of 190 mumoles/kg of MNU. Temporal SCE responses of bone marrow cells were carried out with doses of L-PAM (4.95 mumoles/kg) and MNU (131 mumoles/kg) found to be noncytotoxic by analysis of relative percentages of first, second, and third generation cells. The SCE response of second generation bone marrow cells (greater than 7 time baseline) to MNU was maximum when treatment was at the first cycle and decreased rapidly with increasing time prior to, or after the start of BrdUrd infusion. By contrast nonreciprocal (NR) SCE responses of third generation progeny never exceeded a 2-fold increase over baseline. Dramatic inhibition of cell cycling by MNU was evident as the reciprocal (R) SCEs in third generation cells increased, and exceeded NR SCEs, with increased treatment time intervals after the start of BrdUrd infusion. Similar dramatic cytotoxicity of L-PAM was apparent in time-dependent SCE response studies. An increased BrdUrd infusion time (28 h rather than the usual 26.5 h) was necessary to achieve adequate numbers of third division cells. Maximum SCE responses of the latter cells to L-PAM did not exceed 3 times baseline levels, whereas maximum responses of greater than 9 times control levels were produced in second generation cells. Comparison of SCE responses of second and third generation progeny of similarly treated cell populations, appears to provide a more sensitive assessment of cytotoxicity than does the conventional method of cell cycle analysis.
Collapse
Affiliation(s)
- M K Conner
- Departments of Biostatistics, Graduate School of Public Health, University of Pittsburgh, PA 15162
| | | | | |
Collapse
|
17
|
Affiliation(s)
- C de Meester
- Unit of Mutagenesis and Teratogenesis, Faculty of Medicine, Catholic University of Louvain, Brussels, Belgium
| |
Collapse
|
18
|
Krishna G, Nath J, Petersen M, Ong T. In vivo and in vivo/in vitro kinetics of cyclophosphamide-induced sister-chromatid exchanges in mouse bone marrow and spleen cells. Mutat Res 1988; 204:297-305. [PMID: 3343979 DOI: 10.1016/0165-1218(88)90103-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In several acute and chronic exposures to various chemicals in vivo and in vitro, the average sister-chromatid exchange (SCE) frequencies in human, mouse, rat, and rabbit lymphocytes generally decrease with time following treatment. The rate of this decline varies, but little data have been published pertaining to the comparative kinetics of SCEs both in vivo and in vivo/in vitro (exposure of animals to the test compound and culturing of cells) simultaneously in the same tissues. In this study, a single dose of cyclophosphamide (40 mg/kg) was injected for varying periods (6-48 h) and its effects, as assessed by the induction of SCEs, were analyzed under both in vivo and in vivo/in vitro conditions in mouse bone marrow and spleen cells. In vivo, the cyclophosphamide-induced SCEs increased with increasing time up to 12 h, stayed at approximately the same level until 24 h, and then decreased with increase in post-exposure time. However, the SCE levels remained significantly higher than controls at 48 h post-exposure time in both bone marrow and spleen cells. Under in vivo/in vitro conditions, the SCEs in bone marrow decreased with increase in post-exposure time until reaching control values by 48 h post exposure. However, in spleen cells, the decrease in SCE level was gradual, and by 48 h post-exposure time, the cells still had approximately 6 times higher SCEs than the control values. These results suggest that there are pharmacokinetic differences for cyclophosphamide in mouse bone marrow and spleen. Also, there is a differential SCE response to cyclophosphamide under in vivo and in vivo/in vitro conditions.
Collapse
Affiliation(s)
- G Krishna
- Division of Respiratory Disease Studies, National Institute for Occupational Safety and Health, Morgantown, WV 26505-2888
| | | | | | | |
Collapse
|
19
|
Walk RA, Jenderny J, Röhrborn G, Hackenberg U. Chromosomal abnormalities and sister-chromatid exchange in bone marrow cells of mice and Chinese hamsters after inhalation and intraperitoneal administration: I. Diepoxybutane. Mutat Res 1987; 182:333-42. [PMID: 3683432 DOI: 10.1016/0165-1161(87)90075-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Diepoxybutane (DEB), a direct-acting animal carcinogen, was found to increase the frequency of structural chromosomal abnormalities (CA) and sister-chromatid exchange (SCE) in bone marrow cells of mice and Chinese hamsters, when inhaled from an aerosol during a 2-h head-only exposure or administered as a single intraperitoneal injection. For the purpose of comparing the genotoxicity in the 2 species, both after inhalation and intraperitoneal administration, the systemic DEB dose obtained by inhalation was determined on the basis of blood concentrations and inhalation duration after the investigation of the blood kinetics. The bone marrow cells of male and female NMRI mice were found to be more sensitive than those of Chinese hamsters to the genotoxic activity of DEB.
Collapse
Affiliation(s)
- R A Walk
- INBIFO, Institut für biologische Forschung, Cologne, F.R.G
| | | | | | | |
Collapse
|
20
|
Tice RR, Boucher R, Luke CA, Shelby MD. Comparative cytogenetic analysis of bone marrow damage induced in male B6C3F1 mice by multiple exposures to gaseous 1,3-butadiene. ENVIRONMENTAL MUTAGENESIS 1987; 9:235-50. [PMID: 3569168 DOI: 10.1002/em.2860090303] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Groups of male B6C3F1 mice (N = 12) were exposed to ambient air or to gaseous 1,3-butadiene (BD) at 6.25, 62.5, and 625 ppm for 10 exposure days (6 hr + T90/day). Exposure to BD induced in bone marrow: 1) a significant increase in the frequency of chromosomal aberrations (CA); 2) a significant elevation in the frequency of sister chromatid exchanges (SCE); 3) a significant lengthening of the average generation time (AGT); 4) a significant depression in the mitotic index (MI); and, as measured in the peripheral blood, 5) a significant increase in the proportion of circulating polychromatic erythrocytes (%PCE), and 6) a significant increase in the level of micronucleated PCE (MN-PCE) and micronucleated normochromatic erythrocytes (MN-NCE). The most sensitive indicator of genotoxic damage was the frequency of SCE (significant at 6.25 ppm), followed by MN-PCE levels (significant at 62.5 ppm), and then by CA and MN-NCE frequencies (significant at 625 ppm). The most sensitive measure of cytotoxic damage was AGT (significant at 62.5 ppm), followed by %PCE (significant at 625 ppm), and then by MI (significant by trend test only). Because each cytogenetic endpoint was evaluated in every animal, a correlation analysis was conducted to evaluate the degree of concordance among the various indicators of genotoxic and cytotoxic damage. The extent of concordance ranged from a very good correlation between the induction of MN-PCE and the induction of SCE (correlation coefficient r = 0.9562) to the lack of a significant correlation between the depression in the MI and any other endpoint (r less than 0.37).
Collapse
|
21
|
Sharief Y, Brown AM, Backer LC, Campbell JA, Westbrook-Collins B, Stead AG, Allen JW. Sister chromatid exchange and chromosome aberration analyses in mice after in vivo exposure to acrylonitrile, styrene, or butadiene monoxide. ENVIRONMENTAL MUTAGENESIS 1986; 8:439-48. [PMID: 3709426 DOI: 10.1002/em.2860080312] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The use of polymers in plastic and rubber products has generated concern that monomers potentially active in biological systems may be eluted from these substances. We have evaluated two such monomers, acrylonitrile and styrene, for the induction of chromosome damage in mice. Butadiene monoxide, a presumed metabolite of a third important monomer, 1,3-butadiene, was also tested. These chemicals were administered as a single intraperitoneal injection; sister chromatid exchanges and chromosome aberrations were analyzed in bone marrow cells. Acrylonitrile and styrene were largely negative for these endpoints when tested at doses ranging to 60 mg/kg and 1,000 mg/kg, respectively. Butadiene monoxide, which previously has not been tested in a mammalian system, was determined to be a very effective inducer of sister chromatid exchanges and chromosome aberrations. Both endpoints showed a clear dose response and a greater than ten-fold increase over control levels at high doses. These studies represent an initial step in our efforts to evaluate genetic risk associated with exposure to common polymeric chemicals.
Collapse
|
22
|
Schvartzman JB, Goyanes VJ, Campos A, Lage AM, Veiras C, Silva MC, Ramos S. Persistence of DNA lesions and the cytological cancellation of sister chromatid exchanges. Chromosoma 1985; 92:7-10. [PMID: 3924528 DOI: 10.1007/bf00327239] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ability of UV light, mitomycin C and ionizing radiation to induce the formation of sister chromatid exchanges (SCEs) at the same locus in successive cell generations was investigated in human lymphocytes. Cells were exposed to the DNA damaging agents after they had completed their first round of DNA replication, and SCEs were examined at the third division in chromosomes that had been differentially stained three ways. Although some of these treatments induced long-lived lesions that increased the frequency of SCEs in successive cell generations, none of the lesions led to the formation of consecutive SCEs at the same locus in successive cell generations. This observation seriously challenges the hypothesis that SCE cancellation results as a consequence of persistence of the lesions induced by these agents.
Collapse
|
23
|
Rosenthal SL. The Reproductive Effects Assessment Group's report on the mutagenicity of 1,3-butadiene and its reactive metabolites. ENVIRONMENTAL MUTAGENESIS 1985; 7:933-45. [PMID: 2933247 DOI: 10.1002/em.2860070615] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A major data gap for assessing heritable risk from exposure to 1,3-butadiene is the lack of mammalian mutagenicity data. The data base on the mutagenic potential of 1,3-butadiene is limited to three bacterial studies from the same laboratory. Two of these studies were positive only in the presence of liver S9 mix from chemically pretreated animals. In vitro data suggest that 1,3-butadiene is metabolized to two epoxide intermediates. 3,4-Epoxybutene, one potential reactive metabolite of 1,3-butadiene, is a monofunctional alkylating agent and is a direct-acting mutagen in bacteria. In addition, unpublished data suggest that 3,4-epoxy-butene induces DNA damage and chromosomal aberrations in mice. Another potential reactive metabolite, 1,2:3,4-diepoxybutane, is a bifunctional alkylating agent and is mutagenic in a wide variety of organisms (bacteria, fungi, and the germ cells of Drosophila). This metabolite also induces DNA damage in mice and in cultured hamster cells, is clastogenic in fungi and cultured rat cells, and produces chromosome damage/breakage in Drosophila germ cells. These data, when combined with evidence that 1,3-butadiene is carcinogenic in rodent gonadal tissues and is associated with gonadal atrophy in mice, constitute suggestive evidence that 1,3-butadiene may be a human germ cell mutagen. However, because the mutagenicity of 1,3-butadiene has been studied only in bacteria, studies in mammalian test systems are needed to further characterize the mutagenic potential of 1,3-butadiene.
Collapse
|
24
|
Pal K. The relationship between the levels of DNA-hydrocarbon adducts and the formation of sister-chromatid exchanges in Chinese hamster ovary cells treated with derivatives of polycyclic aromatic hydrocarbons. Mutat Res 1984; 129:365-72. [PMID: 6513963 DOI: 10.1016/0027-5107(84)90091-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The frequencies of the induction of sister-chromatid exchanges and the levels of deoxyribonucleoside-hydrocarbon adducts formed in Chinese hamster ovary cells that had been treated with either dihydrodiols or a diol-epoxide derived from polycyclic aromatic hydrocarbons were determined. Up to 6-fold increases in the incidence of these exchanges were observed when the cells were treated either with the dihydrodiols, trans-3,4-dihydro-3,4-dihydroxy-7-methylbenz[alpha]anthracene, trans-7,8-dihydro-7,8-dihydroxybenzo[alpha]pyrene or the diol-epoxide, (+/-)-r-7, t-8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo[alpha]pyrene but when the cells were transferred to media free of these compounds, there were rapid reductions in the frequency of these exchanges. When the exchanges were induced by the diol-epoxide, the decreases in frequency were paralleled by decreases in the levels of deoxyribonucleoside-diol-epoxide adducts that were present in hydrolysates of DNA isolated from the cells. There thus appears to be a close relationship between the frequency of sister-chromatid exchanges and the levels of deoxyribonucleoside-diol-epoxide adduct formation.
Collapse
|
25
|
Lecka-Czernik B, Swietlińska Z, Zaborowska D, Zuk J. Analysis of replication of DEB-alkylated DNA in yeast: bypass replication in a rad3 mutant of Saccharomyces cerevisiae. Mutat Res 1984; 132:161-9. [PMID: 6392869 DOI: 10.1016/0167-8817(84)90034-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We presented indirect evidence that in an excision-deficient rad3 mutant of yeast exposed to diepoxybutane (DEB), DNA synthesis continued past the damaged sites. This bypass replication was confined to the first post-treatment round of replication and was followed by inhibition of DNA synthesis. Analyses by alkaline sucrose gradient sedimentation and by alkaline elution from filters revealed that in mutant cells the first post-treatment round of replication proceeded at a similar rate to that in untreated cells and was not accompanied by strand scission of template DNA. The post-treatment synthesis was presumably of an error-prone type, as the frequency of reversion to ade2-1 prototrophy was increased. In contrast, in the isogenic wild-type strain, the post-treatment incorporation of radioactivity into DNA was slightly reduced and newly replicated DNA fragments were of lower molecular weight than in control cells. There was also some strain scission in template DNA, presumably resulting from excision-repair.
Collapse
|
26
|
Conner MK. Persistence of SCE-inducing lesions in vivo: relevance to mechanisms of SCE formation. BASIC LIFE SCIENCES 1984; 29 Pt A:199-214. [PMID: 6532419 DOI: 10.1007/978-1-4684-4889-4_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|