1
|
Goel A, Bandyopadhyay D, He ZX, Yang MF, Jain D. Cardiac 18F-FDG imaging for direct myocardial ischemia imaging. J Nucl Cardiol 2022; 29:3039-3043. [PMID: 35106706 DOI: 10.1007/s12350-022-02909-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 01/18/2023]
Affiliation(s)
- Akshay Goel
- Department of Cardiology, Westchester Medical Center, New York Medical College, 100 Woods Road, Valhalla, NY, 10595, USA
| | - Dhrubajyoti Bandyopadhyay
- Department of Cardiology, Westchester Medical Center, New York Medical College, 100 Woods Road, Valhalla, NY, 10595, USA
| | - Zuo-Xiang He
- Department of Nuclear Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Min-Fu Yang
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Diwakar Jain
- Department of Cardiology, Westchester Medical Center, New York Medical College, 100 Woods Road, Valhalla, NY, 10595, USA.
| |
Collapse
|
2
|
Ke J, Pan J, Lin H, Gu J. Diabetic cardiomyopathy: a brief summary on lipid toxicity. ESC Heart Fail 2022; 10:776-790. [PMID: 36369594 PMCID: PMC10053269 DOI: 10.1002/ehf2.14224] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/30/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus (DM) is a serious epidemic around the globe, and cardiovascular diseases account for the majority of deaths in patients with DM. Diabetic cardiomyopathy (DCM) is defined as a cardiac dysfunction derived from DM without the presence of coronary artery diseases and hypertension. Patients with either type 1 or type 2 DM are at high risk of developing DCM and even heart failure. Metabolic disorders of obesity and insulin resistance in type 2 diabetic environments result in dyslipidaemia and subsequent lipid-induced toxicity (lipotoxicity) in organs including the heart. Although various mechanisms have been proposed underlying DCM, it remains incompletely understood how lipotoxicity alters cardiac function and how DM induces clinical heart syndrome. With recent progress, we here summarize the latest discoveries on lipid-induced cardiac toxicity in diabetic hearts and discuss the underlying therapies and controversies in clinical DCM.
Collapse
Affiliation(s)
- Jiahan Ke
- Department of Cardiology Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Jianan Pan
- Department of Cardiology Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Hao Lin
- Department of Cardiology Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Jun Gu
- Department of Cardiology Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| |
Collapse
|
3
|
Yiew NKH, Finck BN. The mitochondrial pyruvate carrier at the crossroads of intermediary metabolism. Am J Physiol Endocrinol Metab 2022; 323:E33-E52. [PMID: 35635330 PMCID: PMC9273276 DOI: 10.1152/ajpendo.00074.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
Abstract
Pyruvate metabolism, a central nexus of carbon homeostasis, is an evolutionarily conserved process and aberrant pyruvate metabolism is associated with and contributes to numerous human metabolic disorders including diabetes, cancer, and heart disease. As a product of glycolysis, pyruvate is primarily generated in the cytosol before being transported into the mitochondrion for further metabolism. Pyruvate entry into the mitochondrial matrix is a critical step for efficient generation of reducing equivalents and ATP and for the biosynthesis of glucose, fatty acids, and amino acids from pyruvate. However, for many years, the identity of the carrier protein(s) that transported pyruvate into the mitochondrial matrix remained a mystery. In 2012, the molecular-genetic identification of the mitochondrial pyruvate carrier (MPC), a heterodimeric complex composed of protein subunits MPC1 and MPC2, enabled studies that shed light on the many metabolic and physiological processes regulated by pyruvate metabolism. A better understanding of the mechanisms regulating pyruvate transport and the processes affected by pyruvate metabolism may enable novel therapeutics to modulate mitochondrial pyruvate flux to treat a variety of disorders. Herein, we review our current knowledge of the MPC, discuss recent advances in the understanding of mitochondrial pyruvate metabolism in various tissue and cell types, and address some of the outstanding questions relevant to this field.
Collapse
Affiliation(s)
- Nicole K H Yiew
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Brian N Finck
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
4
|
BRETSCHNEIDER SOLUTION AND TWO ANTIANGINAL DRUGS PROTECT PERIPHERAL TISSUE IN AN ANIMAL MODEL OF HEMORRHAGIC SHOCK. J Cardiovasc Pharmacol 2022; 79:896-903. [DOI: 10.1097/fjc.0000000000001253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/01/2022] [Indexed: 11/26/2022]
|
5
|
Effendi N, Mishiro K, Wakabayashi H, Gabryel-Skrodzka M, Shiba K, Taki J, Jastrząb R, Kinuya S, Ogawa K. Synthesis and evaluation of radiogallium-labeled long-chain fatty acid derivatives as myocardial metabolic imaging agents. PLoS One 2021; 16:e0261226. [PMID: 34910775 PMCID: PMC8673672 DOI: 10.1371/journal.pone.0261226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022] Open
Abstract
Since long-chain fatty acids work as the primary energy source for the myocardium, radiolabeled long-chain fatty acids play an important role as imaging agents to diagnose metabolic heart dysfunction and heart diseases. With the aim of developing radiogallium-labeled fatty acids, herein four fatty acid-based tracers, [67Ga]Ga-HBED-CC-PDA, [67Ga]Ga-HBED-CC-MHDA, [67Ga]Ga-DOTA-PDA, and [67Ga]Ga-DOTA-MHDA, which are [67Ga]Ga-HBED-CC and [67Ga]Ga-DOTA conjugated with pentadecanoic acid (PDA) and 3-methylhexadecanoic acid (MHDA), were synthesized, and their potential for myocardial metabolic imaging was evaluated. Those tracers were found to be chemically stable in 0.1 M phosphate buffered saline. Initial [67Ga]Ga-HBED-CC-PDA, [67Ga]Ga-HBED-CC-MHDA, [67Ga]Ga-DOTA-PDA, and [67Ga]Ga-DOTA-MHDA uptakes in the heart at 0.5 min postinjection were 5.01 ± 0.30%ID/g, 5.74 ± 1.02%ID/g, 5.67 ± 0.22%ID/g, and 5.29 ± 0.10%ID/g, respectively. These values were significantly lower than that of [123I]BMIPP (21.36 ± 2.73%ID/g). For their clinical application as myocardial metabolic imaging agents, further structural modifications are required to increase their uptake in the heart.
Collapse
Affiliation(s)
- Nurmaya Effendi
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
- Faculty of Pharmacy, Universitas Muslim Indonesia, Makassar, South Sulawesi, Indonesia
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi, Kanazawa, Ishikawa, Japan
| | | | - Kazuhiro Shiba
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Junichi Taki
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Renata Jastrząb
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
- * E-mail:
| |
Collapse
|
6
|
Bini J, Norcross M, Cheung M, Duffy A. The Role of Positron Emission Tomography in Bariatric Surgery Research: a Review. Obes Surg 2021; 31:4592-4606. [PMID: 34304378 DOI: 10.1007/s11695-021-05576-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022]
Abstract
Bariatric surgery, initially understood as restricting or bypassing the amount of food that reaches the stomach to reduce food intake and/or increase malabsorption of food to promote weight loss, is now recognized to also affect incretin signaling in the gut and promote improvements in system-wide metabolism. Positron emission tomography (PET) is an imaging technique whereby patients are injected with picomolar concentrations of radioactive molecules, below the threshold of having physiological effects, to measure spatial distributions of blood flow, metabolism, receptor, and enzyme pharmacology. Recent advances in both whole-body PET imaging and radioligand development will allow for novel research that may help clarify the roles of peripheral and central receptor/enzyme systems in treating obesity with bariatric surgery.
Collapse
Affiliation(s)
- Jason Bini
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Avenue, PO Box 208048, New Haven, CT, USA.
| | | | - Maija Cheung
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew Duffy
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
7
|
Acquisition, Processing, and Interpretation of PET 18F-FDG Viability and Inflammation Studies. Curr Cardiol Rep 2021; 23:124. [PMID: 34269917 DOI: 10.1007/s11886-021-01555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW This article reviews the acquisition protocols and image interpretation for 18F-fluorodeoxyglucose (18F-FDG) imaging with positron emission tomography (PET) applied to the evaluation of myocardial viability and inflammation. RECENT FINDINGS Cardiac PET with 18F-FDG provides essential information for the assessment of myocardial viability and inflammation and is usually combined with PET perfusion imaging using 82Rb or 13N-ammonia. Viable myocardium maintains glucose metabolism which can be detected via the uptake of 18F-FDG by PET imaging. The patient is prepared for viability imaging by shifting the metabolism of the heart to maximize the uptake of glucose and hence of 18F-FDG. Comparison of the 18F-FDG and myocardial perfusion images allows distinction between regions of the myocardium that are hibernating and thus may recover function with intervention, from those that are infarcted. Increased glucose utilization in the inflammatory cells also makes 18F-FDG a useful imaging technique in conditions such as cardiac sarcoidosis. Here, suppression of normal myocardial uptake is essential for accurate image interpretation. 18F-FDG PET broadens the scope of information potentially available through a cardiac PET study. With careful patient preparation, it provides valuable insights into myocardial viability and inflammatory processes such as sarcoidosis.
Collapse
|
8
|
Ruiz-Iglesias A, Mañes S. The Importance of Mitochondrial Pyruvate Carrier in Cancer Cell Metabolism and Tumorigenesis. Cancers (Basel) 2021; 13:cancers13071488. [PMID: 33804985 PMCID: PMC8037430 DOI: 10.3390/cancers13071488] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The characteristic metabolic hallmark of cancer cells is the massive catabolism of glucose by glycolysis, even under aerobic conditions—the so-called Warburg effect. Although energetically unfavorable, glycolysis provides “building blocks” to sustain the unlimited growth of malignant cells. Aberrant glycolysis is also responsible for lactate accumulation and acidosis in the tumor milieu, which fosters hypoxia and immunosuppression. One of the mechanisms used by cancer cells to increase glycolytic flow is the negative regulation of the proteins that conform the mitochondrial pyruvate carrier (MPC) complex, which transports pyruvate into the mitochondrial matrix to be metabolized in the tricarboxylic acid (TCA) cycle. Evidence suggests that MPC downregulation in tumor cells impacts many aspects of tumorigenesis, including cancer cell-intrinsic (proliferation, invasiveness, stemness, resistance to therapy) and -extrinsic (angiogenesis, anti-tumor immune activity) properties. In many cancers, but not in all, MPC downregulation is associated with poor survival. MPC regulation is therefore central to tackling glycolysis in tumors. Abstract Pyruvate is a key molecule in the metabolic fate of mammalian cells; it is the crossroads from where metabolism proceeds either oxidatively or ends with the production of lactic acid. Pyruvate metabolism is regulated by many enzymes that together control carbon flux. Mitochondrial pyruvate carrier (MPC) is responsible for importing pyruvate from the cytosol to the mitochondrial matrix, where it is oxidatively phosphorylated to produce adenosine triphosphate (ATP) and to generate intermediates used in multiple biosynthetic pathways. MPC activity has an important role in glucose homeostasis, and its alteration is associated with diabetes, heart failure, and neurodegeneration. In cancer, however, controversy surrounds MPC function. In some cancers, MPC upregulation appears to be associated with a poor prognosis. However, most transformed cells undergo a switch from oxidative to glycolytic metabolism, the so-called Warburg effect, which, amongst other possibilities, is induced by MPC malfunction or downregulation. Consequently, impaired MPC function might induce tumors with strong proliferative, migratory, and invasive capabilities. Moreover, glycolytic cancer cells secrete lactate, acidifying the microenvironment, which in turn induces angiogenesis, immunosuppression, and the expansion of stromal cell populations supporting tumor growth. This review examines the latest findings regarding the tumorigenic processes affected by MPC.
Collapse
|
9
|
Yamagishi M, Tamaki N, Akasaka T, Ikeda T, Ueshima K, Uemura S, Otsuji Y, Kihara Y, Kimura K, Kimura T, Kusama Y, Kumita S, Sakuma H, Jinzaki M, Daida H, Takeishi Y, Tada H, Chikamori T, Tsujita K, Teraoka K, Nakajima K, Nakata T, Nakatani S, Nogami A, Node K, Nohara A, Hirayama A, Funabashi N, Miura M, Mochizuki T, Yokoi H, Yoshioka K, Watanabe M, Asanuma T, Ishikawa Y, Ohara T, Kaikita K, Kasai T, Kato E, Kamiyama H, Kawashiri M, Kiso K, Kitagawa K, Kido T, Kinoshita T, Kiriyama T, Kume T, Kurata A, Kurisu S, Kosuge M, Kodani E, Sato A, Shiono Y, Shiomi H, Taki J, Takeuchi M, Tanaka A, Tanaka N, Tanaka R, Nakahashi T, Nakahara T, Nomura A, Hashimoto A, Hayashi K, Higashi M, Hiro T, Fukamachi D, Matsuo H, Matsumoto N, Miyauchi K, Miyagawa M, Yamada Y, Yoshinaga K, Wada H, Watanabe T, Ozaki Y, Kohsaka S, Shimizu W, Yasuda S, Yoshino H. JCS 2018 Guideline on Diagnosis of Chronic Coronary Heart Diseases. Circ J 2021; 85:402-572. [PMID: 33597320 DOI: 10.1253/circj.cj-19-1131] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Nagara Tamaki
- Department of Radiology, Kyoto Prefectural University of Medicine Graduate School
| | - Takashi Akasaka
- Department of Cardiovascular Medicine, Wakayama Medical University
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Toho University Graduate School
| | - Kenji Ueshima
- Center for Accessing Early Promising Treatment, Kyoto University Hospital
| | - Shiro Uemura
- Department of Cardiology, Kawasaki Medical School
| | - Yutaka Otsuji
- Second Department of Internal Medicine, University of Occupational and Environmental Health, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Kazuo Kimura
- Division of Cardiology, Yokohama City University Medical Center
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School
| | | | | | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School
| | | | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School
| | | | - Hiroshi Tada
- Department of Cardiovascular Medicine, University of Fukui
| | | | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | | | - Kenichi Nakajima
- Department of Functional Imaging and Artificial Intelligence, Kanazawa Universtiy
| | | | - Satoshi Nakatani
- Division of Functional Diagnostics, Department of Health Sciences, Osaka University Graduate School of Medicine
| | | | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Atsushi Nohara
- Division of Clinical Genetics, Ishikawa Prefectural Central Hospital
| | | | | | - Masaru Miura
- Department of Cardiology, Tokyo Metropolitan Children's Medical Center
| | | | | | | | - Masafumi Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University
| | - Toshihiko Asanuma
- Division of Functional Diagnostics, Department of Health Sciences, Osaka University Graduate School
| | - Yuichi Ishikawa
- Department of Pediatric Cardiology, Fukuoka Children's Hospital
| | - Takahiro Ohara
- Division of Community Medicine, Tohoku Medical and Pharmaceutical University
| | - Koichi Kaikita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Tokuo Kasai
- Department of Cardiology, Uonuma Kinen Hospital
| | - Eri Kato
- Department of Cardiovascular Medicine, Department of Clinical Laboratory, Kyoto University Hospital
| | | | - Masaaki Kawashiri
- Department of Cardiovascular and Internal Medicine, Kanazawa University
| | - Keisuke Kiso
- Department of Diagnostic Radiology, Tohoku University Hospital
| | - Kakuya Kitagawa
- Department of Advanced Diagnostic Imaging, Mie University Graduate School
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School
| | | | | | | | - Akira Kurata
- Department of Radiology, Ehime University Graduate School
| | - Satoshi Kurisu
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Masami Kosuge
- Division of Cardiology, Yokohama City University Medical Center
| | - Eitaro Kodani
- Department of Internal Medicine and Cardiology, Nippon Medical School Tama Nagayama Hospital
| | - Akira Sato
- Department of Cardiology, University of Tsukuba
| | - Yasutsugu Shiono
- Department of Cardiovascular Medicine, Wakayama Medical University
| | - Hiroki Shiomi
- Department of Cardiovascular Medicine, Kyoto University Graduate School
| | - Junichi Taki
- Department of Nuclear Medicine, Kanazawa University
| | - Masaaki Takeuchi
- Department of Laboratory and Transfusion Medicine, Hospital of the University of Occupational and Environmental Health, Japan
| | | | - Nobuhiro Tanaka
- Department of Cardiology, Tokyo Medical University Hachioji Medical Center
| | - Ryoichi Tanaka
- Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University
| | | | | | - Akihiro Nomura
- Innovative Clinical Research Center, Kanazawa University Hospital
| | - Akiyoshi Hashimoto
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University
| | - Kenshi Hayashi
- Department of Cardiovascular Medicine, Kanazawa University Hospital
| | - Masahiro Higashi
- Department of Radiology, National Hospital Organization Osaka National Hospital
| | - Takafumi Hiro
- Division of Cardiology, Department of Medicine, Nihon University
| | | | - Hitoshi Matsuo
- Department of Cardiovascular Medicine, Gifu Heart Center
| | - Naoya Matsumoto
- Division of Cardiology, Department of Medicine, Nihon University
| | | | | | | | - Keiichiro Yoshinaga
- Department of Diagnostic and Therapeutic Nuclear Medicine, Molecular Imaging at the National Institute of Radiological Sciences
| | - Hideki Wada
- Department of Cardiology, Juntendo University Shizuoka Hospital
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University
| | - Yukio Ozaki
- Department of Cardiology, Fujita Medical University
| | - Shun Kohsaka
- Department of Cardiology, Keio University School of Medicine
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | | | | |
Collapse
|
10
|
Ghannam M, Yun HJ, Ficaro EP, Ghanbari H, Lazarus JJ, Konerman M, Shah RV, Weinberg R, Corbett JR, Oral H, Murthy VL. Multiparametric assessment of left atrial remodeling using 18F-FDG PET/CT cardiac imaging: A pilot study. J Nucl Cardiol 2020; 27:1547-1562. [PMID: 30191438 PMCID: PMC6411463 DOI: 10.1007/s12350-018-1429-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/08/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Left atrial (LA) remodeling is associated with structural, electric, and metabolic LA changes. Integrated evaluation of these features in vivo is lacking. METHODS Patients undergoing 18F-fluorodeoxyglucose (FDG) PET-CT during a hyperinsulinemic-euglycemic clamp were classified into sinus rhythm (SR), paroxysmal AF (PAF), and persistent AF (PerAF). The LA was semiautomatically segmented, and global FDG uptake was quantified using standardized uptake values (SUVmax and SUVmean) in gated, attenuation-corrected images and normalized to LA blood pool activity. Regression was used to relate FDG data to AF burden and critical patient factors. Continuous variables were compared using t-tests or Mann-Whitney tests. RESULTS 117 patients were included (76% men, age 66.4 ± 11.0, ejection fraction (EF) 25[22-35]%) including those with SR (n = 48), PAF (n = 55), and PerAF (n = 14). Patients with any AF had increased SUVmean (2.3[1.5-2.4] vs 2.0[1.5-2.5], P = 0.006), SUVmax (4.4[2.8-6.7] vs 3.2[2.3-4.3], P < 0.001), uptake coefficient of variation (CoV) 0.28[0.22-0.40] vs 0.25[0.2-0.33], P < 0.001), and hypometabolic scar (32%[14%-53%] vs 16.5%[0%-38.5%], P = 0.01). AF burden correlated with increased SUVmean, SUVmax, CoV, and scar independent of age, gender, EF, or LA size (P < 0.03 for all). CONCLUSIONS LA structure and metabolism can be assessed using FDG PET/CT. Greater AF burden correlates with the increased LA metabolism and scar.
Collapse
Affiliation(s)
- Michael Ghannam
- Department of Medicine (Division of Cardiovascular Medicine), University of Michigan, 1500 E. Medical Center Dr. SPC 5873, Ann Arbor, MI, 48109, USA
| | - Hong Jun Yun
- Department of Medicine (Division of Cardiovascular Medicine), University of Michigan, 1500 E. Medical Center Dr. SPC 5873, Ann Arbor, MI, 48109, USA
| | - Edward P Ficaro
- INVIA Medical Imaging Solutions, Ann Arbor, MI, USA
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Hamid Ghanbari
- Department of Medicine (Division of Cardiovascular Medicine), University of Michigan, 1500 E. Medical Center Dr. SPC 5873, Ann Arbor, MI, 48109, USA
| | - John J Lazarus
- Department of Medicine (Division of Cardiovascular Medicine), University of Michigan, 1500 E. Medical Center Dr. SPC 5873, Ann Arbor, MI, 48109, USA
| | - Matthew Konerman
- Department of Medicine (Division of Cardiovascular Medicine), University of Michigan, 1500 E. Medical Center Dr. SPC 5873, Ann Arbor, MI, 48109, USA
| | - Ravi V Shah
- Department of Medicine (Division of Cardiovascular Medicine), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard Weinberg
- Department of Medicine (Division of Cardiovascular Medicine), University of Michigan, 1500 E. Medical Center Dr. SPC 5873, Ann Arbor, MI, 48109, USA
| | - James R Corbett
- Department of Medicine (Division of Cardiovascular Medicine), University of Michigan, 1500 E. Medical Center Dr. SPC 5873, Ann Arbor, MI, 48109, USA
- INVIA Medical Imaging Solutions, Ann Arbor, MI, USA
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Hakan Oral
- Department of Medicine (Division of Cardiovascular Medicine), University of Michigan, 1500 E. Medical Center Dr. SPC 5873, Ann Arbor, MI, 48109, USA
| | - Venkatesh L Murthy
- Department of Medicine (Division of Cardiovascular Medicine), University of Michigan, 1500 E. Medical Center Dr. SPC 5873, Ann Arbor, MI, 48109, USA.
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Abstract
With the routine availability of PET/CT imaging for oncologic purposes, there has been renewed interest in and acceptance of cardiac and neurologic applications of PET/CT. As our understanding of the pathophysiology underlying various pediatric heart diseases has improved, there has been a parallel advance in imaging modalities. Cardiac MR imaging and cardiac PET continue to improve in the pediatric domain. Molecular imaging holds promise to provide a more robust assessment of the cardiac pathophysiology in a 1-stop setting with less radiation exposure to the patient, an important consideration for the pediatric patient population.
Collapse
|
12
|
Boutagy NE, Feher A, Alkhalil I, Umoh N, Sinusas AJ. Molecular Imaging of the Heart. Compr Physiol 2019; 9:477-533. [PMID: 30873600 DOI: 10.1002/cphy.c180007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multimodality cardiovascular imaging is routinely used to assess cardiac function, structure, and physiological parameters to facilitate the diagnosis, characterization, and phenotyping of numerous cardiovascular diseases (CVD), as well as allows for risk stratification and guidance in medical therapy decision-making. Although useful, these imaging strategies are unable to assess the underlying cellular and molecular processes that modulate pathophysiological changes. Over the last decade, there have been great advancements in imaging instrumentation and technology that have been paralleled by breakthroughs in probe development and image analysis. These advancements have been merged with discoveries in cellular/molecular cardiovascular biology to burgeon the field of cardiovascular molecular imaging. Cardiovascular molecular imaging aims to noninvasively detect and characterize underlying disease processes to facilitate early diagnosis, improve prognostication, and guide targeted therapy across the continuum of CVD. The most-widely used approaches for preclinical and clinical molecular imaging include radiotracers that allow for high-sensitivity in vivo detection and quantification of molecular processes with single photon emission computed tomography and positron emission tomography. This review will describe multimodality molecular imaging instrumentation along with established and novel molecular imaging targets and probes. We will highlight how molecular imaging has provided valuable insights in determining the underlying fundamental biology of a wide variety of CVDs, including: myocardial infarction, cardiac arrhythmias, and nonischemic and ischemic heart failure with reduced and preserved ejection fraction. In addition, the potential of molecular imaging to assist in the characterization and risk stratification of systemic diseases, such as amyloidosis and sarcoidosis will be discussed. © 2019 American Physiological Society. Compr Physiol 9:477-533, 2019.
Collapse
Affiliation(s)
- Nabil E Boutagy
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Attila Feher
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Imran Alkhalil
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Nsini Umoh
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Albert J Sinusas
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA.,Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Jain A, Mathur A, Pandey U, Sarma HD, Dash A. Synthesis and evaluation of 68Ga labeled palmitic acid for cardiac metabolic imaging. Appl Radiat Isot 2018; 140:35-40. [PMID: 29936274 DOI: 10.1016/j.apradiso.2018.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/17/2018] [Accepted: 06/03/2018] [Indexed: 11/26/2022]
Abstract
This work evaluates the potential of a 68Ga labeled long chain 16C fatty acid for cardiac metabolic imaging. For radiolabeling with 68Ga, hexadecanedioic acid was coupled with the chelator p-NH2-Bn-NOTA. Under the optimized conditions, NOTA-hexadecanoic acid could be radiolabeled with 68Ga in ≥95% yields. In biodistribution studies carried out in Swiss mice, 68Ga-NOTA-hexadecanoic acid showed low myocardial uptake at 2 min p.i. (3.7 ± 1.3%ID/g). While 68Ga-NOTA-hexadecanoic acid cleared rapidly from non-target organs such as blood, lungs, intestine and kidney, wash out from liver was slow. Radio-HPLC analyses of myocardial extracts of rats injected with 68Ga-NOTA-hexadecanoic acid confirmed its metabolic transformation in the myocardium.
Collapse
Affiliation(s)
- Akanksha Jain
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Anupam Mathur
- Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai 400703, India
| | - Usha Pandey
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Haladhar Dev Sarma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
14
|
Aksut B, Starling R, Kapadia S. Stable coronary artery disease and left ventricular dysfunction: The role of revascularization. Catheter Cardiovasc Interv 2017; 90:777-783. [DOI: 10.1002/ccd.27175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/15/2017] [Accepted: 06/08/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Baran Aksut
- Department of Cardiovascular Medicine; Cleveland Clinic; Ohio
| | | | - Samir Kapadia
- Department of Cardiovascular Medicine; Cleveland Clinic; Ohio
| |
Collapse
|
15
|
Synthesis and biological evaluation of fatty acid derivatives for myocardial imaging containing [99mTc(CO)3]+. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5258-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Medeiros DM. Perspectives on the Role and Relevance of Copper in Cardiac Disease. Biol Trace Elem Res 2017; 176:10-19. [PMID: 27444302 DOI: 10.1007/s12011-016-0807-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/07/2016] [Indexed: 01/24/2023]
Abstract
Cardiac hypertrophy as a result of dietary copper deficiency has been studied for 40 plus years and is the subject of this review. While connective tissue anomalies occur, a hallmark pathology is cardiac hypertrophy, increased mitochondrial biogenesis, with disruptive cristae, vacuolization of mitochondria, and deposition of lipid droplets. Electrocardiogram abnormalities have been demonstrated along with biochemical changes especially as it relates to the copper-containing enzyme cytochrome c oxidase. The master controller of mitochondrial biogenesis, PGC1-α expression and protein, along with other proteins and transcriptional factors that play a role are upregulated. Nitric oxide, vascular endothelial growth factor, and cytochrome c oxidase all may enhance the upregulation of mitochondrial biogenesis. Marginal copper intakes reveal similar pathologies in the absence of cardiac hypertrophy. Reversibility of the copper-deficient rat heart with a copper-replete diet has resulted in mixed results, depending on both the animal model used and temporal relationships. New information has revealed that copper supplementation may rescue cardiac hypertrophy induced by pressure overload.
Collapse
Affiliation(s)
- Denis M Medeiros
- Division of Biochemistry and Molecular Biology, School of Graduate Studies, University of Missouri Kansas City, 300F Administrative Center, 5115 Oak Street, Kansas City, MO, 64110-2499, USA.
| |
Collapse
|
17
|
Jain A, Mathur A, Pandey U, Sarma HD, Dash A. 68Ga labeled fatty acids for cardiac metabolic imaging: Influence of different bifunctional chelators. Bioorg Med Chem Lett 2016; 26:5785-5791. [PMID: 27793567 DOI: 10.1016/j.bmcl.2016.10.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/18/2016] [Accepted: 10/14/2016] [Indexed: 02/02/2023]
Abstract
Development of 68Ga labeled fatty acids is of immense interest due to the availability of 68Ga through a generator and its superiority over SPECT based tracers in carrying out dynamic imaging on a PET scanner. Our present work explores the influence of different chelators on the cardiac uptake and pharmacokinetics of the 68Ga-labeled fatty acids. Two new 68Ga labeled fatty acids were synthesized by conjugation of 11-aminoundecanoic acid with the bifunctional chelators (BFCs) viz. p-SCN-Bn-DTPA (S-2-(4-isothiocyanatobenzyl)-diethylenetriaminepentaacetic acid) and p-SCN-Bn-NODAGA (S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1-glutaric acid-4,7-acetic acid) and their comparison was carried out with the previously reported 68Ga-NOTA-undecanoic acid. Both the conjugates were radiolabeled with 68Ga in high yields and purities (>95%). Their formation was established by preparation and characterization of their inactive analogs with natGa at macroscopic levels. Biodistribution studies of the complexes in Swiss mice showed lower initial myocardial uptake for 68Ga-NODAGA-undecanoic acid (3.8±0.6%ID/g) and 68Ga-DTPA-undecanoic acid (1.3±0.5%ID/g) complexes in comparison to previously reported 68Ga-NOTA-undecanoic acid complex (7.4±2.8%ID/g) at 2min p.i. However, significant retention of the tracer in the myocardium was observed in the case of 68Ga-NODAGA-undecanoic complex, which led to improved heart/non-target ratios of the complex over time in comparison to the other 68Ga complexes. Similarly, the DTPA complex exhibited increased washout from the liver in comparison to other 68Ga derivatives. The β oxidation mechanism in myocytes was investigated by isolating the myocardial extract post intravenous injection of the respective 68Ga complexes and analyzing them by radio-HPLC, which showed metabolic transformation of the parent fatty acid complex peak in all the three complexes. This study has provided an insight into the design characteristics of 68Ga labeled fatty acids to achieve the desired myocardial imaging characteristics.
Collapse
Affiliation(s)
- Akanksha Jain
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Anupam Mathur
- Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai 400 703, India
| | - Usha Pandey
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Haladhar Dev Sarma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.
| |
Collapse
|
18
|
Ferda J, Hromádka M, Baxa J. Imaging of the myocardium using 18 F-FDG-PET/MRI. Eur J Radiol 2016; 85:1900-1908. [DOI: 10.1016/j.ejrad.2016.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 11/24/2022]
|
19
|
Lopaschuk GD, Marzilli M. Mode of Action of Trimetazidine and Other New Metabolic Agents in the Treatment of Ischemic Heart Disease. Semin Cardiothorac Vasc Anesth 2016. [DOI: 10.1177/108925320300700116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- G. D. Lopaschuk
- Cardiovascular Research Group, University of Alberta, Edmonton, Canada; 423 Heritage Medical Research Center, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - M. Marzilli
- Cattedra di Malattie Cardiovascolari, University di Siena, Italy
| |
Collapse
|
20
|
Miller DD. Analytic Reviews : Detection of Viable Myocardium after Myocardial Infarction. J Intensive Care Med 2016. [DOI: 10.1177/088506669000500104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Opacic D, van Bragt KA, Nasrallah HM, Schotten U, Verheule S. Atrial metabolism and tissue perfusion as determinants of electrical and structural remodelling in atrial fibrillation. Cardiovasc Res 2016; 109:527-41. [DOI: 10.1093/cvr/cvw007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022] Open
|
22
|
McCormick LM, Heck PM, Ring LS, Kydd AC, Clarke SJ, Hoole SP, Dutka DP. Glucagon-like peptide-1 protects against ischemic left ventricular dysfunction during hyperglycemia in patients with coronary artery disease and type 2 diabetes mellitus. Cardiovasc Diabetol 2015; 14:102. [PMID: 26253538 PMCID: PMC4528379 DOI: 10.1186/s12933-015-0259-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/17/2015] [Indexed: 01/08/2023] Open
Abstract
Background Enhancement of myocardial
glucose uptake may reduce fatty acid oxidation and improve tolerance to ischemia. Hyperglycemia, in association with hyperinsulinemia, stimulates this metabolic change but may have deleterious effects on left ventricular (LV) function. The incretin hormone, glucagon-like peptide-1 (GLP-1), also has favorable cardiovascular effects, and has emerged as an alternative method of altering myocardial substrate utilization. In patients with coronary artery disease (CAD), we investigated: (1) the effect of a hyperinsulinemic hyperglycemic clamp (HHC) on myocardial performance during dobutamine stress echocardiography (DSE), and (2) whether an infusion of GLP-1(7-36) at the time of HHC protects against ischemic LV dysfunction during DSE in patients with type 2 diabetes mellitus (T2DM). Methods In study 1, twelve patients underwent two DSEs with tissue Doppler imaging (TDI)—one during the steady-state phase of a HHC. In study 2, ten patients with T2DM underwent two DSEs with TDI during the steady-state phase of a HHC. GLP-1(7-36) was infused intravenously at 1.2 pmol/kg/min during one of the scans. In both studies, global LV function was assessed by ejection fraction and mitral annular systolic velocity, and regional wall LV function was assessed using peak systolic velocity, strain and strain rate from 12 paired non-apical segments. Results In study 1, the HHC (compared with control) increased glucose (13.0 ± 1.9 versus 4.8 ± 0.5 mmol/l, p < 0.0001) and insulin (1,212 ± 514 versus 114 ± 47 pmol/l, p = 0.01) concentrations, and reduced FFA levels (249 ± 175 versus 1,001 ± 333 μmol/l, p < 0.0001), but had no net effect on either global or regional LV function. In study 2, GLP-1 enhanced both global (ejection fraction, 77.5 ± 5.0 versus 71.3 ± 4.3%, p = 0.004) and regional (peak systolic strain −18.1 ± 6.6 versus −15.5 ± 5.4%, p < 0.0001) myocardial performance at peak stress and at 30 min recovery. These effects were predominantly driven by a reduction in contractile dysfunction in regions subject to demand ischemia. Conclusions In patients with CAD, hyperinsulinemic hyperglycemia has a neutral effect on LV function during DSE. However, GLP-1 at the time of hyperglycemia improves myocardial tolerance to demand ischemia in patients with T2DM. Trial Registration: http://www.isrctn.org. Unique identifier ISRCTN69686930
Collapse
Affiliation(s)
- Liam M McCormick
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, UK.
| | - Patrick M Heck
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, UK.
| | - Liam S Ring
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, UK.
| | - Anna C Kydd
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, UK.
| | - Sophie J Clarke
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, UK.
| | - Stephen P Hoole
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, UK.
| | - David P Dutka
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, UK. .,Department of Cardiovascular Medicine, ACCI Level 6, Addenbrooke's Hospital, Box 110, Hills Rd, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
23
|
Jaimes R, Kuzmiak-Glancy S, Brooks DM, Swift LM, Posnack NG, Kay MW. Functional response of the isolated, perfused normoxic heart to pyruvate dehydrogenase activation by dichloroacetate and pyruvate. Pflugers Arch 2015; 468:131-142. [PMID: 26142699 DOI: 10.1007/s00424-015-1717-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/17/2015] [Accepted: 06/22/2015] [Indexed: 12/19/2022]
Abstract
Dichloroacetate (DCA) and pyruvate activate pyruvate dehydrogenase (PDH), a key enzyme that modulates glucose oxidation and mitochondrial NADH production. Both compounds improve recovery after ischemia in isolated hearts. However, the action of DCA and pyruvate in normoxic myocardium is incompletely understood. We measured the effect of DCA and pyruvate on contraction, mitochondrial redox state, and intracellular calcium cycling in isolated rat hearts during normoxic perfusion. Normalized epicardial NADH fluorescence (nNADH) and left ventricular developed pressure (LVDP) were measured before and after administering DCA (5 mM) or pyruvate (5 mM). Optical mapping of Rhod-2AM was used to measure cytosolic calcium kinetics. DCA maximally activated PDH, increasing the ratio of active to total PDH from 0.48 ± 0.03 to 1.03 ± 0.03. Pyruvate sub-maximally activated PDH to a ratio of 0.75 ± 0.02. DCA and pyruvate increased LVDP. When glucose was the only exogenous fuel, pyruvate increased nNADH by 21.4 ± 2.9 % while DCA reduced nNADH by 21.4 ± 6.1 % and elevated the incidence of premature ventricular contractions (PVCs). When lactate, pyruvate, and glucose were provided together as exogenous fuels, nNADH increased with DCA, indicating that PDH activation with glucose as the only exogenous fuel depletes PDH substrate. Calcium transient time-to-peak was shortened by DCA and pyruvate and SR calcium re-uptake was 30 % longer. DCA and pyruvate increased SR calcium load in myocyte monolayers. Overall, during normoxia when glucose is the only exogenous fuel, DCA elevates SR calcium, increases LVDP and contractility, and diminishes mitochondrial NADH. Administering DCA with plasma levels of lactate and pyruvate mitigates the drop in mitochondrial NADH and prevents PVCs.
Collapse
Affiliation(s)
- Rafael Jaimes
- Department of Biomedical Engineering, The George Washington University, GWU Science and Engineering Hall, 800 22nd Street NW, Suite 5000, Washington, DC, 20052, USA
| | - Sarah Kuzmiak-Glancy
- Department of Biomedical Engineering, The George Washington University, GWU Science and Engineering Hall, 800 22nd Street NW, Suite 5000, Washington, DC, 20052, USA
| | - Daina M Brooks
- Department of Biomedical Engineering, The George Washington University, GWU Science and Engineering Hall, 800 22nd Street NW, Suite 5000, Washington, DC, 20052, USA
| | - Luther M Swift
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, 20052, USA
| | - Nikki G Posnack
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, 20052, USA
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, GWU Science and Engineering Hall, 800 22nd Street NW, Suite 5000, Washington, DC, 20052, USA.
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
24
|
Ohira H, deKemp R, Pena E, Davies RA, Stewart DJ, Chandy G, Contreras-Dominguez V, Dennie C, Mc Ardle B, Mc Klein R, Renaud JM, DaSilva JN, Pugliese C, Dunne R, Beanlands R, Mielniczuk LM. Shifts in myocardial fatty acid and glucose metabolism in pulmonary arterial hypertension: a potential mechanism for a maladaptive right ventricular response. Eur Heart J Cardiovasc Imaging 2015; 17:1424-1431. [DOI: 10.1093/ehjci/jev136] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/04/2015] [Indexed: 11/13/2022] Open
|
25
|
Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochem J 2015; 466:443-54. [PMID: 25748677 DOI: 10.1042/bj20141171] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pyruvate is the end-product of glycolysis, a major substrate for oxidative metabolism, and a branching point for glucose, lactate, fatty acid and amino acid synthesis. The mitochondrial enzymes that metabolize pyruvate are physically separated from cytosolic pyruvate pools and rely on a membrane transport system to shuttle pyruvate across the impermeable inner mitochondrial membrane (IMM). Despite long-standing acceptance that transport of pyruvate into the mitochondrial matrix by a carrier-mediated process is required for the bulk of its metabolism, it has taken almost 40 years to determine the molecular identity of an IMM pyruvate carrier. Our current understanding is that two proteins, mitochondrial pyruvate carriers MPC1 and MPC2, form a hetero-oligomeric complex in the IMM to facilitate pyruvate transport. This step is required for mitochondrial pyruvate oxidation and carboxylation-critical reactions in intermediary metabolism that are dysregulated in several common diseases. The identification of these transporter constituents opens the door to the identification of novel compounds that modulate MPC activity, with potential utility for treating diabetes, cardiovascular disease, cancer, neurodegenerative diseases, and other common causes of morbidity and mortality. The purpose of the present review is to detail the historical, current and future research investigations concerning mitochondrial pyruvate transport, and discuss the possible consequences of altered pyruvate transport in various metabolic tissues.
Collapse
|
26
|
Affiliation(s)
- Diwakar Jain
- Cardiovascular Nuclear Imaging Laboratory, New York Medical College, Westchester Medical Center, Macy Pavilion 111, 100 Woods Road, Valhalla, NY, 10595, USA,
| | | |
Collapse
|
27
|
Jain D, He ZX, Lele V, Aronow WS. Direct myocardial ischemia imaging: a new cardiovascular nuclear imaging paradigm. Clin Cardiol 2014; 38:124-30. [PMID: 25487883 DOI: 10.1002/clc.22346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 09/21/2014] [Indexed: 01/02/2023] Open
Abstract
Myocardial perfusion imaging (MPI), using radiotracers, has been in routine clinical use for over 40 years. This modality is used for the detection of coronary artery disease (CAD), risk stratification, optimizing therapy, and follow-up of patients with CAD. Molecular cardiovascular imaging using targeted radiotracers provides a unique opportunity for imaging biochemical and metabolic processes, and cell membrane transporter and receptor functions at a cellular and molecular level in experimental animal models as well as in humans. Cardiac imaging using radiolabeled free fatty acid analogues and glucose analogues enable us to image myocardial ischemia directly as an alternative to stress-rest MPI. Direct ischemia imaging techniques can avoid and overcome some of the limitations of standard stress-rest MPI. This article describes recent studies using (18) F-fluorodeoxyglucose ((18) FDG) for myocardial ischemia imaging.
Collapse
Affiliation(s)
- Diwakar Jain
- Cardiovascular Nuclear Imaging Laboratory, New York Medical College, Westchester Medical Center, Valhalla, New York
| | | | | | | |
Collapse
|
28
|
|
29
|
Hansen J, Brock B, Bøtker HE, Gjedde A, Rungby J, Gejl M. Impact of glucagon-like peptide-1 on myocardial glucose metabolism revisited. Rev Endocr Metab Disord 2014; 15:219-31. [PMID: 24910203 DOI: 10.1007/s11154-014-9286-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The gut hormone glucagon-like peptide-1 (GLP-1) is an insulinotropic incretin with significant cardiovascular impact. Two classes of medication, GLP-1 analogues and DPP-4 inhibitors, have been developed that circumvent the rapid degradation of GLP-1 by the enzyme dipeptidyl peptidase-4 (DPP-4), both enhance the incretin effect and were developed for the treatment of type 2 diabetes. Several mechanisms suggesting that DPP-4 inhibitors, GLP-1, and analogues could have a protective effect on the cardiovascular risk profile have been forwarded; e.g., reductions of blood glucose, body weight, blood pressure, improvement in left ventricular ejection fraction, myocardial perfusion, atherosclerosis development, and endothelial function. Despite this, the reasons for a decreased risk of developing cardiovascular disease and reduced post-ischaemia damage are still poorly understood. The potentially beneficial effect of GLP-1 stimulation may rely on, among others, improved myocardial glucose metabolism. This review focuses on the dogma that GLP-1 receptor stimulation may provide beneficial cardiovascular effects, possibly due to enhanced myocardial energetic efficiency, by increasing myocardial glucose uptake. The published literature was systematically reviewed and the applied models evaluated since the outcomes of varying studies differ substantially. Reports on the effect of GLP-1R stimulation on myocardial metabolism are conflicting and should be evaluated carefully. There is limited and conflicting information on the impact of these agents in real life patients and while clinical outcome studies investigating the cardiovascular effects of GLP-1 based therapies have been initiated, the first two studies, both on DPP-4 inhibitors, designed specifically to evaluate cardiac safety reported largely neutral outcomes.
Collapse
Affiliation(s)
- Jan Hansen
- Department of Biomedicine-Pharmacology, Aarhus University, University Park 1240, DK-8000, Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
30
|
McCormick LM, Kydd AC, Read PA, Ring LS, Bond SJ, Hoole SP, Dutka DP. Chronic dipeptidyl peptidase-4 inhibition with sitagliptin is associated with sustained protection against ischemic left ventricular dysfunction in a pilot study of patients with type 2 diabetes mellitus and coronary artery disease. Circ Cardiovasc Imaging 2014; 7:274-81. [PMID: 24503784 DOI: 10.1161/circimaging.113.000785] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The incretin hormone, glucagon-like peptide-1, promotes myocardial glucose uptake and may improve myocardial tolerance to ischemia. Endogenous glucagon-like peptide-1 (7-36) is augmented by pharmacological inhibition of dipeptidyl peptidase-4. We investigated whether chronic dipeptidyl peptidase-4 inhibition by sitagliptin protected against ischemic left ventricular dysfunction during dobutamine stress in patients with type 2 diabetes mellitus and coronary artery disease. METHODS AND RESULTS A total of 19 patients with type 2 diabetes mellitus underwent dobutamine stress echocardiography with tissue Doppler imaging on 2 separate occasions: the first (control) while receiving oral hypoglycemic agents, and the second after the addition of sitagliptin (100 mg once daily) for ≈4 weeks. Sitagliptin increased plasma glucagon-like peptide-1 (7-36) levels and, at peak stress, enhanced both global (ejection fraction, 70.5±7.0 versus 65.7±8.0%; P<0.0001; mitral annular systolic velocity, 11.7±2.6 versus 10.9±2.3 cm/s; P=0.01) and regional left ventricular function, assessed by peak systolic velocity and strain rate in 12 paired, nonapical segments. This was predominantly because of a cardioprotective effect on ischemic segments (strain rate in ischemic segments, -2.27±0.65 versus -1.98±0.58 s(-1); P=0.001), whereas no effect was seen in nonischemic segments (-2.19±0.48 versus -2.18±0.54 s(-1); P=0.87). At 30 minutes recovery, dipeptidyl peptidase-4 inhibition mitigated the postischemic stunning seen in the control scan. CONCLUSIONS The addition of dipeptidyl peptidase-4 inhibitor therapy with sitagliptin to the treatment regime of patients with type 2 diabetes mellitus and coronary artery disease is associated with a sustained improvement in myocardial performance during dobutamine stress and a reduction in postischemic stunning. CLINICAL TRIAL REGISTRATION URL: http://www.isrctn.org. Unique identifier ISRCTN61646154.
Collapse
Affiliation(s)
- Liam M McCormick
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Yoshinaga K, Naya M, Shiga T, Suzuki E, Tamaki N. Ischaemic memory imaging using metabolic radiopharmaceuticals: overview of clinical settings and ongoing investigations. Eur J Nucl Med Mol Imaging 2013; 41:384-93. [PMID: 24218099 DOI: 10.1007/s00259-013-2615-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/14/2013] [Indexed: 12/01/2022]
Abstract
"Ischaemic memory" is defined as a prolonged functional and/or biochemical alteration remaining after a particular episode of severe myocardial ischaemia. The biochemical alteration has been reported as metabolic stunning. Metabolic imaging has been used to detect the footprint left by previous ischaemic episodes evident due to delayed recovery of myocardial metabolism (persistent dominant glucose utilization with suppression of fatty acid oxidation). β-Methyl-p-[(123)I]iodophenylpentadecanoic acid (BMIPP) is a single-photon emission computed tomography (SPECT) radiotracer widely used for metabolic imaging in clinical settings in Japan. In patients with suspected coronary artery disease but no previous myocardial infarction, BMIPP has shown acceptable diagnostic accuracy. In particular, BMIPP plays an important role in the identification of prior ischaemic insult in patients arriving at emergency departments with acute chest pain syndrome. Recent data also show the usefulness of (123)I-BMIPP SPECT for predicting cardiovascular events in patients undergoing haemodialysis. Similarly, SPECT or PET imaging with (18)F-FDG injected during peak exercise or after exercise under fasting conditions shows an increase in FDG uptake in postischaemic areas. This article will overview the roles of ischaemic memory imaging both under established indications and in ongoing investigations.
Collapse
Affiliation(s)
- Keiichiro Yoshinaga
- Department of Molecular Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
32
|
Comment on Minamimoto: incidental focal FDG uptake in heart is a lighthouse for considering cardiac screening. Ann Nucl Med 2013; 27:870-1. [PMID: 23813294 DOI: 10.1007/s12149-013-0751-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
|
33
|
Drake KJ, Sidorov VY, McGuinness OP, Wasserman DH, Wikswo JP. Amino acids as metabolic substrates during cardiac ischemia. Exp Biol Med (Maywood) 2012; 237:1369-78. [PMID: 23354395 PMCID: PMC3816490 DOI: 10.1258/ebm.2012.012025] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heart is well known as a metabolic omnivore in that it is capable of consuming fatty acids, glucose, ketone bodies, pyruvate, lactate, amino acids and even its own constituent proteins, in order of decreasing preference. The energy from these substrates supports not only mechanical contraction, but also the various transmembrane pumps and transporters required for ionic homeostasis, electrical activity, metabolism and catabolism. Cardiac ischemia - for example, due to compromise of the coronary vasculature or end-stage heart failure - will alter both electrical and metabolic activity. While the effects of myocardial ischemia on electrical propagation and stability have been studied in depth, the effects of ischemia on metabolic substrate preference has not been fully appreciated: oxygen deprivation during ischemia will significantly alter the relative ability of the heart to utilize each of these substrates. Although changes in cardiac metabolism are understood to be an underlying component in almost all cardiac myopathies, the potential contribution of amino acids in maintaining cardiac electrical conductance and stability during ischemia is underappreciated. Despite clear evidence that amino acids exert cardioprotective effects in ischemia and other cardiac disorders, their role in the metabolism of the ischemic heart has yet to be fully elucidated. This review synthesizes the current literature of the metabolic contribution of amino acids during ischemia by analyzing relevant historical and recent research.
Collapse
Affiliation(s)
- Kenneth J. Drake
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235
| | - Veniamin Y. Sidorov
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235
| | - David H. Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - John P. Wikswo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
34
|
Sohn K, Wende AR, Abel ED, Moreno AP, Sachse FB, Punske BB. Absence of glucose transporter 4 diminishes electrical activity of mouse hearts during hypoxia. Exp Physiol 2012. [PMID: 23180812 DOI: 10.1113/expphysiol.2012.070235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Insulin resistance, which characterizes type 2 diabetes, is associated with reduced translocation of glucose transporter 4 (GLUT4) to the plasma membrane following insulin stimulation, and diabetic patients with insulin resistance show a higher incidence of ischaemia, arrhythmias and sudden cardiac death. The aim of this study was to examine whether GLUT4 deficiency leads to more severe alterations in cardiac electrical activity during cardiac stress due to hypoxia. To fulfil this aim, we compared cardiac electrical activity from cardiac-selective GLUT4-ablated (G4H-/-) mouse hearts and corresponding control (CTL) littermates. A custom-made cylindrical 'cage' electrode array measured potentials (Ves) from the epicardium of isolated, perfused mouse hearts. The normalized average of the maximal downstroke of Ves ( (|d Ves/dt(min)|na), which we previously introduced as an index of electrical activity in normal, ischaemic and hypoxic hearts, was used to assess the effects of GLUT4 deficiency on electrical activity. The |d Ves/dt(min)|na of G4H −/− and CTL hearts decreased by 75 and 47%, respectively (P < 0.05), 30 min after the onset of hypoxia. Administration of insulin attenuated decreases in values of |d Ves/dt(min)|na in G4H −/− hearts as well as in CTL hearts, during hypoxia. In general, however, G4H −/− hearts showed a severe alteration of the propagation sequence and a prolonged total activation time. Results of this study demonstrate that reduced glucose availability associated with insulin resistance and a reduction in GLUT4-mediated glucose transport impairs electrical activity during hypoxia, and may contribute to cardiac vulnerability to arrhythmias in diabetic patients.
Collapse
Affiliation(s)
- Kwanghyun Sohn
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112-5000, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
While fluoro-deoxy-glucose (FDG) has emerged as an important radiotracer for imaging tumors, myocardial viability and infection, the role of other glucose analogues should also be explored. Tc-99m Glucoheptonate (GHA) has been used for imaging brain tumors and lung tumors. The uptake mechanism may be linked to GLUT-1 (Glucose transporter) and GLUT-4 expression similar to FDG. GHA is easily available and cheap. With the availability of single photon emission computed tomography/computed tomography (SPECT/CT), GHA imaging should be re-explored as a tumor agent and also for imaging myocardial viability.
Collapse
Affiliation(s)
- Ramchandra D Lele
- Department of Nuclear Medicine and Radioimmunoassay, Lilavati Hospital and Research Centre, Department of Nuclear Medicine and PET-CT, Jaslok Hospital and Research Centre, Mumbai, India
| |
Collapse
|
36
|
Kudej RK, Fasano M, Zhao X, Lopaschuk GD, Fischer SK, Vatner DE, Vatner SF, Lewandowski ED. Second window of preconditioning normalizes palmitate use for oxidation and improves function during low-flow ischaemia. Cardiovasc Res 2011; 92:394-400. [PMID: 21835931 DOI: 10.1093/cvr/cvr215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AIMS Although a major mechanism for cardioprotection is altered metabolism, little is known regarding metabolic changes in ischaemic preconditioning and subsequent ischaemia. Our objective was to examine the effects of the second window of preconditioning (SWOP), the delayed phase of preconditioning against infarction and stunning, on long-chain free fatty acid (LCFA) oxidation during ischaemia in chronically instrumented, conscious pigs. METHODS AND RESULTS We studied three groups: (i) normal baseline perfusion (n = 5); (ii) coronary artery stenosis (CAS; n = 5); (iii) CAS 24 h following 2 × 10 min coronary occlusions and 10 min reperfusion (n = 7). Ischaemia was induced by a left anterior descending (LAD) stenosis (40% flow reduction) for 90 min, dropping systolic wall thickening by 72%. LCFA oxidation was assessed following LAD infusion of (13)C palmitate, i.e. during control or stenosis, by in vitro nuclear magnetic resonance of the sampled myocardium. Stenosis reduced subendocardial blood flow subendocardially, but not subepicardial, yet induced transmural reductions in LCFA oxidation and increased non-oxidative glycolysis. During stenosis, preconditioned hearts showed normalized contributions of LCFA to oxidative ATP synthesis, despite increased lactate accumulation. SWOP induced a shift towards LCFA oxidation during stenosis, despite increased malonyl-CoA, and marked protection of contractile function with a significant improvement in systolic wall thickening. CONCLUSION Thus, the second window of preconditioning normalized oxidative metabolism of LCFA during subsequent ischaemia despite elevated non-oxidative glycolysis and malonyl-CoA and was linked to protection of regional contractile function resulting in improved mechanical performance. Interestingly, the metabolic responses occurred transmurally while ischaemia was restricted solely to the subendocardium.
Collapse
Affiliation(s)
- Raymond K Kudej
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Takalkar A, Agarwal A, Adams S, Alavi A, Torigian DA. Cardiac Assessment with PET. PET Clin 2011; 6:313-26. [DOI: 10.1016/j.cpet.2011.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Abstract
Imaging metabolic processes in the human heart yields valuable insights into the mechanisms contributing to myocardial pathology and allows assessment of the efficacy of therapies designed to treat cardiac disease. Recent advances in fatty acid (FA) imaging using positron emission tomography (PET) include the development of a method to assess endogenous triglyceride metabolism and the design of new fluorine-18 labeled tracers. Studies of patients with diabetes have shown that the heart is resistant to insulin-mediated glucose uptake and that metabolism of nonesterified FA is upregulated. Cardiac PET imaging has also recently shown the increase in myocardial FA uptake seen in obese patients can be reversed with weight loss. And a pilot study of patients with chronic kidney disease demonstrated that PET imaging can reveal myocardial metabolic alterations that parallel the decline in estimated glomerular filtration rate. Recent advances in FA imaging using single photon emission computed tomography (SPECT) have been accomplished with the tracer β-methyl-p-[(123)I]-iodophenyl-pentadecanoic acid (BMIPP). Two meta-analyses showed this imaging technique has a diagnostic accuracy for the detection of obstructive coronary artery disease that compares favorably with SPECT myocardial perfusion imaging and that BMIPP imaging yields excellent prognostic data in patients across the spectrum of coronary artery disease. A recent multicenter study of patients presenting with acute coronary syndromes found BMIPP SPECT imaging has greater diagnostic sensitivity than, and enhances the negative predictive value of, clinical assessment alone. Because of their exquisite sensitivity, nuclear imaging techniques facilitate the study of physiologic processes that are the key to our understanding of cardiac metabolism in health and disease.
Collapse
Affiliation(s)
- Kenneth N Giedd
- Thomas A. Killip Division of Cardiology, Beth Israel Medical Center, New York, NY 10003, USA
| | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW We focus on the molecular and cellular basis of the improvement in myocardial energetics, which might represent an attractive therapeutic option in some forms of acute and chronic heart disease. RECENT FINDINGS Myocardial dysfunction, whether related to left ventricular hypertrophy, heart failure or myocardial ischaemia, is frequently associated with impairment of myocardial energy balance. It is now apparent that this energetic impairment plays a pivotal role, not only in the evolution and outcomes of these disorders but also frequently in their pathogenesis. Despite the fact that energetic impairment may arise for many complex reasons, and the difficulty both in assessing the impairment in vivo and in determining its precise mechanism(s), a number of drugs have become available for treatment of ischaemia and heart failure, as well as potentially for limitation of pathological left ventricular hypertrophy, which act primarily by altering myocardial metabolism so as to improve energetic status. Recent studies with perhexiline and trimetazidine, agents which induce a 'metabolic shift' from long-chain fatty acid to glucose utilization, have demonstrated the utility of this therapeutic principle. SUMMARY There is ongoing need for more complete mechanistic understanding of the 'metabolic agents', as well as for the large-scale clinical trials of their impact on health outcomes.
Collapse
|
40
|
Fragasso G, Montano C, Lattuada G, Salerno A, Palloshi A, Calori G, Luzi L, Perseghin G, Margonato A. A high carbohydrate meal yields a lower ischemic threshold than a high fat meal in patients with stable coronary disease. Int J Cardiol 2011; 147:209-13. [DOI: 10.1016/j.ijcard.2009.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
|
41
|
Abstract
Biomarkers are biological parameters that can be objectively measured and quantified as indicators of normal biologic processes, pathogenic processes, or responses to a therapeutic intervention. Typically thought of as disease process screening, diagnosing, or monitoring tools, biomarkers may also be used to determine disease susceptibility and eligibility for specific therapies. Cardiac biomarkers are protein components of cell structures that are released into circulation when myocardial injury occurs. They play a pivotal role in the diagnosis, risk stratification, and treatment of patients with chest pain and suspected acute coronary syndrome and those with acute exacerbations of heart failure. Cardiac markers are central to the new definition of acute myocardial infarction put forward by the American College of Cardiology and the European Society of Cardiology. Active investigation has brought forward an increasingly large number of novel candidate markers but few have withstood the test of time and become integrated into contemporary clinical care because of their readily apparent diagnostic, prognostic, or therapeutic utility.
Collapse
|
42
|
Heck PM, Hoole SP, Khan SN, Dutka DP. Hyperinsulinemia improves ischemic LV function in insulin resistant subjects. Cardiovasc Diabetol 2010; 9:27. [PMID: 20576156 PMCID: PMC2903514 DOI: 10.1186/1475-2840-9-27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 06/24/2010] [Indexed: 01/04/2023] Open
Abstract
Background Glucose is a more efficient substrate for ATP production than free fatty acid (FFA). Insulin resistance (IR) results in higher FFA concentrations and impaired myocardial glucose use, potentially worsening ischemia. We hypothesized that metabolic manipulation with a hyperinsulinemic euglycemic clamp (HEC) would affect a greater improvement in left ventricular (LV) performance during dobutamine stress echo (DSE) in subjects with IR. Methods 24 subjects with normal LV function and coronary disease (CAD) awaiting revascularization underwent 2 DSEs. Prior to one DSEs they underwent an HEC, where a primed infusion of insulin (rate 43 mU/m 2/min) was co-administered with 20% dextrose at variable rates to maintain euglycemia. At steady-state the DSE was performed and images of the LV were acquired with tissue Doppler at each stage for offline analysis. Segmental peak systolic velocities (Vs) were recorded, as well as LV ejection fraction (EF). Subjects were then divided into two groups based on their insulin sensitivity during the HEC. Results HEC changed the metabolic environment, suppressing FFAs and thereby increasing glucose use. This resulted in improved LV performance at peak stress, measured by EF (IS group mean difference 5.3 (95% CI 2.5-8) %, p = 0.002; IR group mean difference 8.7 (95% CI 5.8-11.6) %, p < 0.0001) and peak V s in ischemic segments (IS group mean improvement 0.7(95% CI 0.07-1.58) cm/s, p = 0.07; IR group mean improvement 1.0 (95% CI 0.54-1.5) cm/s, p < 0.0001) , that was greater in the subjects with IR. Conclusions Increased myocardial glucose use induced by HEC improves LV function under stress in subjects with CAD and IR. Cardiac metabolic manipulation in subjects with IR is a promising target for future therapy.
Collapse
Affiliation(s)
- Patrick M Heck
- Cardiovascular Medicine, ACCI, Level 6, Box 110, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | | | | | | |
Collapse
|
43
|
Jain D, He ZX, Ghanbarinia A, Baron J, Gavriluke A. Direct Imaging of Myocardial Ischemia With 18FDG: A New Potentially Paradigm-Shifting Molecular Cardiovascular Imaging Technique. CURRENT CARDIOVASCULAR IMAGING REPORTS 2010. [DOI: 10.1007/s12410-010-9022-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
|
45
|
Abstract
All patients hospitalized during a 3-year period with an acute myocardial infarction were followed for the occurrence of reinfarction or death. The patients with diabetes mellitus (n = 95) were compared with the non-diabetic population (n = 545). The diabetics had a higher mortality rate (relative death rate of 1.44 vs. 0.93, p less than 0.01) and a higher frequency of reinfarctions (18.9 vs. 10.8%, p = 0.04) than the non-diabetic population. A larger proportion of the diabetics had suffered a previous infarction, but the excess mortality was also present in those without a previous infarction. Established risk factors for death after myocardial infarction, such as age, infarct size, infarct localization and heart size, could not account for the difference in mortality. It is suggested that the increased mortality among the diabetics may be due to an increase in the rate of progression of the atherosclerotic heart disease.
Collapse
Affiliation(s)
- P Mølstad
- Department of Internal Medicine, Hamar Hospital, Norway
| | | |
Collapse
|
46
|
Harvey M, Cave G, Kazemi A. Intralipid infusion diminishes return of spontaneous circulation after hypoxic cardiac arrest in rabbits. Anesth Analg 2009; 108:1163-8. [PMID: 19299780 DOI: 10.1213/ane.0b013e31819367ba] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Infusion of lipid emulsion has been shown to reverse lipophilic drug-induced cardiovascular collapse in laboratory models and humans. The effect of high dose lipid in nondrug-induced cardiac arrest is, however, uncertain. In a rabbit model of asphyxial pulseless electrical activity (PEA) we compared lipid augmented with standard advanced cardiac life support (ACLS) resuscitation. METHOD Adult New Zealand White rabbits underwent hypoxic PEA via tracheal clamping. After 2 min of cardiac arrest, basic life support cardiopulmonary resuscitation was commenced and 3 mL/kg 20% Intralipid or 3 mL/kg 0.9% saline solution infused. Adrenaline (100 microg/kg) was administered at 4 and 5 min. Return of spontaneous circulation (ROSC), hemodynamic metrics, and survival to 50 min were recorded. RESULTS Seven of 11 saline-treated rabbits developed ROSC versus 1 of 12 Intralipid-treated animals; P = 0.009. No significant difference in survival to 50 min was observed (3/11 saline vs 0/12 Intralipid; P = 0.211). CONCLUSION In this model of hypoxia-induced PEA, standard ACLS resulted in greater coronary perfusion pressure and increased ROSC compared with ACLS plus lipid infusion. Lipid emulsion may be contraindicated in cardiac arrest complicated by significant hypoxia.
Collapse
Affiliation(s)
- Martyn Harvey
- Department of Emergency Medicine, Waikato Hospital, Pembroke Street, Hamilton, New Zealand.
| | | | | |
Collapse
|
47
|
Molecular Imaging in Cardiology. Mol Imaging 2009. [DOI: 10.1007/978-3-540-76735-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
48
|
|
49
|
Impaired energetics in heart failure — A new therapeutic target. Pharmacol Ther 2008; 119:264-74. [DOI: 10.1016/j.pharmthera.2008.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 05/09/2008] [Indexed: 11/20/2022]
|
50
|
Takalkar A, Chen W, Desjardins B, Alavi A, Torigian DA. Cardiovascular Imaging with PET, CT, and MR Imaging. PET Clin 2008; 3:411-34. [DOI: 10.1016/j.cpet.2009.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|