1
|
Andreatta T, Armini RS, Salaroli R, Vieira GM, Tavares CVC, Sanches H, Aguiar RM, Campos FV, Schenberg LC. Role of L- and T-type voltage-dependent calcium channels in the hierarchical organization of defensive responses to electrical stimulation of the rat dorsolateral periaqueductal gray. Neuropharmacology 2024; 258:110059. [PMID: 38992791 DOI: 10.1016/j.neuropharm.2024.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Stimulation of the dorsal half of the rat periaqueductal gray (DPAG) with 60-Hz pulses of increasing intensity, 30-μA pulses of increasing frequency, or increasing doses of an excitatory amino acid elicits sequential defensive responses of exophthalmia, immobility, trotting, galloping, and jumping. These responses may be controlled by voltage-gated calcium channel-specific firing patterns. Indeed, a previous study showed that microinjection of the DPAG with 15 nmol of verapamil, a putative blocker of L-type calcium channels, attenuated all defensive responses to electrical stimulation at the same site as the injection. Accordingly, here we investigated the effects of microinjection of lower doses (0.7 and 7 nmol) of both verapamil and mibefradil, a preferential blocker of T-type calcium channels, on DPAG-evoked defensive behaviors of the male rat. Behaviors were recorded either 24 h before or 10 min, 24 h, and 48 h after microinjection. Effects were analyzed by both threshold logistic analysis and repeated measures analysis of variance for treatment by session interactions. Data showed that the electrodes were all located within the dorsolateral PAG. Compared to the effects of saline, verapamil significantly attenuated exophthalmia, immobility, and trotting. Mibefradil significantly attenuated exophthalmia and marginally attenuated immobility while facilitating trotting. While galloping was not attenuated by either antagonist, jumping was unexpectedly attenuated by 0.7 nmol verapamil only. These results suggest that T-type calcium channels are involved in the low-threshold freezing responses of exophthalmia and immobility, whereas L-type calcium channels are involved in the trotting response that precedes the full-fledged escape responses of galloping and jumping.
Collapse
Affiliation(s)
- Tatiani Andreatta
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Rubia Souza Armini
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Ruam Salaroli
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Guilherme Machado Vieira
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | | | - Hugo Sanches
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Rafael Moraes Aguiar
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil; Department of Biochemistry and Immunology, Health Science Center, Federal University of Minas Gerais, Brazil.
| | - Fabiana Vasconcelos Campos
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil; Department of Morphology, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Luiz Carlos Schenberg
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| |
Collapse
|
2
|
Palkovic B, Marchenko V, Zuperku EJ, Stuth EAE, Stucke AG. Multi-Level Regulation of Opioid-Induced Respiratory Depression. Physiology (Bethesda) 2021; 35:391-404. [PMID: 33052772 DOI: 10.1152/physiol.00015.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Opioids depress minute ventilation primarily by reducing respiratory rate. This results from direct effects on the preBötzinger Complex as well as from depression of the Parabrachial/Kölliker-Fuse Complex, which provides excitatory drive to preBötzinger Complex neurons mediating respiratory phase-switch. Opioids also depress awake drive from the forebrain and chemodrive.
Collapse
Affiliation(s)
- Barbara Palkovic
- Medical College of Wisconsin, Milwaukee, Wisconsin.,Faculty of Medicine, University of Osijek, Osijek, Croatia
| | | | - Edward J Zuperku
- Medical College of Wisconsin, Milwaukee, Wisconsin.,Zablocki VA Medical Center, Milwaukee, Wisconsin
| | - Eckehard A E Stuth
- Medical College of Wisconsin, Milwaukee, Wisconsin.,Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Astrid G Stucke
- Medical College of Wisconsin, Milwaukee, Wisconsin.,Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
3
|
Ghali MGZ. Retracted: Rubral modulation of breathing. Exp Physiol 2019; 104:1595-1604. [DOI: 10.1113/ep087720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/12/2019] [Indexed: 11/08/2022]
|
4
|
Select panicogenic drugs and stimuli induce consistent increases in tail skin flushes and decreases in core body temperature. Behav Pharmacol 2018; 30:376-382. [PMID: 30480550 DOI: 10.1097/fbp.0000000000000440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Panic attacks (PAs) are episodes of intense fear or discomfort that are accompanied by a variety of both psychological and somatic symptoms. Panic induction in preclinical models (e.g. rats) has largely been assayed through flight and avoidance behavioral tests and cardiorespiratory activity. Yet, the literature pertaining to PAs shows that thermal sensations (hot flushes/heat sensations and chills) are also a common symptom during PAs in humans. Considering that temperature alterations are objectively measurable in rodents, we hypothesized that select panicogenic drugs and stimuli induce consistent changes in thermoregulation related to hot flushes and chills. Specifically, we challenged male rats with intraperitoneal injections of the GABAergic inverse agonist FG-7142; the α2 adrenoceptor antagonist yohimbine; the serotonin agonist D-fenfluramine, and 20% CO2 (an interoceptive homeostatic challenge). We assayed core body temperature and tail skin temperature using implanted radiotelemetry probes and tail thermistors/thermal imaging camera, respectively, and found that all challenges elicited rapid, high-amplitude (~7-9°C) increase in tail skin temperature and delayed decreases (~1-3°C) in core body temperature. We propose that thermal sensations such as these may be an additional indicator of a panic response in rodents and humans, as these panicogenic compounds or stimuli are known to precipitate PAs in persons with panic disorder.
Collapse
|
5
|
Endocannabinoid signaling mechanisms in the substantia nigra pars reticulata modulate GABAergic nigrotectal pathways in mice threatened by urutu-cruzeiro venomous pit viper. Neuroscience 2015; 303:503-14. [DOI: 10.1016/j.neuroscience.2015.06.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/02/2015] [Accepted: 06/23/2015] [Indexed: 01/06/2023]
|
6
|
Translational approach to studying panic disorder in rats: hits and misses. Neurosci Biobehav Rev 2015; 46 Pt 3:472-96. [PMID: 25316571 DOI: 10.1016/j.neubiorev.2014.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/30/2022]
Abstract
Panic disorder (PD) patients are specifically sensitive to 5–7% carbon dioxide. Another startling feature of clinical panic is the counterintuitive lack of increments in ‘stress hormones’. PD is also more frequent in women and highly comorbid with childhood separation anxiety (CSA). On the other hand, increasing evidence suggests that panic is mediated at dorsal periaqueductal grey matter (DPAG). In line with prior studies showing that DPAG-evoked panic-like behaviours are attenuated by clinically-effective treatments with panicolytics, we show here that (i) the DPAG harbors a hypoxia-sensitive alarm system, which is activated by hypoxia and potentiated by hypercapnia, (ii) the DPAG suffocation alarm system is inhibited by clinically-effective treatments with panicolytics, (iii) DPAG stimulations do not increase stress hormones in the absence of physical exertion, (iv) DPAG-evoked panic-like behaviours are facilitated in neonatally-isolated adult rats, a model of CSA, and (v) DPAG-evoked responses are enhanced in the late diestrus of female rats. Data are consistent with the DPAG mediation of both respiratory and non-respiratory types of panic attacks.
Collapse
|
7
|
Almada RC, Coimbra NC. Recruitment of striatonigral disinhibitory and nigrotectal inhibitory GABAergic pathways during the organization of defensive behavior by mice in a dangerous environment with the venomous snakeBothrops alternatus(Reptilia,Viperidae). Synapse 2015; 69:299-313. [DOI: 10.1002/syn.21814] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/02/2015] [Accepted: 02/24/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Rafael Carvalho Almada
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology; Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP); Ribeirão Preto São Paulo 14049-900 Brazil
- Institute of Neuroscience and Behaviour (INeC); Monte Alegre, Ribeirão Preto São Paulo 14050-220 Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology; Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP); Ribeirão Preto São Paulo 14049-900 Brazil
- Institute of Neuroscience and Behaviour (INeC); Monte Alegre, Ribeirão Preto São Paulo 14050-220 Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE); Ribeirão Preto Medical School of the University of São Paulo; Ribeirão Preto São Paulo 14049-900 Brazil
| |
Collapse
|
8
|
Saito VM, Brandão ML. The benzodiazepine midazolam acts on the expression of the defensive behavior, but not on the processing of aversive information, produced by exposure to the elevated plus maze and electrical stimulations applied to the inferior colliculus of rats. Neuropharmacology 2015; 88:180-6. [DOI: 10.1016/j.neuropharm.2014.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/01/2014] [Accepted: 07/21/2014] [Indexed: 10/24/2022]
|
9
|
Lovick TA. Sex determinants of experimental panic attacks. Neurosci Biobehav Rev 2014; 46 Pt 3:465-71. [DOI: 10.1016/j.neubiorev.2014.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/15/2014] [Accepted: 03/01/2014] [Indexed: 12/16/2022]
|
10
|
Takahashi LK. Olfactory systems and neural circuits that modulate predator odor fear. Front Behav Neurosci 2014; 8:72. [PMID: 24653685 PMCID: PMC3949219 DOI: 10.3389/fnbeh.2014.00072] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 02/20/2014] [Indexed: 11/13/2022] Open
Abstract
When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate fear.
Collapse
Affiliation(s)
- Lorey K Takahashi
- Department of Psychology, University of Hawaii at Manoa Honolulu, HI, USA
| |
Collapse
|
11
|
An animal model of panic vulnerability with chronic disinhibition of the dorsomedial/perifornical hypothalamus. Physiol Behav 2012; 107:686-98. [PMID: 22484112 DOI: 10.1016/j.physbeh.2012.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 01/12/2023]
Abstract
Panic disorder (PD) is a severe anxiety disorder characterized by susceptibility to induction of panic attacks by subthreshold interoceptive stimuli such as sodium lactate infusions or hypercapnia induction. Here we review a model of panic vulnerability in rats involving chronic inhibition of GABAergic tone in the dorsomedial/perifornical hypothalamic (DMH/PeF) region that produces enhanced anxiety and freezing responses in fearful situations, as well as a vulnerability to displaying acute panic-like increases in cardioexcitation, respiration activity and "flight" associated behavior following subthreshold interoceptive stimuli that do not elicit panic responses in control rats. This model of panic vulnerability was developed over 15 years ago and has provided an excellent preclinical model with robust face, predictive and construct validity. The model recapitulates many of the phenotypic features of panic attacks associated with human panic disorder (face validity) including greater sensitivity to panicogenic stimuli demonstrated by sudden onset of anxiety and autonomic activation following an administration of a sub-threshold (i.e., do not usually induce panic in healthy subjects) stimulus such as sodium lactate, CO(2), or yohimbine. The construct validity is supported by several key findings; DMH/PeF neurons regulate behavioral and autonomic components of a normal adaptive panic response, as well as being implicated in eliciting panic-like responses in humans. Additionally, patients with PD have deficits in central GABA activity and pharmacological restoration of central GABA activity prevents panic attacks, consistent with this model. The model's predictive validity is demonstrated by not only showing panic responses to several panic-inducing agents that elicit panic in patients with PD, but also by the positive therapeutic responses to clinically used agents such as alprazolam and antidepressants that attenuate panic attacks in patients. More importantly, this model has been utilized to discover novel drugs such as group II metabotropic glutamate agonists and a new class of translocator protein enhancers of GABA, both of which subsequently showed anti-panic properties in clinical trials. All of these data suggest that this preparation provides a strong preclinical model of some forms of human panic disorders.
Collapse
|
12
|
Dean C. Cannabinoid and GABA modulation of sympathetic nerve activity and blood pressure in the dorsal periaqueductal gray of the rat. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1765-72. [PMID: 21940402 DOI: 10.1152/ajpregu.00398.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sympathoexcitation and increased blood pressure evoked by central networks integrating defensive behavior are fundamental to the acute stress response. A balance between excitatory glutamatergic and inhibitory GABAergic neurotransmission in the dorsal periaqueductal gray (dPAG) results in a tonic level of activity in the alerting system. Neuromodulators such as endocannabinoids have been shown to influence the sympathoexcitatory and pressor components of acute stress in the dPAG, exemplified by the defense response as a model, but the mechanism of integration remains unknown. The present study examines the role of GABA and its interaction with endocannabinoids in modulating sympathetic nerve activity and blood pressure related to the defense response. Microinjection of the broad-spectrum excitatory amino acid dl-homocysteic acid (DLH) identified sites of the defense pathway in the dPAG from which an increase in renal sympathetic nerve activity and blood pressure could be evoked, and subsequent microinjections were made at the same site through a multibarrelled micropipette. Blockade of GABAA receptors or microinjection of the cannabinoid 1 receptor agonist anandamide elicited a renal sympathoexcitation and pressor response. Prior microinjection of the GABAA receptor antagonist gabazine attenuated the sympathoexcitation and pressor response associated with anandamide microinjection. In contrast, the sympathetic response to DLH was enhanced by GABAA receptor blockade. These data demonstrate that sympathoexcitatory neurons in the dPAG are under tonic inhibition by GABA and that endocannabinoids modulate this GABAergic neurotransmission to help regulate components of the defense response.
Collapse
Affiliation(s)
- C Dean
- Department of Anesthesiology, Medical College of Wisconsin and Department of Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295, USA.
| |
Collapse
|
13
|
Progesterone withdrawal-evoked plasticity of neural function in the female periaqueductal grey matter. Neural Plast 2008; 2009:730902. [PMID: 19096515 PMCID: PMC2593562 DOI: 10.1155/2009/730902] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022] Open
Abstract
Cyclical changes in production of neuroactive steroids during the oestrous cycle induce significant changes in
GABAA receptor expression in female rats. In the periaqueductal grey (PAG) matter, upregulation of α4β1δ GABAA receptors occurs as progesterone levels fall during late dioestrus (LD) or during withdrawal from an exogenous progesterone dosing regime. The new receptors are likely to be extrasynaptically located on the GABAergic interneurone population and to mediate tonic currents. Electrophysiological studies showed that when α4β1δ GABAA receptor expression was increased, the excitability of the output neurones in the PAG increased, due to a decrease in the level of ongoing inhibitory tone from the GABAergic interneurones. The functional consequences in terms of nociceptive processing were investigated in conscious rats. Baseline tail flick latencies were similar in all rats. However, acute exposure to mild vibration stress evoked hyperalgesia in rats in LD and after progesterone withdrawal, in line with the upregulation of α4β1δ GABAA receptor expression.
Collapse
|
14
|
GABA in the female brain — Oestrous cycle-related changes in GABAergic function in the periaqueductal grey matter. Pharmacol Biochem Behav 2008; 90:43-50. [DOI: 10.1016/j.pbb.2007.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 11/23/2007] [Accepted: 12/03/2007] [Indexed: 11/22/2022]
|
15
|
Brack KE, Lovick TA. Neuronal excitability in the periaqueductal grey matter during the estrous cycle in female Wistar rats. Neuroscience 2006; 144:325-35. [PMID: 17045752 DOI: 10.1016/j.neuroscience.2006.08.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 08/24/2006] [Accepted: 08/29/2006] [Indexed: 11/25/2022]
Abstract
Extracellular recordings were made from output neurons in the dorsal half of the periaqueductal gray matter (dPAG) in urethane-anesthetized female Wistar rats. All the neurons were quiescent. A basal level of firing was therefore induced by continuous iontophoretic application of D,L-homocysteic acid (DLH). In the presence of the GABA(A) receptor antagonist bicuculline methiodide (BIC 0-30 nA) the DLH-induced firing increased further, revealing the presence of ongoing GABAergic inhibitory tone on the recorded neurons. The BIC-induced increase in firing rate was significantly greater in neurons recorded during estrus (Est) and late diestrus (LD) compared with proestrus (Pro) and early diestrus (ED) suggesting that GABAergic tone was lower in Est and LD. I.v. injection of the panicogenic cholecystokinin (CCK)(B) receptor agonist pentagastrin (PG, 40 microg kg(-1)) produced an increase in firing rate in 12/17 (70%) of neurons tested in the dPAG. Iontophoretic application of PG (10-30 nA) also produced a current-related increase in firing rate in 73.6% of the neurons tested. The excitatory response was reduced during application of the selective CCK(B) receptor antagonist beta-[2-([2-(8-azaspiro[4.5]dec-8-ylcarbonyl)-4,6-dimethylphenyl]amino)-2-oxoethyl]-(R)-napthalenepropanoic acid (CR2945) (60 nA, n=6). The PG-evoked increase in firing rate was significantly greater in neurons recorded during Est and LD compared with during Pro and ED. Juxtacellular labeling with neurobiotin in eight neurons revealed multipolar cells 12-44 microm diameter with up to six primary dendrites. In three of eight neurons, a filled axon was present and coursed without branching toward the perimeter of the periaqueductal gray matter (PAG). The estrous cycle-related change in responsiveness to BIC and PG suggests that the panic circuitry in the PAG may become more responsive to panicogenic agents during estrus and late diestrus as a consequence of a decrease in the intrinsic level of inhibitory GABAergic tone. The findings may have implications for understanding the neural processes that underlie the development of premenstrual dysphorias in women.
Collapse
Affiliation(s)
- K E Brack
- Department of Physiology, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
16
|
Lovick TA. Plasticity of GABAA receptor subunit expression during the oestrous cycle of the rat: implications for premenstrual syndrome in women. Exp Physiol 2006; 91:655-60. [PMID: 16740643 DOI: 10.1113/expphysiol.2005.032342] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many women experience psychological changes during the luteal phase of their menstrual cycle. The late luteal (premenstrual) phase, when symptoms become most severe, is characterized by declining levels of ovarian progesterone. In female rats, withdrawal from prolonged dosing with progesterone leads to upregulation of alpha4 and delta subunits of the GABAA receptor in several brain regions. During the oestrous cycle of the rat, the natural fall in progesterone that occurs in late dioestrus is associated with a parallel increase in expression of alpha4, beta1 and delta GABAA receptor subunits in neurones in the periaqueductal grey matter (PAG), suggesting that new receptors of the alpha4beta1delta composition have been formed. Recombinant alpha4beta1delta receptors display a low EC50 for GABA, which is consistent with activation by extracellular levels of GABA. They are also likely to be located extrasynaptically and to carry tonic currents. In the PAG, a region involved in mediating panic-like anxiety, alpha4, beta1 and delta GABAA receptor subunits are located principally on GABAergic interneurones. On-going GABAergic neuronal activity normally limits and controls the excitability of the panic circuitry. During late dioestrus, when expression of alpha4, beta1 and delta subunits on GABAergic interneurones is upregulated, the increase in tonic current would be expected to lead to a reduction in the activity of the GABAergic population. Thus the panic circuitry would become intrinsically more excitable. It is suggested that during the menstrual cycle in women, plasticity of GABAA receptor subunit expression in brain regions such as the PAG, which are involved in mediating anxiety behaviour, may underlie some of the changes in mood that occur during the premenstrual period.
Collapse
Affiliation(s)
- T A Lovick
- Division of Medical Science, Physiology, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
17
|
Brack KE, Jeffery SMT, Lovick TA. Cardiovascular and respiratory responses to a panicogenic agent in anaesthetised female Wistar rats at different stages of the oestrous cycle. Eur J Neurosci 2006; 23:3309-18. [PMID: 16820020 DOI: 10.1111/j.1460-9568.2006.04881.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In urethane-anaesthetised female Wistar rats, intravenous injection of the panicogenic CCK(B) receptor agonist pentagastrin (0.002-80 microg/kg) evoked a dose-related increase in blood pressure, heart rate and ventilation. The response was blocked in the presence of the selective CCK(B) receptor antagonist CR2945 (1 mg/kg i.v.). The same pattern of cardiovascular and respiratory changes was evoked by microinjection of pentagastrin (0.3 nmol in 250 nL) into the dorsal half of the periaqueductal grey matter (PAG). The effect of intra-PAG administration of pentagastrin was also abolished following injection of CR2945 (1 mg/kg, i.v.). Responsiveness to systemically administered pentagastrin was enhanced in rats in late dioestrus. At the highest dose tested (80 microg/kg), the pressor response, tachycardia and tachypnoea evoked in rats in late dioestrus was significantly higher than rats in proestrus. For rats in oestrus, the pressor response and tachycardia but not tachypnoea were also significantly larger than the response evoked in rats in early dioestrus. The results suggest that the dorsal half of the PAG (dPAG) plays a key role in mediating the cardiovascular and respiratory responses evoked by systemically administered CCK(B) agonists. The enhanced responsiveness to panicogenic agents during late dioestrus may be related to changes in the functional responsiveness of gamma-aminobutyric acid (GABA)ergic circuitry in the dPAG due to plasticity of GABA(A) receptor subunit expression as a consequence of falling progesterone levels.
Collapse
Affiliation(s)
- K E Brack
- Department of Physiology, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | |
Collapse
|
18
|
Griffiths JL, Lovick TA. GABAergic neurones in the rat periaqueductal grey matter express alpha4, beta1 and delta GABAA receptor subunits: plasticity of expression during the estrous cycle. Neuroscience 2005; 136:457-66. [PMID: 16226387 DOI: 10.1016/j.neuroscience.2005.08.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 08/01/2005] [Accepted: 08/01/2005] [Indexed: 10/25/2022]
Abstract
Immunoreactivity for alpha4, beta1 and delta GABAA receptor subunits on neurones in the periaqueductal gray matter was investigated at different stages of the estrous cycle in Wistar rats. Immunostaining for alpha4, beta1 and delta GABAA receptor subunits was present on neurones throughout the periaqueductal gray matter. The numbers of subunit-immunoreactive neurones remained constant during the early phases of the estrous cycle (proestrus to early diestrus) but increased significantly in late diestrus. Dual immunolabeling for the GABA synthesizing enzyme glutamic acid decarboxylase revealed that almost 90% of the subunit-positive cells contained immunoreactivity for glutamic acid decarboxylase. During the early phases of the estrous cycle (proestrus to early diestrus), approximately one third of the glutamic acid decarboxylase-positive population co-localized alpha4, beta1 and delta GABAA receptor subunits. When the number of subunit positive cells increased during late diestrus, the proportion of the glutamic acid decarboxylase-containing population that expressed alpha4, beta1 and delta GABAA receptor subunits almost doubled. We propose that GABAA receptors with the alpha4beta1delta configuration are expressed by GABAergic neurones in the periaqueductal gray matter and that the numbers of cells expressing these subunits are increased in late diestrus in line with falling plasma progesterone levels. Changes in GABAA receptor expression may lead to changes in the excitability of the neural circuitry in the periaqueductal gray matter.
Collapse
Affiliation(s)
- J L Griffiths
- Department of Physiology, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
19
|
Bueno CH, Zangrossi H, Nogueira RL, Soares VP, Viana MB. Panicolytic-like effect induced by the stimulation of GABAA and GABAB receptors in the dorsal periaqueductal grey of rats. Eur J Pharmacol 2005; 516:239-46. [PMID: 15975569 DOI: 10.1016/j.ejphar.2005.04.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 04/26/2005] [Accepted: 04/29/2005] [Indexed: 11/17/2022]
Abstract
Activation of GABA(A) and benzodiazepine receptors within the dorsal periaqueductal grey inhibits the escape behaviour evoked by the electrical stimulation of this midbrain area, a defensive reaction that has been related to panic. Nevertheless, there is no evidence indicating whether the same antiaversive effect is also observed in escape responses evoked by species-specific threatening stimuli. In the present study, male Wistar rats were injected intra-dorsal periaqueductal grey with the benzodiazepine receptor agonist midazolam (10, 20 and 40 nmol), the GABA(A) receptor agonist muscimol (2, 4 and 8 nmol), the GABA(B) receptor agonist baclofen (2, 4 and 8 nmol), or with the benzodiazepine inverse agonist FG 7142 (20, 40 and 80 pmol) and tested in an ethologically-based animal model of anxiety, the elevated T-maze. Besides escape, this test also allows the measurement of inhibitory avoidance which has been related to generalised anxiety disorder. Midazolam, muscimol and baclofen impaired escape, a panicolytic-like effect, without altering inhibitory avoidance. FG 7142, on the other hand, facilitated both avoidance and escape reactions, suggesting an anxiogenic and panicogenic-like effect, respectively. The data suggest that GABA(A)/benzodiazepine and GABA(B) receptors within the dorsal periaqueductal grey are involved in the control of escape behaviour and that a failure in this regulatory mechanism may be of importance in panic disorder.
Collapse
Affiliation(s)
- Cíntia H Bueno
- Laboratório de Psicofarmacologia, Departamento de Psicologia e Educação, FFCLRP, Universidade de São Paulo, 14040-901, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
20
|
Brandão ML, Borelli KG, Nobre MJ, Santos JM, Albrechet-Souza L, Oliveira AR, Martinez RC. Gabaergic regulation of the neural organization of fear in the midbrain tectum. Neurosci Biobehav Rev 2005; 29:1299-311. [PMID: 16084589 DOI: 10.1016/j.neubiorev.2005.04.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 04/15/2005] [Accepted: 04/15/2005] [Indexed: 01/29/2023]
Abstract
In midbrain tectum (MT) structures, such as the dorsal periaqueductal gray (dPAG), the superior colliculus (SC) and the inferior colliculus (IC) GABAergic neurons exert a tonic control on the neural substrates involved in the expression of defensive reactions. In this review, we summarize behavioral, immunohistochemical (brain Fos distribution) and electrophysiological (auditory evoked potentials) data obtained with the reduction of GABA transmission by local injections of a GABA receptor blocker (bicuculline, BIC) or a glutamic acid decarboxylase inhibitor (semicarbazide, SMC) into the MT. Distinct patterns of Fos distribution were obtained following the freezing and escape reactions induced by MT injections of SMC and BIC, respectively. While only the laterodorsal nucleus of the thalamus was labeled after SMC-induced freezing, a widespread increase in Fos expression in the brain occurred after BIC-induced escape. Also, injections of SMC into the IC increased the auditory evoked potentials recorded from this structure. It is suggested that GABAergic mechanisms of MT are also called into play when sensory gating of the MT is activated during different emotional states.
Collapse
Affiliation(s)
- Marcus Lira Brandão
- Laboratório de Psicobiologia, FFCLRP, University of Sao Paulo, Campus USP, Av. Bandeirantes 3900, 14049-901 Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
21
|
Hayward LF, Swartz CL, Davenport PW. Respiratory response to activation or disinhibition of the dorsal periaqueductal gray in rats. J Appl Physiol (1985) 2003; 94:913-22. [PMID: 12571126 DOI: 10.1152/japplphysiol.00740.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neural substrates mediating autonomic components of the behavioral defense response have been shown to reside in the periaqueductal gray (PAG). The cardiovascular components of the behavioral defense response have been well described and are tonically suppressed by GABAergic input. The ventilatory response associated with disinhibition of the dorsal PAG (dPAG) neurons is unknown. In urethane-anesthetized, spontaneously breathing rats, electrical stimulation of the dPAG was shown to decrease the expiration time and increase respiratory frequency, with no change in time of inspiration. Baseline and the change in diaphragm electromyograph also increased, resulting in an increase in neural minute activity. Microinjection of bicuculline methobromide, a GABA(A)-receptor antagonist, into the dPAG produced a similar response, which was dose dependent. Disinhibition of the dPAG also produced a decrease in inspiration time. These results suggest that GABA(A)-mediated suppression of dPAG neurons plays a role in the respiratory component of behavioral defense responses. The respiratory change is due in part to a change in brain stem respiratory timing and phasic inspiratory output. In addition, there is an increase in tonic diaphragm activity.
Collapse
Affiliation(s)
- Linda F Hayward
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida 32601, USA
| | | | | |
Collapse
|
22
|
Brandão ML, Troncoso AC, de Souza Silva MA, Huston JP. The relevance of neuronal substrates of defense in the midbrain tectum to anxiety and stress: empirical and conceptual considerations. Eur J Pharmacol 2003; 463:225-33. [PMID: 12600713 DOI: 10.1016/s0014-2999(03)01284-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The medial hypothalamus, amygdala, and dorsal periaqueductal gray constitute the main neural substrates for the integration of aversive states in the brain. More recently, some regions of the mesencephalon, such as the superior and inferior colliculi have also been proposed as part of this system. In fact, fear-like behaviors often result when these sites are electrically or chemically stimulated. Both the behavioral and autonomic consequences of electrical stimulation of the mesencephalic tectum have been shown to be attenuated by minor tranquilizers, probably through enhancement of gamma-aminobutyric acid (GABA)-mediated neurotransmission, which exerts a tonic inhibitory control on the neural circuits responsible for the so-called defense behavior repertoire. Besides GABA, also 5-hydroxy tryptamine serotonin (5-HT), opioids, neuropeptides, histaminergic and excitatory amino acids have all been implicated in the regulation of anxiety-related behaviors induced by stimulation of midbrain tectum. Efforts have been made to characterize how these neurotransmitters interact with each other in the organization of these reactions to aversive stimulation. In this review, we summarize the evidence linking the brain's defense response systems to the concept of fear-anxiety. Furthermore, a case is made for the consideration of the relevance of this body of data to the search for the physiological underpinnings of depression and its consequences.
Collapse
Affiliation(s)
- Marcus L Brandão
- Laboratório de Psicobiologia, FFCLRP, campus USP, av Bandeirantes 3900, 14049-901, Ribeirão Preto, SP, Brazil.
| | | | | | | |
Collapse
|
23
|
Carobrez AP, Teixeira KV, Graeff FG. Modulation of defensive behavior by periaqueductal gray NMDA/glycine-B receptor. Neurosci Biobehav Rev 2001; 25:697-709. [PMID: 11801295 DOI: 10.1016/s0149-7634(01)00059-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Glutamate (GLU) associated with glycine, act as co-transmitter at the N-methyl-D-aspartate/glycine-B (NMDA/GLY(B)) receptor. Dorsal periaqueductal gray (dPAG) neurons express NMDA/GLY(B) receptors suggesting a GLU physiological role in mediating the responses elicited by stimulation of this area. Immunohistochemical data provided evidence of a possible correlation among elevated plus-maze (EPM), fear-like defensive behavior, and dPAG activity. The present data show that whereas the NMDA/GLY(B) receptor agonists increased the open-arm avoidance responses in the EPM, the antagonists had the opposite effects. Microinjection of NMDA/GLY(B) receptor agonists within the dPAG during test sessions in the EPM resulted in an enduring learned fear response detected in the retest. Therefore, in addition to the proposed role for the dPAG in panic attacks (escape), these findings suggest that the dPAG can also participate in more subtle anxiety-like behaviors.
Collapse
Affiliation(s)
- A P Carobrez
- Departamento de Farmacologia/CCB, Universidade Federal de Santa Catarina, SC 88040-900, Florianópolis, Brazil.
| | | | | |
Collapse
|
24
|
Abstract
The isomorphism of dorsal periaqueductal gray-evoked defensive behaviors and panic attacks was appraised in the present study. Thresholds of electrically induced immobility, trotting, galloping, jumping, exophthalmus, micturition and defecation were recorded before and after acute injections of anxiolytic, anxiogenic and antidepressant drugs. Antidepressant effects were further assessed 24h after injections of 7-14- and 21-day treatments. Chronic administration of clomipramine (CLM, 5-10mg/kg) a clinically effective antipanic drug increased the thresholds of immobility (24%), trotting (138%) galloping (75%), jumping (45%) and micturition (85%). The 21-day treatment with fluoxetine (FLX, 1mg/kg) virtually abolished galloping without changing the remaining responses. Galloping thresholds were also increased by 5mg/kg acute injections of CLM (19%) and FLX (25%). In contrast, chronically administered maprotiline (10mg/kg), a noradrenaline (NE) selective reuptake inhibitor, selectively increased the thresholds of immobility (118%). Diazepam (1.8mg/kg) and midazolam (MDZ, 2.5mg/kg) failed in attenuating the somatic defensive responses. Yet, the sedative dose of MDZ (5mg/kg) attenuated immobility. The panicogenic drug, pentylenetetrazole (50mg/kg), markedly decreased the thresholds of galloping (-51%) and micturition (-66%). These results suggest that whereas immobility is a NE-mediated attentional response, galloping is the panic-like behavior best candidate.
Collapse
Affiliation(s)
- L C Schenberg
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES, Brazil.
| | | | | | | |
Collapse
|
25
|
Schenberg LC, Marçal LP, Seeberger F, Barros MR, Sudré EC. L-type calcium channels selectively control the defensive behaviors induced by electrical stimulation of dorsal periaqueductal gray and overlying collicular layers. Behav Brain Res 2000; 111:175-85. [PMID: 10840143 DOI: 10.1016/s0166-4328(00)00154-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study reports the involvement of L-type calcium channels in the control of defensive behaviors produced by electrical stimulation of dorsal periaqueductal gray and overlying collicular layers. Rats that had chemitrodes in the dorsal midbrain and which stimulation produced freezing or flight behaviors with less than 55 microA were selected for drug experiments. Stimulation was repeated the day after the screening session 20 min following the microinjection into the dorsal periaqueductal gray of 15 nmol of either verapamil, a selective L-type calcium channel antagonist, or cobalt chloride (CoCl(2)), a calcium-specific channel modulator. Post-drug sessions were performed 48 h after. Threshold functions were obtained by logistic fitting of accumulated response frequencies. Verapamil and CoCl(2) significantly attenuated the output of immobility, exophthalmus, running and jumping. Although to a lesser degree, verapamil also attenuated defecation. Because CoCl(2) had no effect on defecation, the attenuation of this response by verapamil suggests a non-specific action of this drug. Neither verapamil nor CoCl(2) changed the output of micturition. Finally, whereas there was a complete recovery of defensive thresholds following the microinjection of verapamil, the attenuating effects of CoCl(2) were still present 48 h after. These results support an important role of L-type calcium channels in the neurogenesis of dorsal periaqueductal gray-evoked immobility, exophthalmus, running and jumping, but not defecation and micturition responses.
Collapse
Affiliation(s)
- L C Schenberg
- Department of Physiological Sciences, Biomedical Center, Laboratory of Neurobiology, Federal University of Espírito Santo, Av. Marechal Campos 1468 (Maruípe), 29040-090, ES, Vitória, Brazil.
| | | | | | | | | |
Collapse
|
26
|
de-Oliveira RW, Guimarães FS. Anxiolytic effect of methylene blue microinjected into the dorsal periaqueductal gray matter. Braz J Med Biol Res 1999; 32:1529-32. [PMID: 10585635 DOI: 10.1590/s0100-879x1999001200012] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dorsal periaqueductal gray (DPAG) has been implicated in the behavioral and autonomic expression of defensive reactions. Several results suggest that, along with GABA, glutamate and serotonin, nitric oxide (NO) may play a role in defense reactions mediated by this region. To further investigate this possibility we microinjected methylene blue (MB; 10, 30 or 100 nmol/0.5 microl) into the DPAG of rats submitted to the elevated plus-maze test, an animal model of anxiety. MB has been used as an inhibitor of soluble guanylate cyclase (sGC) to demonstrate cGMP-mediated processes, and there is evidence that NO may exert its biological effects by binding to the heme part of guanylate cyclase, causing an increase in cGMP levels. The results showed that MB (30 nmol) significantly increased the percent of time spent in the open arms (saline = 11.57 +/- 1.54, MB = 18.5 +/- 2.45, P<0.05) and tended to do the same with the percentage of open arm entries (saline = 25.8 +/- 1.97, MB = 33. 77 +/- 3.07, P<0.10), but did not change the number of enclosed arm entries. The dose-response curve, however, had an inverted U shape. These results indicate that MB, within a limited dose range, has anxiolytic properties when microinjected into the DPAG.
Collapse
Affiliation(s)
- R W de-Oliveira
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | |
Collapse
|
27
|
Sampaio KN, Mauad H, Biancardi VC, Barros JL, Amaral FT, Schenberg LC, Vasquez EC. Cardiovascular changes following acute and chronic chemical lesions of the dorsal periaqueductal gray in conscious rats. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1999; 76:99-107. [PMID: 10412833 DOI: 10.1016/s0165-1838(99)00015-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study was carried out to investigate the effects of chemical lesions of dorsal periaqueductal gray (DPAG) on resting arterial pressure (AP) and heart rate (HR) as well as on cardiac baroreflex of conscious normotensive rats. Lesions were performed by bilateral microinjections of 150 mM NMDA into the DPAG (DPAG-lesion group). Controls were similarly injected with 165 mM NaCl (DPAG-sham group). Animals with chronic lesions confined only to the superior colliculus (SC-lesion group) were also used as controls of DPAG-lesion. Cardiovascular parameters were recorded 1 or 7 days after the microinjections of NMDA in acute and chronic groups, respectively. Cardiac baroreflex was assessed by measuring the HR responses to the intravenous injection of phenylephrine or sodium nitroprusside. Baroreflex was estimated by sigmoidal curve fitting of HR responses. An increased baroreflex gain was observed in chronic DPAG-lesion rats compared to both DPAG-sham (p < 0.01) and SC-lesion (p < 0.05) chronic groups. The chronic DPAG-lesion group showed also an elevation of both the tachycardia (p < 0.05) and bradycardia (p < 0.01) plateaus compared to chronic DPAG-sham rats, while the SC-lesion group showed an elevation of the bradycardia plateau only (p < 0.01). Similar results on baroreflex function were observed following acute lesion of the DPAG, i.e. an increase in baroreflex gain (p < 0.01) and the elevation of both tachycardia (p < 0.05) and bradycardia plateaus (p < 0.01) compared to the acute DPAG-sham group. Resting AP and HR did not differ among the chronic groups. In contrast, the acute lesion of the DPAG produced a reduction in AP (p < 0.01) accompanied by an increase in HR (p < 0.01). The present data suggest that the DPAG is involved in the tonic and reflex control of AP and HR in conscious rats. In addition, the SC seems to contribute to the baroreflex cardioinhibition.
Collapse
Affiliation(s)
- K N Sampaio
- Department of Physiological Sciences, Biomedical Center, Federal University of Espirito Santo, Vitoria, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
De Souza MM, Schenberg LC, de Pádua Carobrez A. NMDA-coupled periaqueductal gray glycine receptors modulate anxioselective drug effects on plus-maze performance. Behav Brain Res 1998; 90:157-65. [PMID: 9521547 DOI: 10.1016/s0166-4328(97)00093-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study was carried out to investigate a possible interaction between the effects of anxiety modulating drugs which act at the GABA-A receptor complex and selective N-methyl-D-aspartic acid (NMDA) coupled glycine receptor (GLY-B receptor) ligands within the dorsal periaqueductal gray (DPAG). The plus-maze performance of rats pretreated with diazepam (0.37 and 0.75 mg/kg, i.p.) or pentylenetetrazole (15 and 30 mg/kg, i.p.), standard anxiolytic and anxiogenic drugs respectively, was assessed following intra-periaqueductal injections of either glycine (0.2 M, 0.4 microl/30 s, i.c.) or its competitive antagonist, 7-chlorokynurenic acid (7ClKYN, 0.02 M, 0.4 microl/30 s, i.c.). Whilst diazepam produced a typical anxiolytic effect in intracranially-injected CSF rats, increasing open arm exploration, pentylenetetrazole displayed an opposite anxiogenic profile. Either anxiogenic or anxiolytic effects were seen in peripherally-injected vehicle rats following intra-periaqueductal injections of glycine or 7ClKYN, respectively. Intra-periaqueductal injection of glycine markedly attenuated the anxiolytic effect of diazepam. Moreover, while the anxiogenic effects of pentylenetetrazole were barely changed by glycine, they were markedly attenuated by intra-periaqueductal injection of 7ClKYN. Interaction of diazepam and 7ClKYN produced non-selective sedative-like effects which masked any possible anxiolytic action. Accordingly, the present results suggest that the NMDA-coupled glycine receptors located in the DPAG interfere with anxioselective effects of GABA-A acting drugs on the elevated plus-maze. In spite of the prevailing notion that the NMDA coupled glycine receptor is saturated at in vivo brain concentrations of glycine, our results also suggest that either unoccupied or low-affinity GLY-B receptors are likely to be activated by glycine injection into DPAG.
Collapse
Affiliation(s)
- M M De Souza
- Departamento de Farmacologia/CCB, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | |
Collapse
|
29
|
Shimizu T, Kato S, Hayashi M, Hayashi H, Tanabe H. Amyotrophic lateral sclerosis with hypertensive attacks: blood pressure changes in response to drug administration. Clin Auton Res 1996; 6:241-4. [PMID: 8902322 DOI: 10.1007/bf02291141] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Blood pressure changes in response to intravenous drug administration were examined in a respirator-dependent 49-year-old patient with sporadic amyotrophic lateral sclerosis (ALS) who developed severe hypertensive attacks. She showed severe hypertension and tachycardia during the daytime and nocturnal hypotension without compensatory tachycardia, which were consistent with the autonomic phenomenon reported in ALS patients. Infusion of phenotolamine (2.5 mg) induced an abrupt 90 mmHg decrease in systolic pressure and slight increase in heart rate. Propranolol (1 mg) infusion induced decreases in both systolic pressure (36 mmHg) and heart rate (17 beats/min), although the pressure decrease was transient while the heart rate remained at the decreased level Infusion of diazepam (10 mg) induced a 47 mmHg decrease in systolic pressure and a 23 beats/min increase in heart rate. These vasomotor responses indicate the distinct participation of abnormally augmented sympathetic tone, and especially of alpha-sympathetic hyperactivity rather than of beta-sympathetic hyperactivity, in the hypertensive attacks occurring in this ALS patient.
Collapse
Affiliation(s)
- T Shimizu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Japan
| | | | | | | | | |
Collapse
|
30
|
Schenberg LC, Brandão CA, Vasquez EC. Role of periaqueductal gray matter in hypertension in spontaneously hypertensive rats. Hypertension 1995; 26:1125-8. [PMID: 7498981 DOI: 10.1161/01.hyp.26.6.1125] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We performed experiments to study the effects of electrolytic lesions of periaqueductal gray matter on mean blood pressure, heart rate, and cardiac baroreflex in adult male spontaneously hypertensive rats. Cardiac baroreflex was assessed by the administration of randomly assigned doses of phenylephrine (0.3 to 5.0 micrograms/kg i.v.) or sodium nitroprusside (1.5 to 5.0 micrograms/kg i.v.) to unanesthetized rats. Bilateral lesions of the periaqueductal gray matter (0.5 mA/5 s) were then performed with rats under sodium pentobarbital anesthesia (35 mg/kg i.p.). Twenty hours after lesion, cardiac baroreflex was retested. Baroreflex data were analyzed by sigmoidal curve fitting. Lesion rats (n = 12) showed a significant decrease in both the gain (delta = -0.89 +/- 0.38 beats per minute [bpm]/mm Hg, P < .05) and curve midpoint (delta = -15 +/- 6 mm Hg, P < .05) of the cardiac baroreflex. Moreover, despite a moderate increase in heart rate (delta = 34 +/- 10 bpm, P < .01), resting mean blood pressure was significantly decreased 24 hours after the lesions (delta = -19 +/- 5 mm Hg, P < 01). No significant changes in cardiac baroreflex were observed in sham-lesion rats (n = 12). Histological examination showed circumscribed bilateral damage of dorsolateral periaqueductal gray matter. Dorsolateral periaqueductal gray matter is an area of the brain putatively related to fear and anxiety. It also projects onto premotor sympathetic neurons in the medulla. Although electrolytic lesions damage neurons as well as fibers of passage, these data suggest that dorsolateral periaqueductal gray matter has a far greater influence on resting cardiovascular control in spontaneously hypertensive rats than was previously suspected.
Collapse
Affiliation(s)
- L C Schenberg
- Department of Physiological Sciences, UFES, Vitória, Brazil
| | | | | |
Collapse
|
31
|
Abstract
The major functions of the midbrain periaqueductal gray (PAG), including pain and analgesia, fear and anxiety, vocalization, lordosis and cardiovascular control are considered in this review article. The PAG is an important site in ascending pain transmission. It receives afferents from nociceptive neurons in the spinal cord and sends projections to thalamic nuclei that process nociception. The PAG is also a major component of a descending pain inhibitory system. Activation of this system inhibits nociceptive neurons in the dorsal horn of the sinal cord. The dorsal PAG is a major site for processing of fear and anxiety. It interacts with the amygdala and its lesion alters fear and anxiety produced by stimulation of amygdala. Stimulation of PAG produces vocalization and its lesion produces mutism. The firing of many cells within the PAG correlates with vocalization. The PAG is a major site for lordosis and this role of PAG is mediated by a pathway connecting the medial preoptic with the PAG. The cardiovascular controlling network within the PAG are organized in columns. The dorsal column is involved in pressor and the ventrolateral column mediates depressor responses. The major intrinsic circuit within the PAG is a tonically-active GABAergic network and inhibition of this network is an important mechanism for activation of outputs of the PAG. The various functions of the PAG are interrelated and there is a significant interaction between different functional components of the PAG. Using the current information about the anatomy, physiology, and pharmacology of the PAG, a model is proposed to account for the interactions between these different functional components.
Collapse
Affiliation(s)
- M M Behbehani
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH 45267-0576, USA
| |
Collapse
|
32
|
Brandão ML, Cardoso SH, Melo LL, Motta V, Coimbra NC. Neural substrate of defensive behavior in the midbrain tectum. Neurosci Biobehav Rev 1994; 18:339-46. [PMID: 7984352 DOI: 10.1016/0149-7634(94)90047-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It has been shown that the gradual increase in the intensity of electrical stimulation of the dorsal periaqueductal gray (DPAG), deep layers of the superior colliculus (DLSC) and inferior colliculus of rats induces, in a progressive manner, characteristic aversive responses such as arousal, freezing, and escape behavior. The DPAG-DLSC together with the periventricular gray substance of the diencephalon, amygdala and the inferior colliculus, constitute the neural substrate of aversion in the brain. In general, the behavioral responses induced by midbrain tectum stimulation are accompanied by increases in the mean arterial blood pressure, heart rate, and respiration. Both the behavioral and autonomic consequences of electrical stimulation of the mesencephalic tectum have been shown to be attenuated by minor tranquilizers, probably through enhancement of GABAergic neurotransmission. Besides GABAergic mechanisms several lines of evidence have clearly implicated opioid, serotonergic, and excitatory amino acids-mediated mechanisms in the control of the neural substrates commanding defensive behavior in the brain aversive system.
Collapse
Affiliation(s)
- M L Brandão
- Laboratório de Psicobiologia, Faculdade de Filosofia Ciências e Letras-USP, Brazil
| | | | | | | | | |
Collapse
|
33
|
Sudré EC, de Barros MR, Sudré GN, Schenberg LC. Thresholds of electrically induced defence reaction of the rat: short- and long-term adaptation mechanisms. Behav Brain Res 1993; 58:141-54. [PMID: 8136042 DOI: 10.1016/0166-4328(93)90099-c] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The thresholds of electrically induced defence reaction of the rat were studied through the logistic fitting of the response output. When stepwise increasing stimuli were applied at the dorsal midbrain, hierarchically organized mean thresholds, spaced 10 microA apart, were observed for immobility, running and jumping defensive behaviours. The parallel threshold functions of these responses, ranked in the above order, denote that they have distinct output probabilities when induced with sequential stepwise increasing stimuli. In contrast, when single daily stimuli were given in a random order, virtually superimposed threshold functions were obtained for these defensive behaviours. In this case, since the same output probabilities would be expected for immobility, running and jumping behaviours, the defence system seems to operate in a state of maximum entropy. The above data suggest that the dorsal midbrain, including the deep collicular layers and the periaqueductal gray, may encode hierarchical or non-hierarchical defensive patterns which, respectively, mimic either the attentive behaviour of the prey watching the approaching predator or its chaotic behaviour when cornered by a sudden attack. On the other hand, whereas quite stable thresholds were observed for the somatic defensive responses when 5 stimulation sessions were repeated over 15 days, the defecation and micturition output underwent a marked and progressive lessening. Since these autonomic responses have long been considered as reliable indexes of fear, their attenuation throughout the repeated sessions could express the rat adaptation to fear by the recurrence of the aversive experience. Taken together, these data suggest that while short-term neuronal adaptation could be responsible for the hierarchical threshold structure of the short interval stepwise stimulation, long-term neuronal adaptation could underlie the selective decrease of defecation and micturition responses over repeated sessions of intracranial stimulation.
Collapse
Affiliation(s)
- E C Sudré
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | | | | | | |
Collapse
|
34
|
Schenberg LC, Vasquez EC, da Costa MB. Cardiac baroreflex dynamics during the defence reaction in freely moving rats. Brain Res 1993; 621:50-8. [PMID: 8221073 DOI: 10.1016/0006-8993(93)90296-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To determine the extent of baroreceptor reflex involvement in the cardiovascular changes observed during electrically induced defence reaction, the mean arterial blood pressure (MBP) and heart rate (HR) of conscious intact or sinoaortic baroreceptor denervated (SAD) rats were continuously recorded from indwelling cannulae during a 1-min period of electrical stimulation of the mesencephalic tectum. Electrical stimulation produced stimulus intensity-dependent behaviours including freezing at lower intensities and flight at higher intensities. The cardiovascular responses in intact rats were dependent on both the intensity and duration of the stimulus. A linear increase in MBP was observed with increasing stimulus intensities. However, while a slight bradycardia was observed during the freezing behaviour, a marked tachycardia occurred during flight. Simultaneous increases of MBP and HR were seen throughout the first 15 s of the flight response, after which the HR rapidly fell to baseline levels, whereas the MBP remained at a hypertensive plateau until the end of the stimulus. The baroreflex HR curve showed a parallel shift to the left during the first half of the freezing period, being fully reset 40 s after that. So, while the baroreflex gain remained unchanged, the reflex set point was lowered during the freezing stage of the defence reaction. The experiments with SAD rats corroborated the above data. The baroreceptor denervation reversed the freezing bradycardia to tachycardia. Moreover, the denervation potentiated the flight tachycardia and prevented its later reset. MBP responses of baroreceptor denervated rats did not differ from the sham-operated group. The sustained hypertension, thus, appears to be mediated by mechanisms other than the mere baroreceptor reflex deactivation. (ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L C Schenberg
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Brazil
| | | | | |
Collapse
|
35
|
Abstract
The present study examined the distribution, morphology, and connections of gamma-aminobutyric acid-immunoreactive (GABA-IR) neurons in the three principal components of the central extended amygdala: the central amygdaloid nucleus, the bed nucleus of the stria terminalis (BNST) and the sublenticular substantia innominata. In the central nucleus, large numbers of GABA-IR neurons were identified in the lateral, lateral capsular, and ventral subdivisions, though in the medial subdivision, GABA-IR neurons were only present at very caudal levels. Combined immunocytochemistry-Golgi impregnation revealed that GABA-IR neurons in the lateral central nucleus were medium-sized spiny neurons that were morphologically similar to GABAergic neurons in the striatum. Injections of horseradish peroxidase into the bed nucleus of the stria terminalis labeled a major proportion of the GABA-IR neurons in the central nucleus. In the bed nucleus, the majority of GABA-IR neurons were located in the anterolateral subdivision, ventral part of the posterolateral subdivision and the parastrial subdivision. GABA-IR neurons in the anterolateral bed nucleus were of the typical medium-sized spiny type. Injections of horseradish peroxidase into the central nucleus labeled a few GABA-IR neurons in the posterior part of the anterolateral bed nucleus. GABA-IR neurons were identified in the sublenticular substantia innominata and medial shell of the nucleus accumbens and contributed to the continuum of GABA-IR extending from the central nucleus to the bed nucleus. Injections of horseradish peroxidase (HRP) into the central nucleus, but not the BNST, labeled a few GABA-IR neurons in the substantia innominata. The data point to GABA-IR neurons being a characteristic feature of the central extended amygdala and that GABA-IR neurons participate in the long intrinsic connections linking the major components of this structure. Since lesions of the stria terminalis and basolateral amygdaloid nucleus failed to deplete GABA-IR terminals in the central nucleus, the role of GABA in local and short intrinsic connections in the central extended amygdala is discussed. Further, physiological findings implicating the intrinsic GABAergic system of the central extended amygdala in the tonic inhibition of brainstem efferents are reviewed.
Collapse
Affiliation(s)
- N Sun
- Department of Anatomy, University of Iowa College of Medicine, Iowa City 52242
| | | |
Collapse
|
36
|
Burdin TA, Graeff FG, Pelá IR. Opioid mediation of the antiaversive and hyperalgesic actions of bradykinin injected into the dorsal periaqueductal gray of the rat. Physiol Behav 1992; 52:405-10. [PMID: 1409899 DOI: 10.1016/0031-9384(92)90325-v] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reported evidence indicates that the dorsal region of the periaqueductal gray matter (PAG) is involved in the modulation of both pain and aversion, and that opioid mechanisms, among others, participate in their modulation. Since many central actions of bradykinin (BK) have been shown to be similar to those of morphine, the present was undertaken to measure the effects of microinjection of BK into the PAG on the thresholds of aversive electrical stimulation of the same brain area and of dental pulp electrical stimulation. Bradykinin, injected into the dorsal PAG, induced a dose-dependent increase in the aversive threshold, an effect similar to that reported by others for morphine. Also, as reported for morphine, the antiaversive effect of BK was antagonized by naloxone injected intraperitoneally. Whereas subcutaneously administered morphine induced marked analgesia, intra-PAG administration of BK caused a small but significant hyperalgesia. Similarly, morphine injected into the dorsal PAG tended to cause hyperalgesia instead of analgesia. Furthermore, the hyperalgesic effect of BK also appears to involve opioid mechanisms since it was blocked by naloxone. As in previously reported studies, intracerebroventricularly injected BK raised the pain threshold. These results indicate that BK mobilizes opioid mechanisms in the dorsal PAG that inhibit aversion but not pain.
Collapse
Affiliation(s)
- T A Burdin
- Laboratory of Pharmacology, F.C.F.R.P., University of São Paulo, Brazil
| | | | | |
Collapse
|
37
|
Abstract
The discovery of different GABA receptor subtypes has stimulated research relating this neurotransmitter to a variety of behavioral functions and clinical disorders. The development of new and specific GABAergic compounds has made it possible to try to identify the specific functions of these receptors. The purpose of the present review is to evaluate the data regarding the functions of the GABA receptor subtypes in different behaviors such as motor function, reproduction, learning and memory, and aggressive-defensive behaviors. A description of GABAergic functions (stress, peripheral effects, thermoregulation) that might directly or indirectly affect behavior is also included. The possible involvement of GABA in different neurological and psychiatric disorders is also discussed. Although much research has been done trying to identify the possible role of GABA in different behaviors, the role of receptor subtypes has only recently attracted attention, and only preliminary data are available at present. It is therefore evident that still much work has to be done before a clear picture of the behavioral significance of these receptor subtypes can be obtained. Nevertheless, existing data are sufficient to justify the prediction that GABAergic agents, in the near future, will be much used in the field of behavioral pharmacology. It is hoped that the present review will contribute to this. Some specific suggestions concerning the most efficient way to pursue future research are also made.
Collapse
Affiliation(s)
- R G Paredes
- Department of Psychology, Universidad Anáhuac, Mexico City, Mexico
| | | |
Collapse
|
38
|
Gomita Y, Moriyama M, Ichimaru Y, Araki Y. Effects of anxiolytic drugs on escape behavior induced by dorsal central gray stimulation in rats. Physiol Behav 1991; 49:125-9. [PMID: 1673252 DOI: 10.1016/0031-9384(91)90242-g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Each animal was chronically implanted with bipolar electrodes in dorsal central gray matter (DCG) and was trained to press a lever to decrease the DCG-stimulation current. Chlordiazepoxide (5-20 mg/kg, PO), diazepam (2-10 mg/kg, PO) and bromazepam (1-5 mg/kg, PO) produced dose-dependent increases in the DCG-stimulation threshold 1-4 h after administration without affecting motor performance. Meprobamate (200 mg/kg, PO) and pentobarbital (10 mg/kg, PO) also slightly increased the stimulation threshold. Their potency was in the order of bromazepam greater than diazepam greater than chlordiazepoxide greater than pentobarbital greater than meprobamate. The increase in the threshold induced by diazepam (10 mg/kg, PO) was inhibited by the GABA antagonists, bicuculline (1 mg/kg, IP) and picrotoxin (0.1 mg/kg, IP). These results suggest that decreased susceptibility to brain stimulation is involved in suppressing effects of anxiolytic drugs on the escape behavior, and also that the antiaversive action of benzodiazepines may be related to a GABAergic mechanism.
Collapse
Affiliation(s)
- Y Gomita
- Department of Hospital Pharmacy, Okayama University Medical School, Japan
| | | | | | | |
Collapse
|
39
|
Abstract
The efferent projections of the periaqueductal gray in the rabbit have been described by anterograde tract-tracing techniques following deposits of tritiated leucine, or horseradish peroxidase, into circumscribed sites within dorsal, lateral or ventral periaqueductal gray. No attempts were made to place labels in the fourth, extremely narrow (medial), region immediately surrounding the aqueduct whose size and disposition did not lend itself to confined placements of label within it. These anatomically distinct regions, defined in Nissl-stained sections, corresponded to the same regions into which deposits of horseradish peroxidase were made in order for us to describe afferent projections to the periaqueductal gray. In this present study distinct ascending and descending fibre projections were found throughout the brain. Terminal labelling was detected in more than 80 sites, depending somewhat upon which of the three regions of the periaqueductal gray received the deposit. Therefore, differential projections with respect to both afferent and efferent connections of these three regions of the periaqueductal gray have now been established. Ventral deposits disclosed a more impressive system of ramifying, efferent fibres than did dorsal or lateral placements of labels. With ventral deposits, ascending fibres were found to follow two major pathways from periaqueductal gray. The periventricular bundle bifurcates at the level of the posterior commissure to form hypothalamic and thalamic components which distribute to the anterior pretectal region, lateral habenulae, and nuclei of the posterior commissure, the majority of the intralaminar and midline thalamic nuclei, and to almost all of the hypothalamus. The other major ascending pathway from the periaqueductal gray takes a ventrolateral course from the deposit site through the reticular formation or, alternatively, through the deep and middle layers of the superior colliculus, to accumulate just medial to the medial geniculate body. This contingent of fibres travels more rostrally above the cerebral peduncle, distributing terminals to the substantia nigra, ventral tegmental area and parabigeminal nucleus before fanning out and turning rostrally to contribute terminals to ventral thalamus, subthalamus and zona incerta, then continuing on to supply amygdala, substantia innominata, lateral preoptic nucleus, the diagonal band of Broca and the lateral septal nucleus. Caudally directed fibres were also observed to follow two major routes. They either leave the periaqueductal gray dorsally and pass through the gray matter in the floor of the fourth ventricle towards the abducens nucleus and ventral medulla, or are directed ventrally after passing through either the inferior colliculus or parabrachial nucleus. These ventrally directed fibres merge just dorsal to the pons on the ventral surface of the brain.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S T Meller
- Department of Physiology, University of Adelaide, SA, Australia
| | | |
Collapse
|
40
|
Schenberg LC, Costa MB, Borges PC, Castro MF. Logistic analysis of the defense reaction induced by electrical stimulation of the rat mesencephalic tectum. Neurosci Biobehav Rev 1990; 14:473-9. [PMID: 2287484 DOI: 10.1016/s0149-7634(05)80070-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Subliminal and threshold functions of behavioral output to electrical stimulation of the rat mesencephalic tectum were fitted using the logistic model. The results suggest the existence of isotopic albeit anisotropic freezing and flight mechanisms in the dorsal periaqueductal gray and deep layers of the superior colliculus. Moreover, the marked parallelism of immobility and running threshold functions indicates the probable coupling of these mechanisms through a kind of negative feedback. Finally, the good fitting to the model suggests that the behavioral output to electrical stimulation of these areas follows a logistic function of the logarithm of the stimulus intensity.
Collapse
Affiliation(s)
- L C Schenberg
- Pos-Graduação em Ciencias Fisiologicas, Universidade Federal do Espirito Santo, Vitoria, Brazil
| | | | | | | |
Collapse
|
41
|
POSTER COMMUNICATIONS. Br J Pharmacol 1990. [DOI: 10.1111/j.1476-5381.1990.tb16273.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
42
|
Shekhar A, Hingtgen JN, DiMicco JA. GABA receptors in the posterior hypothalamus regulate experimental anxiety in rats. Brain Res 1990; 512:81-8. [PMID: 2159830 DOI: 10.1016/0006-8993(90)91173-e] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Blockade of gamma-aminobutyric acid (GABA) function in the posterior hypothalamus of rats elicits a pattern of physiological and behavioral arousal consisting of increases in heart rate, respiration and blood pressure as well as intense locomotor stimulation and a selective enhancement of avoidance responding. The present study was conducted to assess the possibility that GABA-mediated neurotransmission in the posterior hypothalamus of the rat may regulate anxiety. Male rats were trained in a 'conflict' schedule consisting of a high and a low intensity of punishment ('high' and 'low' conflict) capable of measuring decreases and increases in the level of 'anxiety', respectively. Guide cannulae were stereotaxically implanted bilaterally in the posterior hypothalamus of these rats at sites where microinjection of bicuculline methiodide (BMI) 25 ng caused increases in heart rate under anesthesia. After recovery, they were tested: (1) in the high conflict schedule after microinjection of saline and two doses of the GABAA receptor agonist muscimol; and (2) in the low conflict schedule after injecting saline, the GABAA receptor antagonists, BMI and picrotoxin, and the glycine antagonist, strychnine. Injection of muscimol caused a significant and selective anti-conflict effect while both BMI and, at appropriate doses, picrotoxin produced pro-conflict effects. Microinjection of strychnine into the posterior hypothalamus or muscimol and picrotoxin into the lateral hypothalamus did not influence conflict responding. These results suggest that endogenous GABA acts on GABAA receptors in a discrete area of the posterior hypothalamus to regulate the level of experimental anxiety in rats.
Collapse
Affiliation(s)
- A Shekhar
- Department of Pharmacology, Indiana University School of Medicine, Indianapolis 46202
| | | | | |
Collapse
|
43
|
Shaikh MB, Siegel A. GABA-mediated regulation of feline aggression elicited from midbrain periaqueductal gray. Brain Res 1990; 507:51-6. [PMID: 2302579 DOI: 10.1016/0006-8993(90)90521-c] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The midbrain periaqueductal gray (PAG) is now recognized as a critical structure for the initiation and regulation of aggressive behavior in the cat. The PAG is also known to be rich in gamma-aminobutyric acid (GABA) receptors. In the present study, we sought to examine the possible role of this putative neurotransmitter in the modulation of affective defense and quiet biting attack behavior elicited by electrical stimulation of the PAG. Cannula-electrodes were employed for electrical stimulation as well as for microinjections of a GABA agonist (muscimol: 3, 12 and 22 pmol/0.25 microliters) and GABA antagonist (bicuculline: 22 and 68 pmol/0.25 microliters). After establishing predrug response threshold values for affective defense and quiet biting attack, these drugs were microinjected into the PAG sites from which these responses were elicited. Microinjections of muscimol (12 and 22 pmol) significantly suppressed the affective defense response in a dose- and time-dependent manner. Pretreatment with bicuculline (68 pmol) blocked the suppressive effects of muscimol (12 pmol) upon affective defense behavior. In contrast, this dose of muscimol failed to alter the response threshold for quiet biting attack behavior. Microinjections of vehicle alone (0.25 microliter of saline, pH = 7.4) did not modify the thresholds for either of these responses. These results indicate that, at the level of the PAG, GABA-ergic mechanisms are selectively involved in the regulation of affective defense behavior in the cat.
Collapse
Affiliation(s)
- M B Shaikh
- Department of Neurosciences, New Jersey Medical School, Newark 07103
| | | |
Collapse
|
44
|
Keay KA, Redgrave P, Dean P. Cardiovascular and respiratory changes elicited by stimulation of rat superior colliculus. Brain Res Bull 1988; 20:13-26. [PMID: 3277692 DOI: 10.1016/0361-9230(88)90004-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Stimulation of the rat superior colliculus can produce either orienting or defensive movements, which if elicited by natural stimuli would be accompanied by cardiovascular changes. To assess whether cardiovascular changes might also be mediated by the superior colliculus, blood pressure and heart rate were measured in Saffan-anaesthetised rats while the dorsal midbrain was systematically explored with electrical and chemical stimulation. Electrical stimulation (10 sec trains of 0.3 msec 100 Hz cathodal pulses, 50 microA) within the superficial and intermediate layers of the rostral superior colliculus transiently lowered blood pressure without affecting heart rate. In contrast sites within the deep layers, and in adjacent periaqueductal grey and midbrain tegmentum, gave pressor responses accompanied by a variety of heart-rate changes, that usually included a period of bradycardia. A roughly similar distribution was obtained with the cell-stimulant bicuculline (200 or 500 nl, 490 microM), though sodium L-glutamate (200 nl, 0.05 or 1.0 M) was ineffective. These results suggest that (a) cardiovascular responses can be produced by stimulation of the rat superior colliculus; (b) their nature depends on the location of the stimulation; and (c) they may be mediated in part by cells differentially sensitive to glutamate and to bicuculline. In addition, in some animals respiratory responses were measured stethographically. Short-latency increases in thoracic girth, often accompanied by increases in respiratory rate and depth, were elicited by electrical stimulation from 61% of the collicular sites examined, and by microinjection of glutamate from 56% of collicular sites. These data suggest that (a) cells within the superior colliculus are capable of influencing respiration; (b) given the widespread distribution of responsive sites within the superior colliculus, the respiratory changes may be preparatory for both approach and defensive movements; (c) the collicular cells that affect respiration may be different from those that influence blood pressure, because the latter are relatively insensitive to microinjection of glutamate.
Collapse
Affiliation(s)
- K A Keay
- Department of Psychology, University of Sheffield, England
| | | | | |
Collapse
|
45
|
Brandão ML, Tomaz C, Borges PC, Coimbra NC, Bagri A. Defense reaction induced by microinjections of bicuculline into the inferior colliculus. Physiol Behav 1988; 44:361-5. [PMID: 2851846 DOI: 10.1016/0031-9384(88)90038-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Behavioral and autonomic effects of microinjections of bicuculline--a GABA receptor antagonist--into ventral aspects of the inferior colliculus (IC) produced a behavioral activation together with jumps. This activation was similar to escape behavior that has been induced from periventricular structures although it was neither as explosive as that observed from the dorsal periaqueductal gray matter (DPAG) nor as coordinated as that obtained from the medial hypothalamus (MH). In anesthetized rats, microinjection of bicuculline into the IC produced a clear rise in mean arterial blood pressure and in heart rate. These effects reached a maximum after 10 min and subsided within 20 min after injection. GABA receptor blockade in the IC of detelencephalated rats also resulted in escape behavior qualitatively similar to that observed in intact animals. These results suggest that in addition to the central gray and medial hypothalamus, GABA also exerts a tonic inhibitory action on neurons of the IC implicated in the generation or elaboration of aversive responses.
Collapse
Affiliation(s)
- M L Brandão
- Laboratório de Psicobiologia, FFCLRP, Universidade de São Paulo, Brasil
| | | | | | | | | |
Collapse
|
46
|
Shekhar A, Hingtgen JN, DiMicco JA. Selective enhancement of shock avoidance responding elicited by GABA blockade in the posterior hypothalamus of rats. Brain Res 1987; 420:118-28. [PMID: 3676747 DOI: 10.1016/0006-8993(87)90246-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent studies have shown that blockade of gamma-aminobutyric acid (GABA) in the posterior hypothalamus in anesthetized rats elicits cardio-respiratory stimulation similar to that seen in emotional defense reactions and, in conscious rats, locomotor arousal suggesting a flight response. The present study was conducted in order to test the hypothesis that the behavioral effects elicited by GABA blockade in the posterior hypothalamus were the results of disinhibiting a mechanism whose activation selectively enhances reactivity to aversive stimuli. Male rats were trained on a Sidman shock avoidance schedule (RS20:SS10) as well as a food-reinforced approach schedule (VI 1). Under anesthesia, guide cannulae were stereotaxically implanted bilaterally in the posterior hypothalamus at sites where microinjection of the GABA antagonist, bicuculline methiodide (BMI) 25 ng, increased heart rate. After recovery, rats were tested in both the avoidance and VI 1 schedules after hypothalamic microinjection of saline, BMI 25 ng, and the GABA agonist, muscimol 25 ng. Microinjection of BMI significantly increased the avoidance responses but had no effect on the approach responses. Muscimol decreased both the avoidance and approach responses. When microinjected into the lateral hypothalamic area, BMI had no effect on the response rates in either schedule while muscimol decreased the approach responding only. Therefore, GABA blockade at the discrete area of the posterior hypothalamic nucleus appears to elicit a selective enhancement of avoidance responses. These results suggest that an endogenous GABAergic system in the posterior hypothalamus may tonically inhibit a constellation of autonomic, locomotor and motivational responses that are necessary for some types of defense reaction.
Collapse
Affiliation(s)
- A Shekhar
- Department of Pharmacology, Indiana University School of Medicine, Indianapolis 46223
| | | | | |
Collapse
|
47
|
Shekhar A, DiMicco JA. Defense reaction elicited by injection of GABA antagonists and synthesis inhibitors into the posterior hypothalamus in rats. Neuropharmacology 1987; 26:407-17. [PMID: 3037412 DOI: 10.1016/0028-3908(87)90020-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Blockade of gamma-aminobutyric acid (GABA) in the posterior hypothalamic nucleus elicits cardiorespiratory stimulation in anesthetized rats. The present study was conducted to test the hypothesis that blockade of GABA in this cardiostimulatory area of the posterior hypothalamus in conscious animals would elicit a defense reaction characterised by a "fight or flight" response. Blockade of GABA was achieved by injecting bicuculline methiodide (BMI 1-25 ng) and picrotoxin (4-100 ng), two post-synaptic GABA antagonists and isoniazid (INH 35 and 70 micrograms), an inhibitor of the synthesis of GABA, bilaterally into the posterior hypothalamus through chronically implanted microinjection cannulae. All three drugs produced dose-dependent increases in locomotor activity, suggesting an "escape" reaction which was quantified as number of crossings and rearings. The effects of bicuculline and picrotoxin appeared immediately after the injection while those of isoniazid appeared much more slowly, attaining peak effects 24 +/- 1 min after injection. Injection of either strychnine (38 ng) into the posterior hypothalamus or bicuculline into the lateral hypothalamic area (LHA) or the dorso-medial/ventro-medial hypothalamus (DMH/VMH) did not elicit a significant increase in locomotor behavior. These results suggest that both the physiological and locomotor components of the hypothalamic defense reaction may be under tonic GABAergic inhibition in the region of the posterior hypothalamus.
Collapse
|
48
|
dos Reis LC, Franci CR. Effects of GABA natriuresis induced centrally by cholinergic stimulation. Life Sci 1987; 40:891-8. [PMID: 3821383 DOI: 10.1016/0024-3205(87)90038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sodium and potassium excretion and urine output have been studied in rats following water loading and intracerebroventricular (i.c.v.) injection of isotonic saline (NaCl-0.15M), gamma-amino butyric acid (GABA), picrotoxin, carbachol, GABA plus picrotoxin, GABA plus carbachol and GABA plus atropine. GABA injection decreased sodium and potassium excretion. Picrotoxin or carbachol injection elicited natriuresis and kaliuresis. GABA injection decreased the effects of the carbachol and atropine injection decreased the effects of the GABA on sodium and potassium excretion. These results suggest an interaction between gabaergic and cholinergic pathways in the control of sodium and potassium excretion.
Collapse
|
49
|
Schmitt P, Carrive P, Di Scala G, Jenck F, Brandao M, Bagri A, Moreau JL, Sandner G. A neuropharmacological study of the periventricular neural substrate involved in flight. Behav Brain Res 1986; 22:181-90. [PMID: 2878672 DOI: 10.1016/0166-4328(86)90039-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This paper reviews results obtained in experiments concerning the neurochemical characteristics of the substrate involved in the control of flight reactions and the induction of aversive effects in the rat. These experiments investigated the behavioural effects produced by microinjecting into the periaqueductal grey matter (PAG) or the medial hypothalamus (MH) compounds known to interfere with the functioning of some neurotransmitter systems known to exist in these structures. The data obtained show that: the activity of the substrate involved in the production of flight reactions is tonically inhibited by the release of GABA (gamma-aminobutyric acid); the behavioural reactions produced by microinjecting GABA antagonists can be clearly distinguished, depending on whether such drugs were injected into the PAG or the MH, despite the fact that jumps were produced from either level; behavioural effects, comparable to some extent to those produced by microinjections of GABA antagonists, can be obtained by injecting drugs which act on non-GABAergic neurochemical substrates, namely opioidergic or cholinergic systems; and behavioural effects, comparable to those produced by injecting GABA antagonists into the PAG, can be obtained by injecting such drugs into various sites located in other parts of the tectum such as the inferior colliculus or adjacent structures.
Collapse
|
50
|
Brandão ML, Vasquez EC, Cabral AM, Schmitt P. Chlordiazepoxide and morphine reduce pressor response to brain stimulation in awake rats. Pharmacol Biochem Behav 1985; 23:1069-71. [PMID: 4080774 DOI: 10.1016/0091-3057(85)90116-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effects of intravenous as well as dorsal midbrain injections of morphine and chlordiazepoxide on the blood pressure rise induced by electrical stimulation of the dorsal periaqueductal gray matter (DPAG) were studied in unanesthetized rats. Chlordiazepoxide applied systemically or locally into the DPAG, as well as locally applied but not systemically injected morphine were found to attenuate the centrally-induced hypertension. These data together with others suggest that benzodiazepines as well as local injections of morphine into the DPAG decrease the aversive effect induced by DPAG stimulation.
Collapse
|