1
|
Maenza C, Sainburg RL, Varghese R, Dexheimer B, Demers M, Bishop L, Jayasinghe SAL, Wagstaff DA, Winstein C. Ipsilesional arm training in severe stroke to improve functional independence (IPSI): phase II protocol. BMC Neurol 2022; 22:141. [PMID: 35413856 PMCID: PMC9002228 DOI: 10.1186/s12883-022-02643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously characterized hemisphere-specific motor control deficits in the ipsilesional, less-impaired arm of unilaterally lesioned stroke survivors. Our preliminary data indicate these deficits are substantial and functionally limiting in patients with severe paresis. METHODS We have designed an intervention ("IPSI") to remediate the hemisphere-specific deficits in the ipsilesional arm, using a virtual-reality platform, followed by manipulation training with a variety of real objects, designed to facilitate generalization and transfer to functional behaviors encountered in the natural environment. This is a 2-site (primary site - Penn State College of Medicine, secondary site - University of Southern California), two-group randomized intervention with an experimental group, which receives unilateral training of the ipsilesional arm throughout 3 one-hour sessions per week for 5 weeks, through our Virtual Reality and Manipulation Training (VRMT) protocol. Our control group receives a conventional intervention on the contralesional arm, 3 one-hour sessions per week for 5 weeks, guided by recently released practice guidelines for upper limb rehabilitation in adult stroke. The study aims to include a total of 120 stroke survivors (60 per group) whose stroke was in the territory of the middle cerebral artery (MCA) resulting in severe upper-extremity motor impairments. Outcome measures (Primary: Jebsen-Taylor Hand Function Test, Fugl-Meyer Assessment, Abilhand, Barthel Index) are assessed at five evaluation points: Baseline 1, Baseline 2, immediate post-intervention (primary endpoint), and 3-weeks (short-term retention) and 6-months post-intervention (long-term retention). We hypothesize that both groups will improve performance of the targeted arm, but that the ipsilesional arm remediation group will show greater improvements in functional independence. DISCUSSION The results of this study are expected to inform upper limb evaluation and treatment to consider ipsilesional arm function, as part of a comprehensive physical rehabilitation strategy that includes evaluation and remediation of both arms. TRIAL REGISTRATION This study is registered with ClinicalTrials.gov (Registration ID: NCT03634397 ; date of registration: 08/16/2018).
Collapse
Affiliation(s)
- Candice Maenza
- Department of Neurology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA. .,Department of Kinesiology, Pennsylvania State University, 27 Rec Hall, University Park, PA, 16802, USA.
| | - Robert L Sainburg
- Department of Neurology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.,Department of Kinesiology, Pennsylvania State University, 27 Rec Hall, University Park, PA, 16802, USA
| | - Rini Varghese
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Brooke Dexheimer
- Department of Kinesiology, Pennsylvania State University, 27 Rec Hall, University Park, PA, 16802, USA
| | - Marika Demers
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Lauri Bishop
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Shanie A L Jayasinghe
- Department of Neurology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - David A Wagstaff
- Department of Human Development and Family Studies, Pennsylvania State University, 102 HHD Building, University Park, PA, 16802, USA
| | - Carolee Winstein
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
2
|
Russell-Giller S, Wu T, Spagna A, Dhamoon M, Hao Q, Fan J. Impact of unilateral stroke on right hemisphere superiority in executive control. Neuropsychologia 2020; 150:107693. [PMID: 33238172 DOI: 10.1016/j.neuropsychologia.2020.107693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/16/2020] [Accepted: 11/18/2020] [Indexed: 11/19/2022]
Abstract
In our previous study, we have demonstrated a right hemisphere superiority in executive control of attention, with the right hemisphere being more efficient in dealing with conflict for stimuli presented in the left visual field. However, the unique and synergetic contribution of the two hemispheres to this superiority effect is still elusive. Here, using the lateralized attention network test, we compared the flanker conflict effect for stimuli presented in the left and right visual fields in patients with an ischemic stroke in the right or left hemisphere as the unilateral lesion groups and in patients with a transient ischemic attack without an acute infarction as the control group. In contrast to the transient ischemic attack group, which demonstrated a right hemisphere superiority in conflict processing, there was no evidence for such an effect in both unilateral stroke groups. These results can be explained by our model proposing that there is bilateral hemispheric involvement for conflict processing for information received from the left visual field and unilateral hemispheric involvement for conflict processing for information received from the right visual field, resulting in more efficient processing for the left visual field, i.e., the right hemisphere superiority effect. When there is damage to either hemisphere, the responsibility of conflict processing will largely fall on the intact hemisphere, eliminating the right hemisphere superiority effect.
Collapse
Affiliation(s)
- Shira Russell-Giller
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA; Department of Psychology, The Graduate Center, The City University of New York, New York, NY, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tingting Wu
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA
| | - Alfredo Spagna
- Department of Psychology, Columbia University in the City of New York, New York, NY, USA
| | - Mandip Dhamoon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qing Hao
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jin Fan
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA.
| |
Collapse
|
3
|
Kuczynski AM, Kirton A, Semrau JA, Dukelow SP. Bilateral reaching deficits after unilateral perinatal ischemic stroke: a population-based case-control study. J Neuroeng Rehabil 2018; 15:77. [PMID: 30115093 PMCID: PMC6097295 DOI: 10.1186/s12984-018-0420-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Detailed kinematics of motor impairment of the contralesional ("affected") and ipsilesional ("unaffected") limbs in children with hemiparetic cerebral palsy are not well understood. We aimed to 1) quantify the kinematics of reaching in both arms of hemiparetic children with perinatal stroke using a robotic exoskeleton, and 2) assess the correlation of kinematic reaching parameters with clinical motor assessments. METHODS This prospective, case-control study involved the Alberta Perinatal Stroke Project, a population-based research cohort, and the Foothills Medical Center Stroke Robotics Laboratory in Calgary, Alberta over a four year period. Prospective cases were collected through the Calgary Stroke Program and included term-born children with magnetic resonance imaging confirmed perinatal ischemic stroke and upper extremity deficits. Control participants were recruited from the community. Participants completed a visually guided reaching task in the KINARM robot with each arm separately, with 10 parameters quantifying motor function. Kinematic measures were compared to clinical assessments and stroke type. RESULTS Fifty children with perinatal ischemic stroke (28 arterial, mean age: 12.5 ± 3.9 years; 22 venous, mean age: 11.5 ± 3.8 years) and upper extremity deficits were compared to healthy controls (n = 147, mean age: 12.7 ± 3.9 years). Perinatal stroke groups demonstrated contralesional motor impairments compared to controls when reaching out (arterial = 10/10, venous = 8/10), and back (arterial = 10/10, venous = 6/10) with largest errors in reaction time, initial direction error, movement length and time. Ipsilesional impairments were also found when reaching out (arterial = 7/10, venous = 1/10) and back (arterial = 6/10). The arterial group performed worse than venous on both contralesional and ipsilesional parameters. Contralesional reaching parameters showed modest correlations with clinical measures in the arterial group. CONCLUSIONS Robotic assessment of reaching behavior can quantify complex, upper limb dysfunction in children with perinatal ischemic stroke. The ipsilesional, "unaffected" limb is often abnormal and may be a target for therapeutic interventions in stroke-induced hemiparetic cerebral palsy.
Collapse
Affiliation(s)
- Andrea M Kuczynski
- University of Calgary, Calgary, AB, T2N 2T9, Canada.,Section of Neurology, Department of Pediatrics, Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Adam Kirton
- University of Calgary, Calgary, AB, T2N 2T9, Canada.,Section of Neurology, Department of Pediatrics, Alberta Children's Hospital Research Institute, Calgary, AB, Canada.,Department of Clinical Neurosciences, Foothills Medical Centre, Hotchkiss Brain Institute, 1403 - 29th St. NW, Calgary, AB, Canada
| | - Jennifer A Semrau
- University of Calgary, Calgary, AB, T2N 2T9, Canada.,Department of Clinical Neurosciences, Foothills Medical Centre, Hotchkiss Brain Institute, 1403 - 29th St. NW, Calgary, AB, Canada
| | - Sean P Dukelow
- University of Calgary, Calgary, AB, T2N 2T9, Canada. .,Department of Clinical Neurosciences, Foothills Medical Centre, Hotchkiss Brain Institute, 1403 - 29th St. NW, Calgary, AB, Canada.
| |
Collapse
|
4
|
Woytowicz EJ, Westlake KP, Whitall J, Sainburg RL. Handedness results from complementary hemispheric dominance, not global hemispheric dominance: evidence from mechanically coupled bilateral movements. J Neurophysiol 2018; 120:729-740. [PMID: 29742023 PMCID: PMC7132323 DOI: 10.1152/jn.00878.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/13/2018] [Accepted: 05/06/2018] [Indexed: 11/22/2022] Open
Abstract
Two contrasting views of handedness can be described as 1) complementary dominance, in which each hemisphere is specialized for different aspects of motor control, and 2) global dominance, in which the hemisphere contralateral to the dominant arm is specialized for all aspects of motor control. The present study sought to determine which motor lateralization hypothesis best predicts motor performance during common bilateral task of stabilizing an object (e.g., bread) with one hand while applying forces to the object (e.g., slicing) using the other hand. We designed an experimental equivalent of this task, performed in a virtual environment with the unseen arms supported by frictionless air-sleds. The hands were connected by a spring, and the task was to maintain the position of one hand while moving the other hand to a target. Thus the reaching hand was required to take account of the spring load to make smooth and accurate trajectories, while the stabilizer hand was required to impede the spring load to keep a constant position. Right-handed subjects performed two task sessions (right-hand reach and left-hand stabilize; left-hand reach and right-hand stabilize) with the order of the sessions counterbalanced between groups. Our results indicate a hand by task-component interaction such that the right hand showed straighter reaching performance whereas the left hand showed more stable holding performance. These findings provide support for the complementary dominance hypothesis and suggest that the specializations of each cerebral hemisphere for impedance and dynamic control mechanisms are expressed during bilateral interactive tasks. NEW & NOTEWORTHY We provide evidence for interlimb differences in bilateral coordination of reaching and stabilizing functions, demonstrating an advantage for the dominant and nondominant arms for distinct features of control. These results provide the first evidence for complementary specializations of each limb-hemisphere system for different aspects of control within the context of a complementary bilateral task.
Collapse
Affiliation(s)
- Elizabeth J Woytowicz
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine , Baltimore, Maryland
| | - Kelly P Westlake
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine , Baltimore, Maryland
| | - Jill Whitall
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine , Baltimore, Maryland
- Department of Health Sciences, University of Southampton , Southampton , United Kingdom
| | - Robert L Sainburg
- Department of Kinesiology, Penn State University , University Park, Pennsylvania
- Department of Neurology, Penn State Milton S. Hershey Medical Center and College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
5
|
de Lucena DS, Stoller O, Rowe JB, Chan V, Reinkensmeyer DJ. Wearable sensing for rehabilitation after stroke: Bimanual jerk asymmetry encodes unique information about the variability of upper extremity recovery. IEEE Int Conf Rehabil Robot 2018; 2017:1603-1608. [PMID: 28814049 DOI: 10.1109/icorr.2017.8009477] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Wearable sensing is a new tool for quantifying upper extremity (UE) rehabilitation after stroke. However, it is unclear whether it provides information beyond what is available through standard clinical assessments. To investigate this question, people with a chronic stroke (n=9) wore accelerometers on both wrists for 9 hours on a single day during their daily activities. We used principal components analysis (PCA) to characterize how novel kinematic measures of jerk and acceleration asymmetry, along with conventional measures of limb use asymmetry and clinical function, explained the behavioral variance of UE recovery across participants. The first PC explained 55% of the variance and described a strong correlation between standard clinical assessments and limb use asymmetry, as has been observed previously. The second PC explained a further 31% of the variance and described a strong correlation between bimanual magnitude and jerk asymmetry. Because of the nature of PCA, this second PC is mathematically orthogonal to the first and thus uncorrelated with the clinical assessments. Therefore, kinematic metrics obtainable from bimanual accelerometry, including bimanual jerk asymmetry, encoded additional information about UE recovery. One interpretation is that the first PC relates to "functional status" and the second to "movement quality". We also describe a new graphical format for presenting bimanual wrist accelerometry data that facilitates identification of asymmetries.
Collapse
|
6
|
Kuczynski AM, Dukelow SP, Hodge JA, Carlson HL, Lebel C, Semrau JA, Kirton A. Corticospinal tract diffusion properties and robotic visually guided reaching in children with hemiparetic cerebral palsy. Hum Brain Mapp 2018; 39:1130-1144. [PMID: 29193460 PMCID: PMC6866356 DOI: 10.1002/hbm.23904] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/01/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022] Open
Abstract
Perinatal stroke is the leading cause of hemiparetic cerebral palsy (CP), resulting in life-long disability. In this study, we examined the relationship between robotic upper extremity motor impairment and corticospinal tract (CST) diffusion properties. Thirty-three children with unilateral perinatal ischemic stroke (17 arterial, 16 venous) and hemiparesis were recruited from a population-based research cohort. Bilateral CSTs were defined using diffusion tensor imaging (DTI) and four diffusion metrics were quantified: fractional anisotropy (FA), mean (MD), radial (RD), and axial (AD) diffusivities. Participants completed a visually guided reaching task using the KINARM robot to define 10 movement parameters including movement time and maximum speed. Twenty-six typically developing children underwent the same evaluations. Partial correlations assessed the relationship between robotic reaching and CST diffusion parameters. All diffusion properties of the lesioned CST differed from controls in the arterial group, whereas only FA was reduced in the venous group. Non-lesioned CST diffusion measures were similar between stroke groups and controls. Both stroke groups demonstrated impaired reaching performance. Multiple reaching parameters of the affected limb correlated with lesioned CST diffusion properties. Lower FA and higher MD were associated with greater movement time. Few correlations were observed between non-lesioned CST diffusion and unaffected limb function though FA was associated with reaction time (R = -0.39, p < .01). Diffusion properties of the lesioned CST are altered after perinatal stroke, the degree of which correlates with specific elements of visually guided reaching performance, suggesting specific relevance of CST structural connectivity to clinical motor function in hemiparetic children.
Collapse
Affiliation(s)
- Andrea M. Kuczynski
- University of CalgaryCalgaryAlbertaCanada
- Section of Neurology, Department of PediatricsAlberta Children's HospitalCalgaryAlbertaCanada
| | - Sean P. Dukelow
- University of CalgaryCalgaryAlbertaCanada
- Department of Clinical NeurosciencesHotchkiss Brain InstituteCalgaryAlbertaCanada
| | - Jacquie A. Hodge
- Section of Neurology, Department of PediatricsAlberta Children's HospitalCalgaryAlbertaCanada
| | - Helen L. Carlson
- Section of Neurology, Department of PediatricsAlberta Children's HospitalCalgaryAlbertaCanada
| | - Catherine Lebel
- University of CalgaryCalgaryAlbertaCanada
- Department of RadiologyAlberta Children's HospitalCalgaryAlbertaCanada
| | - Jennifer A. Semrau
- University of CalgaryCalgaryAlbertaCanada
- Department of Clinical NeurosciencesHotchkiss Brain InstituteCalgaryAlbertaCanada
| | - Adam Kirton
- University of CalgaryCalgaryAlbertaCanada
- Section of Neurology, Department of PediatricsAlberta Children's HospitalCalgaryAlbertaCanada
- Department of Clinical NeurosciencesHotchkiss Brain InstituteCalgaryAlbertaCanada
| |
Collapse
|
7
|
Use of the parallel beam task for skilled walking in a rat model of cerebral ischemia: A qualitative approach. LEARNING AND MOTIVATION 2018. [DOI: 10.1016/j.lmot.2016.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Sarigul-Klijn Y, Smith BW, Reinkensmeyer DJ. Design and experimental evaluation of yoked hand-clutching for a lever drive chair. Assist Technol 2017; 30:281-288. [DOI: 10.1080/10400435.2017.1326413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Yasemin Sarigul-Klijn
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Brendan W. Smith
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, California, USA
| | - David J. Reinkensmeyer
- Department of Biomedical Engineering, University of California, Irvine, California, USA
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, California, USA
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| |
Collapse
|
9
|
Bartolo A, Rossetti Y, Revol P, Urquizar C, Pisella L, Coello Y. Reachability judgement in optic ataxia: Effect of peripheral vision on hand and target perception in depth. Cortex 2017. [PMID: 28625347 DOI: 10.1016/j.cortex.2017.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The concept of peripersonal space was first proposed by Rizzolatti, Scandolara, Matelli, and Gentilucci (1981), who introduced the term to highlight the close links between somatosensory and visual processing for stimuli close to the body and suggested that this near-body space could in fact be characterized as an action space (Rizzolatti, Fadiga, Fogassi, & Gallese, 1997). Supporting this idea, patients with right hemisphere lesions have been described as impaired in performing actions towards objects and in perceiving their location - but only when the objects were presented within arm's reach (Bartolo, Carlier, Hassaini, Martin, & Coello, 2014; Brain, 1941). Whether the deficit of optic ataxia patients in processing target locations for action has an effect on the representation of peripersonal space has never been explored. The present study highlights optic ataxia patients' specific difficulties in processing hand-to-target distances in a motor task and in a perceptual task requiring identification of what is reachable in the visual environment. The difficulties are especially evident when both the target and the hand are perceived in the visual periphery. Indeed, when patient I.G. was able to fixate the target, her reaching accuracy and her perception of reachable space both largely improved. Furthermore, the difficulties were enhanced when the hand and the target were both in the lower visual field (in a fixed-far condition vs a fixed-near condition). This novel up-down dimension of optic ataxia fits with the larger representation of the lower visual field in the posterior parietal cortex (Pitzalis et al., 2013; Previc, 1990).
Collapse
Affiliation(s)
- Angela Bartolo
- Cognitive and Affective Sciences Laboratory (SCALab), UMR CNRS 9193, University of Lille, Villeneuve d'Ascq, France; Institut Universitaire de France, Paris, France
| | - Yves Rossetti
- Plate-forme 'Mouvement et Handicap', Hôpital Henry-Gabrielle, Hospices Civils de Lyon, Saint-Genis-Laval, France; Inserm UMR-S 1028, CNRS UMR 5292, ImpAct, Centre de Recherche en Neurosciences de Lyon, Université Lyon-1, Bron, France.
| | - Patrice Revol
- Plate-forme 'Mouvement et Handicap', Hôpital Henry-Gabrielle, Hospices Civils de Lyon, Saint-Genis-Laval, France; Inserm UMR-S 1028, CNRS UMR 5292, ImpAct, Centre de Recherche en Neurosciences de Lyon, Université Lyon-1, Bron, France
| | - Christian Urquizar
- Plate-forme 'Mouvement et Handicap', Hôpital Henry-Gabrielle, Hospices Civils de Lyon, Saint-Genis-Laval, France; Inserm UMR-S 1028, CNRS UMR 5292, ImpAct, Centre de Recherche en Neurosciences de Lyon, Université Lyon-1, Bron, France
| | - Laure Pisella
- Inserm UMR-S 1028, CNRS UMR 5292, ImpAct, Centre de Recherche en Neurosciences de Lyon, Université Lyon-1, Bron, France
| | - Yann Coello
- Cognitive and Affective Sciences Laboratory (SCALab), UMR CNRS 9193, University of Lille, Villeneuve d'Ascq, France.
| |
Collapse
|
10
|
Interlimb differences in coordination of unsupported reaching movements. Neuroscience 2017; 350:54-64. [PMID: 28344068 DOI: 10.1016/j.neuroscience.2017.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 11/22/2022]
Abstract
Previous research suggests that interlimb differences in coordination associated with handedness might result from specialized control mechanisms that are subserved by different cerebral hemispheres. Based largely on the results of horizontal plane reaching studies, we have proposed that the hemisphere contralateral to the dominant arm is specialized for predictive control of limb dynamics, while the non-dominant hemisphere is specialized for controlling limb impedance. The current study explores interlimb differences in control of 3-D unsupported reaching movements. While the task was presented in the horizontal plane, participant's arms were unsupported and free to move within a range of the vertical axis, which was redundant to the task plane. Results indicated significant dominant arm advantages for both initial direction accuracy and final position accuracy. The dominant arm showed greater excursion along a redundant axis that was perpendicular to the task, and parallel to gravitational forces. In contrast, the non-dominant arm better impeded motion out of the task-plane. Nevertheless, non-dominant arm task errors varied substantially more with shoulder rotation excursion than did dominant arm task errors. These findings suggest that the dominant arm controller was able to take advantage of the redundant degrees of freedom of the task, while non-dominant task errors appeared enslaved to motion along the redundant axis. These findings are consistent with a dominant controller that is specialized for intersegmental coordination, and a non-dominant controller that is specialized for impedance control. However, the findings are inconsistent with previously documented conclusions from planar tasks, in which non-dominant control leads to greater final position accuracy.
Collapse
|
11
|
Bustrén EL, Sunnerhagen KS, Alt Murphy M. Movement Kinematics of the Ipsilesional Upper Extremity in Persons With Moderate or Mild Stroke. Neurorehabil Neural Repair 2017; 31:376-386. [PMID: 28107802 DOI: 10.1177/1545968316688798] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND An increasing number of studies have indicated that the ipsilesional arm may be impaired after stroke. There is, however, a lack of knowledge whether ipsilesional deficits influence movement performance during purposeful daily tasks. OBJECTIVE The aim of this study was to investigate whether, and to what extent, movement impairments are present while performing an ipsilesional upper extremity task during the first 3 months after stroke. METHODS Movement kinematics describing movement time, smoothness, velocity, strategy, and pattern were captured during a standardized drinking task in 40 persons with first-ever stroke and 20 controls. Kinematics were measured early and at 3 months poststroke, and sensorimotor impairment was assessed with Fugl-Meyer Assessment in stroke. RESULTS Half of the ipsilesional kinematics showed significant deficits early after stroke compared to controls, and the stroke severity had a significant impact on the kinematics. Movements of the ipsilesional arm were slower, less smooth, demonstrated prolonged relative time in deceleration, and increased arm abduction during drinking. Kinematics improved over time and reached a level comparable with controls at 3 months, except for angular velocity of the elbow and deceleration time in reaching for those with more severe motor impairment. CONCLUSIONS This study demonstrates that movements of the ipsilesional arm, during a purposeful daily task, are impaired after stroke. These deficits are more prominent early after stroke and when the motor impairment is more severe. In clinical studies and praxis, the use of less-affected arm as a reference may underestimate the level of impairment and extent of recovery.
Collapse
Affiliation(s)
- Eva-Lena Bustrén
- 1 Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,2 Occupational Therapy and Physiotherapy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Margit Alt Murphy
- 1 Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,2 Occupational Therapy and Physiotherapy, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
12
|
Balcı NC, Dogru E, Aytar A, Gokmen O, Depreli O. Comparison of upper extremity function, pain, and tactile sense between the uneffected side of hemiparetic patients and healthy subjects. J Phys Ther Sci 2016; 28:1998-2001. [PMID: 27512250 PMCID: PMC4968492 DOI: 10.1589/jpts.28.1998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/07/2016] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The aim of this study was to compare the unaffected upper extremity of patients with hemiparesis with that of healthy subjects in terms of function, pain, and tactile sense. [Subjects and Methods] Upper extremity evaluation parameters of 20 patients with hemiparesis were compared with an age-matched control group of 20 healthy subjects. A shorter version of the Disability of Arm and Shoulder Questionnaire, Upper Extremity Functional Index, and Simple Shoulder Test were used to evaluate the upper extremity functionality. The Visual Analog Scale was used to measure pain severity at rest, at night, and during activity. Tactile sensation levels were assessed by Semmes-Weinstein monofilaments at four palmar areas. [Results] A statistically significant difference was found in the upper extremity functionality between the groups. Pain severity at rest was significantly higher in the hemiparetic group. There was no significant difference in night and activity pain severities or tactile sensation levels between the groups. [Conclusion] According to our results, the unaffected side of patients with hemiparesis differs in functionality and pain at rest compared with that of healthy persons. Studies with larger sample size and various evaluation tests are needed to further investigate the unaffected side of patients with hemiparesis.
Collapse
Affiliation(s)
- Nilay Comuk Balcı
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Baskent University: Eskisehir Road 20.Km. Baglica, Ankara, Turkey
| | - Esra Dogru
- School of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Mustafa Kemal University, Turkey
| | - Aydan Aytar
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Baskent University: Eskisehir Road 20.Km. Baglica, Ankara, Turkey
| | - Ozge Gokmen
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Baskent University: Eskisehir Road 20.Km. Baglica, Ankara, Turkey
| | - Ozde Depreli
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Eastern Mediterranean University, Turkey
| |
Collapse
|
13
|
Bommakanti K, Somayajula S, Suvarna A, Purohit AK, Mekala S, Chadalawadi SK, Gaddamanugu P. Pre-operative and post-operative cognitive deficits in patients with supratentorial meningiomas. Clin Neurol Neurosurg 2016; 143:150-8. [PMID: 26945768 DOI: 10.1016/j.clineuro.2016.02.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 02/15/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Cognitive deficits caused by extra-axial benign brain tumors like meningiomas and the course of these deficits after surgery is not well known. The aim of the study is to assess the pre-operative and post-operative cognitive functions in patients with meningiomas in the supratentorial compartment. MATERIALS AND METHODS In this prospective study, patients with clinico-radiological diagnosis of supratentorial meningioma, operated upon and later confirmed by histopathological examination, were included. The patients were evaluated for cognitive deficits before and after surgery. The various clinical and radiological factors influencing the cognitive status were evaluated. RESULTS A total of 57 patients were enrolled into the study. Out of 57, 22 were males and 35 were females. The frontal group had 22 patients, the parietal group had 10 patients, the temporal group had 10 patients, the occipital group had 6 patients, and the suprasellar group had 9 patients. Meningiomas, although extra-axial, caused significant cognitive deficits in 42 patients (73.7%). The highest frequency of cognitive deficits is seen in the frontal and temporal group of meningiomas (90% each). Frontal meningiomas with volume greater than 35 cc and peritumoral edema greater than 40 cc caused a higher frequency of cognitive deficits. Also, patients with raised ICP had significant cognitive deficits. Postoperatively there was a significant improvement in the cognitive functions in the frontal and temporal groups. CONCLUSION Meningiomas cause cognitive deficits in 73.7% of patients. Anatomical location of meningioma, elevated ICP, the volume of meningioma and extent of peritumoral edema significantly influence the incidence of cognitive deficits. Post-operatively, the cognitive deficits improve significantly in the frontal and temporal group.
Collapse
Affiliation(s)
- Kalyan Bommakanti
- Department of Neurosurgery, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Andhra Pradesh, India.
| | - Shanmukhi Somayajula
- Department of Neurology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Andhra Pradesh, India
| | - Alladi Suvarna
- Department of Neurology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Andhra Pradesh, India
| | - Aniruddh Kumar Purohit
- Department of Neurosurgery, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Andhra Pradesh, India
| | - Shailaja Mekala
- Department of Neurology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Andhra Pradesh, India
| | - Santoshi Kumari Chadalawadi
- Department of Neurology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Andhra Pradesh, India
| | - Padmaja Gaddamanugu
- Department of Neurology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
14
|
Esfahani-Bayerl N, Finke C, Braun M, Düzel E, Heekeren HR, Holtkamp M, Hasper D, Storm C, Ploner CJ. Visuo-spatial memory deficits following medial temporal lobe damage: A comparison of three patient groups. Neuropsychologia 2016; 81:168-179. [PMID: 26765639 DOI: 10.1016/j.neuropsychologia.2015.12.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/01/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
The contributions of the hippocampal formation and adjacent regions of the medial temporal lobe (MTL) to memory are still a matter of debate. It is currently unclear, to what extent discrepancies between previous human lesion studies may have been caused by the choice of distinct patient models of MTL dysfunction, as disorders affecting this region differ in selectivity, laterality and mechanisms of post-lesional compensation. Here, we investigated the performance of three distinct patient groups with lesions to the MTL with a battery of visuo-spatial short-term memory tasks. Thirty-one subjects with either unilateral damage to the MTL (postsurgical lesions following resection of a benign brain tumor, 6 right-sided lesions, 5 left) or bilateral damage (10 post-encephalitic lesions, 10 post-anoxic lesions) performed a series of tasks requiring short-term memory of colors, locations or color-location associations. We have shown previously that performance in the association task critically depends on hippocampal integrity. Patients with postsurgical damage of the MTL showed deficient performance in the association task, but performed normally in color and location tasks. Patients with left-sided lesions were almost as impaired as patients with right-sided lesions. Patients with bilateral post-encephalitic lesions showed comparable damage to MTL sub-regions and performed similarly to patients with postsurgical lesions in the association task. However, post-encephalitic patients showed additional impairments in the non-associative color and location tasks. A strikingly similar pattern of deficits was observed in post-anoxic patients. These results suggest a distinct cerebral organization of associative and non-associative short-term memory that was differentially affected in the three patient groups. Thus, while all patient groups may provide appropriate models of medial temporal lobe dysfunction in associative visuo-spatial short-term memory, additional deficits in non-associative memory tasks likely reflect damage of regions outside the MTL. Importantly, the choice of a patient model in human lesion studies of the MTL significantly influences overall performance patterns in visuo-spatial memory tasks.
Collapse
Affiliation(s)
| | - Carsten Finke
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität, Berlin, Germany
| | - Mischa Braun
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Site, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Hauke R Heekeren
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany; Cluster of Excellence "Languages of Emotion", Freie Universität Berlin, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Epilepsy-Center Berlin-Brandenburg, Evangelisches Krankenhaus Königin Elisabeth Herzberge, Berlin, Germany
| | - Dietrich Hasper
- Department of Nephrology and Medical Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Storm
- Department of Nephrology and Medical Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph J Ploner
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
15
|
Coleman AR, Moberg PJ, Ragland JD, Gur RC. Comparison of the Halstead-Reitan and Infrared Light Beam Finger Tappers. Assessment 2015; 4:277-86. [PMID: 26613776 DOI: 10.1177/107319119700400307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Computer mediated motor tests can provide highly reliable means for evaluating gross and subtle aspects of psychomotor speed and rhythmicity. A computer mediated test of finger and foot tapping, making use of infrared light beam technology, was recently developed, but little is known regarding its psychometric properties. The purpose of this study was to compare performance of healthy right-handed respondents on the new Light Beam Finger & Foot Tapping Device to a traditional finger tapping test used in the Halstead-Reitan Neuropsychological Battery. Performance on the Halstead-Reitan Finger Tapping Test and on the Light Beam Finger Tapping Test was compared in 16 men and 17 women. The light beam test showed similar psychometric properties to those of the Halstead-Reitan Finger Tapping Test, and scores were moderately correlated between the two tests. Respondents had faster scores on the light beam test; on both tests men were faster than women, and all respondents tapped faster with their dominant hand. Tapping was faster on the Light Beam Finger Tapping Test, possibly because it does not require application of pressure to a mechanical key and a smaller movement registers a tap. In addition to measures of right- and left-hand tapping speed, the light beam test assesses synchronous and alternating tapping and foot tapping. Scores between these subtests showed moderate to high correlations.
Collapse
|
16
|
Deficits of reach-to-grasp coordination following stroke: Comparison of instructed and natural movements. Neuropsychologia 2015; 77:1-9. [PMID: 26189872 DOI: 10.1016/j.neuropsychologia.2015.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 05/28/2015] [Accepted: 07/15/2015] [Indexed: 11/22/2022]
Abstract
The present work evaluates whether stroke-induced deficits of reach-to-grasp movements, established by typical laboratory paradigms, transfer unconditionally to more natural situations. Sixteen patients with a stroke to the motor-dominant left hemisphere and 16 age- and gender-matched healthy control subjects executed grasping movements with their left (ipsilesional, non-dominant) hand. All movements started in the same position, were aimed at the same object positioned in the same location, and were followed by forward displacement of that object along the same path. Twenty movements were performed as a repetitive, externally triggered task executed for their own sake (context L, as in typical laboratory tasks). Twenty movements were performed as part of a self-initiated action sequence aimed at winning a reward (context E, similar to many everyday situations). The kinematics and dynamics of the transport, grasp and manipulation component of each reach-to-grasp movement were quantified by 41 parameters. Analyses of variance yielded a significant effect of Context for 29 parameters, a significant effect of Group for 9 parameters (mostly related to the coupling of hand transport and grip aperture), and a significant interaction for 5 parameters (all related to the coupling of hand transport and grip aperture). The interaction reflected the fact that stroke patients' movement parameters were more abnormal in context E than in context L. Our data indicate that unilateral stroke degrades the grasp-transport coupling, and that stroke-related motor deficits may be more pronounced in a natural than in a laboratory context. Thus, for stroke patients, assessments and rehabilitation regimes should mainly use activities that are as natural as possible.
Collapse
|
17
|
Bartolo A, Carlier M, Hassaini S, Martin Y, Coello Y. The perception of peripersonal space in right and left brain damage hemiplegic patients. Front Hum Neurosci 2014; 8:3. [PMID: 24478670 PMCID: PMC3902828 DOI: 10.3389/fnhum.2014.00003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 01/04/2014] [Indexed: 11/13/2022] Open
Abstract
Peripersonal space, as opposed to extrapersonal space, is the space that contains reachable objects and in which multisensory and sensorimotor integration is enhanced. Thus, the perception of peripersonal space requires combining information on the spatial properties of the environment with information on the current capacity to act. In support of this, recent studies have provided converging evidences that perceiving objects in peripersonal space activates a neural network overlapping with that subtending voluntary motor action and motor imagery. Other studies have also underlined the dominant role of the right hemisphere (RH) in motor planning and of the left hemisphere (LH) in on-line motor guiding, respectively. In the present study, we investigated the effect of a right or left hemiplegia in the perception of peripersonal space. 16 hemiplegic patients with brain damage to the left (LH) or right (RH) hemisphere and eight matched healthy controls performed a color discrimination, a motor imagery and a reachability judgment task. Analyses of response times and accuracy revealed no variation among the three groups in the color discrimination task, suggesting the absence of any specific perceptual or decisional deficits in the patient groups. In contrast, the patient groups revealed longer response times in the motor imagery task when performed in reference to the hemiplegic arm (RH and LH) or to the healthy arm (RH). Moreover, RH group showed longer response times in the reachability judgment task, but only for stimuli located at the boundary of peripersonal space, which was furthermore significantly reduced in size. Considered together, these results confirm the crucial role of the motor system in motor imagery task and the perception of peripersonal space. They also revealed that RH damage has a more detrimental effect on reachability estimates, suggesting that motor planning processes contribute specifically to the perception of peripersonal space.
Collapse
Affiliation(s)
- Angela Bartolo
- Laboratoire Unité de Recherche en Sciences Cognitives et Sciences Affectives, Université Lille Nord de FranceLille, France
| | - Mauraine Carlier
- Laboratoire Unité de Recherche en Sciences Cognitives et Sciences Affectives, Université Lille Nord de FranceLille, France
| | - Sabrina Hassaini
- Service de Neuropsychologie, Centre de rééducation et de réadaptations fonctionnelles spécialisées – Sainte Barbe, Fouquières les LensFrance
| | - Yves Martin
- Service de Neuropsychologie, Centre de rééducation et de réadaptations fonctionnelles spécialisées – L’Espoir, HellemmesFrance
| | - Yann Coello
- Laboratoire Unité de Recherche en Sciences Cognitives et Sciences Affectives, Université Lille Nord de FranceLille, France
| |
Collapse
|
18
|
Duffield T, Trontel H, Bigler ED, Froehlich A, Prigge MB, Travers B, Green RR, Cariello AN, Cooperrider J, Nielsen J, Alexander A, Anderson J, Fletcher PT, Lange N, Zielinski B, Lainhart J. Neuropsychological investigation of motor impairments in autism. J Clin Exp Neuropsychol 2013; 35:867-81. [PMID: 23985036 PMCID: PMC3907511 DOI: 10.1080/13803395.2013.827156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is unclear how standardized neuropsychological measures of motor function relate to brain volumes of motor regions in autism spectrum disorder (ASD). An all-male sample composed of 59 ASD and 30 controls (ages 5-33 years) completed three measures of motor function: strength of grip (SOG), finger tapping test (FTT), and grooved pegboard test (GPT). Likewise, all participants underwent magnetic resonance imaging with region of interest (ROI) volumes obtained to include the following regions: motor cortex (precentral gyrus), somatosensory cortex (postcentral gyrus), thalamus, basal ganglia, cerebellum, and caudal middle frontal gyrus. These traditional neuropsychological measures of motor function are assumed to differ in motor complexity, with GPT requiring the most followed by FTT and SOG. Performance by ASD participants on the GPT and FTT differed significantly from that of controls, with the largest effect size differences observed on the more complex GPT task. Differences on the SOG task between the two groups were nonsignificant. Since more complex motor tasks tap more complex networks, poorer GPT performance by those with ASD may reflect less efficient motor networks. There was no gross pathology observed in classic motor areas of the brain in ASD, as ROI volumes did not differ, but FTT was negatively related to motor cortex volume in ASD. The results suggest a hierarchical motor disruption in ASD, with difficulties evident only in more complex tasks as well as a potential anomalous size-function relation in motor cortex in ASD.
Collapse
Affiliation(s)
- Tyler Duffield
- Department of Psychology, Brigham Young University, Provo, Utah
| | - Haley Trontel
- Department of Psychology, University of Montana, Missoula, Montana
| | - Erin D. Bigler
- Department of Psychology, Brigham Young University, Provo, Utah
- Neuroscience Center, Brigham Young University, Provo, Utah
- Department of Psychiatry, University of Utah, Salt Lake City, Utah
- The Brain Institute of Utah, University of Utah, Salt Lake City, Utah
| | - Alyson Froehlich
- Department of Psychiatry, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Molly B. Prigge
- Department of Psychiatry, School of Medicine, University of Utah, Salt Lake City, Utah
- Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, Utah
| | - Brittany Travers
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Ryan R. Green
- Department of Psychology, Brigham Young University, Provo, Utah
| | - Annahir N. Cariello
- Department of Psychiatry, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Jason Cooperrider
- Department of Psychiatry, School of Medicine, University of Utah, Salt Lake City, Utah
- Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, Utah
| | - Jared Nielsen
- Department of Psychiatry, School of Medicine, University of Utah, Salt Lake City, Utah
- Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, Utah
| | - Andrew Alexander
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin
| | - Jeffrey Anderson
- Department of Radiology, University of Utah, Salt Lake City, Utah
| | - P. Thomas Fletcher
- The Brain Institute of Utah, University of Utah, Salt Lake City, Utah
- School of Computing, University of Utah, Salt Lake City, Utah
| | - Nicholas Lange
- Departments of Psychiatry and Biostatistics, Harvard University, Boston, Massachusetts
- Neurostatistics Laboratory, McLean Hospital, Belmont, Massachusetts
| | - Brandon Zielinski
- Department of Pediatrics and Neurology, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Janet Lainhart
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
19
|
Metrot J, Froger J, Hauret I, Mottet D, van Dokkum L, Laffont I. Motor recovery of the ipsilesional upper limb in subacute stroke. Arch Phys Med Rehabil 2013; 94:2283-90. [PMID: 23796686 DOI: 10.1016/j.apmr.2013.05.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/25/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To investigate the time-related changes in motor performance of the ipsilesional upper limb in subacute poststroke patients by using clinical and kinematic assessments. DESIGN Observational, longitudinal, prospective, monocentric study. SETTING Physical medicine and rehabilitation department. PARTICIPANTS Stroke patients (n=19; mean age, 62.9y) were included less than 30 days after a first unilateral ischemic/hemorrhagic stroke. The control group was composed of age-matched, healthy volunteers (n=9; mean age, 63.1y). INTERVENTIONS Clinical and kinematic assessments were conducted once a week during 6 weeks and 3 months after inclusion. Clinical measures consisted of Fugl-Meyer Assessment, Box and Block Test (BBT), Nine-Hole Peg Test (9HPT), and Barthel Index. We used a 3-dimensional motion recording system during a reach-to-grasp task to analyze movement smoothness, movement time, and peak velocity of the hand. Healthy controls performed both clinical (BBT and 9HPT) and kinematic evaluation within a single session. MAIN OUTCOME MEASURES BBT and 9HPT. RESULTS Recovery of ipsilesional upper arm capacities increased over time and leveled off after a 6-week period of rehabilitation, corresponding to 9 weeks poststroke. At study discharge, patients demonstrated similar ipsilesional clinical scores to controls but exhibited less smooth reaching movements. We found no effect of the hemispheric side of the lesion on ipsilesional motor deficits. CONCLUSIONS Our findings provide evidence that ipsilesional motor capacities remain impaired at least 3 months after stroke, even if clinical tests fail to detect the impairment. Focusing on this lasting ipsilesional impairment through a more detailed kinematic analysis could be of interest to understand the specific neural network underlying ipsilesional upper-limb impairment.
Collapse
Affiliation(s)
- Julien Metrot
- Movement to Health Laboratory, EuroMov, Montpellier-1 University, Montpellier, France
| | | | | | | | | | | |
Collapse
|
20
|
Hawkins LA, Kilian S, Firek A, Kashner TM, Firek CJ, Silvet H. Cognitive impairment and medication adherence in outpatients with heart failure. Heart Lung 2012; 41:572-82. [DOI: 10.1016/j.hrtlng.2012.06.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 05/23/2012] [Accepted: 06/05/2012] [Indexed: 01/08/2023]
|
21
|
Manuel AL, Radman N, Mesot D, Chouiter L, Clarke S, Annoni JM, Spierer L. Inter- and Intrahemispheric Dissociations in Ideomotor Apraxia: A Large-Scale Lesion–Symptom Mapping Study in Subacute Brain-Damaged Patients. Cereb Cortex 2012; 23:2781-9. [DOI: 10.1093/cercor/bhs280] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Motor system modulation for movement direction and rotation angle during motor imagery. Neuroscience 2012; 218:154-60. [PMID: 22634508 DOI: 10.1016/j.neuroscience.2012.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 11/20/2022]
Abstract
Transcranial magnetic stimulation (TMS) studies have shown that the motor system is facilitated when we imagine performing motor actions. However, it is not clear whether the individual's motor system modulates bilaterally and selectively for task parameters, such as movement direction and amplitude. To investigate this issue, we applied single-pulse TMS over the left and right primary motor cortex (M1) of healthy subjects, who had to imagine grasping and rotating a clock hour hand, having a starting position at noon, towards four different times: 2, 5, 7 and 10 o'clock. Rotations could be in clockwise (2 and 5 o'clock) or counter-clockwise (7 and 10 o'clock) directions and could require small (2 and 10 o'clock) or large (5 and 7 o'clock) rotation angle. TMS motor-evoked potentials were recorded for three muscles, and movements were imagined with the right and left hands. Results showed that during motor imagery a mirroring pattern was present between the right and the left motor cortices, showing selective activation of the hand-intrinsic muscles spatially close to the direction of the imagined movement. Overall a higher activation for large and a lower activation for small rotation angle were found, but no selective muscle activity was present within the hand-intrinsic muscles for this parameter. Following these results we propose that during action imagination an internally coded covariance between movement parameters is present with a muscle-specific activation for movement direction.
Collapse
|
23
|
Schweizer TA, Al-Khindi T, Macdonald RL. Mini-Mental State Examination versus Montreal Cognitive Assessment: Rapid assessment tools for cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. J Neurol Sci 2012; 316:137-40. [DOI: 10.1016/j.jns.2012.01.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/21/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
|
24
|
Lancman G, Vazquez-Casals GA, Perrine K, Feoli E, Myers L. Predictive value of Spanish neuropsychological testing for laterality in patients with epilepsy. Epilepsy Behav 2012; 23:142-5. [PMID: 22197125 DOI: 10.1016/j.yebeh.2011.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/25/2011] [Accepted: 11/03/2011] [Indexed: 11/30/2022]
Abstract
In presurgical treatment planning for patients with epilepsy, neuropsychological testing assists in lateralization of the seizure focus. Previous research with English speakers has shown that patients with left hemisphere (LH) onsets versus right hemisphere (RH) onsets perform worse on naming and other verbal skills tests, but similar findings with Hispanic patients are limited. Thirty-nine Spanish-speaking patients were administered a comprehensive battery of neuropsychological tests in Spanish. LH-onset patients performed significantly worse than RH-onset patients on verbal comprehension (P=0.006), visual matching (P=0.047), the Ponton-Satz Boston Naming Test (P=0.001), and the dominant hand trial of the Grooved Pegboard Test (P=0.012). A stepwise regression model to predict seizure laterality from these tests was significant (F=12.10, P=0.001), but only the Ponton-Satz Boston Naming Test was retained. This comprehensive battery of neuropsychological tests in Spanish proved useful in predicting lateralization in patients with partial epilepsy.
Collapse
Affiliation(s)
- Guido Lancman
- Northeast Regional Epilepsy Group, 820 Second Avenue, New York, NY 10017, USA
| | | | | | | | | |
Collapse
|
25
|
Adeyemo BO, Simis M, Macea DD, Fregni F. Systematic review of parameters of stimulation, clinical trial design characteristics, and motor outcomes in non-invasive brain stimulation in stroke. Front Psychiatry 2012; 3:88. [PMID: 23162477 PMCID: PMC3495265 DOI: 10.3389/fpsyt.2012.00088] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/22/2012] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION/OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation are two powerful non-invasive neuromodulatory therapies that have the potential to alter and evaluate the integrity of the corticospinal tract. Moreover, recent evidence has shown that brain stimulation might be beneficial in stroke recovery. Therefore, investigating and investing in innovative therapies that may improve neurorehabilitative stroke recovery are next steps in research and development. Participants/Materials and Methods: This article presents an up-to-date systematic review of the treatment effects of rTMS and tDCS on motor function. A literary search was conducted, utilizing search terms "stroke" and "transcranial stimulation." Items were excluded if they failed to: (1) include stroke patients, (2) study motor outcomes, or (3) include rTMS/tDCS as treatments. Other exclusions included: (1) reviews, editorials, and letters, (2) animal or pediatric populations, (3) case reports or sample sizes ≤2 patients, and (4) primary outcomes of dysphagia, dysarthria, neglect, or swallowing. RESULTS Investigation of PubMed English Database prior to 01/01/2012 produced 695 applicable results. Studies were excluded based on the aforementioned criteria, resulting in 50 remaining studies. They included 1314 participants (1282 stroke patients and 32 healthy subjects) evaluated by motor function pre- and post-tDCS or rTMS. Heterogeneity among studies' motor assessments was high and could not be accounted for by individual comparison. Pooled effect sizes for the impact of post-treatment improvement revealed consistently demonstrable improvements after tDCS and rTMS therapeutic stimulation. Most studies provided limited follow-up for long-term effects. CONCLUSION It is apparent from the available studies that non-invasive stimulation may enhance motor recovery and may lead to clinically meaningful functional improvements in the stroke population. Only mild to no adverse events have been reported. Though results have been positive results, the large heterogeneity across articles precludes firm conclusions.
Collapse
Affiliation(s)
- Bamidele O Adeyemo
- Laboratory of Neuromodulation, Spaulding Rehabilitation Hospital, Harvard Medical School Boston, MA, USA ; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School Boston, MA, USA
| | | | | | | |
Collapse
|
26
|
Knickmeyer RC, Davenport M. Turner syndrome and sexual differentiation of the brain: implications for understanding male-biased neurodevelopmental disorders. J Neurodev Disord 2011; 3:293-306. [PMID: 21818630 PMCID: PMC3261262 DOI: 10.1007/s11689-011-9089-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 07/13/2011] [Indexed: 01/24/2023] Open
Abstract
Turner syndrome (TS) is one of the most common sex chromosome abnormalities. Affected individuals often show a unique pattern of cognitive strengths and weaknesses and are at increased risk for a number of other neurodevelopmental conditions, many of which are more common in typical males than typical females (e.g., autism and attention-deficit hyperactivity disorder). This phenotype may reflect gonadal steroid deficiency, haploinsufficiency of X chromosome genes, failure to express parentally imprinted genes, and the uncovering of X chromosome mutations. Understanding the contribution of these different mechanisms to outcome has the potential to improve clinical care for individuals with TS and to better our understanding of the differential vulnerability to and expression of neurodevelopmental disorders in males and females. In this paper, we review what is currently known about cognition and brain development in individuals with TS, discuss underlying mechanisms and their relevance to understanding male-biased neurodevelopmental conditions, and suggest directions for future research.
Collapse
Affiliation(s)
- Rebecca Christine Knickmeyer
- Department of Psychiatry CB 7160, University of North Carolina at Chapel Hill, 343 Medical Wings C, Campus Box #7160, Chapel Hill, NC, 27599-7160, USA,
| | | |
Collapse
|
27
|
Freitas SMSF, Gera G, Scholz JP. Timing variability of reach trajectories in left versus right hemisphere stroke. Brain Res 2011; 1419:19-33. [PMID: 21920508 DOI: 10.1016/j.brainres.2011.08.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 11/15/2022]
Abstract
This study investigated trajectory timing variability in right and left stroke survivors and healthy controls when reaching to a centrally located target under a fixed target condition or when the target could suddenly change position after reach onset. Trajectory timing variability was investigated with a novel method based on dynamic programming that identifies the steps required to time warp one trial's acceleration time series to match that of a reference trial. Greater trajectory timing variability of both hand and joint motions was found for the paretic arm of stroke survivors compared to their non-paretic arm or either arm of controls. Overall, the non-paretic left arm of the LCVA group and the left arm of controls had higher timing variability than the non-paretic right arm of the RCVA group and right arm of controls. The shoulder and elbow joint warping costs were consistent predictors of the hand's warping cost for both left and right arms only in the LCVA group, whereas the relationship between joint and hand warping costs was relatively weak in control subjects and less consistent across arms in the RCVA group. These results suggest that the left hemisphere may be more involved in trajectory timing, although the results may be confounded by skill differences between the arms in these right hand dominant participants. On the other hand, arm differences did not appear to be related to differences in targeting error. The paretic left arm of the RCVA exhibited greater trajectory timing variability than the paretic right arm of the LCVA group. This difference was highly correlated with the level of impairment of the arms. Generally, the effect of target uncertainty resulted in slightly greater trajectory timing variability for all participants. The results are discussed in light of previous studies of hemispheric differences in the control of reaching, in particular, left hemisphere specialization for temporal control of reaching movements.
Collapse
|
28
|
Preliminary evidence of motor impairment among polysubstance 3,4-methylenedioxymethamphetamine users with intact neuropsychological functioning. J Int Neuropsychol Soc 2010; 16:1047-55. [PMID: 20735886 PMCID: PMC3737074 DOI: 10.1017/s1355617710000846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuropsychological disturbances have been reported in association with use of the recreational drug "ecstasy," or 3,4-methylenedioxymethamphetamine (MDMA), but findings have been inconsistent. We performed comprehensive neuropsychological testing examining seven ability domains in 21 MDMA users (MDMA+) and 21 matched control participants (MDMA-). Among MDMA+ participants, median [interquartile range] lifetime MDMA use was 186 [111, 516] doses, with 120 [35-365] days of abstinence. There were no significant group differences in neuropsychological performance, with the exception of the motor speed/dexterity domain in which 43% of MDMA+ were impaired compared with 5% of MDMA- participants (p = .004). Motor impairment differences were not explained by use of other substances and were unrelated to length of abstinence or lifetime number of MDMA doses. Findings provide limited evidence for neuropsychological differences between MDMA+ and MDMA- participants with the exception of motor impairments observed in the MDMA+ group. However, replication of this finding in a larger sample is warranted.
Collapse
|
29
|
Serrien DJ, Spapé MM. The role of hand dominance and sensorimotor congruence in voluntary movement. Exp Brain Res 2010; 199:195-200. [PMID: 19730838 DOI: 10.1007/s00221-009-1998-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 08/16/2009] [Indexed: 11/26/2022]
Abstract
The present study evaluated the neural changes due to effector use (unimanual left, unimanual right, and bimanual) and visuomotor conflict induced by mirror-reversed vision during drawing behavior. EEG phase synchronization, expressing interregional communication, showed that visuomotor incongruence perturbed information processing in both hemispheres. Furthermore, it was observed that the left hemisphere became temporally dominant when movements were executed with visuomotor conflict, independent of the performing hand(s). This observation emphasizes the superiority of the left hemisphere to control complex movements. In addition, the functional interactions between the hemispheres were also perturbed due to visuomotor discordance, indicating the crucial role of interhemispheric communication for movement control. These results highlight that functional connectivity patterns provide higher-order coding mechanisms of information processing. The data further underline the significance of the left hemisphere for intricate visuomotor skills.
Collapse
Affiliation(s)
- Deborah J Serrien
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK.
| | | |
Collapse
|
30
|
Ipsilateral deficits in 1-handed shoe tying after left or right hemisphere stroke. Arch Phys Med Rehabil 2009; 90:1800-5. [PMID: 19801074 DOI: 10.1016/j.apmr.2009.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/21/2009] [Accepted: 03/05/2009] [Indexed: 11/22/2022]
Abstract
UNLABELLED Poole JL, Sadek J, Haaland KY. Ipsilateral deficits in 1-handed shoe tying after left or right hemisphere stroke. OBJECTIVE To examine 1-handed shoe tying performance and whether cognitive deficits more associated with left or right hemisphere damage differentially affect it after unilateral stroke. DESIGN Observational cohort comparing ipsilesional shoe tying, spatial and language skills, and limb praxis. SETTING Primary care Veterans Affairs and private medical center. INTERVENTIONS Not applicable. PARTICIPANTS Volunteer right-handed sample of adults with left or right hemisphere damage and healthy demographically matched adults. MAIN OUTCOME MEASURE The number of correct trials and the total time to complete 10 trials tying a shoe using the 1-handed method. RESULTS Both stroke groups had fewer correct trials and were significantly slower tying the shoe than the control group. Spatial skills predicted accuracy and speed after right hemisphere damage. After left hemisphere damage, accuracy was predicted by spatial skills and limb praxis, while speed was predicted by limb praxis only. CONCLUSIONS Ipsilesional shoe tying is similarly impaired after left or right hemisphere damage, but for different reasons. Spatial deficits had a greater influence after right hemisphere damage, and limb apraxia had a greater influence after left hemisphere damage. Language deficits did not affect performance, indicating that aphasia does not preclude using this therapy approach. These results suggest that rehabilitation professionals should consider assessment of limb apraxia and ipsilesional skill training in the performance of everyday tasks.
Collapse
|
31
|
Serrien DJ, Spapé MM. Effects of task complexity and sensory conflict on goal-directed movement. Neurosci Lett 2009; 464:10-3. [DOI: 10.1016/j.neulet.2009.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/27/2009] [Accepted: 08/06/2009] [Indexed: 10/20/2022]
|
32
|
Schaefer SY, Haaland KY, Sainburg RL. Dissociation of initial trajectory and final position errors during visuomotor adaptation following unilateral stroke. Brain Res 2009; 1298:78-91. [PMID: 19728993 DOI: 10.1016/j.brainres.2009.08.063] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 08/20/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
Abstract
Previous studies have demonstrated that following stroke, motor impairment can occur ipsilateral to the lesion. Such impairments have provided insight into the contributions of each hemisphere to movement control, showing that left and right hemisphere damage produce different effects on movement: Left hemisphere damage produces deficits in specifying features of movement trajectory, while right hemisphere damage produces deficits in achieving an accurate and stable final position. We now propose that left and right hemisphere damage should also produce different deficits in the adaptation of trajectory and position. To test this idea, we examined adaptation to visuomotor rotations in the ipsilesional arms of hemiparetic stroke patients with left (LHD) and right hemisphere damage (RHD). We found that LHD interfered with adaptation of initial direction, but not with the ability to adapt the final position of the limb. In contrast, RHD interfered with online corrections to the final position during the course of adaptation. These findings support our hypothesis that the control of trajectory and steady-state position may be lateralized to the left and right hemispheres, respectively.
Collapse
Affiliation(s)
- Sydney Y Schaefer
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
33
|
Pyykkö I, Dahlen AI, Schalén L, Hindfelt B. Eye Movements in Patients with Speech Dyspraxia. Acta Otolaryngol 2009. [DOI: 10.3109/00016488409107589] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Ankle dexterity remains intact in patients with incomplete spinal cord injury in contrast to stroke patients. Exp Brain Res 2008; 191:353-61. [DOI: 10.1007/s00221-008-1528-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
|
35
|
Functional significance of ipsilesional motor deficits after unilateral stroke. Arch Phys Med Rehabil 2008; 89:62-8. [PMID: 18164332 DOI: 10.1016/j.apmr.2007.08.125] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/02/2007] [Accepted: 08/02/2007] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To determine whether ipsilesional motor skills, which have been related to independent functioning, are present chronically after unilateral stroke and are more common in people with apraxia than in those without apraxia. DESIGN Observational cohort comparing the performance of an able-bodied control group, stroke patients with left- or right-hemisphere damage matched for lesion volume, and left-hemisphere stroke patients with and without ideomotor limb apraxia. SETTING Primary care Veterans Affairs and private medical center. PARTICIPANTS Volunteer right-handed sample; stroke patients with left- or right-hemisphere damage about 4 years poststroke; a control group of demographically matched, able-bodied adults. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Total time to perform the (1) Williams doors test and the (2) timed manual performance test (TMPT), which includes parts of the Jebsen-Taylor Hand Function Test. RESULTS Ipsilesional motor deficits were present after left- or right-hemisphere stroke when using both measures, but deficits were consistently more common in patients with limb apraxia only for the TMPT. CONCLUSIONS These findings add to a growing literature that suggests that ipsilesional motor deficits may have a functional impact in unilateral stroke patients, especially in patients with ideomotor limb apraxia.
Collapse
|
36
|
The biological and behavioral basis of upper limb asymmetries in sensorimotor performance. Neurosci Biobehav Rev 2008; 32:598-610. [DOI: 10.1016/j.neubiorev.2007.10.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 09/26/2007] [Accepted: 10/28/2007] [Indexed: 11/20/2022]
|
37
|
Scheidt RA, Ghez C. Separate Adaptive Mechanisms for Controlling Trajectory and Final Position in Reaching. J Neurophysiol 2007; 98:3600-13. [PMID: 17913996 DOI: 10.1152/jn.00121.2007] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined control of the hand's trajectory (direction and shape) and final equilibrium position in horizontal planar arm movements by quantifying transfer of learned visuomotor rotations between two tasks that required aiming the hand to the same spatial targets. In a trajectory-reversal task (“slicing”), the hand reversed direction within the target and returned to the origin. In a positioning task (“reaching”), subjects moved the hand to the target and held it there; cursor feedback was provided only after movement ended to isolate learning of final position from trajectory direction. We asked whether learning acquired in one task would transfer to the other. Transfer would suggest that the hand's entire trajectory, including its endpoint, was controlled using a common spatial plan. Instead we found minimal transfer, suggesting that the brain used different representations of target position to specify the hand's initial trajectory and its final stabilized position. We also observed asymmetrical practice effects on hand trajectory, including systematic curvature of reaches made after rotation training and hypermetria of untrained slice reversals after reach training. These are difficult to explain with a unified control model, but were replicated in computer simulations that specified the hand's initial trajectory and its final equilibrium position. Our results suggest that the brain uses different mechanisms to plan the hand's initial trajectory and final position in point-to-point movements, that it implements these control actions sequentially, and that trajectory planning does not account for specific impedance values to be implemented about the final stabilized posture.
Collapse
Affiliation(s)
- Robert A Scheidt
- Department of Biomedical Engineering, Olin Engineering Center, Marquette University, Milwaukee, WI 53201-1881, USA.
| | | |
Collapse
|
38
|
Brown GG, Spicer KB, Robertson WM, Baird AD, Malik G. Neuropsychological signs of lateralized arteriovenous malformations: Comparison with ischemic stroke. Clin Neuropsychol 2007. [DOI: 10.1080/13854048908401483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Schaefer SY, Haaland KY, Sainburg RL. Ipsilesional motor deficits following stroke reflect hemispheric specializations for movement control. ACTA ACUST UNITED AC 2007; 130:2146-58. [PMID: 17626039 PMCID: PMC3769213 DOI: 10.1093/brain/awm145] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent reports of functional impairment in the 'unaffected' limb of stroke patients have suggested that these deficits vary with the side of lesion. This not only supports the idea that the ipsilateral hemisphere contributes to arm movements, but also implies that such contributions are lateralized. We have previously suggested that the left and right hemispheres are specialized for controlling different features of movement. In reaching movements, the non-dominant arm appears better adapted for achieving accurate final positions and the dominant arm for specifying initial trajectory features, such as movement direction and peak acceleration. The purpose of this study was to determine whether different features of control could characterize ipsilesional motor deficits following stroke. Healthy control subjects and patients with either left- or right-hemisphere damage performed targeted single-joint elbow movements of different amplitudes in their ipsilateral hemispace. We predicted that left-hemisphere damage would produce deficits in specification of initial trajectory features, while right-hemisphere damage would produce deficits in final position accuracy. Consistent with our predictions, patients with left, but not right, hemisphere damage showed reduced modulation of acceleration amplitude. However, patients with right, but not left, hemisphere damage showed significantly larger errors in final position, which corresponded to reduced modulation of acceleration duration. Neither patient group differed from controls in terms of movement speed. Instead, the mechanisms by which speed was specified, through modulation of acceleration amplitude and modulation of acceleration duration, appeared to be differentially affected by left- and right-hemisphere damage. These findings support the idea that each hemisphere contributes differentially to the control of initial trajectory and final position, and that ipsilesional deficits following stroke reflect this lateralization in control.
Collapse
Affiliation(s)
- Sydney Y. Schaefer
- Department of Kinesiology, The Pennsylvania State University, University Park, PA
- The Gerontology Center, The Pennsylvania State University, University Park, PA
| | - Kathleen Y. Haaland
- Research Service, New Mexico Veterans Affairs Healthcare System, Albuquerque, NM, USA
- Departments of Psychiatry and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Robert L. Sainburg
- Department of Kinesiology, The Pennsylvania State University, University Park, PA
- Department of Neurology, The Pennsylvania State University, University Park, PA
- The Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA
- The Gerontology Center, The Pennsylvania State University, University Park, PA
| |
Collapse
|
40
|
Davidson PSR, Gao FQ, Mason WP, Winocur G, Anderson ND. Verbal fluency, trail making, and Wisconsin Card Sorting Test performance following right frontal lobe tumor resection. J Clin Exp Neuropsychol 2007; 30:18-32. [PMID: 17852589 DOI: 10.1080/13803390601161166] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Three commonly used clinical tests of frontal-executive function are verbal fluency, the Trail Making Test, and the Wisconsin Card Sorting Test, but few lesion studies of regional specificity within the frontal lobe (FL) exist for them. We examined 20 patients with right FL tumor resection, and mapped their damage to explore brain-behavior relations with greater precision. Across tests, the patients performed poorly and they also showed a deficit in switching but not clustering in verbal fluency. Within the right FL, however, we found none of the regional differences reported in studies of mixed-etiology FL patients, possibly due to the gradual neural reorganization that can occur with brain tumors. We discuss the importance of etiology in examining brain-behavior relations.
Collapse
|
41
|
Ketcham CJ, Rodriguez TM, Zihlman KA. Targeted Aiming Movements Are Compromised in Nonaffected Limb of Persons With Stroke. Neurorehabil Neural Repair 2007; 21:388-97. [PMID: 17369510 DOI: 10.1177/1545968306297872] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Research has shown that movement impairments following stroke are typically associated with the limb contralateral to the side of the stroke. Prior studies identified ipsilateral motor declines across a variety of tasks. Objective. Two experiments were conducted to better understand the ipsilateral contributions to organization and execution of proximal upper extremity multisegment aiming movements in persons with right-hemispheric stroke. Methods. Participants performed reciprocal aiming (Experiment 1) and 2-segment aiming movements (Experiment 2) on a digitizing tablet. In both experiments, target size and/or target orientation were manipulated to examine the influence of accuracy constraints on the planning and organization of movements. Results. Kinematic measures, submovement analysis, and harmonicity measures were included in this study. Declines in organization and execution of multisegment movements were found to contribute to performance decrements and slowing in stroke patients. Furthermore, stroke patients were unable to efficiently plan multisegment movements as one functional unit, resulting in discrete movements. Conclusions . Results suggest the importance of considering ipsilateral contributions to the control and organization of targeted aiming movements as well as implications for rehabilitation and recovery.
Collapse
Affiliation(s)
- Caroline J Ketcham
- Motor Control Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, 77843-4243, USA.
| | | | | |
Collapse
|
42
|
Abstract
Clinical neuropsychology's dependence upon a core scientific background in clinical neuropsychology, and clinical psychology, neurology, and neuroanatomy, as well as biopsychology, cognitive neuroscience, and cognitive science is the basis of its designation as an APA-approved clinical specialty. This dependence highlights the importance of these scientific underpinnings and the scientist-practitioner model of training, detailed in the Houston Guidelines. This presentation is meant to demonstrate that cognitive neuroscience research should influence our conception of brain behavior relationships, which, in turn, should influence our clinical work. In addition, I want to illustrate how the utilization of converging methods, which is an increasingly popular approach to research, can ensure more valid conclusions about the neuroanatomical substrates for complex skills. Limb apraxia will be used as an example of a deficit that has functional implications and whose cognitive mechanisms and neuroanatomical correlates are better understood as a result of research that combines neuroanatomical imaging of brain damaged patients, functional imaging, and cognitive paradigms. This work demonstrates that left frontoparietal circuits control limb praxis and motor sequencing, suggesting that these complex motor skills should be examined in patients with such damage.
Collapse
Affiliation(s)
- Kathleen Y Haaland
- New Mexico VA Healthcare System and Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM 87108, USA.
| |
Collapse
|
43
|
Ietswaart M, Carey DP, Della Sala S. Tapping, grasping and aiming in ideomotor apraxia. Neuropsychologia 2005; 44:1175-84. [PMID: 16298401 DOI: 10.1016/j.neuropsychologia.2005.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 09/29/2005] [Accepted: 10/03/2005] [Indexed: 10/25/2022]
Abstract
Very few studies have investigated sensorimotor control in apraxia using tasks that differ in movement complexity. Nevertheless, there is some evidence to suggest that spontaneous behaviour, although relatively preserved, can be rather clumsy or awkward, and that patients with ideomotor apraxia may have subtle kinematic abnormalities in movements made in the laboratory. It remains unclear whether patients with ideomotor apraxia perform normally on movements such as visually guided aiming, that may not depend on higher-order, more cognitive, processes and that are relatively unguided by overlearned contexts. In this study, three different sensorimotor tasks were given to the same sample of patients with quantified apraxic disturbance. Finger tapping, goal-directed grasping and aiming with and without visual feedback were examined in these patients. A clear dissociation was found between grossly impaired gesture imitation and intact motor programming of goal-directed movements with visual feedback. Apraxic patients were, however, impaired on aiming movements without visual feedback, suggesting that apraxia is associated with an increased reliance on integration of online visual information with feedforward/feedback somatosensory and motor signals. Furthermore, patients were impaired on single finger tapping which was a surprisingly good predictor of apraxia severity.
Collapse
Affiliation(s)
- Magdalena Ietswaart
- Cognitive Neuroscience Research Unit, Wolfson Research Institute, University of Durham, Queen's Campus, Stockton-on-Tees TS17 6BH, UK.
| | | | | |
Collapse
|
44
|
Bryden PJ, Roy EA. A new method of administering the Grooved Pegboard Test: Performance as a function of handedness and sex. Brain Cogn 2005; 58:258-68. [PMID: 15963376 DOI: 10.1016/j.bandc.2004.12.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 09/15/2004] [Accepted: 12/13/2004] [Indexed: 11/23/2022]
Abstract
The purpose of the present study was twofold: first to examine the influences of sex and handedness on manual performance on the Grooved Pegboard Test; and secondly to provide normative data for two versions (Place and Remove tasks) of the Grooved Pegboard Test, as previous work (Bryden & Roy, 1999) had suggested that the Remove task of the Grooved pegboard may provide a purer measure of motor speed of the two hands than the standard administration of the Grooved Pegboard Test. One hundred and fifty-three (47 males and 106 females) participants completed the Grooved Pegboard Test. Individuals performed the standard version of the Grooved Pegboard Test (Place task) and a novel version of the test (Remove task). In the standard version, participants were timed on their speed for placing the pegs, while in the novel version they were timed on their speed for removing the pegs. Results confirmed previously noted hand and sex differences in the Place task of the Grooved Pegboard Test, as well as the lack of effect of handedness on performance (Bornstein, 1995; Ruff & Parker, 1993). Significant performance differences between the hands were also noted for the Remove task. Findings also indicated that the Remove task was sensitive to sex and handedness effects.
Collapse
Affiliation(s)
- P J Bryden
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ont., Canada.
| | | |
Collapse
|
45
|
Wetter S, Poole JL, Haaland KY. Functional implications of ipsilesional motor deficits after unilateral stroke. Arch Phys Med Rehabil 2005; 86:776-81. [PMID: 15827931 DOI: 10.1016/j.apmr.2004.08.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the functional impact of ipsilesional motor deficits after unilateral stroke and the best predictors of those deficits. DESIGN Observational cohort. SETTING Primary care Veterans Affairs and private medical center. PARTICIPANTS Volunteer right-handed sample; stroke patients with left (LHD) or right hemisphere damage (RHD) a mean of 3.9 to 5.2 years poststroke and able-bodied participants who were tested using their left (LAB) or right hand. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURE The Jebsen-Taylor Hand Function Test (JHFT). RESULTS Ipsilesional JHFT performance was impaired to the same extent in the LHD and RHD groups. LHD patients with apraxia had poorer scores on the JHFT than LHD patients without apraxia and the LAB group. Regression analyses showed that severity of apraxia was the best predictor of JHFT performance for the LHD group and that right (ipsilesional) motor performance (grip strength, finger tapping) was the best predictor of JHFT performance for the RHD group. CONCLUSIONS Ipsilesional deficits are present on simulated activities of daily living after LHD or RHD, suggesting that rehabilitation after stroke should include the ipsilesional arm and that ipsilesional limb apraxia is a better predictor of ipsilesional functional motor skills after LHD than aphasia or simple motor skills (grip strength, finger tapping). These findings suggest that limb apraxia should be assessed more routinely after stroke of the left hemisphere.
Collapse
Affiliation(s)
- Spencer Wetter
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | | | | |
Collapse
|
46
|
Gonzalez CLR, Gharbawie OA, Williams PT, Kleim JA, Kolb B, Whishaw IQ. Evidence for bilateral control of skilled movements: ipsilateral skilled forelimb reaching deficits and functional recovery in rats follow motor cortex and lateral frontal cortex lesions. Eur J Neurosci 2004; 20:3442-52. [PMID: 15610177 DOI: 10.1111/j.1460-9568.2004.03751.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Unilateral damage to cortical areas in the frontal cortex produces sensorimotor deficits on the side contralateral to the lesion. Although there are anecdotal reports of bilateral deficits after stroke in humans and in experimental animals, little is known of the effects of unilateral lesions on the same side of the body. The objective of the present study was to make a systematic examination of the motor skills of the ipsilateral forelimb after frontal cortex lesions to either the motor cortex by devascularization of the surface blood vessels (pial stroke), or to the lateral cortex by electrocoagulation of the distal branches of the middle cerebral artery (MCA stroke). Plastic processes in the intact hemisphere were documented using Golgi-Cox dendritic analysis and by intracortical microstimulation analysis. Although tests of reflexive responses in forelimb placing identified a contralateral motor impairment following both cortical lesions, quantitative and qualitative measures of skilled reaching identified a severe ipsilateral impairment from which recovery was substantial but incomplete. Golgi-impregnated pyramidal cells in the forelimb area showed an increase in dendritic length and branching. Electrophysiological mapping showed normal size forelimb representations in the lesioned rats relative to control animals. The finding of an enduring ipsilateral impairment in skilled movement is consistent with a large but more anecdotal literature in rats, nonhuman primates and humans, and suggests that plastic changes in the intact hemisphere are related to that hemisphere's contribution to skilled movement.
Collapse
Affiliation(s)
- Claudia L R Gonzalez
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Dr., Lethbridge, AB T1K 3M4, Canada.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The current study was designed to examine potential interlimb asymmetries in controlling movement extent. Subjects made repetitive single-joint elbow extension movements while the arm was supported on a horizontal, frictionless, air-jet system. Four targets of 10, 20, 35, and 45 degrees excursions were randomly presented over the course of 150 trials. For both arms, peak tangential hand velocity scaled linearly with movement distance. There was no significant difference between either peak velocities or movement accuracies for the two arms. However, the mechanisms responsible for achieving these velocities and extents were quite distinct for each arm. For the dominant arm, peak tangential finger acceleration varied systematically with movement distance. In contrast, nondominant-arm peak tangential acceleration varied little across targets and, as such, was a poor predictor of movement distance. Instead the velocities of the nondominant arm were determined primarily by variation in the duration of the initial acceleration impulse, which corresponds to the time of peak velocity. These different strategies reflect previously identified mechanisms in controlling movement distance: pulse-height control and pulse-width control. The former is characterized by a variation in peak acceleration and has been associated with preplanning mechanisms. The latter occurs after peak acceleration and has been shown to depend on peripheral sensory feedback. Our findings indicate that the dominant-arm system controls movement extent largely through planning mechanisms that specify pulse-height control, whereas the nondominant system does so largely through feedback mediated pulse-width control.
Collapse
Affiliation(s)
- Robert L Sainburg
- Dept. of Kinesiology, Penn State University, 266 Recreation Building, University Park, PA 16802, USA.
| | | |
Collapse
|
48
|
Lees-Haley PR, Greiffenstein MF, Larrabee GJ, Manning EL. Methodological Problems in the Neuropsychological Assessment of Effects of Exposure to Welding Fumes and Manganese. Clin Neuropsychol 2004; 18:449-64. [PMID: 15739815 DOI: 10.1080/1385404049052419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recently, Kaiser (2003) raised concerns over the increase in brain damage claims reportedly due to exposure to welding fumes. In the present article, we discuss methodological problems in conducting neuropsychological research on the effects of welding exposure, using a recent paper by Bowler et al. (2003) as an example to illustrate problems common in the neurotoxicity literature. Our analysis highlights difficulties in conducting such quasi-experimental investigations, including subject selection bias, litigation effects on symptom report and neuropsychological test performance, response bias, and scientifically inadequate casual reasoning.
Collapse
|
49
|
Bagesteiro LB, Sainburg RL. Nondominant arm advantages in load compensation during rapid elbow joint movements. J Neurophysiol 2003; 90:1503-13. [PMID: 12736237 PMCID: PMC10704424 DOI: 10.1152/jn.00189.2003] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was designed to examine interlimb asymmetries in responding to unpredictable changes in inertial loads, which have implications for our understanding of the neural mechanisms underlying handedness. Subjects made repetitive single joint speed constrained 20 degrees elbow flexion movements, while the arm was supported on a horizontal, frictionless, air-jet system. On random trials, a 2-kg mass was attached to the arm splint prior to the "go" signal. Subjects were not given explicit information about the mass prior to movement nor were they able to view their limb or the mass. Accordingly, muscle activity, recorded prior to peak tangential finger acceleration, was the same for loaded and baseline trials. After this point, substantial changes in muscle activity occurred. In both limbs, the load compensation response was associated with a reduction in extensor muscle activity, resulting in a prolonged flexion phase of motion. For the nondominant arm, this resulted in effective load compensation, such that no differences in final position accuracy occurred between loaded and baseline trials. However, the dominant arm response also included a considerable increase in flexor muscle activity. This substantially prolonged the flexor acceleration phase of motion, relative to that of the nondominant arm. As a result, the dominant arm overcompensated the effects of the load, producing a large and systematic overshoot of final position. These results indicate more effective load compensation responses for the nondominant arm; supporting a specialized role of the nondominant arm/hemisphere system in sensory feedback mediated error correction mechanisms. The results also suggest that specialization of the dominant arm system for controlling limb and task dynamics is specifically related to feedforward control mechanisms.
Collapse
Affiliation(s)
- Leia B Bagesteiro
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
50
|
Kim SH, Pohl PS, Luchies CW, Stylianou AP, Won Y. Ipsilateral deficits of targeted movements after stroke. Arch Phys Med Rehabil 2003; 84:719-24. [PMID: 12736888 DOI: 10.1016/s0003-9993(02)04973-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To test the hypotheses that targeted movements of both the ipsilateral and the contralateral extremities of stroke survivors would be prolonged compared with those from a control group without stroke, and that the ipsilateral deficit would occur in movements toward small, but not large, targets. DESIGN Descriptive study. SETTING Motor performance laboratory. PARTICIPANTS Convenience sample of right-handed individuals including 10 who were more than 6 months poststroke with Fugl-Meyer Motor Assessment scores greater than 75% for the upper (UEs) and lower (LEs) extremities, and a comparison group of 20 age-matched adults without stroke. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES The average time required for the stylus, held with the hand or strapped to the foot, to travel from leaving 1 target to contacting the second target (ie, movement time) and the average time the stylus rested on the target (ie, dwell time). RESULTS Regardless of target size, movement and dwell times for both UEs of the stroke group were prolonged compared with those of the comparison group. Regardless of target size, dwell time for both LEs of the stroke group was prolonged compared with that of the comparison group. CONCLUSIONS After stroke, the ipsilateral extremities may show subtle deficits in targeted movements.
Collapse
Affiliation(s)
- Seok Hun Kim
- Department of Physical Therapy and Rehabilitation Sciences and Center on Aging, University of Kansas Medical Center, Kansas City 66160-7601, USA
| | | | | | | | | |
Collapse
|