1
|
Aksamaz S, Mölle M, Akinola EO, Gromodka E, Bazhenov M, Marshall L. Single closed-loop acoustic stimulation targeting memory consolidation suppressed hippocampal ripple and thalamo-cortical spindle activity in mice. Eur J Neurosci 2024; 59:595-612. [PMID: 37605315 PMCID: PMC11214843 DOI: 10.1111/ejn.16116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023]
Abstract
Brain rhythms of sleep reflect neuronal activity underlying sleep-associated memory consolidation. The modulation of brain rhythms, such as the sleep slow oscillation (SO), is used both to investigate neurophysiological mechanisms as well as to measure the impact of sleep on presumed functional correlates. Previously, closed-loop acoustic stimulation in humans targeted to the SO Up-state successfully enhanced the slow oscillation rhythm and phase-dependent spindle activity, although effects on memory retention have varied. Here, we aim to disclose relations between stimulation-induced hippocampo-thalamo-cortical activity and retention performance on a hippocampus-dependent object-place recognition task in mice by applying acoustic stimulation at four estimated SO phases compared to sham condition. Across the 3-h retention interval at the beginning of the light phase closed-loop stimulation failed to improve retention significantly over sham. However, retention during SO Up-state stimulation was significantly higher than for another SO phase. At all SO phases, acoustic stimulation was accompanied by a sharp increase in ripple activity followed by about a second-long suppression of hippocampal sharp wave ripple and longer maintained suppression of thalamo-cortical spindle activity. Importantly, dynamics of SO-coupled hippocampal ripple activity distinguished SOUp-state stimulation. Non-rapid eye movement (NREM) sleep was not impacted by stimulation, yet preREM sleep duration was effected. Results reveal the complex effect of stimulation on the brain dynamics and support the use of closed-loop acoustic stimulation in mice to investigate the inter-regional mechanisms underlying memory consolidation.
Collapse
Affiliation(s)
- Sonat Aksamaz
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
| | - Matthias Mölle
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
- Center of Brain, Behavior and Metabolism, Lübeck,
Germany
| | - Esther Olubukola Akinola
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
| | - Erik Gromodka
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego,
La Jolla, CA, USA
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
- Center of Brain, Behavior and Metabolism, Lübeck,
Germany
| |
Collapse
|
2
|
Brodersen PJN, Alfonsa H, Krone LB, Blanco-Duque C, Fisk AS, Flaherty SJ, Guillaumin MCC, Huang YG, Kahn MC, McKillop LE, Milinski L, Taylor L, Thomas CW, Yamagata T, Foster RG, Vyazovskiy VV, Akerman CJ. Somnotate: A probabilistic sleep stage classifier for studying vigilance state transitions. PLoS Comput Biol 2024; 20:e1011793. [PMID: 38232122 PMCID: PMC10824458 DOI: 10.1371/journal.pcbi.1011793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/29/2024] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Electrophysiological recordings from freely behaving animals are a widespread and powerful mode of investigation in sleep research. These recordings generate large amounts of data that require sleep stage annotation (polysomnography), in which the data is parcellated according to three vigilance states: awake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep. Manual and current computational annotation methods ignore intermediate states because the classification features become ambiguous, even though intermediate states contain important information regarding vigilance state dynamics. To address this problem, we have developed "Somnotate"-a probabilistic classifier based on a combination of linear discriminant analysis (LDA) with a hidden Markov model (HMM). First we demonstrate that Somnotate sets new standards in polysomnography, exhibiting annotation accuracies that exceed human experts on mouse electrophysiological data, remarkable robustness to errors in the training data, compatibility with different recording configurations, and an ability to maintain high accuracy during experimental interventions. However, the key feature of Somnotate is that it quantifies and reports the certainty of its annotations. We leverage this feature to reveal that many intermediate vigilance states cluster around state transitions, whereas others correspond to failed attempts to transition. This enables us to show for the first time that the success rates of different types of transition are differentially affected by experimental manipulations and can explain previously observed sleep patterns. Somnotate is open-source and has the potential to both facilitate the study of sleep stage transitions and offer new insights into the mechanisms underlying sleep-wake dynamics.
Collapse
Affiliation(s)
- Paul J. N. Brodersen
- Department of Pharmacology, University of Oxford; Mansfield Road, Oxford, United Kingdom
| | - Hannah Alfonsa
- Department of Pharmacology, University of Oxford; Mansfield Road, Oxford, United Kingdom
| | - Lukas B. Krone
- Department of Physiology, Anatomy and Genetics, University of Oxford; Parks Road, United Kingdom
| | - Cristina Blanco-Duque
- Department of Physiology, Anatomy and Genetics, University of Oxford; Parks Road, United Kingdom
| | - Angus S. Fisk
- Nuffield Department of Clinical Neurosciences, University of Oxford; John Radcliffe Hospital, Oxford, United Kingdom
| | - Sarah J. Flaherty
- Department of Physiology, Anatomy and Genetics, University of Oxford; Parks Road, United Kingdom
| | - Mathilde C. C. Guillaumin
- Nuffield Department of Clinical Neurosciences, University of Oxford; John Radcliffe Hospital, Oxford, United Kingdom
- Sleep and Circadian Neuroscience Institute, University of Oxford; Oxford, United Kingdom
- Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich; Schwerzenbach, Switzerland
| | - Yi-Ge Huang
- Department of Physiology, Anatomy and Genetics, University of Oxford; Parks Road, United Kingdom
| | - Martin C. Kahn
- Department of Physiology, Anatomy and Genetics, University of Oxford; Parks Road, United Kingdom
| | - Laura E. McKillop
- Department of Physiology, Anatomy and Genetics, University of Oxford; Parks Road, United Kingdom
| | - Linus Milinski
- Department of Physiology, Anatomy and Genetics, University of Oxford; Parks Road, United Kingdom
| | - Lewis Taylor
- Nuffield Department of Clinical Neurosciences, University of Oxford; John Radcliffe Hospital, Oxford, United Kingdom
| | - Christopher W. Thomas
- Department of Physiology, Anatomy and Genetics, University of Oxford; Parks Road, United Kingdom
| | - Tomoko Yamagata
- Nuffield Department of Clinical Neurosciences, University of Oxford; John Radcliffe Hospital, Oxford, United Kingdom
| | - Russell G. Foster
- Sleep and Circadian Neuroscience Institute, University of Oxford; Oxford, United Kingdom
| | - Vladyslav V. Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford; Parks Road, United Kingdom
| | - Colin J. Akerman
- Department of Pharmacology, University of Oxford; Mansfield Road, Oxford, United Kingdom
| |
Collapse
|
3
|
Affiliation(s)
- Juan Facundo Morici
- Institut du Fer à Moulin, UMRS 1270, Inserm, Sorbonne Université, Paris, France
| | - Gabrielle Girardeau
- Institut du Fer à Moulin, UMRS 1270, Inserm, Sorbonne Université, Paris, France.
| |
Collapse
|
4
|
Osorio-Forero A, Cherrad N, Banterle L, Fernandez LMJ, Lüthi A. When the Locus Coeruleus Speaks Up in Sleep: Recent Insights, Emerging Perspectives. Int J Mol Sci 2022; 23:ijms23095028. [PMID: 35563419 PMCID: PMC9099715 DOI: 10.3390/ijms23095028] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
For decades, numerous seminal studies have built our understanding of the locus coeruleus (LC), the vertebrate brain’s principal noradrenergic system. Containing a numerically small but broadly efferent cell population, the LC provides brain-wide noradrenergic modulation that optimizes network function in the context of attentive and flexible interaction with the sensory environment. This review turns attention to the LC’s roles during sleep. We show that these roles go beyond down-scaled versions of the ones in wakefulness. Novel dynamic assessments of noradrenaline signaling and LC activity uncover a rich diversity of activity patterns that establish the LC as an integral portion of sleep regulation and function. The LC could be involved in beneficial functions for the sleeping brain, and even minute alterations in its functionality may prove quintessential in sleep disorders.
Collapse
|
5
|
Grieger N, Schwabedal JTC, Wendel S, Ritze Y, Bialonski S. Automated scoring of pre-REM sleep in mice with deep learning. Sci Rep 2021; 11:12245. [PMID: 34112829 PMCID: PMC8192905 DOI: 10.1038/s41598-021-91286-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/24/2021] [Indexed: 11/08/2022] Open
Abstract
Reliable automation of the labor-intensive manual task of scoring animal sleep can facilitate the analysis of long-term sleep studies. In recent years, deep-learning-based systems, which learn optimal features from the data, increased scoring accuracies for the classical sleep stages of Wake, REM, and Non-REM. Meanwhile, it has been recognized that the statistics of transitional stages such as pre-REM, found between Non-REM and REM, may hold additional insight into the physiology of sleep and are now under vivid investigation. We propose a classification system based on a simple neural network architecture that scores the classical stages as well as pre-REM sleep in mice. When restricted to the classical stages, the optimized network showed state-of-the-art classification performance with an out-of-sample F1 score of 0.95 in male C57BL/6J mice. When unrestricted, the network showed lower F1 scores on pre-REM (0.5) compared to the classical stages. The result is comparable to previous attempts to score transitional stages in other species such as transition sleep in rats or N1 sleep in humans. Nevertheless, we observed that the sequence of predictions including pre-REM typically transitioned from Non-REM to REM reflecting sleep dynamics observed by human scorers. Our findings provide further evidence for the difficulty of scoring transitional sleep stages, likely because such stages of sleep are under-represented in typical data sets or show large inter-scorer variability. We further provide our source code and an online platform to run predictions with our trained network.
Collapse
Affiliation(s)
- Niklas Grieger
- Department of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Jülich, 52428, Germany
| | | | - Stefanie Wendel
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, 72076, Germany
| | - Yvonne Ritze
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, 72076, Germany
| | - Stephan Bialonski
- Department of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Jülich, 52428, Germany.
| |
Collapse
|
6
|
Kam K, Rapoport DM, Parekh A, Ayappa I, Varga AW. WaveSleepNet: An interpretable deep convolutional neural network for the continuous classification of mouse sleep and wake. J Neurosci Methods 2021; 360:109224. [PMID: 34052291 DOI: 10.1016/j.jneumeth.2021.109224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recent advancement in deep learning provides a pivotal opportunity to potentially supplement or supplant the limiting step of manual sleep scoring. NEW METHOD In this paper, we characterize the WaveSleepNet (WSN), a deep convolutional neural network (CNN) that uses wavelet transformed images of mouse EEG/EMG signals to autoscore sleep and wake. RESULTS WSN achieves an epoch by epoch mean accuracy of 0.86 and mean F1 score of 0.82 compared to manual scoring by a human expert. In mice experiencing mechanically induced sleep fragmentation, an overall epoch by epoch mean accuracy of 0.80 is achieved by WSN and classification of non-REM (NREM) sleep is not compromised, but the high level of sleep fragmentation results in WSN having greater difficulty differentiating REM from NREM sleep. We also find that WSN achieves similar levels of accuracy on an independent dataset of externally acquired EEG/EMG recordings with an overall epoch by epoch accuracy of 0.91. We also compared conventional summary sleep metrics in mice sleeping ad libitum. WSN systematically biases sleep fragmentation metrics of bout number and bout length leading to an overestimated degree of sleep fragmentation. COMPARISON WITH EXISTING METHODS In a cross-validation, WSN has a greater macro and stage-specific accuracy compared to a conventional random forest classifier. Examining the WSN, we find that it automatically learns spectral features consistent with manual scoring criteria that are used to define each class. CONCLUSION These results suggest to us that WSN is capable of learning visually agreeable features and may be useful as a supplement to human manual scoring.
Collapse
Affiliation(s)
- Korey Kam
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, USA.
| | - David M Rapoport
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, USA
| | - Ankit Parekh
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, USA
| | - Indu Ayappa
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, USA
| | - Andrew W Varga
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, USA.
| |
Collapse
|
7
|
Bandarabadi M, Herrera CG, Gent TC, Bassetti C, Schindler K, Adamantidis AR. A role for spindles in the onset of rapid eye movement sleep. Nat Commun 2020; 11:5247. [PMID: 33067436 PMCID: PMC7567828 DOI: 10.1038/s41467-020-19076-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Sleep spindle generation classically relies on an interplay between the thalamic reticular nucleus (TRN), thalamo-cortical (TC) relay cells and cortico-thalamic (CT) feedback during non-rapid eye movement (NREM) sleep. Spindles are hypothesized to stabilize sleep, gate sensory processing and consolidate memory. However, the contribution of non-sensory thalamic nuclei in spindle generation and the role of spindles in sleep-state regulation remain unclear. Using multisite thalamic and cortical LFP/unit recordings in freely behaving mice, we show that spike-field coupling within centromedial and anterodorsal (AD) thalamic nuclei is as strong as for TRN during detected spindles. We found that spindle rate significantly increases before the onset of rapid eye movement (REM) sleep, but not wakefulness. The latter observation is consistent with our finding that enhancing spontaneous activity of TRN cells or TRN-AD projections using optogenetics increase spindle rate and transitions to REM sleep. Together, our results extend the classical TRN-TC-CT spindle pathway to include non-sensory thalamic nuclei and implicate spindles in the onset of REM sleep. During NREM sleep, spindles emerge from thalamocortical interactions. Here the authors carry out multisite thalamic and cortical recordings in freely behaving mice, to investigate the role of other non-classical thalamic sites in sleep spindle generation.
Collapse
Affiliation(s)
- Mojtaba Bandarabadi
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Carolina Gutierrez Herrera
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas C Gent
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Claudio Bassetti
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland
| | - Kaspar Schindler
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland
| | - Antoine R Adamantidis
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland. .,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland. .,Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
8
|
Petrovic J, Radovanovic L, Saponjic J. Diversity of simultaneous sleep in the motor cortex and hippocampus in rats. J Sleep Res 2020; 30:e13090. [PMID: 32472657 DOI: 10.1111/jsr.13090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/26/2022]
Abstract
We investigated the homogeneity/heterogeneity of spontaneous sleep, simultaneously recorded in the motor cortex and the hippocampus of control rats, and particularly analysed simultaneous and non-simultaneous motor cortical and hippocampal non-rapid eye movement (NREM)/rapid eye movement (REM) sleep. We demonstrate that the sleep architectures of the motor cortex and hippocampus are different in control rats. There was an increase of NREM duration and a decrease of REM duration in the hippocampus versus the motor cortex. In terms of duration, NREM state is the most heterogeneous in the hippocampus, whereas the REM state is the most heterogeneous in the motor cortex. Whereas the hippocampal NREM duration was increased due to the prolongation of NREM episodes, the hippocampal REM duration decreased due to the decreased number of REM episodes. The heterogeneity of sleep in the motor cortex and hippocampus in control rats was particularly expressed through the inverse alteration of sigma amplitude during NREM sleep and beta/gamma amplitudes during REM sleep in the hippocampus, along with the delta, sigma, beta and gamma amplitudes only during non-simultaneous NREM/REM sleep in the hippocampus. We demonstrated the brain structure-related and NREM/REM state-related heterogeneity of the motor cortical and hippocampal local sleep in control rats. The distinctly altered local NREM/REM states, alongside their episode dynamics and electroencephalographic (EEG) microstructures, suggest the importance of both the local neuronal network substrate and the NREM/REM neurochemical substrate in the control mechanisms of sleep.
Collapse
Affiliation(s)
- Jelena Petrovic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Radovanovic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasna Saponjic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Abstract
Sleep spindles are burstlike signals in the electroencephalogram (EEG) of the sleeping mammalian brain and electrical surface correlates of neuronal oscillations in thalamus. As one of the most inheritable sleep EEG signatures, sleep spindles probably reflect the strength and malleability of thalamocortical circuits that underlie individual cognitive profiles. We review the characteristics, organization, regulation, and origins of sleep spindles and their implication in non-rapid-eye-movement sleep (NREMS) and its functions, focusing on human and rodent. Spatially, sleep spindle-related neuronal activity appears on scales ranging from small thalamic circuits to functional cortical areas, and generates a cortical state favoring intracortical plasticity while limiting cortical output. Temporally, sleep spindles are discrete events, part of a continuous power band, and elements grouped on an infraslow time scale over which NREMS alternates between continuity and fragility. We synthesize diverse and seemingly unlinked functions of sleep spindles for sleep architecture, sensory processing, synaptic plasticity, memory formation, and cognitive abilities into a unifying sleep spindle concept, according to which sleep spindles 1) generate neural conditions of large-scale functional connectivity and plasticity that outlast their appearance as discrete EEG events, 2) appear preferentially in thalamic circuits engaged in learning and attention-based experience during wakefulness, and 3) enable a selective reactivation and routing of wake-instated neuronal traces between brain areas such as hippocampus and cortex. Their fine spatiotemporal organization reflects NREMS as a physiological state coordinated over brain and body and may indicate, if not anticipate and ultimately differentiate, pathologies in sleep and neurodevelopmental, -degenerative, and -psychiatric conditions.
Collapse
Affiliation(s)
- Laura M J Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Sánchez-López A, Silva-Pérez M, Escudero M. Temporal dynamics of the transition period between nonrapid eye movement and rapid eye movement sleep in the rat. Sleep 2018; 41:5042786. [DOI: 10.1093/sleep/zsy121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 01/02/2023] Open
Affiliation(s)
- Alvaro Sánchez-López
- Departamento de Fisiología, Neurociencia y Comportamiento, Universidad de Sevilla, Avda. Reina Mercedes, – Seville, Spain
| | - Manuel Silva-Pérez
- Departamento de Fisiología, Neurociencia y Comportamiento, Universidad de Sevilla, Avda. Reina Mercedes, – Seville, Spain
| | - Miguel Escudero
- Departamento de Fisiología, Neurociencia y Comportamiento, Universidad de Sevilla, Avda. Reina Mercedes, – Seville, Spain
| |
Collapse
|
11
|
Durán E, Oyanedel CN, Niethard N, Inostroza M, Born J. Sleep stage dynamics in neocortex and hippocampus. Sleep 2018; 41:4980412. [DOI: 10.1093/sleep/zsy060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 01/31/2023] Open
Affiliation(s)
- Ernesto Durán
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate School of Neural and Behavioural Science, International Max Planck Research School, Tübingen, Germany
- Laboratorio de Circuitos Neuronales, Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos N Oyanedel
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate School of Neural and Behavioural Science, International Max Planck Research School, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Bastianini S, Silvani A, Berteotti C, Lo Martire V, Zoccoli G. High-amplitude theta wave bursts during REM sleep and cataplexy in hypocretin-deficient narcoleptic mice. J Sleep Res 2011; 21:185-8. [PMID: 21883592 DOI: 10.1111/j.1365-2869.2011.00945.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurons that release hypocretin (HCRT; orexin) peptides control wake-sleep states and autonomic functions, and are lost in patients with narcolepsy with cataplexy. Bursts of high-amplitude electroencephalographic (EEG) activity have been reported during behavioural arrests and rapid eye movement sleep (REMS) episodes at sleep onset in HCRT-deficient narcoleptic mice. Quantitative information on these EEG phenomena is lacking. We aimed to quantify EEG frequency, occurrence rate, daily rhythm and cardiovascular correlates of high-amplitude EEG bursts during REMS and cataplexy. Twenty HCRT-deficient mice and 15 congenic wild-type controls were instrumented with electrodes for sleep recordings and a telemetric blood pressure transducer. Short (1-2 s) high-amplitude bursts of pointed theta waves (7 Hz) occurred during either REMS or cataplexy in 80% of HCRT-deficient mice without any significant accompanying modification in systolic blood pressure or heart period. Theta bursts were significantly more likely to occur during the dark period and in the last third of REMS episodes. Similar EEG events were detected in a significantly lower fraction (27%) of wild-type mice and with a significantly lower occurrence rate (0.8 versus 5 per hour of REMS). These data demonstrate that occurrence of high-amplitude theta bursts is facilitated during REMS and cataplexy in narcoleptic mice. Analysis of EEG frequency and daily and intra-episode patterns of event occurrence do not support interpretation of theta bursts as temporally displaced pre-REMS spindles. Facilitation of high-amplitude theta bursts may thus represent a novel neurophysiological abnormality associated with chronic HCRT deficiency.
Collapse
Affiliation(s)
- Stefano Bastianini
- Department of Human and General Physiology, Alma Mater Studiorum, Università di Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
13
|
Gottesmann C. To what extent do neurobiological sleep-waking processes support psychoanalysis? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 92:233-90. [PMID: 20870071 DOI: 10.1016/s0074-7742(10)92012-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Sigmund Freud's thesis was that there is a censorship during waking that prevents memory of events, drives, wishes, and feelings from entering the consciousness because they would induce anxiety due to their emotional or ethical unacceptability. During dreaming, because the efficiency of censorship is decreased, latent thought contents can, after dream-work involving condensation and displacement, enter the dreamer's consciousness under the figurative form of manifest content. The quasi-closed dogma of psychoanalytic theory as related to unconscious processes is beginning to find neurobiological confirmation during waking. Indeed, there are active processes that suppress (repress) unwanted memories from entering consciousness. In contrast, it is more difficult to find neurobiological evidence supporting an organized dream-work that would induce meaningful symbolic content, since dream mentation most often only shows psychotic-like activities.
Collapse
Affiliation(s)
- Claude Gottesmann
- Département de Biologie, Faculté des Sciences, Université de Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
14
|
Sánchez-López A, Escudero M. Tonic and phasic components of eye movements during REM sleep in the rat. Eur J Neurosci 2011; 33:2129-38. [DOI: 10.1111/j.1460-9568.2011.07702.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Márquez-Ruiz J, Escudero M. Eye movements and abducens motoneuron behavior after cholinergic activation of the nucleus reticularis pontis caudalis. Sleep 2011; 33:1517-27. [PMID: 21102994 DOI: 10.1093/sleep/33.11.1517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES the aim of this work was to characterize eye movements and abducens (ABD) motoneuron behavior after cholinergic activation of the nucleus reticularis pontis caudalis (NRPC). METHODS six female adult cats were prepared for chronic recording of eye movements (using the scleral search-coil technique), electroencephalography, electromyography, ponto-geniculo-occipital (PGO) waves in the lateral geniculate nucleus, and ABD motoneuron activities after microinjections of the cholinergic agonist carbachol into the NRPC. RESULTS unilateral microinjections of carbachol in the NRPC induced tonic and phasic phenomena in the oculomotor system. Tonic effects consisted of ipsiversive rotation to the injected side, convergence, and downward rotation of the eyes. Phasic effects consisted of bursts of rhythmic rapid eye movements directed contralaterally to the injected side along with PGO-like waves in the lateral geniculate and ABD nuclei. Although tonic effects were dependent on the level of drowsiness, phasic effects were always present and appeared along with normal saccades when the animal was vigilant. ABD motoneurons showed phasic activities associated with ABD PGO-like waves during bursts of rapid eye movements, and tonic and phasic activities related to eye position and velocity during alertness. CONCLUSION the cholinergic activation of the NRPC induces oculomotor phenomena that are somewhat similar to those described during REM sleep. A precise comparison of the dynamics and timing of the eye movements further suggests that a temporal organization of both NRPCs is needed to reproduce the complexity of the oculomotor behavior during REM sleep.
Collapse
|
16
|
Márquez-Ruiz J, Escudero M. Eye movements and abducens motoneuron behavior during cholinergically induced REM sleep. Sleep 2009; 32:471-81. [PMID: 19413141 DOI: 10.1093/sleep/32.4.471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES The injection of cholinergic drugs in the pons has been largely used to induce REM sleep as a useful model to study different processes during this period. In the present study, microinjections of carbachol in the nucleus reticularis pontis oralis (NRPO) were performed to test the hypothesis that eye movements and the behavior of extraocular motoneurons during induced REM sleep do not differ from those during spontaneous REM sleep. METHODS Six female adult cats were prepared for chronic recording of eye movements (by means of the search-coil technique) and electroencephalography, electromyography, ponto-geniculo-occipital (PGO) waves at the lateral geniculate nucleus, and identified abducens motoneuron activities after microinjections of the cholinergic agonist carbachol into the NRPO. RESULTS Unilateral microinjections (n = 13) of carbachol in the NRPO induced REM sleep-like periods in which the eyes performed a convergence and downward rotation interrupted by phasic complex rapid eye movements associated to PGO waves. During induced-REM sleep abducens motoneurons lost their tonic activity and eye position codification, but continued codifying eye velocity during the burst of eye movements. CONCLUSION The present results show that eye movements and the underlying behavior of abducens motoneurons are very similar to those present during natural REM sleep. Thus, microinjection of carbachol seems to activate the structures responsible for the exclusive oculomotor behavior observed during REM sleep, validating this pharmacological model and enabling a more efficient exploration of phasic and tonic phenomena underlying eye movements during REM sleep.
Collapse
Affiliation(s)
- Javier Márquez-Ruiz
- Neurociencia y Comportamiento, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
17
|
Ahnaou A, Dautzenberg FM, Geys H, Imogai H, Gibelin A, Moechars D, Steckler T, Drinkenburg WHIM. Modulation of group II metabotropic glutamate receptor (mGlu2) elicits common changes in rat and mice sleep-wake architecture. Eur J Pharmacol 2008; 603:62-72. [PMID: 19046965 DOI: 10.1016/j.ejphar.2008.11.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 10/07/2008] [Accepted: 11/10/2008] [Indexed: 11/16/2022]
Abstract
Compiling pharmacological evidence implicates metabotropic glutamate mGlu(2) receptors in the regulation of emotional states and suggests positive modulators as a novel therapeutic approach of Anxiety/Depression and Schizophrenia. Here, we investigated subcutaneous effects of the metabotropic glutamate mGlu(2/3) agonist (LY354740) on sleep-wake architecture in rat. To confirm the specific effects on rapid eye movement (REM) sleep were mediated via metabotropic glutamate mGlu(2) receptors, we characterized the sleep-wake cycles in metabotropic glutamate mGlu(2) receptor deficient mice (mGlu(2)R(-/-)) and their arousal response to LY354740. We furthermore examined effects on sleep behavior in rats of the positive allosteric modulator, biphenyl-indanone A (BINA) alone and in combination with LY354740 at sub-effective doses. LY354740 (1, 3 and 10 mg/kg) dose-dependently suppressed REM sleep and prolonged its onset latency. Metabotropic glutamate mGlu(2)R(-/-) and their wild type (WT) littermates exhibited similar spontaneous sleep-wake phenotype, while LY354740 (10 mg/kg) significantly affected REM sleep variables in WT but not in the mutant. In rats, BINA (1, 3, 10, 20, 40 mg/kg) dose-dependently suppressed REM sleep, lengthened its onset latency and slightly enhanced passive waking. Additionally, combined treatment elicited a synergistic action on REM sleep variables. Our findings show common changes of REM sleep variables following modulation of metabotropic glutamate mGlu(2) receptor and support an active role of this receptor in the regulation of REM sleep. The synergistic action of BINA on LY354740's effects on sleep pattern implies that positive modulators would tune the endogenous glutamate tone suggesting potential benefit in the treatment of psychiatric disorders, in which REM sleep overdrive is manifested.
Collapse
Affiliation(s)
- Abdellah Ahnaou
- Dept. Neuroscience, A Division of Janssen Pharmaceutica NV, Johnson & Johnson Pharmaceutical Research and Development, RED Europe, Beerse, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Low PS, Shank SS, Sejnowski TJ, Margoliash D. Mammalian-like features of sleep structure in zebra finches. Proc Natl Acad Sci U S A 2008; 105:9081-6. [PMID: 18579776 PMCID: PMC2440357 DOI: 10.1073/pnas.0703452105] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Indexed: 11/18/2022] Open
Abstract
A suite of complex electroencephalographic patterns of sleep occurs in mammals. In sleeping zebra finches, we observed slow wave sleep (SWS), rapid eye movement (REM) sleep, an intermediate sleep (IS) stage commonly occurring in, but not limited to, transitions between other stages, and high amplitude transients reminiscent of K-complexes. SWS density decreased whereas REM density increased throughout the night, with late-night characterized by substantially more REM than SWS, and relatively long bouts of REM. Birds share many features of sleep in common with mammals, but this collective suite of characteristics had not been known in any one species outside of mammals. We hypothesize that shared, ancestral characteristics of sleep in amniotes evolved under selective pressures common to songbirds and mammals, resulting in convergent characteristics of sleep.
Collapse
Affiliation(s)
- Philip Steven Low
- Sloan-Swartz Center for Theoretical Neurobiology, Computational Neurobiology Laboratory, and Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
19
|
Márquez-Ruiz J, Escudero M. Tonic and phasic phenomena underlying eye movements during sleep in the cat. J Physiol 2008; 586:3461-77. [PMID: 18499729 DOI: 10.1113/jphysiol.2008.153239] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mammalian sleep is not a homogenous state, and different variables have traditionally been used to distinguish different periods during sleep. Of these variables, eye movement is one of the most paradigmatic, and has been used to differentiate between the so-called rapid eye movement (REM) and non-REM (NREM) sleep periods. Despite this, eye movements during sleep are poorly understood, and the behaviour of the oculomotor system remains almost unknown. In the present work, we recorded binocular eye movements during the sleep-wake cycle of adult cats by the scleral search-coil technique. During alertness, eye movements consisted of conjugated saccades and eye fixations. During NREM sleep, eye movements were slow and mostly unconjugated. The two eyes moved upwardly and in the abducting direction, producing a tonic divergence and elevation of the visual axis. During the transition period between NREM and REM sleep, rapid monocular eye movements of low amplitude in the abducting direction occurred in coincidence with ponto-geniculo-occipital waves. Along REM sleep, the eyes tended to maintain a tonic convergence and depression, broken by high-frequency bursts of complex rapid eye movements. In the horizontal plane, each eye movement in the burst comprised two consecutive movements in opposite directions, which were more evident in the eye that performed the abducting movements. In the vertical plane, rapid eye movements were always upward. Comparisons of the characteristics of eye movements during the sleep-wake cycle reveal the uniqueness of eye movements during sleep, and the noteworthy existence of tonic and phasic phenomena in the oculomotor system, not observed until now.
Collapse
Affiliation(s)
- Javier Márquez-Ruiz
- Neurociencia y Comportamiento, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain
| | | |
Collapse
|
20
|
Ribeiro S, Shi X, Engelhard M, Zhou Y, Zhang H, Gervasoni D, Lin SC, Wada K, Lemos NAM, Nicolelis MAL. Novel experience induces persistent sleep-dependent plasticity in the cortex but not in the hippocampus. Front Neurosci 2007; 1:43-55. [PMID: 18982118 PMCID: PMC2577304 DOI: 10.3389/neuro.01.1.1.003.2007] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 09/01/2007] [Indexed: 11/13/2022] Open
Abstract
Episodic and spatial memories engage the hippocampus during acquisition but migrate to the cerebral cortex over time. We have recently proposed that the interplay between slow-wave (SWS) and rapid eye movement (REM) sleep propagates recent synaptic changes from the hippocampus to the cortex. To test this theory, we jointly assessed extracellular neuronal activity, local field potentials (LFP), and expression levels of plasticity-related immediate-early genes (IEG) arc and zif-268 in rats exposed to novel spatio-tactile experience. Post-experience firing rate increases were strongest in SWS and lasted much longer in the cortex (hours) than in the hippocampus (minutes). During REM sleep, firing rates showed strong temporal dependence across brain areas: cortical activation during experience predicted hippocampal activity in the first post-experience hour, while hippocampal activation during experience predicted cortical activity in the third post-experience hour. Four hours after experience, IEG expression was specifically upregulated during REM sleep in the cortex, but not in the hippocampus. Arc gene expression in the cortex was proportional to LFP amplitude in the spindle-range (10-14 Hz) but not to firing rates, as expected from signals more related to dendritic input than to somatic output. The results indicate that hippocampo-cortical activation during waking is followed by multiple waves of cortical plasticity as full sleep cycles recur. The absence of equivalent changes in the hippocampus may explain its mnemonic disengagement over time.
Collapse
Affiliation(s)
- Sidarta Ribeiro
- Edmond and Lily Safra International Institute of Neuroscience of Natal (ELS-IINN), Natal, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gottesmann C, Gottesman I. The neurobiological characteristics of rapid eye movement (REM) sleep are candidate endophenotypes of depression, schizophrenia, mental retardation and dementia. Prog Neurobiol 2007; 81:237-50. [PMID: 17350744 DOI: 10.1016/j.pneurobio.2007.01.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 12/14/2006] [Accepted: 01/10/2007] [Indexed: 01/23/2023]
Abstract
Animal models are a promising method to approach the basic mechanisms of the neurobiological disturbances encountered in mental disorders. Depression is characterized by a decrease of REM sleep latency and an increase of rapid eye movement density. In schizophrenia, electrophysiological, tomographic, pharmacological and neurochemical activities are all encountered during REM sleep. Mental retardation and dementia are characterized by rather specific REM sleep disturbances. Identification of the genetic support for these abnormalities (endophenotypes) encountered during REM sleep could help to develop specific treatments.
Collapse
Affiliation(s)
- Claude Gottesmann
- Département des Sciences de la Vie, Faculté des Sciences, Université de Nice-Sophia Antipolis, 22 parc Lubonis, 06000 Nice, France.
| | | |
Collapse
|
22
|
Capitani P, Cerri M, Amici R, Baracchi F, Jones CA, Luppi M, Perez E, Parmeggiani PL, Zamboni G. Changes in EEG activity and hypothalamic temperature as indices for non-REM sleep to REM sleep transitions. Neurosci Lett 2005; 383:182-7. [PMID: 15936533 DOI: 10.1016/j.neulet.2005.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 03/25/2005] [Accepted: 04/03/2005] [Indexed: 11/29/2022]
Abstract
A shift of physiological regulations from a homeostatic to a non-homeostatic modality characterizes the passage from non-NREM sleep (NREMS) to REM sleep (REMS). In the rat, an EEG index which allows the automatic scoring of transitions from NREMS to REMS has been proposed: the NREMS to REMS transition indicator value, NIV [J.H. Benington et al., Sleep 17 (1994) 28-36]. However, such transitions are not always followed by a REMS episode, but are often followed by an awakening. In the present study, the relationship between changes in EEG activity and hypothalamic temperature (Thy), taken as an index of autonomic activity, was studied within a window consisting of the 60s which precedes a state change from a consolidated NREMS episode. Furthermore, the probability that a transition would lead to REMS or wake was analysed. The results showed that, within this time window, both a modified NIV (NIV(60)) and the difference between Thy at the limits of the window (Thy(D)) were related to the probability of REMS onset. Both the relationship between the indices and the probability of REMS onset was sigmoid, the latter of which saturated at a probability level around 50-60%. The efficacy for the prediction of successful transitions from NREMS to REMS found using Thy(D) as an index supports the view that such a transition is a dynamic process where the physiological risk to enter REMS is weighted at a central level.
Collapse
Affiliation(s)
- Paolo Capitani
- Department of Electronics, Computer Science and Systems, Alma Mater Studiorum-University of Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
GABA is the main inhibitory neurotransmitter of the CNS. It is well established that activation of GABA(A) receptors favors sleep. Three generations of hypnotics are based on these GABA(A) receptor-mediated inhibitory processes. The first and second generation of hypnotics (barbiturates and benzodiazepines respectively) decrease waking, increase slow-wave sleep and enhance the intermediate stage situated between slow-wave sleep and paradoxical sleep, at the expense of this last sleep stage. The third generation of hypnotics (imidazopyridines and cyclopyrrolones) act similarly on waking and slow-wave sleep but the slight decrease of paradoxical sleep during the first hours does not result from an increase of the intermediate stage. It has been shown that GABA(B) receptor antagonists increase brain-activated behavioral states (waking and paradoxical sleep: dreaming stage). Recently, a specific GABA(C) receptor antagonist was synthesized and found by i.c.v. infusion to increase waking at the expense of slow-wave sleep and paradoxical sleep. Since the sensitivity of GABA(C) receptors for GABA is higher than that of GABA(A) and GABA(B) receptors, GABA(C) receptor agonists and antagonists, when available for clinical practice, could open up a new era for therapy of troubles such as insomnia, epilepsy and narcolepsy. They could possibly act at lower doses, with fewer side effects than currently used drugs. This paper reviews the influence of different kinds of molecules that affect sleep and waking by acting on GABA receptors.
Collapse
Affiliation(s)
- Claude Gottesmann
- Laboratoire de Psychophysiologie, Faculté des Sciences, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France.
| |
Collapse
|
24
|
Gottesmann C. The neurochemistry of waking and sleeping mental activity: the disinhibition-dopamine hypothesis. Psychiatry Clin Neurosci 2002; 56:345-54. [PMID: 12109951 DOI: 10.1046/j.1440-1819.2002.01022.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This paper describes a hypothesis related to the neurochemical background of sleep-waking mental activity which, although associated with subcortical structures, is principally generated in the cerebral cortex. Acetylcholine, which mainly activates cortical neurons, is released at the maximal rate during waking and rapid eye movement (REM) sleep dreaming stage. Its importance in mental functioning is well-known. However, brainstem-generated monoamines, which mainly inhibit cortical neurons, are released during waking. Both kinds of influences contribute to the organized mentation of waking. During slow wave sleep, these two types of influence decrease in intensity but maintain a sufficiently high level to allow mental activity involving fairly abstract pseudo-thoughts, a mode of activity modelled on the diurnal pattern of which it is a poor reply. During REM sleep, the monoaminergic neurons become silent except for the dopaminergic ones. This results in a large disinhibition and the maintained dopamine influence may be involved in the familiar psychotic-like mental activity of dreaming. Indeed, in this original activation-disinhibition state, the increase of dopamine influence at the prefrontal cortex level could explain the almost total absence of negative symptoms of schizophrenia during dreaming, while an increase in the nucleus accumbens is possibly responsible for hallucinations and delusions, which are regular features of mentation during this sleep stage.
Collapse
Affiliation(s)
- Claude Gottesmann
- Laboratoire de Psychophysiologie, Faculté des Sciences, Université de Nice-Sophia Antipolis, France.
| |
Collapse
|
25
|
Piscopo S, Mandile P, Montagnese P, Cotugno M, Giuditta A, Vescia S. Identification of trains of sleep sequences in adult rats. Behav Brain Res 2001; 119:93-101. [PMID: 11164530 DOI: 10.1016/s0166-4328(00)00339-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In previous studies based on high resolution EEG analyses of the 7 h baseline session of 18 adult male Wistar rats [6,14], we have identified four sleep sequences initiating with slow wave sleep (SS) and terminating with waking (W) or paradoxical sleep (PS). Two of these sequences contained an intervening episode of transition sleep (TS). Several variables of these sequences (SS-->W, SS-->TS-->W, SS-->TS-->PS, and SS-->PS) were selectively correlated with the capacity of rats to learn a two-way active avoidance task the following day, and were differently distributed in fast learning, slow learning and non learning rats [21]. The temporal organization of different sleep components in sequences suggested that a comparable temporal organization might concern the different sleep sequences, albeit on a longer time scale. We have now used waking periods longer than 60 s to separate clusters of baseline sleep sequences (trains) in the same rats. Trains containing the same sleep sequence (homogeneous trains) have been distinguished from trains containing different sleep sequences (mixed trains). In addition, mixed trains including the SS-->TS-->W sequence (+TSW trains) have been separated from mixed trains lacking that sequence (-TSW trains). Mixed trains of the +TSW type were longest and most numerous, while homogeneous trains were shortest and least abundant. Mixed trains of the -TSW type displayed intermediate values. Several variables of sleep sequences and sleep components differed within mixed trains and among mixed and homogeneous trains. The data indicate that baseline sleep sequences aggregate in relatively long strings in a non random fashion. The mechanism of this association is discussed.
Collapse
Affiliation(s)
- S Piscopo
- Dipartimento di Fisiologia Generale e Ambientale, Università di Napoli Federico II, Via Mezzocannone 8, Naples 80134, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Mandile P, Vescia S, Montagnese P, Piscopo S, Cotugno M, Giuditta A. Post-trial sleep sequences including transition sleep are involved in avoidance learning of adult rats. Behav Brain Res 2000; 112:23-31. [PMID: 10862932 DOI: 10.1016/s0166-4328(00)00158-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
High resolution computerized EEG analyses, and behavioral observations were used to identify slow wave sleep (SS), paradoxical sleep (PS) and transition sleep (TS) in adult male Wistar rats exposed to a session of two-way active avoidance training. Of the four sleep sequences that could be identified, two included TS (SS-->TS-->W and SS-->TS-->PS), while the other two did not (SS-->W and SS-->PS). Comparison of post-trial sleep variables between fast learning rats (FL, reaching criterion in the training session), slow learning rats (SL, reaching criterion in the retention session the following day), and non learning rats (NL, failing to reach criterion) indicated that the total amounts of SS, TS and PS of the SS-->TS-->PS sequence was markedly higher in FL rats than in SL rats. In addition, in comparison with the corresponding baseline period, the average duration and total amount of SS and TS episodes of the SS-->TS-->PS sequence increased in FL rats, while the number of SS-->TS-->W sequences decreased. On the other hand, the average duration of SS episodes increased in the SS-->TS-->W and SS-->W sequences of SL rats, and in the SS-->W and SS-->TS-->PS sequences of NL rats. Correlative analyses between number of avoidances and post-trial sleep variables demonstrated that avoidances were directly correlated with the duration of SS episodes of the SS-->TS-->PS sequence and with the duration of TS episodes of the SS-->TS-->W sequence, but inversely correlated with the number and amount of SS episodes of the SS-->W sequence and with the duration and amount of SS episodes of the SS-->PS sequence. On the whole, the data supported the view that TS-containing sleep sequences are involved in long-term storage of novel adaptive behavior, while sleep sequences lacking TS are involved in the maintenance of innate behavioral responses.
Collapse
Affiliation(s)
- P Mandile
- Dipartimento di Fisiologia Generale e Ambientale, Università di Napoli 'Federico II', Via Mezzocannone 8, 80134, Naples, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Kitchigina VF, Kudina TA, Kutyreva EV, Vinogradova OS. Neuronal activity of the septal pacemaker of theta rhythm under the influence of stimulation and blockade of the median raphe nucleus in the awake rabbit. Neuroscience 1999; 94:453-63. [PMID: 10579208 DOI: 10.1016/s0306-4522(99)00258-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The control of theta rhythm in neuronal activity of the medial septal area and hippocampal electroencephalogram by the brainstem structures was investigated in waking rabbits. In the first series of experiments stimulating electrodes were implanted into the midbrain reticular formation and median raphe nucleus. The standard frequency of theta-bursts in medial septal area neurons and in the electroencephalogram was uniformly and chronically decreased in all rabbits with electrodes implanted into the median raphe nucleus (4.7 +/- 0.5 Hz versus 5.2 +/- 0.19 Hz in animals without electrodes in median raphe nucleus). Weak electrical stimulation of the median raphe nucleus resulted in additional decrease of theta expression in the medial septal area neurons and its disappearance from the hippocampal electroencephalogram, where it was substituted by delta-waves and spindles. Stimulation of the reticular formation had the opposite effect, with an increase in theta frequency, regularity and expression in medial septal area neuronal activity and hippocampal electroencephalogram. In the second series of experiments reversible functional blockade of the median raphe nucleus by local microinjection of lidocaine was performed. This resulted in expression of theta-bursts in an additional group of medial septal area neurons, an increase in theta-burst frequency (by 0.5-2 Hz) and regularity with concomitant changes in the electroencephalogram. The effects of sensory stimuli on the background of increased theta activity were suppressed or significantly decreased. It is concluded that, in accordance with the data of other authors, the median raphe nucleus can be regarded as a functional antagonist of the reticular formation, powerfully suppressing theta-bursts of the medial septal area neurons and hippocampal theta rhythm. It is suggested that, in combination with the theta-enhancing influences of reticular formation, the median raphe nucleus may participate in termination of attention, its switching to other stimuli and stabilization of the effects of learning.
Collapse
Affiliation(s)
- V F Kitchigina
- Institute of Theoretical and Experimental Biophysics, Puschino, Moscow District, Russia
| | | | | | | |
Collapse
|
28
|
Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 1999; 98:437-51. [PMID: 10481909 DOI: 10.1016/s0092-8674(00)81973-x] [Citation(s) in RCA: 2115] [Impact Index Per Article: 84.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neurons containing the neuropeptide orexin (hypocretin) are located exclusively in the lateral hypothalamus and send axons to numerous regions throughout the central nervous system, including the major nuclei implicated in sleep regulation. Here, we report that, by behavioral and electroencephalographic criteria, orexin knockout mice exhibit a phenotype strikingly similar to human narcolepsy patients, as well as canarc-1 mutant dogs, the only known monogenic model of narcolepsy. Moreover, modafinil, an anti-narcoleptic drug with ill-defined mechanisms of action, activates orexin-containing neurons. We propose that orexin regulates sleep/wakefulness states, and that orexin knockout mice are a model of human narcolepsy, a disorder characterized primarily by rapid eye movement (REM) sleep dysregulation.
Collapse
Affiliation(s)
- R M Chemelli
- Howard Hughes Medical Institute, Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, 75235-9050, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schwierin B, Achermann P, Deboer T, Oleksenko A, Borbély AA, Tobler I. Regional differences in the dynamics of the cortical EEG in the rat after sleep deprivation. Clin Neurophysiol 1999; 110:869-75. [PMID: 10400200 DOI: 10.1016/s1388-2457(99)00020-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate regional changes of the cortical sleep EEG in the rat, recordings were obtained from a frontal and an occipital derivation, on a baseline day (n = 14 male rats, Sprague-Dawley strain) and after 24 h sleep deprivation (SD, n = 7). METHODS Spectral analysis of the vigilance states revealed state and frequency specific differences in EEG power by two-way ANOVA and post-hoc t tests. RESULTS In the theta band (6.25-9.0 Hz) occipital power was larger than frontal power in waking and REM sleep, whereas frontal power was larger in the frequency range between 10.25-16.0 Hz in non-REM sleep and REM sleep. After SD frontal power in the 2-4 Hz band in non-REM sleep was increased more than occipital power and frontal power in the 10.25-16.0 Hz range was more attenuated. In REM sleep frontal power in the theta band and in the 10.25-16.0 Hz range was more increased than occipital power. Power in the waking EEG did not differ between the two derivations after SD. CONCLUSIONS The differential responses to SD may reflect regional use-dependent aspects of sleep regulation. These observations support the notion that sleep is not only a global phenomenon but has also local, use-dependent features.
Collapse
Affiliation(s)
- B Schwierin
- Institute of Pharmacology, University of Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Franken P, Malafosse A, Tafti M. Genetic variation in EEG activity during sleep in inbred mice. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:R1127-37. [PMID: 9756543 DOI: 10.1152/ajpregu.1998.275.4.r1127] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genetic variation in spontaneous rhythmic electroencephalographic (EEG) activity was assessed by the quantitative analysis of the EEG in six inbred mice strains. Mean spectral EEG profiles (0-25 Hz) over 24 h were obtained for paradoxical sleep (PS), slow-wave sleep (SWS), and wakefulness. A highly significant genotype-specific variation was found for theta peak frequency during both PS and SWS, which strongly suggests the presence of a gene with a major effect. The strain distribution of theta peak frequency during exploratory behavior differed from that during sleep. In SWS, the relative contributions of delta (1-4 Hz) and sigma (11-15) power to the EEG varied with genotype and power in both frequency bands was negatively correlated. In addition, the EEG dynamics at state transitions were analyzed with a 4-s resolution. The onset of PS, but not that of wakefulness, was preceded by a pronounced peak in high-frequency (>11 Hz) power. These findings are discussed in terms of the neurophysiological mechanisms underlying rhythm generation and their control and modulation by the brain stem reticular-activating system.
Collapse
Affiliation(s)
- P Franken
- Biochemistry and Neurophysiology Unit, Department of Psychiatry, University of Geneva, CH-1225 Geneva, Switzerland
| | | | | |
Collapse
|
31
|
Gottesmann C, Gandolfo G, Arnaud C, Gauthier P. The intermediate stage and paradoxical sleep in the rat: influence of three generations of hypnotics. Eur J Neurosci 1998; 10:409-14. [PMID: 9749703 DOI: 10.1046/j.1460-9568.1998.00069.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Paradoxical sleep in the rat, cat and mouse is preceded and sometimes followed by a short-lasting intermediate stage characterized by high-amplitude anterior cortex spindles and low-frequency hippocampal theta rhythm. Several neurophysiological arguments suggest that the intermediate stage corresponds to a brief functional disconnection of the forebrain from the brainstem. This paper is devoted to the review of quantitative and qualitative influences of three generations of hypnotics on the intermediate stage-paradoxical sleep couple. Barbiturates, first-generation hypnotics, extend the intermediate stage at the expense of paradoxical sleep. Three benzodiazepines are compared, two with a short half-life (triazolam and midazolam) and one with a long half-life (diazepam). They also decrease sleep occurrence latency and increase the intermediate stage at the expense of paradoxical sleep, except for midazolam, which increases both the intermediate stage and paradoxical sleep at low dose. Zolpidem and zopiclone, hypnotics of third generation, decrease paradoxical sleep but the intermediate stage never substitutes for paradoxical sleep. The results are discussed in relationship to the functional aspects of this turning-point period of sleep.
Collapse
Affiliation(s)
- C Gottesmann
- Laboratoire de Psychophysiologie, Faculté des Sciences, Université de Nice-Sophia Antipolis, Nice, France.
| | | | | | | |
Collapse
|
32
|
Mandile P, Vescia S, Montagnese P, Romano F, Onio Giuditta A. Characterization of transition sleep episodes in baseline EEG recordings of adult rats. Physiol Behav 1996; 60:1435-9. [PMID: 8946487 DOI: 10.1016/s0031-9384(96)00301-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
By scoring 5-s EEG epochs and calculating spectral power of consecutive EEG segments as short as 1-s, transition sleep (TS) episodes were identified in baseline recordings of adult rats. TS episodes were characterized by the abrupt appearance of theta and alpha waves within an ongoing period of slow-wave sleep (SS). They were followed by paradoxical sleep (PS) or, somewhat more frequently, by a period of wakefulness (W) that often led to an additional SS. Statistical values of the main variables of TS-->(W) and TS-->(PS) episodes are presented, together with comparable data concerning previous SS and following W or PS episodes. On the whole, TS episodes were more numerous than PS episodes, and less numerous than SS episodes. Their average duration was considerably shorter. As a consequence of the identification of TS and of brief W or PS epochs intervening within SS, the number of SS episodes was estimated to be considerably higher than previously assessed, and their average duration considerably shorter.
Collapse
Affiliation(s)
- P Mandile
- Department of General and Environmental Physiology, University of Naples, Federico II, Italy
| | | | | | | | | |
Collapse
|
33
|
Vescia S, Mandile P, Montagnese P, Romano F, Cataldo G, Cotugno M, Giuditta A. Baseline transition sleep and associated sleep episodes are related to the learning ability of rats. Physiol Behav 1996; 60:1513-25. [PMID: 8946500 DOI: 10.1016/s0031-9384(96)00302-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The EEGs of 18 adult male Wistar rats were recorded during a baseline session lasting 7 h (day 1). The following day, rats were trained for a 2-way active avoidance task in an automated shuttle-box. A retention test was scheduled on the third day. On the basis of the number of avoidances scored during the training and retention sessions, rats were assigned to a fast-learning group (FL; achieving criterion during the training session), a slow-learning group (SL; achieving criterion in the retention test session), and a nonlearning group (NL; failing to achieve criterion). Vigilance states were determined by analyzing EEG data in 5-s epochs and calculating EEG power spectra of consecutive time intervals as short as 1 s. This high-resolution method led to the identification of transition sleep episodes that followed slow-wave sleep (SS) and were followed by waking (TS-->W) or by paradoxical sleep (TS-->PS). Comparison of the baseline sleep variables of the 3 behavioral groups revealed the presence of several significant differences. These observations were confirmed by the results of correlative analyses between baseline sleep variables and number of avoidances scored during the training and retention sessions. The most reliable indices of the capacity to learn the avoidance task were the amounts of SS preceding the TS-->W or the TS-->PS sequence, and the amounts of either component of the latter sequence. These variables displayed markedly higher values in FL rats. In addition, the amount of SS preceding TS-->W and the amount of TS-->(W) were significantly correlated with the number of avoidances scored during the training session. On the other hand, 1' SS-->(PS) and (SS)-->PS episodes were longer in NL rats than in SL or FL rats, respectively; and 2, the duration of SS-->(PS) episodes was inversely correlated with the number of avoidances of the first training period. The data are interpreted to suggest that TS and associated sleep episodes may predict the acquisition of the avoidance task, and the episodes of SS-->PS not associated with TS may predict the retention of innate responses, such as freezings or escapes.
Collapse
Affiliation(s)
- S Vescia
- Department of General and Environmental Physiology, University of Naples Federico II, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Kichigina VF, Gordeeva TA. Regulation of the septal pacemaker theta rhythm by the cervical nuclei of the midbrain. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1996; 26:516-25. [PMID: 9121627 DOI: 10.1007/bf02359493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuronal activity in the medial septal region (the medial nucleus and the diagonal band nucleus, MN-DBN) was recorded along with hippocampal EEG traces in conscious rabbits with stimulatory electrodes implanted in the median cervical nucleus (MCN) and the reticular formation (RF) of the midbrain and pons. In all animals with electrodes in the MCN, the background theta activity frequency was low (4.6 +/- 0.15 Hz) as compared with intact rabbits or those with electrodes implanted only in the RF (5.2 +/- 0.19 Hz, p < 0.5). Stimulation of the MCN with weak low-frequency impulses reduced theta volleys from MN-DBN cells, reducing their frequency and regularity and inducing the appearance or strengthening of low-frequency delta modulation. The number of spikes in a volley decreased, and the duration of inter-volley intervals increased. Stimulation of the MCN led to a gradual decrease in the frequency and amplitude of theta waves, induced irregular delta waves and spindles of 12 Hz in the hippocampal EEG. Stimulation of the RF produced the opposite changes in volley activity in the MN-DBN and hippocampal EEG, with increases in theta and decreases in delta components. These results support a role for the midbrain cervical nuclei as structures limiting the generation of theta activity by the reticular-septal system, but do not support the existence of an MN-DBN-independent high-frequency serotoninergic theta rhythm. It is proposed that the effect of the MCN may be important for suppression and switching of attention.
Collapse
Affiliation(s)
- V F Kichigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino
| | | |
Collapse
|
35
|
Gandolfo G, Gauthier P, Arnaud C, Gottesmann C. Influence of paradoxical sleep deprivation on the intermediate stage of sleep in the rat. Neurosci Res 1996; 25:123-7. [PMID: 8829148 DOI: 10.1016/0168-0102(96)01040-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the rat, paradoxical sleep (PS) is preceded by a short-lasting stage characterized by high amplitude cortical spindles and low frequency hippocampal theta rhythm. This intermediate stage (IS) is massively extended at the expense of PS by barbiturates and benzodiazepines. To further study the relationship between the IS and PS, six rats were PS deprived for 48 h by sitting on one of three small platforms surrounded by water. A control group of six other rats remained in dry cages with shavings. After 24 h PS deprivation the latency of IS occurrence increased, was unchanged after 48 h deprivation and decreased during recovery on shavings after 52 h deprivation. The total IS duration, number of episodes and mean duration per episode were unchanged during deprivation but increased during recovery. This recovery was characterized by an increase in the number of PS episodes and the total duration while the latency of PS occurrence decreased. The frequency of theta rhythm, unchanged for PS, increased for the IS during deprivation and recovery. In conclusion, the IS did not substitute for PS after selective deprivation.
Collapse
Affiliation(s)
- G Gandolfo
- Laboratoire de Psychophysiologie, Faculté des Sciences, Université de Nice-Sophia Antipolis, France
| | | | | | | |
Collapse
|
36
|
Gottesmann C. The transition from slow-wave sleep to paradoxical sleep: evolving facts and concepts of the neurophysiological processes underlying the intermediate stage of sleep. Neurosci Biobehav Rev 1996; 20:367-87. [PMID: 8880730 DOI: 10.1016/0149-7634(95)00055-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Paradoxical sleep in rats, cats and mice is usually preceded and sometimes followed by a short-lasting (a few seconds) electroencephalogram (EEG) stage characterized by high-amplitude spindles in the anterior cortex and low-frequency theta rhythm in the dorsal hippocampus. The former is an index of advanced slow-wave sleep; the latter is an index of limbic activation since it occurs during active waking and paradoxical sleep. Barbiturates and benzodiazepines extend this intermediate stage at the expense of paradoxical sleep while concomitantly barbiturates suppress the pontine reticular activation characteristic of this sleep stage. During the intermediate stage, thalamocortical responsiveness and thalamic transmission level, which are controlled by brain stem activating influences, are the lowest of all sleep-waking stages. The unusual EEG pattern of this stage is otherwise only observed in the acute intercollicular-transected preparation. Therefore, forebrain structures may be functionally briefly disconnected from the brain-stem during this short-lasting stage, which could possibly account for the mental content of a similar sleep period in humans. In spite of strong evidence in favour of this forebrain deafferentiation hypothesis, other data indicate that the IS is in some way linked either to slow-wave sleep or to paradoxical sleep.
Collapse
Affiliation(s)
- C Gottesmann
- Laboratoire de Psychophysiologie, Faculté des Sciences, Université de Nice-Sophia Antipolis, France
| |
Collapse
|
37
|
Gottesmann C, Gandolfo G, Zernicki B. Sleep-waking cycle in chronic rat preparations with brain stem transected at the caudopontine level. Brain Res Bull 1995; 36:573-80. [PMID: 7757492 DOI: 10.1016/0361-9230(94)00247-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The brain stem of rats was transected at the middle of the nucleus reticularis pontis caudalis. The preparations were maintained 2-9 days, and their EEG activity and behavior were studied. Maintained EEG activity and EEG arousal to visual and olfactory stimuli indicated the presence of sleep-waking cycle. Three stages were identified. Two of them corresponded to waking with hippocampal theta rhythm and to slow wave sleep in intact rats. The third stage (absent in intact rats) was characterized by slow waves and spindles of low amplitude in the cortex and low frequency theta rhythm, and it was considered as "drowsiness." Waking without theta rhythm, paradoxical sleep, and its forerunner intermediate stage were never found. Paroxystic-like EEG episodes were frequently observed. Thus, although present, the sleep-waking cycle is severely impaired in the caudopontine rats. The impairment is similar to that found previously in rats transected at the intercollicular or pretrigeminal level. The preparations were able to crawl abortively and to swallow liquid. Their respiratory rhythm was normal, but the heart rate increased. Thus, the caudal part of the preparations showed remarkable ability in controlling motor and vegetative functions.
Collapse
Affiliation(s)
- C Gottesmann
- Laboratoire de Psychophysiologie, Faculté des Sciences, Université de Nice-Sophia Antipolis, France
| | | | | |
Collapse
|
38
|
Gandolfo G, Scherschlicht R, Gottesmann C. Benzodiazepines promote the intermediate stage at the expense of paradoxical sleep in the rat. Pharmacol Biochem Behav 1994; 49:921-7. [PMID: 7886108 DOI: 10.1016/0091-3057(94)90244-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of diazepam, a long half-life benzodiazepine, midazolam and triazolam, two with short half-life, on the transitional stage between deep slow wave sleep and paradoxical sleep were studied in Wistar and WAG/Rij rats. This intermediate stage is characterized by the unusual association of cortical spindles and low frequency hippocampal theta rhythm. The main result was extension of the intermediate stage at the expense of paradoxical sleep by diazepam and triazolam by influencing only the duration of the intermediate stage and both the onset and maintenance of paradoxical sleep. Midazolam increased both intermediate stage and paradoxical sleep. Several differences in the qualitative modulation of the stage characteristics and between rat strains were found. In regard to the possible peculiar physiological significance of the intermediate stage, we conclude that benzodiazepines promote a transient pharmacological cerveau isolé-like stage during sleep in rats.
Collapse
Affiliation(s)
- G Gandolfo
- Laboratoire de Psychophysiologie, Faculté des Sciences, Université de Nice-Sophia Antipolis, Nice, France
| | | | | |
Collapse
|
39
|
Arnaud C, Gauthier P, Gottesmann C. Atropine effects on the intermediate stage and paradoxical sleep in rats. Psychopharmacology (Berl) 1994; 116:304-8. [PMID: 7892420 DOI: 10.1007/bf02245333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Paradoxical sleep (PS) in the rat, cat and mouse is preceded and sometimes followed by a short-lasting intermediate stage (IS) characterized by high amplitude cortical spindles and low frequency theta rhythm. This stage, which is mimicked by an intercollicular transection, is massively extended at the expense of PS by low doses of barbiturates. Since the pontine cholinergic cell activation of PS is suppressed by barbiturates, we studied whether atropine, an antimuscarinic compound, extends IS at the expense of PS. Atropine sulfate was given at 5, 10 and 20 mg/kg IP. All doses increased dose dependently the occurrence latency of IS and PS. The amount of IS and PS was decreased for several hours, principally by a decrease of the number of phases. At 20 mg/kg the phase mean duration of IS and PS was also decreased. Consequently, IS and PS are similarly supported by muscarinic processes. The theta rhythm frequency was scored during IS and outside PS phasic motor activities (type 2 theta). At all doses it was significantly increased for hours. The theta rhythm frequency was also transiently increased during the hypersynchronization periods of PS (type 1 theta). At 20 mg/kg it was similarly the case for type 1 theta rhythm during waking.
Collapse
Affiliation(s)
- C Arnaud
- Laboratoire de Psychophysiologie, Faculté des Sciences, Université de Nice-Sophia Antipolis, France
| | | | | |
Collapse
|
40
|
Gottesmann C, Trefouret S, Depoortere H. Influence of zolpidem, a novel hypnotic, on the intermediate-stage and paradoxical sleep in the rat. Pharmacol Biochem Behav 1994; 47:359-62. [PMID: 8146229 DOI: 10.1016/0091-3057(94)90023-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Paradoxical sleep (PS) in mice, rats, and cats is preceded and sometimes followed by a short-lasting stage characterized by cortical high-amplitude spindles and hippocampal low-frequency theta rhythm. This intermediate stage (IS) seems to correspond to a transient functional disconnection of the forebrain from the brainstem. Pentobarbital and benzodiazepines greatly extend IS at the expense of PS, which is suppressed. Zolpidem, a new imidazopyridine hypnotic, was studied at 2.5, 5, and 7.5 mg/kg IP. At 2.5 mg/kg, which is already a true hypnotic dose, it only decreased PS during the first 2 h of recording with a rebound during the following 4 h of recording. At 5 mg/kg, zolpidem increased the number and total duration of IS episodes, increased IS episodes not followed by PS, and increased PS latency of occurrence. PS amount was decreased during the first three h with a rebound in the next 3 h. At 7.5 mg/kg, the total amount of PS was also decreased. The eye movement number and theta rhythm frequency of PS were unchanged. These results show that zolpidem produces less disruption of the association between IS and PS than do previous hypnotics.
Collapse
Affiliation(s)
- C Gottesmann
- Laboratoire de Psychophysiologie, Faculté des Sciences, Université de Nice-Sophia Antipolis, France
| | | | | |
Collapse
|