1
|
Taxier LR, Pillerová M, Branyan TE, Sohrabji F, Frick KM. Astrocytic glutamate transport is essential for the memory-enhancing effects of 17β-estradiol in ovariectomized mice. Horm Behav 2024; 165:105618. [PMID: 39180889 PMCID: PMC11498968 DOI: 10.1016/j.yhbeh.2024.105618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Infusion of 17β-estradiol (E2) into the dorsal hippocampus (DH) of ovariectomized (OVX) mice enhances memory consolidation, an effect that depends on rapid phosphorylation of extracellular signal-regulated kinase (ERK) and Akt. Astrocytic glutamate transporter 1 (GLT-1) modulates neurotransmission via glutamate uptake from the synaptic cleft. However, little is known about the contribution of DH astrocytes, and astrocytic glutamate transport, to the memory-enhancing effects of E2. This study was designed to test whether DH astrocytes contribute to estrogenic modulation of memory consolidation by determining the extent to which DH GLT-1 is necessary for E2 to enhance memory in object recognition and object placement tasks and trigger rapid phosphorylation events in DH astrocytes. OVX female mice were bilaterally cannulated into the DH or the DH and dorsal third ventricle (ICV). Post-training DH infusion of the GLT-1 inhibitor dihydrokainic acid (DHK) dose-dependently impaired memory consolidation in both tasks. Moreover, the memory-enhancing effects of ICV-infused E2 in each task were blocked by DH DHK infusion. E2 increased p42 ERK and Akt phosphorylation in DH astrocytes, and these effects were blocked by DHK. Results suggest the necessity of DH GLT-1 activity for object and spatial memory consolidation, and for E2 to enhance consolidation of these memories and to rapidly activate cell signaling in DH astrocytes. Findings indicate that astrocytic function in the DH of OVX females is necessary for memory formation and is regulated by E2, and suggest an essential role for DH astrocytic GLT-1 activity in the memory-enhancing effects of E2.
Collapse
Affiliation(s)
- Lisa R Taxier
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA.
| | - Miriam Pillerová
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA; Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| | - Taylor E Branyan
- Texas A&M Institute for Neuroscience and TAMU College of Medicine, Bryan, TX, USA.
| | - Farida Sohrabji
- Texas A&M Institute for Neuroscience and TAMU College of Medicine, Bryan, TX, USA.
| | - Karyn M Frick
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Duan LY, Horst NK, Cranmore SAW, Horiguchi N, Cardinal RN, Roberts AC, Robbins TW. Controlling one's world: Identification of sub-regions of primate PFC underlying goal-directed behavior. Neuron 2021; 109:2485-2498.e5. [PMID: 34171290 PMCID: PMC8346232 DOI: 10.1016/j.neuron.2021.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/13/2021] [Accepted: 06/02/2021] [Indexed: 12/30/2022]
Abstract
Impaired detection of causal relationships between actions and their outcomes can lead to maladaptive behavior. However, causal roles of specific prefrontal cortex (PFC) sub-regions and the caudate nucleus in mediating such relationships in primates are unclear. We inactivated and overactivated five PFC sub-regions, reversibly and pharmacologically: areas 24 (perigenual anterior cingulate cortex), 32 (medial PFC), 11 (anterior orbitofrontal cortex, OFC), 14 (rostral ventromedial PFC/medial OFC), and 14-25 (caudal ventromedial PFC) and the anteromedial caudate to examine their role in expressing learned action-outcome contingencies using a contingency degradation paradigm in marmoset monkeys. Area 24 or caudate inactivation impaired the response to contingency change, while area 11 inactivation enhanced it, and inactivation of areas 14, 32, or 14-25 had no effect. Overactivation of areas 11 and 24 impaired this response. These findings demonstrate the distinct roles of PFC sub-regions in goal-directed behavior and illuminate the candidate neurobehavioral substrates of psychiatric disorders, including obsessive-compulsive disorder. Monkey pgACC-24 is necessary for detecting causal control of actions over outcomes Its projection target in the caudate nucleus is also implicated Three other subregions of the ventromedial prefrontal cortex are not necessary Anterior OFC-11 may mediate Pavlovian influences on goal-directed behavior
Collapse
Affiliation(s)
- Lisa Y Duan
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK; Behavioural and Clinical Neuroscience Institute, Downing Street, University of Cambridge, Cambridge CB2 3EB, UK.
| | - Nicole K Horst
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK; Behavioural and Clinical Neuroscience Institute, Downing Street, University of Cambridge, Cambridge CB2 3EB, UK
| | - Stacey A W Cranmore
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK; Behavioural and Clinical Neuroscience Institute, Downing Street, University of Cambridge, Cambridge CB2 3EB, UK
| | - Naotaka Horiguchi
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK; Behavioural and Clinical Neuroscience Institute, Downing Street, University of Cambridge, Cambridge CB2 3EB, UK
| | - Rudolf N Cardinal
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain & Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK; Behavioural and Clinical Neuroscience Institute, Downing Street, University of Cambridge, Cambridge CB2 3EB, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Liaison Psychiatry Service, Box 190, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Behavioural and Clinical Neuroscience Institute, Downing Street, University of Cambridge, Cambridge CB2 3EB, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK; Behavioural and Clinical Neuroscience Institute, Downing Street, University of Cambridge, Cambridge CB2 3EB, UK
| |
Collapse
|
3
|
Hervig ME, Piilgaard L, Božič T, Alsiö J, Robbins TW. Glutamatergic and Serotonergic Modulation of Rat Medial and Lateral Orbitofrontal Cortex in Visual Serial Reversal Learning. ACTA ACUST UNITED AC 2020; 13:438-458. [PMID: 33613854 PMCID: PMC7872199 DOI: 10.1037/pne0000221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
Adapting behavior to a dynamic environment requires both steadiness when the environment is stable and behavioral flexibility in response to changes. Much evidence suggests that cognitive flexibility, which can be operationalized in reversal learning tasks, is mediated by cortico-striatal circuitries, with the orbitofrontal cortex (OFC) playing a prominent role. The OFC is a functionally heterogeneous region, and we have previously reported differential roles of lateral (lOFC) and medial (mOFC) regions in a touchscreen serial visual reversal learning task for rats using pharmacological inactivation. Here, we investigated the effects of pharmacological overactivation of these regions using a glutamate transporter 1 (GLT-1) inhibitor, dihydrokainate (DHK), which increases extracellular glutamate by blocking its reuptake. We also tested the impact of antagonism of the serotonin 2A receptor (5-HT2AR), which modulates glutamate action, in the mOFC and lOFC on the same task. Overactivation induced by DHK produced dissociable effects in the mOFC and lOFC, with more prominent effects in the mOFC, specifically improving performance in the early, perseveration phase. Intra-lOFC DHK increased the number of omitted responses without affecting errors. In contrast, blocking the 5-HT2AR in the lOFC impaired reversal learning overall, while mOFC 5-HT2AR blockade had no effect. These results further support dissociable roles of the rodent mOFC and lOFC in deterministic visual reversal learning and indicate that modulating glutamate transmission through blocking the GLT-1 and the 5-HT2AR have different roles in these two structures. This study further supports dissociable roles of specific orbitofrontal subregions, as well as glutamatergic and serotonergic transmission in these subregions, in cognitive flexibility. This knowledge will add to the understanding of specific neural mechanisms underlying inflexible behaviour across psychiatric disorders.
Collapse
Affiliation(s)
- Mona E Hervig
- Department of Psychology, University of Cambridge, and Department of Neuroscience, University of Copenhagen
| | - Louise Piilgaard
- Department of Psychology, University of Cambridge, and Behavioral and Clinical Neuroscience Institute, University of Cambridge
| | - Tadej Božič
- Department of Psychology, University of Cambridge, and Behavioral and Clinical Neuroscience Institute, University of Cambridge
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, and Behavioral and Clinical Neuroscience Institute, University of Cambridge
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, and Behavioral and Clinical Neuroscience Institute, University of Cambridge
| |
Collapse
|
4
|
Yang J, Li MX, Luo Y, Chen T, Liu J, Fang P, Jiang B, Hu ZL, Jin Y, Chen JG, Wang F. Chronic ceftriaxone treatment rescues hippocampal memory deficit in AQP4 knockout mice via activation of GLT-1. Neuropharmacology 2013; 75:213-22. [PMID: 23973312 DOI: 10.1016/j.neuropharm.2013.08.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/03/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
Abstract
Aquaporin-4 (AQP4) is the predominant water channel protein in the mammalian brain, and is mainly expressed in astrocytes. Besides its important role in water transport across the blood-brain barrier, our present study demonstrated that AQP4 deficiency impaired hippocampal long-term potentiation (LTP) and hippocampus-dependent memory formation, accompanied by the increase in extracellular glutamate concentration and N-methyl-d-aspartate (NMDA) receptor-mediated currents in hippocampal dentate gyrus (DG) region. The impairment of LTP and memory formation of AQP4 knockout (KO) mice was mediated by the downregulation of glutamate transporter-1 (GLT-1) expression/function, since it can be rescued by β-lactam antibiotic ceftriaxone (Cef), a potent GLT-1 stimulator. These results suggest that AQP4 functions as the modulator of synaptic plasticity and memory, and chronic Cef treatment rescues hippocampal memory deficit induced by AQP4 knockout.
Collapse
Affiliation(s)
- Jun Yang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Ming-Xing Li
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yi Luo
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Tao Chen
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jing Liu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Peng Fang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Bo Jiang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhuang-Li Hu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China.
| | - You Jin
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China.
| | - Jian-Guo Chen
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China.
| | - Fang Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China.
| |
Collapse
|
5
|
Bertsche A, Bruehl C, Pietz J, Draguhn A. Region- and pattern-specific effects of glutamate uptake blockers on epileptiform activity in rat brain slices. Epilepsy Res 2010; 88:118-26. [DOI: 10.1016/j.eplepsyres.2009.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/09/2009] [Accepted: 10/14/2009] [Indexed: 11/16/2022]
|
6
|
Neuronal glutamate transporters regulate synaptic transmission in single synapses on CA1 hippocampal neurons. Brain Res Bull 2010; 81:53-60. [DOI: 10.1016/j.brainresbull.2009.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/24/2009] [Accepted: 07/24/2009] [Indexed: 01/09/2023]
|
7
|
Schepers RJF, Mahoney JL, Zapata A, Chefer V, Shippenberg TS. The effects of local perfusion of DAMGO on extracellular GABA and glutamate concentrations in the rostral ventromedial medulla. J Neurochem 2007; 104:806-17. [PMID: 17961151 DOI: 10.1111/j.1471-4159.2007.05017.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Electrophysiological data suggest an involvement of rostral ventromedial medulla (RVM) GABA and glutamate (GLU) neurons in morphine analgesia. Direct evidence that extracellular concentrations of GABA or GLU are altered in response to mu opioid receptor (MOP-R) activation is, however, lacking. We used in vivo microdialysis to investigate this issue. Basal GABA overflow increased in response to intra-RVM perfusion of KCl (60 mmol/L). Reverse microdialysis of the MOP-R agonist D-Ala(2),NMePhe(4),Gly-ol(5)]enkephalin (DAMGO) (20-500 micromol/L) produced a concentration-dependent decrease of RVM GABA overflow. Behavioral testing revealed that concentrations that decreased GABA levels increased thermal withdrawal thresholds. A lower agonist concentration that did not increase GABA failed to alter thermal thresholds. DAMGO did not alter GLU concentrations. However, KCl also failed to modify GLU release. Since rapid, transporter-mediated uptake may mask the detection of changes in GLU release, the selective excitatory amino acid transporter inhibitor pyrrolidine-2,4-dicarboxylic acid (tPDC, 0.6 mmol/L) was added to the perfusion medium for subsequent studies. tPDC increased GLU concentrations, confirming transport inhibition. KCl increased GLU dialysate levels in the presence of tPDC, demonstrating that transport inhibition permits detection of depolarization-evoked GLU overflow. In the presence of tPDC, DAMGO increased GLU overflow in a concentration-dependent manner. These data demonstrate that MOP-R activation decreases GABA and increases GLU release in the RVM. We hypothesize that the opposing effects of MOP-R on GLU and GABA transmission contribute to opiate antinociception.
Collapse
|
8
|
Fricke MN, Jones-Davis DM, Mathews GC. Glutamine uptake by System A transporters maintains neurotransmitter GABA synthesis and inhibitory synaptic transmission. J Neurochem 2007; 102:1895-1904. [PMID: 17504265 DOI: 10.1111/j.1471-4159.2007.04649.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GABA synthesis is necessary to maintain synaptic vesicle filling, and key proteins in its biosynthetic pathways may play a role in regulating inhibitory synaptic stability and strength. GABAergic neurons require a source of precursor glutamate, possibly from glutamine, although it is controversial whether glutamine contributes to the synaptic pool of GABA. Here we report that inhibition of System A glutamine transporters with alpha-(methyl-amino) isobutyric acid rapidly reduced the amplitude of inhibitory post-synaptic currents and miniature inhibitory post-synaptic currents (mIPSCs) recorded in rat hippocampal area cornu ammonis 1 (CA1) pyramidal neurons, indicating that synaptic vesicle content of GABA was reduced. After inhibiting astrocytic glutamine synthesis by either blocking glutamate transporters or the glutamine synthetic enzyme, the effect of alpha-(methyl-amino) isobutyric acid on mIPSC amplitudes was abolished. Exogenous glutamine did not affect mIPSC amplitudes, suggesting that the neuronal transporters are normally saturated. Our findings demonstrate that a constitutive supply of glutamine is provided by astrocytes to inhibitory neurons to maintain vesicle filling. Therefore, glutamine transporters, like those for glutamate, are potential regulators of inhibitory synaptic strength. However, in contrast to glutamate, extracellular glutamine levels are normally high. Therefore, we propose a supportive role for glutamine, even under resting conditions, to maintain GABA vesicle filling.
Collapse
Affiliation(s)
- Molly N Fricke
- Department of Neurology, Vanderbilt University, Nashville, Tennessee, USADepartment of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Dorothy M Jones-Davis
- Department of Neurology, Vanderbilt University, Nashville, Tennessee, USADepartment of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Gregory C Mathews
- Department of Neurology, Vanderbilt University, Nashville, Tennessee, USADepartment of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Larrosa B, Pastor J, López-Aguado L, Herreras O. A role for glutamate and glia in the fast network oscillations preceding spreading depression. Neuroscience 2006; 141:1057-1068. [PMID: 16713108 DOI: 10.1016/j.neuroscience.2006.04.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 04/05/2006] [Accepted: 04/06/2006] [Indexed: 11/27/2022]
Abstract
The mechanism of the propagation of spreading depression is unclear. Classical theories proposed a self-maintained cycle fed by elevated potassium and/or glutamate in the extracellular space. Earlier we found in vivo a characteristic oscillatory field activity that is synchronous in a strip of tissue ahead of the oncoming wave of neuron depolarization and that occurs before the extracellular potassium level begins to rise [Herreras O, Largo C, Ibarz JM, Somjen GG, Marrín del Río R (1994) Role of neuronal synchronizing mechanisms in the propagation of spreading depression in the in vivo hippocampus. J Neurosci 14:7087-7098]. We investigated here the possible participation of glutamate and the role of glia in the prodromal field oscillations using extra and intracellular recordings and pharmacological manipulations in rat hippocampal slices. As earlier shown in vivo, field oscillations propagated ahead of the negative potential shift covering distances of up to 1 mm. The oscillatory prodromals were initially subthreshold but then each wave became crowned by a population spike. The frequency of the oscillatory prodromals was variable among slices (80-115 Hz), but constant in individual slices. The blockade of ionotropic glutamate receptors decreased the frequency of prodromal oscillations, retarded spreading depression propagation, and shortened the duration of depolarization. Blocking the glutamate membrane transport increased the oscillatory frequency. The selective metabolic poisoning of astrocytes led to gradual disorganization of prodromal oscillations whose frequency first increased and then decreased. Also, the amplitude of the population spikes within the burst diminished as individual cells fired fewer action potentials, although still phase-locked with population spikes. The effects of glial metabolic impairment were observed within the period when neuron electrical properties were still normal, and were blocked by glutamate receptor antagonists. These data suggest that glutamate released from glial cells and possibly also from neurons has a role in the generation of oscillations and neuron firing synchronization that precede the spreading depression-related depolarization, but additional mechanisms are required to fully explain the onset and propagation of spreading depression.
Collapse
Affiliation(s)
- B Larrosa
- Experimental and Computational Neurophysiology Unit, Dpt. Investigación-Histología, Hospital Ramón y Cajal, Ctra. Colmenar km 9, 28034 Madrid, Spain
| | - J Pastor
- Experimental and Computational Neurophysiology Unit, Dpt. Investigación-Histología, Hospital Ramón y Cajal, Ctra. Colmenar km 9, 28034 Madrid, Spain
| | - L López-Aguado
- Experimental and Computational Neurophysiology Unit, Dpt. Investigación-Histología, Hospital Ramón y Cajal, Ctra. Colmenar km 9, 28034 Madrid, Spain
| | - O Herreras
- Experimental and Computational Neurophysiology Unit, Dpt. Investigación-Histología, Hospital Ramón y Cajal, Ctra. Colmenar km 9, 28034 Madrid, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, C/ Dr. Arce 37, Madrid 28002, Spain.
| |
Collapse
|
10
|
Feustel PJ, Jin Y, Kimelberg HK. Volume-Regulated Anion Channels Are the Predominant Contributors to Release of Excitatory Amino Acids in the Ischemic Cortical Penumbra. Stroke 2004; 35:1164-8. [PMID: 15017010 DOI: 10.1161/01.str.0000124127.57946.a1] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Release of excitatory amino acids (EAA) is considered a cause of neuronal damage in ischemia. We investigated the sources and mechanisms of EAA release using microdialysis in regions of incomplete ischemia where perfusion was reduced by 50% to 80%, by applying inhibitors of volume-regulated anion channels (VRACs) and the GLT-1 glutamate transporter. METHODS Reversible middle cerebral artery occlusion (rMCAo) was induced in anesthetized rats using the intraluminal suture technique. Microdialysate concentrations of glutamate, aspartate, and taurine were measured before, during 2 hours of rMCAo, and for 2 hours after rMCAo. Vehicle, dihydrokainate (DHK, 1 mmol/L), a GLT-1 inhibitor, or tamoxifen (50 micromol/L), a VRAC inhibitor, were administered continuously via the dialysis probes starting one hour prior to ischemia. RESULTS During incomplete ischemia, dialysate glutamate levels averaged 1.74+/-0.31 micromol/L (SEM) in the control group (n=8), 2.08+/-0.33 micromol/L in the DHK group (n=7), and were significantly lower at 0.88+/-0.30 micromol/L in the tamoxifen group (n=9; P<0.05). As perfusion returned toward baseline levels, EAA levels declined in the vehicle and tamoxifen-treated animals but they remained elevated in the DHK-treated animals. CONCLUSIONS In contrast to previous results in severely ischemic regions, DHK did not reduce EAA release in less severely ischemic brain, suggesting a diminished role for transporter reversal in these areas. These findings also support the hypothesis that in regions of incomplete ischemia, release of EAAs via VRACs may play a larger role than reversal of the GLT-1 transporter.
Collapse
Affiliation(s)
- Paul J Feustel
- Center for Neuropharmacology and Neuroscience, MC136, Albany Medical College, Albany, New York, USA.
| | | | | |
Collapse
|
11
|
Abstract
Neurons must maintain a supply of neurotransmitter in their presynaptic terminals to fill synaptic vesicles. GABA is taken up into inhibitory terminals by transporters or is synthesized from glutamate by glutamic acid decarboxylase. Here we report that glutamate transporters supply GABAergic terminals in the hippocampus with glutamate, which is then used to synthesize GABA for filling synaptic vesicles. Glutamate transporter antagonists reduced IPSC and miniature IPSC (mIPSC) amplitudes, consistent with a reduction in the amount of GABA packaged into each synaptic vesicle. This reduction occurred rapidly and independently of synaptic activity, suggesting that modulation of vesicular GABA content does not require vesicle release and refilling. Raising extracellular glutamate levels increased mIPSC amplitudes by enhancing glutamate uptake and, consequently, GABA synthesis. These results indicate that neuronal glutamate transporters strengthen inhibitory synapses in response to extracellular glutamate. This modulation appears to occur under normal conditions and may constitute a negative feedback mechanism to combat hyperexcitability.
Collapse
|
12
|
Segovia G, Del Arco A, Prieto L, Mora F. Glutamate-glutamine cycle and aging in striatum of the awake rat: effects of a glutamate transporter blocker. Neurochem Res 2001; 26:37-41. [PMID: 11358280 DOI: 10.1023/a:1007624531077] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study investigated the effects of aging on the actions of a specific glutamate reuptake blocker, L-trans-pyrrolidine-2, 4-dicarboxylic acid (PDC), in extracellular glutamate and glutamine in striatum of the awake rat. Microdialysis experiments were performed on young (2-3 months), middle-aged (12-14 months), aged (27-32 months) and very aged (37 months) male Wistar rats. Local infusion of PDC (1-4 mM) in striatum increased the dialysate concentration of glutamate and decreased dialysate concentration of glutamine in all the age-groups. In young rats, decreases of dialysate glutamine were correlated with increases of dialysate glutamate. The same profile glutamine/glutamate as in young rats was found in middle-aged, aged and very aged rats, which suggests that the action of glutamate on the glutamate-glutamine cycle in striatum of the awake rat is not modified as a consequence of aging. We also found a significant correlation between the increases of glutamate produced by PDC and the basal dialysate concentration of glutamine, a relationship that did show a significant change with age. Although the significance of this latter finding remains to be elucidated, it may be important to understand the changes in glutamate-glutamine cycle during aging.
Collapse
Affiliation(s)
- G Segovia
- Department of Physiology, Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
13
|
Abstract
Brain tissue has a remarkable ability to accumulate glutamate. This ability is due to glutamate transporter proteins present in the plasma membranes of both glial cells and neurons. The transporter proteins represent the only (significant) mechanism for removal of glutamate from the extracellular fluid and their importance for the long-term maintenance of low and non-toxic concentrations of glutamate is now well documented. In addition to this simple, but essential glutamate removal role, the glutamate transporters appear to have more sophisticated functions in the modulation of neurotransmission. They may modify the time course of synaptic events, the extent and pattern of activation and desensitization of receptors outside the synaptic cleft and at neighboring synapses (intersynaptic cross-talk). Further, the glutamate transporters provide glutamate for synthesis of e.g. GABA, glutathione and protein, and for energy production. They also play roles in peripheral organs and tissues (e.g. bone, heart, intestine, kidneys, pancreas and placenta). Glutamate uptake appears to be modulated on virtually all possible levels, i.e. DNA transcription, mRNA splicing and degradation, protein synthesis and targeting, and actual amino acid transport activity and associated ion channel activities. A variety of soluble compounds (e.g. glutamate, cytokines and growth factors) influence glutamate transporter expression and activities. Neither the normal functioning of glutamatergic synapses nor the pathogenesis of major neurological diseases (e.g. cerebral ischemia, hypoglycemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia) as well as non-neurological diseases (e.g. osteoporosis) can be properly understood unless more is learned about these transporter proteins. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity.
Collapse
Affiliation(s)
- N C Danbolt
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, N-0317, Oslo, Norway
| |
Collapse
|
14
|
Jabaudon D, Shimamoto K, Yasuda-Kamatani Y, Scanziani M, Gähwiler BH, Gerber U. Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. Proc Natl Acad Sci U S A 1999; 96:8733-8. [PMID: 10411944 PMCID: PMC17585 DOI: 10.1073/pnas.96.15.8733] [Citation(s) in RCA: 252] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maintaining glutamate at low extracellular concentrations in the central nervous system is necessary to protect neurons from excitotoxic injury and to ensure a high signal-to-noise ratio for glutamatergic synaptic transmission. We have used DL-threo-beta-benzyloxyaspartate (TBOA), an inhibitor of glutamate uptake, to determine the role of glutamate transporters in the regulation of extracellular glutamate concentration. By using the N-methyl-D-aspartate receptors of patched CA3 hippocampal neurons as "glutamate sensors," we observed that application of TBOA onto organotypic hippocampal slices led to a rapid increase in extracellular glutamate concentration. This increase was Ca(2+)-independent and was observed in the presence of tetrodotoxin. Moreover, prevention of vesicular glutamate release with clostridial toxins did not affect the accumulation of glutamate when uptake was inhibited. Inhibition of glutamine synthase, however, increased the rate of accumulation of extracellular glutamate, indicating that glial glutamate stores can serve as a source in this process. TBOA blocked synaptically evoked transporter currents in astrocytes without inducing a current mediated by the glutamate transporter. This indicates that this inhibitor is not transportable and does not release glutamate by heteroexchange. These results show that under basal conditions, the activity of glutamate transporters compensates for the continuous, nonvesicular release of glutamate from the intracellular compartment. As a consequence, acute disruption of transporter activity immediately results in significant accumulation of extracellular glutamate.
Collapse
Affiliation(s)
- D Jabaudon
- Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
15
|
Segovia G, Del Arco A, Mora F. Role of glutamate receptors and glutamate transporters in the regulation of the glutamate-glutamine cycle in the awake rat. Neurochem Res 1999; 24:779-83. [PMID: 10447462 DOI: 10.1023/a:1020787714940] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the present study we investigate the effects of a specific glutamate reuptake blocker, L-trans-pyrrolidine-3,4-dicarboxylic acid (PDC), on extracellular concentrations of glutamine and glutamate in the striatum of the freely moving rat. Intracerebral infusions of PDC (1, 2 and 4 mM) produced a dose-related increase in extracellular concentrations of glutamate and a dose-related decrease in extracellular concentrations of glutamine. These increases in extracellular glutamate and decreases in extracellular glutamine were significantly correlated. To investigate the involvement of ionotropic glutamate receptors in the decreases of extracellular glutamine produced by PDC, N-methyl-D-aspartate (NMDA) receptor antagonist and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor antagonist were used. Perfusion of the NMDA receptor antagonist blocked the decrease of extracellular glutamine but had no effect on the increase of extracellular glutamate, both produced by PDC. Perfusion of the AMPA/kainate receptor antagonist attenuated the increase of extracellular glutamate and not only blocked the decrease of extracellular glutamine but also produced a significant increase of extracellular glutamine. The results reported in this study suggest that both NMDA and AMPA/kainate glutamatergic receptors are involved in the regulation of extracellular glutamine.
Collapse
Affiliation(s)
- G Segovia
- Department of Physiology, Faculty of Medicine, University Complutense, Madrid, Spain
| | | | | |
Collapse
|
16
|
Seki Y, Feustel PJ, Keller RW, Tranmer BI, Kimelberg HK. Inhibition of ischemia-induced glutamate release in rat striatum by dihydrokinate and an anion channel blocker. Stroke 1999; 30:433-40. [PMID: 9933284 DOI: 10.1161/01.str.30.2.433] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Increased activation of excitatory amino acid (EAA) receptors is considered a major cause of neuronal damage. Possible sources and mechanisms of ischemia-induced EAA release were investigated pharmacologically with microdialysis probes placed bilaterally in rat striatum. METHODS Forebrain ischemia was induced by bilateral carotid artery occlusion and controlled hypotension in halothane-anesthetized rats. During 30 minutes of ischemia, microdialysate concentrations of glutamate and aspartate were measured in the presence of a nontransportable blocker of the astrocytic glutamate transporter GLT-1, dihydrokinate (DHK), or an anion channel blocker, 4,4'-dinitrostilben-2,2'-disulfonic acid (DNDS), administered separately or together through the dialysis probe. RESULTS In control striata during ischemia, glutamate and aspartate concentrations increased 44+/-13 (mean+/-SEM) times and 19+/-5 times baseline, respectively, and returned to baseline values on reperfusion. DHK (1 mmol/L in perfusate; n=8) significantly attenuated EAA increases compared with control (glutamate peak, 9. 6+/-1.7 versus control, 15.4+/-2.6 pmol/ microL). EAA levels were similarly decreased by 10 mmol/L DHK. DNDS (1 mmol/L; n=5) also suppressed EAA peak increases (glutamate peak, 5.8+/-1.1 versus control, 10.1+/-0.7 pmol/ microL). At a higher concentration, DNDS (10 mmol/L; n=7) further reduced glutamate and aspartate release and also inhibited ischemia-induced taurine release. Together, 1 mmol/L DHK and 10 mmol/L DNDS (n=5) inhibited 83% of EAA release (glutamate peak, 2.7+/-0.7 versus control, 10.9+/-1.2 pmol/ microL). CONCLUSIONS These findings support the hypothesis that both cell swelling-induced release of EAAs and reversal of the astrocytic glutamate transporter are contributors to the ischemia-induced increases of extracellular EAAs in the striatum as measured by microdialysis.
Collapse
Affiliation(s)
- Y Seki
- Division of Neurosurgery, Department of Surgery, Albany Medical College, Albany, NY, USA
| | | | | | | | | |
Collapse
|
17
|
Zuiderwijk M, Veenstra E, Lopes da Silva FH, Ghijsen WE. Effects of uptake carrier blockers SK & F 89976-A and L-trans-PDC on in vivo release of amino acids in rat hippocampus. Eur J Pharmacol 1996; 307:275-82. [PMID: 8836615 DOI: 10.1016/0014-2999(96)00284-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This report describes the in vivo effects of the uptake carrier blockers 1-(4,4-diphenyl-3-butenyl)-3-piperidine carboxylic acid hydrochloride (SK & F 89976-A) and L-trans-pyrrolidine-2,4-dicarboxylate (L-trans-PDC) on basal and K(+)-evoked extracellular levels of gamma-aminobutyric acid (GABA), glutamate, aspartate and taurine in the hippocampus of anaesthetised rats, using the microdialysis technique. SK & F 89976-A increased extracellular GABA levels under K(+)-depolarised conditions and did not affect extracellular glutamate, aspartate and taurine levels, indicating its selective effect on GABA uptake L-trans-PDC dose dependently increased basal and K(+)-evoked extracellular glutamate levels, and did not affect extracellular GABA levels, but increased basal aspartate and taurine levels. The K(+)-evoked release of GABA and glutamate, measured in the presence of both SK & F 89976-A and L-trans-PDC, was Ca(2+)-dependent for about 50% and 65%, respectively. In contrast, the release of the putative amino acid transmitters aspartate and taurine was not Ca(2+)-dependent. These results indicate that (1) in rat hippocampus uptake carriers actively regulate extracellular GABA and glutamate levels, (2) the GABA and glutamate released by K+ was derived from both Ca(2+)-dependent (presumably vesicular) and Ca(2+)-independent (presumably cytosolic) pools, whereas aspartate and taurine release was exclusively from Ca(2+)-independent pools.
Collapse
Affiliation(s)
- M Zuiderwijk
- Graduate School for the Neurosciences, University of Amsterdam, Netherlands.
| | | | | | | |
Collapse
|
18
|
Sved AF, Curtis JT. Amino acid neurotransmitters in nucleus tractus solitarius: an in vivo microdialysis study. J Neurochem 1993; 61:2089-98. [PMID: 7902420 DOI: 10.1111/j.1471-4159.1993.tb07446.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Amino acid neurotransmitters in the nucleus tractus solitarius (NTS) are thought to play a key role in the mediation of visceral reflexes and glutamate has been proposed as the neurotransmitter of visceral afferent nerves projecting to this region. The present studies sought to characterize the use of in vivo microdialysis to examine extracellular fluid levels of amino acids in the NTS of anesthetized rats. Using a microdialysis probe that was 450 microns in length and a sensitive HPLC assay for amino acids, amino acids could be measured in dialysate samples collected from the NTS. Perfusion of the microdialysis probe with 60 mM K+, to elicit depolarization of nerve terminals in the vicinity of the probe, resulted in increased dialysate fluid levels of aspartate, glutamate, glycine, taurine, and GABA. In contrast, glutamine and tyrosine were decreased and other amino acids were not significantly affected. Prior removal of the ipsilateral nodose ganglion did not alter the K(+)-evoked changes in dialysate levels of any of these amino acids. Electrical stimulation of the vagus nerves, using a variety of stimulus parameters, did not significantly alter dialysate levels of glutamate or any of the other amino acids that were measured. Blockade of glutamate uptake with dihydrokainate increased dialysate levels of glutamate, aspartate, and GABA, but in the presence of dihydrokainate vagal stimulation did not alter dialysate levels of these amino acids. The results show that in vivo microdialysis can be used to examine amino acid efflux in the rat NTS and provide further evidence for amino acidergic neural transmission in the NTS. However, these studies fail to support the hypothesis that vagal afferents release glutamate or aspartate.
Collapse
Affiliation(s)
- A F Sved
- Department of Behavioral Neuroscience, University of Pittsburgh, Pennsylvania 15260
| | | |
Collapse
|
19
|
Abstract
A range of agonists and antagonists active at different glutamate/aspartate (Glu/Asp) receptor subtypes were injected into rat ventral tegmental (VTA) sites downstream from self-stimulation electrodes in the medial forebrain bundle. Control injections were made into the contralateral tegmentum. Variable-interval (VI 10 s) self-stimulation was not significantly affected by a specific antagonist of N-methyl-D-aspartate (NMDA)-type receptors (D,L-2-amino-5-phosphonovaleric acid (2-AP5), 10 and 50 nmol). Broad-spectrum excitatory amino acid (EAA) antagonists viz cis-2,3-piperidine dicarboxylate (cPDA) (10 and 50 nmol), gamma-D-glutamylaminomethyl sulphonic acid (GAMS) (10 nmol) and p-chlorobenzoyl-2,3-piperazine dicarboxylic acid (pCB PzDA) (2.0 and 10 nmol), active at kainate, quisqualate, as well as NMDA receptors, all produced significant depression of responding when injected into the ipsilateral, but not the contralateral, tegmentum. Compounds inhibiting Glu/Asp reuptake had variable effects: strong depression with dihydrokainic acid (7.5 nmol), or no significant effect (L-threo-3-hydroxyaspartic acid, 2.0 and 10 nmol). The receptor agonist, NMDA (10 nmol), depressed responding regardless of injection side; kainic and responding regardless of injection side; kainic and quisqualic acid elicited myoclonic and other non-specific responses in preliminary tests, and were not examined further; enhanced responding was not seen. The side-specific blockade of responding by non-NMDA antagonists indicates the existence of non-NMDA EAA terminals in the VTA, signalling the receipt of hypothalamic brain-stimulation reward. Caudally directed EAA projections terminating on A10 dopamine cell bodies may account for depression of self-stimulation by EAA antagonists.
Collapse
Affiliation(s)
- L J Herberg
- Experimental Psychology Laboratory, Institute of Neurology, London, U.K
| | | |
Collapse
|
20
|
Affiliation(s)
- H Benveniste
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | | |
Collapse
|
21
|
Affiliation(s)
- H Benveniste
- Institute of Neuropathology, University of Copenhagen, Denmark
| |
Collapse
|
22
|
Herreras O, Solís JM, Herranz AS, Martín del Río R, Lerma J. Sensory modulation of hippocampal transmission. II. Evidence for a cholinergic locus of inhibition in the Schaffer-CA1 synapse. Brain Res 1988; 461:303-13. [PMID: 3179719 DOI: 10.1016/0006-8993(88)90260-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The present work studied the neurotransmitter mediating the depressive effect of sensory stimulation on the Schaffer-CA1 transmission. Field responses of the CA1 region evoked by ipsilateral CA3 stimuli were recorded in paralyzed, locally anesthetized rats following the same experimental paradigm as in the previous work. The tissue zone under recording was perfused in vivo by an implanted hollow fiber (brain dialysis device) with either Krebs-Ringer bicarbonate (KRB), or KRB with penicillin, atropine, acetylcholine or eserine. Results were the following: (1) atropine increased the field excitatory postsynaptic potential (EPSP) amplitude in a dose-dependent manner and totally abolished the modulatory action of sensory stimulation; (2) both the field EPSP and the modulatory action of sensory stimulation remained unaltered during the blockade of GABAergic activity by penicillin; (3) acetylcholine as well as eserine induced a great diminution of both field EPSP and population spike amplitudes, without altering the effect of sensory stimulation; (4) penicillin and atropine induced multiple population spikes, reversing the effect of sensory stimulation and increasing the cell excitability. These results demonstrate that the sensory modulation of information transfer through the Schaffer-CA1 synapse is mediated by a muscarinic cholinergic mechanism. The dose-dependent increase in the field EPSP by muscarinic blockade is evidence for the existence of a cholinergic presynaptic inhibition on the Schaffer collateral terminals.
Collapse
Affiliation(s)
- O Herreras
- Departamento de Investigación, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
Solis JM, Herranz AS, Herreras O, Lerma J, Martin Del Rio R. Low chloride-dependent release of taurine by a furosemide-sensitive process in the in vivo rat hippocampus. Neuroscience 1988; 24:885-91. [PMID: 3380306 DOI: 10.1016/0306-4522(88)90075-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Extracellular amino acid levels and field potentials evoked by perforant pathway stimuli were studied in vivo by means of a dialysis device, perfusing the rat dentate gyrus with low chloride solutions. When balanced with acetate, these perfusions enhanced the granule cell population spike amplitude. A specific extracellular taurine enhancement occurred whenever Cl- was replaced by acetate solution, reaching an increase of 20-fold over the basal taurine levels when 125 mM Cl- was replaced, whereas other amino acids remained unchanged. A considerable degree of Cl- replacement with iodide was needed, however, to obtain significant increases of extracellular taurine. Perfusions with bromide instead of Cl- did not cause any change in levels of extracellular amino acids including taurine. Furosemide, an inhibitor of Cl- transport, greatly reduced the taurine increase evoked by the low extracellular concentration of permeant anions. This drug also inhibited the taurine release induced by perfusion with 9 mM K+. These findings indicate that the extracellular increase of taurine, evoked by low permeant anion concentrations, may result from the taurine release through a furosemide-sensitive process.
Collapse
Affiliation(s)
- J M Solis
- Departmento Investigación, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | |
Collapse
|
24
|
Lehmann A. Pentylenetetrazol seizure threshold and extracellular levels of cortical amino acids in taurine-deficient kittens. ACTA PHYSIOLOGICA SCANDINAVICA 1987; 131:453-8. [PMID: 3425349 DOI: 10.1111/j.1748-1716.1987.tb08261.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Directly after weaning, kittens were raised on a semisynthetic diet supplemented with 0.4% taurine or devoid of this amino acid. Eight to twelve weeks later the blood plasma concentration of taurine was decreased by 98-99% in kittens fed a taurine-free regimen. Parietal cortex dialysis, performed in anaesthetized kittens, revealed a selective, but less marked, reduction of extracellular taurine. When kainic acid was included in the dialysis buffer, taurine was doubled in taurine-supplemented kittens, but it was only slightly affected in deficient animals. The animals were also used for determination of the threshold of pentylenetetrazol-induced epilepsy 3 days after the dialysis experiment. This was not significantly different between the groups. The present work shows that taurine deficiency in its own right does not elevate interstitial glutamate, an effect previously observed in the 2-guanidino-ethane sulphonic acid model for taurine deficiency. The results further suggest that taurine is better retained in neural cells in the taurine-deficient state. Moreover, the findings argue against a role for endogenous taurine in the control of epileptiform discharge initiation and/or spread.
Collapse
Affiliation(s)
- A Lehmann
- Institute of Neurobiology, University of Göteborg, Sweden
| |
Collapse
|
25
|
del Rio RM, Herranz AS, Solis JM, Herreras O, Lerma J. Basal concentration and evoked changes of extracellular taurine in the rat hippocampus in vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1987; 217:295-305. [PMID: 3434425 DOI: 10.1007/978-1-4899-0405-8_31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- R M del Rio
- Depto. Investigacion, Hosp. Ramón y Cajal, Madrid, Spain
| | | | | | | | | |
Collapse
|
26
|
Solís JM, Herranz AS, Herreras O, Muñoz MD, Martín del Rio R, Lerma J. Variation of potassium ion concentrations in the rat hippocampus specifically affects extracellular taurine levels. Neurosci Lett 1986; 66:263-8. [PMID: 3725192 DOI: 10.1016/0304-3940(86)90029-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effects of different K+ concentrations (3-100 mM) on both the extracellular amino acid levels and field potentials, evoked by perforant pathway stimulation, were studied 'in vivo' in the rat dentate gyrus by means of a brain dialysis device, formed by a hollow fiber plus a stainless-steel electrode. Perfusion with low K+ concentrations (3-12 mM; Krebs-Ringer bicarbonate) specifically enhanced the dialysate levels of taurine and concomitantly increased the population spike amplitude. High K+ concentrations in perfusate (greater than 25 mM) did not further increase the levels of taurine but enhanced both glutamate and gamma-aminobutyric acid levels, whereas the population spike diminished drastically. The absence of calcium ions in the perfusion liquid increased both basal and K+-enhanced taurine levels. The specific enhancement of extracellular taurine by physiological K+ concentrations may represent an autoregulative mechanism of nervous tissue excitability.
Collapse
|