1
|
Sah S, Keable R, Pfundstein G, Clemens KJ, Begg D, Schachner M, Leshchyns'ka I, Sytnyk V. Deficiency in the neural cell adhesion molecule 2 (NCAM2) reduces axonal levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), affects axonal organization in the hippocampus, and leads to behavioral deficits. Cereb Cortex 2023; 33:10047-10065. [PMID: 37522285 DOI: 10.1093/cercor/bhad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/25/2023] [Accepted: 01/26/2023] [Indexed: 08/01/2023] Open
Abstract
The neural cell adhesion molecule 2 (NCAM2) regulates axonal organization in the central nervous system via mechanisms that have remained poorly understood. We now show that NCAM2 increases axonal levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), a protease that regulates axonal guidance. In brains of NCAM2-deficient mice, BACE1 levels are reduced in hippocampal mossy fiber projections, and the infrapyramidal bundle of these projections is shortened. This abnormal axonal organization correlates with impaired short-term spatial memory and cognitive flexibility in NCAM2-deficient male and female mice. Self-grooming, rearing, digging and olfactory acuity are increased in NCAM2-deficient male mice, when compared with littermate wild-type mice of the same sex. NCAM2-deficient female mice also show increased self-grooming, but are reduced in rearing, and do not differ from female wild-type mice in olfactory acuity and digging behavior. Our results indicate that errors in axonal guidance and organization caused by impaired BACE1 function can underlie the manifestation of neurodevelopmental disorders, including autism as found in humans with deletions of the NCAM2 gene.
Collapse
Affiliation(s)
- Saroj Sah
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ryan Keable
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kelly J Clemens
- School of Psychology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Denovan Begg
- School of Psychology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, United States
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Urocortin-3 neurons in the perifornical area are critical mediators of chronic stress on female infant-directed behavior. Mol Psychiatry 2023; 28:483-496. [PMID: 36476733 PMCID: PMC9847478 DOI: 10.1038/s41380-022-01902-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Infant avoidance and aggression are promoted by activation of the Urocortin-3 expressing neurons of the perifornical area of hypothalamus (PeFAUcn3) in male and female mice. PeFAUcn3 neurons have been implicated in stress, and stress is known to reduce maternal behavior. We asked how chronic restraint stress (CRS) affects infant-directed behavior in virgin and lactating females and what role PeFAUcn3 neurons play in this process. Here we show that infant-directed behavior increases activity in the PeFAUcn3 neurons in virgin and lactating females. Chemogenetic inhibition of PeFAUcn3 neurons facilitates pup retrieval in virgin females. CRS reduces pup retrieval in virgin females and increases activity of PeFAUcn3 neurons, while CRS does not affect maternal behavior in lactating females. Inhibition of PeFAUcn3 neurons blocks stress-induced deficits in pup-directed behavior in virgin females. Together, these data illustrate the critical role for PeFAUcn3 neuronal activity in mediating the impact of chronic stress on female infant-directed behavior.
Collapse
|
3
|
Garland P, Morton MJ, Haskins W, Zolnourian A, Durnford A, Gaastra B, Toombs J, Heslegrave AJ, More J, Okemefuna AI, Teeling JL, Graversen JH, Zetterberg H, Moestrup SK, Bulters DO, Galea I. Haemoglobin causes neuronal damage in vivo which is preventable by haptoglobin. Brain Commun 2020; 2:fcz053. [PMID: 32346673 PMCID: PMC7188517 DOI: 10.1093/braincomms/fcz053] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
After subarachnoid haemorrhage, prolonged exposure to toxic extracellular haemoglobin occurs in the brain. Here, we investigate the role of haemoglobin neurotoxicity in vivo and its prevention. In humans after subarachnoid haemorrhage, haemoglobin in cerebrospinal fluid was associated with neurofilament light chain, a marker of neuronal damage. Most haemoglobin was not complexed with haptoglobin, an endogenous haemoglobin scavenger present at very low concentration in the brain. Exogenously added haptoglobin bound most uncomplexed haemoglobin, in the first 2 weeks after human subarachnoid haemorrhage, indicating a wide therapeutic window. In mice, the behavioural, vascular, cellular and molecular changes seen after human subarachnoid haemorrhage were recapitulated by modelling a single aspect of subarachnoid haemorrhage: prolonged intrathecal exposure to haemoglobin. Haemoglobin-induced behavioural deficits and astrocytic, microglial and synaptic changes were attenuated by haptoglobin. Haptoglobin treatment did not attenuate large-vessel vasospasm, yet improved clinical outcome by restricting diffusion of haemoglobin into the parenchyma and reducing small-vessel vasospasm. In summary, haemoglobin toxicity is of clinical importance and preventable by haptoglobin, independent of large-vessel vasospasm.
Collapse
Affiliation(s)
- Patrick Garland
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Matthew J Morton
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - William Haskins
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Ardalan Zolnourian
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Andrew Durnford
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Ben Gaastra
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Jamie Toombs
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.,Department of Neurodegenerative Disease, Institute of Neurology, London, WC1N 3BG, UK
| | - Amanda J Heslegrave
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.,Department of Neurodegenerative Disease, Institute of Neurology, London, WC1N 3BG, UK
| | - John More
- Research & Development Department, Bio Products Laboratory Limited, Elstree, Hertfordshire, WD6 3BX, UK
| | - Azubuike I Okemefuna
- Research & Development Department, Bio Products Laboratory Limited, Elstree, Hertfordshire, WD6 3BX, UK
| | - Jessica L Teeling
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Jonas H Graversen
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.,Department of Neurodegenerative Disease, Institute of Neurology, London, WC1N 3BG, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mo¨ lndal, S-431 80, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mo¨ lndal, S-431 80, Sweden
| | - Soren K Moestrup
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark.,Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark.,Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Diederik O Bulters
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.,Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| |
Collapse
|
4
|
Egan AE, Seemiller LR, Packard AEB, Solomon MB, Ulrich-Lai YM. Palatable food reduces anxiety-like behaviors and HPA axis responses to stress in female rats in an estrous-cycle specific manner. Horm Behav 2019; 115:104557. [PMID: 31310760 PMCID: PMC6765440 DOI: 10.1016/j.yhbeh.2019.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/29/2019] [Accepted: 07/12/2019] [Indexed: 11/29/2022]
Abstract
Eating tasty foods dampens responses to stress - an idea reflected in the colloquial term 'comfort foods'. To study the neurobiological mechanisms by which palatable foods provide stress relief, we previously characterized a limited sucrose intake (LSI) paradigm in which male rats are given twice-daily access to 4 ml of 30% sucrose solution (vs. water as a control), and subsequently have reduced hypothalamic-pituitary-adrenocortical (HPA) axis responsivity and anxiety-related behaviors. Notably, women may be more prone to 'comfort feeding' than men, and this may vary across the menstrual cycle, suggesting the potential for important sex and estrous cycle differences. In support of this idea, LSI reduces HPA axis responses in female rats during the proestrus/estrus (P/E), as opposed to the diestrus 1/diestrus 2 (D1/D2) estrous cycle stage. However, the effect of LSI on anxiety-related behaviors in females remains unknown. Here we show that LSI reduced stress-related behaviors in female rats in the elevated plus-maze and restraint tests, but not in the open field test, though only during P/E. LSI also decreased the HPA axis stress response primarily during P/E, consistent with prior findings. Finally, cFos immunolabeling (a marker of neuronal activation) revealed that LSI increased post-restraint cFos in the central amygdala medial subdivision (CeM) and the bed nucleus of the stria terminalis posterior subnuclei (BSTp) exclusively during P/E. These results suggest that in female rats, palatable food reduces both behavioral and neuroendocrine stress responses in an estrous cycle-dependent manner, and the CeM and BSTp are implicated as potential mediators of these effects.
Collapse
Affiliation(s)
- Ann E Egan
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Laurel R Seemiller
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Amy E B Packard
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Matia B Solomon
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA; Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA.
| |
Collapse
|
5
|
Shoji H, Miyakawa T. Increased depression-related behavior during the postpartum period in inbred BALB/c and C57BL/6 strains. Mol Brain 2019; 12:70. [PMID: 31399102 PMCID: PMC6688268 DOI: 10.1186/s13041-019-0490-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/30/2019] [Indexed: 11/17/2022] Open
Abstract
Pregnancy and lactation are characterized by dramatic changes in the endocrine system and brain in mammalian females. These changes, with stress before pregnancy, are potential risk factors for the development of postpartum depression (PPD). A valid animal model of PPD is needed to understand the neurobiological basis of the depressive state of females. To explore a mouse model of PPD, we first assessed anxiety-like and depression-related behaviors in nulliparous (virgin), nonlactating primiparous, and lactating primiparous females in four inbred strains of mice (C57BL/6J, C57BL/6JJcl, BALB/cAnNCrlCrlj, and BALB/cAJcl). Pups from the nonlactating female group were removed one day after parturition to examine the effects of physical interaction with pups on the postpartum behaviors. Second, we investigated the additional effects of prepregnancy stress (restraint stress for 6 h/day for 21 days) on postpartum behaviors in the BALB/cAJcl strain. We found that females of the two BALB/c substrains showed decreased locomotor activity and increased anxiety-like and depression-related behaviors compared with females of the two C57BL/6 substrains. Behavioral differences were also observed between the two substrains of each strain. Additionally, pregnancy- and lactation-dependent behavioral differences were found in some strains: lactating BALB/cAJcl females traveled shorter distance than the females of the other reproductive state groups, while nonlactating and lactating BALB/cAJcl and C57BL/6J females showed increased depression-related behavior compared with nulliparous females. Lactating BALB/cAJcl and C57BL/6JJcl females exhibited decreased sucrose preference or anhedonia-like behavior compared with nulliparous and nonlactating females, although these results did not reach statistical significance after correction for multiple testing. An additional independent experiment replicated the marked behavioral changes in lactating BALB/cAJcl females. Moreover, increased anxiety-like behavior was observed in lactating BALB/cAJcl females that experienced prepregnancy stress. These results suggest genetic contributions to the regulation of anxiety-like and depression-related behaviors in female mice. Furthermore, this study suggests that pregnancy and lactation cause decreased locomotor activity and increased depression-related behaviors, which was consistently found in our results, and that prepregnancy stress enhances anxiety-like behavior in the BALB/cAJcl strain. The inbred strain of female mice may be used as a potential model of PPD to further study the genetic and neurobiological mechanisms underlying the development of this disorder.
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| |
Collapse
|
6
|
Azizian H, Khaksari M, Asadi Karam G, Esmailidehaj M, Farhadi Z. Cardioprotective and anti-inflammatory effects of G-protein coupled receptor 30 (GPR30) on postmenopausal type 2 diabetic rats. Biomed Pharmacother 2018; 108:153-164. [PMID: 30218860 DOI: 10.1016/j.biopha.2018.09.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Diabetic cardiomyopathy is the most common chronic disease in postmenopausal women, but the mechanism(s) is unclear. G-protein coupled receptor 30 (GPR30) is one of the receptors that binds to 17-β Estradiol (E2). To date, there is little information on GPR30 and its expression in postmenopausal type 2 diabetes (T2D) in the heart. The current study hypothesized that GPR30 mediated cardioprotective effects of E2 in ovariectomized diabetic rats. Female ovariectomized diabetic rats were divided in nine groups: Control, Vehicle, Diabetes, Proestrous, Non-proestrous, E2, E2+Vehicle, E2+G15, and G1. G15 is a GPR30 antagonist, while G1 is an agonist of GPR30. T2D was induced by high fat diet and streptozotocin. E2, G1 and G15 were administrated for four weeks after establishment of T2D. Results showed that mean arterial pressure, fasting blood glucose and HOMA-IR in diabetic and vehicle groups were alleviated by E2 and G1, while salutary effects of E2 were inhibited by G15. Furthermore, E2 and G1 improved cardiac weight, atherogenic and cardiovascular risk indices; meanwhile G15 exacerbated cardiac weight and atherogenic indices. Also, diabetes increased cardiac levels of tumor necrosis factor-alpha and interleukin 6 and E2 only decreased interleukin 6. Significant decrement in the level of interleukin 10, and GPR30 protein were observed in diabetic group, whereas E2 and G1 increased the cardiac levels of interleukin 10, and GPR30 protein. Our study suggested that beneficial and anti-inflammatory effects of E2 on diabetic cardiomyopathy are probably mediated via non-genomic E2 pathways.
Collapse
Affiliation(s)
- Hossein Azizian
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research, and Physiology Research Centers, Kerman University of Medical Sciences, Kerman, Iran.
| | - Gholamreza Asadi Karam
- Department of Biochemistry, and Metabolism & Endocrinology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mansour Esmailidehaj
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeinab Farhadi
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Finnell JE, Wood SK. Putative Inflammatory Sensitive Mechanisms Underlying Risk or Resilience to Social Stress. Front Behav Neurosci 2018; 12:240. [PMID: 30416436 PMCID: PMC6212591 DOI: 10.3389/fnbeh.2018.00240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/25/2018] [Indexed: 12/30/2022] Open
Abstract
It has been well recognized that exposure to stress can lead to the onset of psychosocial disorders such as depression. While there are a number of antidepressant therapies currently available and despite producing immediate neurochemical alterations, they require weeks of continuous use in order to exhibit antidepressant efficacy. Moreover, up to 30% of patients do not respond to typical antidepressants, suggesting that our understanding of the pathophysiology underlying stress-induced depression is still limited. In recent years inflammation has become a major focus in the study of depression as several clinical and preclinical studies have demonstrated that peripheral and central inflammatory mediators, including interleukin (IL)-1β, are elevated in depressed patients. Moreover, it has been suggested that inflammation and particularly neuroinflammation may be a direct and immediate link in the emergence of stress-induced depression due to the broad neural and glial effects that are elicited by proinflammatory cytokines. Importantly, individual differences in inflammatory reactivity may further explain why certain individuals exhibit differing susceptibility to the consequences of stress. In this review article, we discuss sources of individual differences such as age, sex and coping mechanisms that are likely sources of distinct changes in stress-induced neuroimmune factors and highlight putative sources of exaggerated neuroinflammation in susceptible individuals. Furthermore, we review the current literature of specific neural and glial mechanisms that are regulated by stress and inflammation including mitochondrial function, oxidative stress and mechanisms of glutamate excitotoxicity. Taken together, the impetus for this review is to move towards a better understanding of mechanisms regulated by inflammatory cytokines and chemokines that are capable of contributing to the emergence of depressive-like behaviors in susceptible individuals.
Collapse
Affiliation(s)
- Julie E Finnell
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States.,WJB Dorn Veterans Administration Medical Center, Columbia, SC, United States
| |
Collapse
|
8
|
Finnell JE, Muniz BL, Padi AR, Lombard CM, Moffitt CM, Wood CS, Wilson LB, Reagan LP, Wilson MA, Wood SK. Essential Role of Ovarian Hormones in Susceptibility to the Consequences of Witnessing Social Defeat in Female Rats. Biol Psychiatry 2018; 84:372-382. [PMID: 29544773 PMCID: PMC6067999 DOI: 10.1016/j.biopsych.2018.01.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Women are at greater risk than men of developing depression and comorbid disorders such as cardiovascular disease. This enhanced risk begins at puberty and ends following menopause, suggesting a role for ovarian hormones in this sensitivity. Here we used a model of psychosocial witness stress in female rats to determine the stress-induced neurobiological adaptations that underlie stress susceptibility in an ovarian hormone-dependent manner. METHODS Intact or ovariectomized (OVX) female rats were exposed to five daily 15-minute witness-stress exposures. Witness-stress-evoked burying, behavioral despair, and anhedonia were measured. Cardiovascular telemetry was combined with plasma measurements of inflammation, epinephrine, and corticosterone as indices of cardiovascular dysfunction. Finally, levels of interleukin-1β and corticotropin-releasing factor were assessed in the central amygdala. RESULTS Witness stress produced anxiety-like burying, depressive-like anhedonia, and behavioral despair selectively in intact female rats, which was associated with enhanced sympathetic responses during stress, including increased blood pressure, heart rate, and arrhythmias. Moreover, intact female rats exhibited increases in 12-hour resting systolic pressure and heart rate and reductions in heart rate variability. Notably, OVX female rats remained resilient. Moreover, intact, but not OVX, female rats exposed to witness stress exhibited a sensitized cytokine and epinephrine response to stress and distinct increases in levels of corticotropin-releasing factor and interleukin-1β in the central amygdala. CONCLUSIONS Together these data suggest that ovarian hormones play a critical role in the behavioral, inflammatory, and cardiovascular susceptibility to social stress in female rats and reveal putative systems that are sensitized to stress in an ovarian hormone-dependent manner.
Collapse
Affiliation(s)
- Julie E. Finnell
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Brandon L. Muniz
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Akhila R. Padi
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Calliandra M. Lombard
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Casey M. Moffitt
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Christopher S. Wood
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - L. Britt Wilson
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Lawrence P. Reagan
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209,WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209
| | - Marlene A. Wilson
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209,WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209
| | - Susan K. Wood
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209,WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209
| |
Collapse
|
9
|
Heslin K, Coutellier L. Npas4 deficiency and prenatal stress interact to affect social recognition in mice. GENES BRAIN AND BEHAVIOR 2018; 17:e12448. [PMID: 29227584 DOI: 10.1111/gbb.12448] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/30/2017] [Accepted: 12/07/2017] [Indexed: 01/21/2023]
Abstract
Neurodevelopmental disorders such as autism spectrum disorders and schizophrenia have an expansive array of reported genetic and environmental contributing factors. However, none of these factors alone can account for a substantial proportion of cases of either disorder. Instead, many gene-by-environment interactions are responsible for neurodevelopmental disturbances that lead to these disorders. The current experiment used heterozygous knock-out mice to examine a potential interaction between 2 factors commonly linked to neurodevelopmental disorders and cognitive deficit: imbalanced excitatory/inhibitory signaling in the cortex and prenatal stress (PNS) exposure. Both of these factors have been linked to disrupt GABAergic signaling in the prefrontal cortex (PFC), a common feature of neurodevelopmental disorders. The neuronal PAS domain protein 4 (Npas4) gene is instrumental in regulation of the excitatory/inhibitory balance in the cortex and hippocampus in response to activation. Npas4 heterozygous and wild-type male and female mice were exposed to either PNS or standard gestation, then evaluated during adulthood in social and anxiety behavioral measures. The combination of PNS and Npas4 deficiency in male mice impaired social recognition. This behavioral deficit was associated with decreased parvalbumin and cFos protein expression in the infralimbic region of the PFC following social stimulation in Npas4 heterozygous males. In contrast, females displayed fewer behavioral effects and molecular changes in PFC in response to PNS and decreased Npas4.
Collapse
Affiliation(s)
- K Heslin
- Department of Psychology, The Ohio State University, Columbus, Ohio
| | - L Coutellier
- Department of Psychology, The Ohio State University, Columbus, Ohio.,Department of Neuroscience, The Ohio State University, Columbus, Ohio
| |
Collapse
|
10
|
Tanaka Y, Ishitobi Y, Maruyama Y, Kawano A, Ando T, Imanaga J, Okamoto S, Kanehisa M, Higuma H, Ninomiya T, Tsuru J, Hanada H, Isogawa K, Akiyoshi J. Salivary alpha-amylase and cortisol responsiveness following electrical stimulation stress in panic disorder patients. Neurosci Res 2012; 73:80-4. [DOI: 10.1016/j.neures.2012.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 11/26/2022]
|
11
|
Thanos P, Delis F, Rosko L, Volkow ND. Passive Response to Stress in Adolescent Female and Adult Male Mice after Intermittent Nicotine Exposure in Adolescence. ACTA ACUST UNITED AC 2012; Suppl 6:007. [PMID: 24619539 DOI: 10.4172/2155-6105.s6-007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Smoking is frequently co-morbid with depression. Although it is recognized that depression increases the risk for smoking, it is unclear if early smoking exposure may increase the risk for depression. To test this possibility we assessed the effects of adolescent nicotine exposure on the Forced Swim Test (FST), which is used as a measure of passive coping, and depressive-like behavior in rodents, and on the open field test (OFT), which is used as a measure of locomotion and exploratory behavior. Male and female mice received daily saline or nicotine (0.3 or 0.6 mg/kg) injections from postnatal day (PD) 30 to PD 44. FST and OFT were performed either 1 or 30 days after the last injection (PD 45 and PD 74, respectively). In females, treatment with 0.3 mg/kg nicotine lead to increased FST immobility (64%) and decreased OFT locomotor activity (12%) one day following the last nicotine injection (PD 45); while no effects were observed in adulthood (PD 74). In contrast, on PD45, nicotine treatment did not change the male FST immobility but lead to lower OFT locomotor activity (0.6 mg/kg, 10%). In adulthood (PD 74), both nicotine doses lead to higher FST immobility (87%) in males while 0.6 mg/kg nicotine to lower OFT locomotor activity (13%). The results (i) identify females as more vulnerable to the immediate withdrawal that follows nicotine discontinuation in adolescence and (ii) suggest that adolescent nicotine exposure may enhance the risk for passive response towards unavoidable stress in adult males.
Collapse
Affiliation(s)
- Panayotis Thanos
- Laboratory of Neuroimaging, NIAAA, NIH, Department of Health and Human Services, Bethesda, MD, USA ; Behavioral Neuropharmacology & Neuroimaging Lab, Department of Medicine, Brookhaven National Laboratory, Upton, NY, USA
| | - Foteini Delis
- Behavioral Neuropharmacology & Neuroimaging Lab, Department of Medicine, Brookhaven National Laboratory, Upton, NY, USA
| | - Lauren Rosko
- Behavioral Neuropharmacology & Neuroimaging Lab, Department of Medicine, Brookhaven National Laboratory, Upton, NY, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, NIAAA, NIH, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
12
|
Ashabi G, Oryan S, Ahmadi R, Valizadegan F. The effects of hippocampal opioidergic and septal GABAergic system interactions on anxiety-like behavior in rats. Life Sci 2011; 89:821-6. [DOI: 10.1016/j.lfs.2011.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 09/03/2011] [Accepted: 09/05/2011] [Indexed: 11/16/2022]
|
13
|
Koonce CJ, Walf AA, Frye CA. Type 1 5α-reductase may be required for estrous cycle changes in affective behaviors of female mice. Behav Brain Res 2011; 226:376-80. [PMID: 21946309 DOI: 10.1016/j.bbr.2011.09.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 01/16/2023]
Abstract
There are estrous cycle differences in affective behaviors of rodents that are generally attributed to cyclic variations in estradiol, progesterone (P) and its metabolites. A question is the role of the steroid metabolism enzyme, 5α-reductase, for these estrous cycle differences. To address the requirement of 5α-reductase, estrous cycle variations in the behavior of wildtype mice and their littermates that are deficient in the 5α-reductase type 1 enzyme (5αRKO mice) were examined. The hypothesis was that if some of the estrous cycle differences in exploratory (open field) and anxiety (elevated plus maze) are due to P's 5α-reduction to 5α-pregnan-3α-ol-20-one (3α,5α-THP), then wildtype mice will have estrous cycle differences in the expression of these behaviors, but 5αRKO mice will not. Mice were tested in these tasks and then had plasma and brains collected so that steroid levels (estradiol, P, 3α,5α-THP, corticosterone) could be measured in these tissues. Results supported this hypothesis. There were estrous cycle differences among wildtype, but not 5αRKO, mice. Proestrous wildtype mice made more central entries in the open field and spent more time on the open arms of the plus maze, coincident with higher 3α,5α-THP levels in plasma and brain regions important for these behaviors, such as the hippocampus and cortex, compared to their diestrous counterparts. Variability in the open field and elevated plus maze could be explained by circulating and hippocampus levels of 3α,5α-THP, respectively. Thus, 5α-reductase may be required for the estrous cycle variations in affective behavior and 3α,5α-THP levels of female mice.
Collapse
Affiliation(s)
- Carolyn J Koonce
- Dept Psychology, The University at Albany-SUNY, Albany, NY 12222, USA
| | | | | |
Collapse
|
14
|
Walf AA, Frye CA. Estradiol reduces anxiety- and depression-like behavior of aged female mice. Physiol Behav 2009; 99:169-74. [PMID: 19804793 DOI: 10.1016/j.physbeh.2009.09.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 08/29/2009] [Accepted: 09/25/2009] [Indexed: 12/21/2022]
Abstract
Beneficial effects of the ovarian steroid, 17beta-estradiol (E(2)), for affective behavior have been reported in young individuals, but less is known about the effects of E(2) among older individuals, and the capacity of older individuals to respond to E(2) following its decline. In the present study, the effects of acute E(2) administration to aged mice for anxiety-like and depression-like behaviors were investigated. Intact female C57BL/6 mice (N=18) that were approximately 24 months old were administered vehicle (sesame oil, n=9) or E(2) (10 microg, n=9) subcutaneously 1h prior to behavioral testing. Mice were tested for anxiety-like behavior (open field, elevated plus maze, mirror chamber, light-dark transition task, Vogel conflict task) and depression-like behavior (forced swim task). To assess the role of general motor behavior and coordination in these aged mice, performance in an activity monitor and rotarod task, and total entries made in tasks (open field, elevated plus maze, light-dark transition task) were determined. Mice administered E(2), compared to vehicle, demonstrated anti-anxiety behavior in the open field, mirror chamber, and light-dark transition task, and anti-depressive-like behavior in the forced swim task. E(2) also tended to have anti-anxiety effects in the elevated plus maze and Vogel task compared to vehicle administration, but these effects did not reach statistical significance. E(2) did not alter motor behavior and/or coordination in the activity monitor, open field, or rotarod tasks. Thus, an acute E(2) regimen produced specific anti-anxiety and anti-depressant effects, independent of effects on motor behavior, when administered to aged female C57BL/6 mice.
Collapse
Affiliation(s)
- Alicia A Walf
- Department of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA
| | | |
Collapse
|
15
|
Meziane H, Ouagazzal AM, Aubert L, Wietrzych M, Krezel W. Estrous cycle effects on behavior of C57BL/6J and BALB/cByJ female mice: implications for phenotyping strategies. GENES BRAIN AND BEHAVIOR 2007; 6:192-200. [PMID: 16827921 DOI: 10.1111/j.1601-183x.2006.00249.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Systematic behavioral phenotyping of genetically modified mice is a powerful method with which to identify the molecular factors implicated in control of animal behavior, with potential relevance for research into neuropsychiatric disorders. A number of such disorders display sex differences, yet the use of female mice in phenotyping strategies has been a rare practice because of the potential variability related to the estrous cycle. We have now investigated the behavioral effects of the estrous cycle in a battery of behavioral tests in C57BL/6J and BALB/cByJ inbred strains of mice. Whereas the performance of BALB/cByJ female mice varied significantly depending on the phase of the estrous cycle in the open field, tail flick and tail suspension tests, the behavior of C57BL/6J females, with the exception of the tail suspension performance, remained stable across all four phases of the estrous cycle in all of the tests including open field, rotarod, startle reflex and pre-pulse inhibition, tail flick and hot plate. We also found that irrespective of the estrous cycle, the behavior of C57BL/6J females was different from that of BALB/cByJ groups in all of the behavioral paradigms. Such strain differences were previously reported in male comparisons, suggesting that the same inter-group differences can be revealed by studying female or male mice. In addition, strain differences were evident even for behaviors that were susceptible to estrous cycle modulations, although their detection might necessitate the constitution of large experimental groups.
Collapse
Affiliation(s)
- H Meziane
- Institut Clinique de la Souris, CNRS/INSERM/ULP, CU de Strasbourg, France
| | | | | | | | | |
Collapse
|
16
|
Romero RD, Chen WJA. Gender-related response in open-field activity following developmental nicotine exposure in rats. Pharmacol Biochem Behav 2005; 78:675-81. [PMID: 15301921 DOI: 10.1016/j.pbb.2004.04.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 04/20/2004] [Accepted: 04/21/2004] [Indexed: 11/30/2022]
Abstract
Smoking during pregnancy may lead to low birthweight and behavioral alterations in the offspring. In this study, the effects of developmental nicotine exposure on the somatic growth of the offspring and the behavioral performance in the open-field test were examined. Sprague-Dawley female rats were implanted with nicotine (35 mg for 21-day time release; NIC 35) or placebo pellets on gestational day (GD) 8 (postblastocyst implantation). A normal control group with no pellet implant was also included. There was a significantly higher maternal weight gain in the placebo group possibly due to a larger litter size. However, there were no significant differences in body weights among all three treatment groups for male and female offspring. The amount of activity, measured by the total number of crossings in the open-field test, indicated a gender difference in baseline level and pattern of ambulatory activity, with less activity (lower number of crossings) in male offspring and an increase in the activity of the female offspring as a function of testing day. The increase in the ambulatory activity of the female offspring was observed in the placebo and normal, but not the NIC 35 group suggesting that developmental nicotine exposure interferes with open-field activity, and this behavioral alteration is gender related.
Collapse
Affiliation(s)
- Roland D Romero
- Department of Human Anatomy and Medical Neurobiology, College of Medicine, The Texas A&M University System Health Science Center, 142E Reynolds Medical Building, College Station, TX 77843-1114, USA
| | | |
Collapse
|
17
|
Frye CA, Walf AA, Rhodes ME, Harney JP. Progesterone enhances motor, anxiolytic, analgesic, and antidepressive behavior of wild-type mice, but not those deficient in type 1 5 alpha-reductase. Brain Res 2004; 1004:116-24. [PMID: 15033426 DOI: 10.1016/j.brainres.2004.01.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2004] [Indexed: 11/21/2022]
Abstract
The importance of progesterone's (P(4)) metabolism by the 5 alpha-reductase type I enzyme was examined in homozygous and heterozygous 5 alpha-reductase type I knockout mice and their wild-type siblings. P(4) (1.0 mg) or vehicle was administered and effects on motor, anxiety, nociceptive, and depression behavior were observed. After testing, whole-brain progesterone and 5 alpha-pregnan-3 alpha-ol-20-one (3 alpha,5 alpha-THP) levels were determined by radioimmunoassay. Motor behavior in the horizontal crossing and open field tasks of 5 alpha-reductase-deficient mice administered P(4) was similar to vehicle control mice and significantly reduced compared to wild-type mice administered P(4). In the open field, 5 alpha-reductase-deficient mice administered P(4) had a similar number of central entries as did vehicle control mice, both were lower than central entries of P(4)-administered wild-type mice. However, in the plus maze, P(4) to 5 alpha-reductase-deficient or wild-type mice significantly increased open arm activity compared to vehicle-administered control mice. P(4) to wild-type, but not 5 alpha-reductase-deficient mice, significantly increased latencies to lick front and back paws in response to radiant heat stimuli compared to vehicle administration to control mice. In the forced swim test, 5 alpha-reductase-deficient mice administered P(4) were similar to vehicle control mice and the latency to immobility was significantly decreased, and the duration of immobility was significantly increased, compared to wild-type mice administered P(4). Thus, these data suggest metabolism by the 5 alpha-reductase type I enzyme may mitigate P(4)'s effects on some tasks of motor, anxiety, nociception, and depression behavior.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology and Center for Neurobiology, The University at Albany-SUNY, 1400 Washington Avenue, Albany, NY 12222, USA.
| | | | | | | |
Collapse
|
18
|
Mogil JS, Chesler EJ, Wilson SG, Juraska JM, Sternberg WF. Sex differences in thermal nociception and morphine antinociception in rodents depend on genotype. Neurosci Biobehav Rev 2000; 24:375-89. [PMID: 10781697 DOI: 10.1016/s0149-7634(00)00015-4] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It has been appreciated for some time that the sexes can differ in their sensitivity to pain and its inhibition. Both the human and rodent literatures remain quite contentious, with many investigators failing to observe sex differences that others document clearly. Recent data from our laboratory have pointed to an interaction between sex and genotype in rodents, such that sex differences are observed in some strains but not others. However, these studies employed inbred mouse strains and are thus not directly relevant to existing data. We presently examined whether the observation of statistically significant sex differences in nociception and morphine antinociception might depend on the particular outbred rodent population chosen for study. Rats of both sexes and three common outbred strains were obtained from three suppliers (Long Evans, Simonsen; Sprague Dawley, Harlan; Wistar Kyoto, Taconic) and tested for nociceptive sensitivity on the 49 degrees C tail-withdrawal assay, and antinociception following morphine (1-10mg/kg, i.p.). In further studies, three outbred populations of mice (CD-1, Harlan; Swiss Webster, Harlan; Swiss Webster, Simonsen) were bred in our vivarium for several generations and tested for tail-withdrawal sensitivity and morphine antinociception (1-20male, and no significant difference. In a separate study in which the estrous cycle was tracked in female mice, we found evidence for an interaction between genotype and estrous phase relevant to morphine antinociception. However, estrous cyclicity did not explain the observed sex differences. These data are discussed with respect to the existing sex difference and pain literature, and also as they pertain to future investigations of these phenomena.
Collapse
Affiliation(s)
- J S Mogil
- Department of Psychology and Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.
| | | | | | | | | |
Collapse
|
19
|
Kerr LR, Wilkinson DA, Emerman JT, Weinberg J. Interactive effects of psychosocial stressors and gender on mouse mammary tumor growth. Physiol Behav 1999; 66:277-84. [PMID: 10336154 DOI: 10.1016/s0031-9384(98)00296-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have previously demonstrated that social housing condition significantly affects the growth rate of the androgen-responsive Shionogi mouse mammary carcinoma (AR SC115) in male mice. The present study examined the effects of social housing condition and acute daily exposure to a novel environment on the growth rate of an androgen-independent variant of the AR SC115 carcinoma, designated SC115V, in male and female mice. Immediately following tumor cell injection, male and female mice that were reared as individuals (I) or in groups (G) of the same sex were rehoused either from individual to same-sex groups (IG) or from group to individual (GI), or remained in their group housing condition (GG). Approximately half the mice in each housing condition were subjected to acute daily exposure to novel environments (novelty stress), a treatment shown previously to increase the significant difference in tumor growth rates between male mice in the IG and GI housing conditions. The remaining mice were left undisturbed (no novelty stress). In the presence of acute daily novelty stress, the growth rate of the SC115V tumor was significantly increased in GI compared to IG males. However, no significant differences in SC115V tumor growth rates among nonstressed GI, IG, or GG males were observed. For females, in contrast to males, acute daily novelty stress significantly decreased tumor growth in GI compared to IG mice, whereas under nonstressed conditions, tumor growth rate was significantly increased in GI compared to IG females. Neither housing condition nor novelty stress altered estrous cyclicity, nor did the stage of the estrous cycle at the time of tumor cell injection influence tumor growth rates. These findings suggest that social housing condition and novelty stress may interact to produce differential effects on the growth rate of the SC115V tumor in male and female mice.
Collapse
Affiliation(s)
- L R Kerr
- Department of Anatomy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
20
|
Corpéchot C, Collins BE, Carey MP, Tsouros A, Robel P, Fry JP. Brain neurosteroids during the mouse oestrous cycle. Brain Res 1997; 766:276-80. [PMID: 9359616 DOI: 10.1016/s0006-8993(97)00749-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Concentrations of the neuroactive steroid 3alpha,5alpha-tetrahydroprogesterone (TH PROG or allopregnanolone) and its precursors progesterone (PROG) and 5alpha-dihydroprogesterone (DH PROG) have been measured in mouse brain throughout the oestrous cycle. Plasma PROG concentrations were also measured for comparison. At each stage, circadian fluctuations were found in the concentrations of brain PROG and its metabolites. Such fluctuations were greater than those attributable to any particular stage of the oestrous cycle. Over the entire cycle, a significant correlation was found between brain TH PROG (or DH PROG) and PROG concentrations but not between brain TH PROG (or DH PROG) and plasma PROG concentrations. There was also no correlation between endogenous TH PROG (or DH PROG) and activity of the 5alpha-reductase converting 3H-PROG to 3H-DH PROG in whole brain homogenates. Concentrations of another neuroactive steroid, pregnenolone sulphate (PREG S), in the brain during the oestrous cycle were in phase with plasma PROG but not brain PROG concentrations. Our results indicate that circadian and ovarian influences on the concentrations of PROG and its metabolite TH PROG in female whole mouse brain are caused predominantly by changes in the supply of PROG from within the tissue, whatever the contribution of peripheral sources.
Collapse
|
21
|
Béatrice S, Kvist M, Selander RK. Open-field thigmotaxis during various phases of the reproductive cycle. Scand J Psychol 1994; 35:220-9. [PMID: 7939484 DOI: 10.1111/j.1467-9450.1994.tb00946.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Three experiments were conducted on female Swiss albino mice in order to determine whether open-field (OF) ambulation and thigmotaxis (wall-seeking) alter both as functions of reproductive phases such as estrus, mating, gestation, partus, lactation, weaning, as well as of presence, absence and OF location of a newborn pup. The results revealed increased thigmotaxis as an effect of estrus (p < 0.001). From mating to one month postpartum a growing tendency towards maternal occupation of centre OF partitions was observed. Maternal ambulation reached its peak two days before partus but dropped to its lowest level during the lactation period at which time the mice were the least wall-seeking. Ambulation was enhanced (p < 0.001) in the presence of a pup regardless of OF starting point and the pup's placement. However, when the mouse dam was initially placed together with the pup by the OF wall, she hardly penetrated centre units at all.
Collapse
Affiliation(s)
- S Béatrice
- Department of Psychology, Abo Akademi University, Finland
| | | | | |
Collapse
|
22
|
Leer MN, Bradbury A, Maloney JC, Stewart CN. Elevated shock threshold in sexually receptive female rats. Physiol Behav 1988; 42:617-20. [PMID: 3413238 DOI: 10.1016/0031-9384(88)90166-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previous studies have found cyclic differences in wheel running, extinction of conditioned avoidance responses, and open field behavior as a function of the estrous cycle in rodents. The purpose of this study was to investigate possible sensory changes associated with estrus in rodents. Female rats were monitored for behavioral and physiological changes related to the estrous cycle. Using the method of constant stimuli and foot shock, jump thresholds were determined during the estrous cycle stages of sexual receptivity (proestrus) and non-receptivity (metestrus). A significantly higher jump threshold was demonstrated by animals during proestrus as compared to metestrus. Possible explanations for the failure of previous investigators to find attenuated sensitivity as a function of the estrous cycle are discussed.
Collapse
Affiliation(s)
- M N Leer
- Whitely Psychology Laboratories, Franklin & Marshall College, Lancaster, PA 17604-3003
| | | | | | | |
Collapse
|