1
|
Odendaal L, Davis AS, Venter EH. Insights into the Pathogenesis of Viral Haemorrhagic Fever Based on Virus Tropism and Tissue Lesions of Natural Rift Valley Fever. Viruses 2021; 13:v13040709. [PMID: 33923863 PMCID: PMC8073615 DOI: 10.3390/v13040709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV) infects humans and a wide range of ungulates and historically has caused devastating epidemics in Africa and the Arabian Peninsula. Lesions of naturally infected cases of Rift Valley fever (RVF) have only been described in detail in sheep with a few reports concerning cattle and humans. The most frequently observed lesion in both ruminants and humans is randomly distributed necrosis, particularly in the liver. Lesions supportive of vascular endothelial injury are also present and include mild hydropericardium, hydrothorax and ascites; marked pulmonary congestion and oedema; lymph node congestion and oedema; and haemorrhages in many tissues. Although a complete understanding of RVF pathogenesis is still lacking, antigen-presenting cells in the skin are likely the early targets of the virus. Following suppression of type I IFN production and necrosis of dermal cells, RVFV spreads systemically, resulting in infection and necrosis of other cells in a variety of organs. Failure of both the innate and adaptive immune responses to control infection is exacerbated by apoptosis of lymphocytes. An excessive pro-inflammatory cytokine and chemokine response leads to microcirculatory dysfunction. Additionally, impairment of the coagulation system results in widespread haemorrhages. Fatal outcomes result from multiorgan failure, oedema in many organs (including the lungs and brain), hypotension, and circulatory shock. Here, we summarize current understanding of RVF cellular tropism as informed by lesions caused by natural infections. We specifically examine how extant knowledge informs current understanding regarding pathogenesis of the haemorrhagic fever form of RVF, identifying opportunities for future research.
Collapse
Affiliation(s)
- Lieza Odendaal
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa
- Correspondence: (L.O.); (A.S.D.)
| | - A Sally Davis
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (L.O.); (A.S.D.)
| | - Estelle H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria 0002, South Africa;
- College of Public Health Medical and Veterinary Sciences, Discipline Veterinary Science, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
2
|
Myeloid-like γδ T cell subset in the immune response to an experimental Rift Valley fever vaccine in sheep. Vet Immunol Immunopathol 2021; 233:110184. [PMID: 33454621 DOI: 10.1016/j.vetimm.2021.110184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/15/2020] [Accepted: 01/04/2021] [Indexed: 12/30/2022]
Abstract
γδ T cells are a numerically significant subset of immune cells in ruminants, where they may comprise up to 70 % of all peripheral blood mononuclear cells (PBMCs) in young animals and 25 % in adults. These cells can be activated through traditional TCR-dependent mechanisms, or alternatively in a TCR-independent manner by pattern recognition receptors and have been shown to uptake antigen, as well as process and present it to αβ T cells. We have identified a novel CD11b+ subset of γδ T cells in normal sheep peripheral blood. An increase in the frequency of these cells in sheep peripheral blood in response to immunization with an experimental recombinant subunit Rift Valley fever (RVF) vaccine was observed. However, injection of the vaccine adjuvant ISA-25VG alone without the recombinant RVF virus antigens demonstrated the same effect, pointing to an antigen-independent innate immune function of CD11b+ γδ T cells in response to the adjuvant. In vitro studies showed repeatable increases of CD11b-, CD14-, CD86-, CD40-, CD72-, and IFNγ- expressing γδ T cells in PBMCs after 24 h of incubation in the absence of a mitogen. Moreover, the majority of these myeloid-like γδ T cells were demonstrated to process exogenous antigen even in the absence of mitogen. ConA activation increased CD25- and MHCII- expression in γδ T cells, but not the myeloid associated receptors CD14 or CD11b or co-stimulatory molecules such as CD86 and CD40. Considering the role of CD11b and CD14 in the activation of innate immunity, we hypothesize that this subpopulation of sheep γδ T cells may function as innate antigen presenting and pro-inflammatory cells during immune responses. The results presented here also suggest that stress molecules and/or damage-associated molecular patterns may be involved in triggering antigen presenting and pro-inflammatory functions of γδ T cells, given their appearance in vitro in the absence of specific stimulation. Taken together, these data suggest that the early appearance of γδ T cells following adjuvant administration and their possible role in early activation of αβ T cell subsets may non-specifically contribute to augmented innate immunity and may promote strong initiation of the adaptive immune response to vaccines in general.
Collapse
|
3
|
Boumart Z, Bamouh Z, Hamdi J, Safini N, Tadlaoui K, Bettinger G, Watts D, Elharrak M. Safety and immunogenicity of the Rift Valley fever arMP-12 ΔNSm21/384 candidate vaccine in pregnant ewes. Vaccine X 2020; 6:100070. [PMID: 32793877 PMCID: PMC7415414 DOI: 10.1016/j.jvacx.2020.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever virus causes abortion, teratogenicity and mortality in domestic ruminants. Safety and immunogenicity RVFV arMP-12ΔNSm21/384 vaccine was determined in pregnant ewes. Vaccine was safe and immunogenic last stages of pregnancy, but may caused malformed lambs early stage. Pregnant sheep should not be vaccinated with the RVFV vaccine during the first month of gestation.
Rift Valley fever (RVF) poses a threat to human and animal health as well as economic losses due to abortion, new-born teratogenic effect and mortality. Safe and effective vaccines are critically needed to prevent the disease in humans and livestock. The objective of this study was to assess safety and immunogenicity of the Rift Valley fever virus (RVFV) arMP-12DNSm21/384 attenuated vaccine in 32 pregnant ewes at different stages of pregnancy including 17 ewes vaccinated during the early stage (G1) of pregnancy (<35 days) and 15 ewes vaccinated during the last two stages (G2) of pregnancy (>35 days). Ewes were monitored for clinical observations, rectal temperature and abortions and lambs were monitored for general health and rectal temperature. Vaccinated ewes and lambs were periodically sampled for their neutralizing antibody response to RVFV vaccination. All ewes were positive for antibody two weeks post-vaccination and 79% of ewes were positive at delivery. None of the 32 ewes aborted during pregnancy and all ewes vaccinated during the G2 stages of pregnancy gave birth to healthy lambs. However, among the 17 ewes vaccinated during the G1 stage of pregnancy, 2 ewes gave birth to 2 lambs with fore limb malformations that died at 1-day of age. One ewe gave birth to 2 punny twins that died at 2 days of age. Another ewe, gave birth to one lamb with a deformed tail that died at 20 days of age. At post-mortem, tissues of dead lambs (spleen, lung, brain and long bone) were negative for RVFV by PCR assay. While the findings did not link the malformed lambs directly to infection by the vaccine virus, these results indicated that pregnant sheep should not be vaccinated with the RVFV arMP-12DNSm21/384 vaccine during the first month of gestation.
Collapse
Affiliation(s)
- Z. Boumart
- Research and Development Dept., Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| | - Z. Bamouh
- Research and Development Dept., Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| | - J. Hamdi
- Research and Development Dept., Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| | - N. Safini
- Research and Development Dept., Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| | - K.O. Tadlaoui
- Research and Development Dept., Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| | - G. Bettinger
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, United States
| | - D.M. Watts
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, United States
- Corresponding author.
| | - M. Elharrak
- Research and Development Dept., Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| |
Collapse
|
4
|
Odendaal L, Clift SJ, Fosgate GT, Davis AS. Ovine Fetal and Placental Lesions and Cellular Tropism in Natural Rift Valley Fever Virus Infections. Vet Pathol 2020; 57:791-806. [PMID: 32885745 DOI: 10.1177/0300985820954549] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infection with Rift Valley fever phlebovirus (RVFV) causes abortion storms and a wide variety of outcomes for both ewes and fetuses. Sheep fetuses and placenta specimens were examined during the 2010-2011 River Valley fever (RVF) outbreak in South Africa. A total of 72 fetuses were studied of which 58 were confirmed positive for RVF. Placenta specimens were available for 35 cases. Macroscopic lesions in fetuses were nonspecific and included marked edema and occasional hemorrhages in visceral organs. Microscopically, multifocal hepatic necrosis was present in 48 of 58 cases, and apoptotic bodies, foci of liquefactive hepatic necrosis (primary foci), and eosinophilic intranuclear inclusions in hepatocytes were useful diagnostic features. Lymphocytolysis was present in all lymphoid organs examined with the exception of thymus and Peyer's patches, and pyknosis or karyorrhexis was often present in renal glomeruli. The most significant histologic lesion in the placenta was necrosis of trophoblasts and endothelial cells in the cotyledonary and intercotyledonary chorioallantois. Immunolabeling for RVFV was most consistent in trophoblasts of the cotyledon or caruncle. Other antigen-positive cells included hepatocytes, renal tubular epithelial, juxtaglomerular and extraglomerular mesangial cells, vascular smooth muscle, endothelial and adrenocortical cells, cardiomyocytes, Purkinje fibers, and macrophages. Fetal organ samples for diagnosis must minimally include liver, kidney, and spleen. From the placenta, the minimum recommended specimens for histopathology include the cotyledonary units and caruncles from the endometrium, if available. The diagnostic investigation of abortion in endemic areas should always include routine testing for RVFV, and a diagnosis during interepidemic periods might be missed if only limited specimens are available for examination.
Collapse
Affiliation(s)
- Lieza Odendaal
- 56410University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - Sarah J Clift
- 56410University of Pretoria, Onderstepoort, Pretoria, South Africa
| | | | - A Sally Davis
- 56410University of Pretoria, Onderstepoort, Pretoria, South Africa.,5308Kansas State University, Manhattan, KS, USA
| |
Collapse
|
5
|
Monath TP, Kortekaas J, Watts DM, Christofferson RC, Desiree LaBeaud A, Gowen B, Peters CJ, Smith DR, Swanepoel R, Morrill JC, Ksiazek TG, Pittman PR, Bird BH, Bettinger G. Theoretical risk of genetic reassortment should not impede development of live, attenuated Rift Valley fever (RVF) vaccines commentary on the draft WHO RVF Target Product Profile. Vaccine X 2020; 5:100060. [PMID: 32337506 PMCID: PMC7176985 DOI: 10.1016/j.jvacx.2020.100060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/08/2020] [Accepted: 03/21/2020] [Indexed: 11/29/2022] Open
Abstract
WHO published draft Target Product Profiles (TPPs) for Rift Valley Fever virus (RVFV) vaccines. The TPPs contain restrictive requirements aimed at reducing the risk of genetic reassortment. We find no evidence for reassortment despite use of live RVFV vaccines. If genetic reassortment occurred with wild-type RVFV it would be of no consequence. The hypothetical risks of reassortment do not outweigh the benefits of vaccination
In November 2019, The World Health Organization (WHO) issued a draft set of Target Product Profiles (TPPs) describing optimal and minimally acceptable targets for vaccines against Rift Valley fever (RVF), a Phlebovirus with a three segmented genome, in both humans and ruminants. The TPPs contained rigid requirements to protect against genomic reassortment of live, attenuated vaccines (LAVs) with wild-type RVF virus (RVFV), which place undue constraints on development and regulatory approval of LAVs. We review the current LAVs in use and in development, and conclude that there is no evidence that reassortment between LAVs and wild-type RVFV has occurred during field use, that such a reassortment event if it occurred would have no untoward consequence, and that the TPPs should be revised to provide a more balanced assessment of the benefits versus the theoretical risks of reassortment.
Collapse
Affiliation(s)
- Thomas P Monath
- Managing Partner and Chief Scientific Officer, Crozet BioPharma LLC, Devens, MA, USA
| | - Jeroen Kortekaas
- Professor of Veterinary Arbovirology, Department of Virology, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Douglas M Watts
- Executive Director of Vet Services, and Director of Biosafety Level 3 Laboratory and Co-Director of BBRC Infectious Disease and Immunology, University of Texas at El Paso, El Paso, TX, USA
| | - Rebecca C Christofferson
- Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Angelle Desiree LaBeaud
- Professor of Pediatrics (Infectious Diseases), Stanford University School of Medicine, Senior Fellow at the Woods Institute for the Environment and Professor of Health Research and Policy (Epidemiology) at the Lucile Salter Packard Children's Hospital, Stanford, CA, USA
| | | | - Clarence J Peters
- Professor (Emeritus) Departments of Microbiology & Immunology and Pathology Director (Emeritus) for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Darci R Smith
- Immunodiagnostics Department, Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick, MD, USA
| | - Robert Swanepoel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Gauteng, South Africa
| | - John C Morrill
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas G Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Phillip R Pittman
- U.S. Army Medical Research Institute of Infectious Diseases, Medical Research and Materiel Command, Fort Detrick, Frederick, MD, USA
| | - Brian H Bird
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.,University of California, Davis, One Health Institute, School of Veterinary Medicine, Davis 956164, CA, USA
| | - George Bettinger
- USAID Rift Valley Fever Vaccine Project at The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
6
|
Stedman A, Wright D, Wichgers Schreur PJ, Clark MHA, Hill AVS, Gilbert SC, Francis MJ, van Keulen L, Kortekaas J, Charleston B, Warimwe GM. Safety and efficacy of ChAdOx1 RVF vaccine against Rift Valley fever in pregnant sheep and goats. NPJ Vaccines 2019; 4:44. [PMID: 31646004 PMCID: PMC6802222 DOI: 10.1038/s41541-019-0138-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic mosquito-borne virus that was first discovered in Kenya in 1930 and has since spread to become endemic in much of Africa and the Arabian Peninsula. Rift Valley fever (RVF) causes recurrent outbreaks of febrile illness associated with high levels of mortality and poor outcomes during pregnancy-including foetal malformations, spontaneous abortion and stillbirths-in livestock, and associated with miscarriage in humans. No vaccines are available for human use and those licensed for veterinary use have potential drawbacks, including residual virulence that may contraindicate their use in pregnancy. To address this gap, we previously developed a simian adenovirus vectored vaccine, ChAdOx1 RVF, that encodes RVFV envelope glycoproteins. ChAdOx1 RVF is fully protective against RVF in non-pregnant livestock and is also under development for human use. Here, we now demonstrate that when administered to pregnant sheep and goats, ChAdOx1 RVF is safe, elicits high titre RVFV neutralizing antibody, and provides protection against viraemia and foetal loss, although this protection is not as robust for the goats. In addition, we provide a description of RVFV challenge in pregnant goats and contrast this to the pathology observed in pregnant sheep. Together, our data further support the ongoing development of ChAdOx1 RVF vaccine for use in livestock and humans.
Collapse
Affiliation(s)
- Anna Stedman
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF UK
| | - Daniel Wright
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | | | - Madeleine H. A. Clark
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF UK
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Adrian V. S. Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Sarah C. Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Michael J. Francis
- BioVacc Consulting Ltd, The Red House, 10 Market Square, Amersham, HP7 0DQ UK
| | - Lucien van Keulen
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Bryan Charleston
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF UK
| | - George M. Warimwe
- Centre for Tropical Medicine and Global Health, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ UK
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108 Kenya
| |
Collapse
|
7
|
Abstract
Introduction: Rift Valley fever (RVF) outbreaks can cause devastating economic loss and public health concerns. RVF virus (RVFV: genus Phlebovirus family Phenuiviridae) is transmitted by mosquitoes, causes abortion in sheep, cattle, and goats, and severe diseases in humans including hemorrhagic fever, encephalitis, or retinitis. RVFV has spread from sub-Saharan Africa into Madagascar, Egypt, Saudi Arabia, and Yemen.Area covered: There are a few licensed veterinary RVF vaccines in endemic countries, whereas no licensed RVF vaccines are available for human use. There are two Investigational New Drug (IND) RVF candidate vaccines used in clinical trials. This review will discuss the development of two IND vaccines for RVF over the past 20-40 years, and further innovation for future RVF vaccines applicable for the use in endemic areas.Expert opinion: Vaccination for human RVF can protect at-risk personnel against severe RVF illness. Formalin-inactivated RVF candidate vaccine requires three doses to induce protective immunity, whereas the live-attenuated MP-12 candidate vaccine retains strong immunogenicity. Further innovation in safety, immunogenicity, and thermostability will facilitate future RVF vaccines for humans.
Collapse
Affiliation(s)
- Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA.,Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX, USA.,Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
8
|
Lorenzo G, López-Gil E, Ortego J, Brun A. Efficacy of different DNA and MVA prime-boost vaccination regimens against a Rift Valley fever virus (RVFV) challenge in sheep 12 weeks following vaccination. Vet Res 2018; 49:21. [PMID: 29467018 PMCID: PMC5822472 DOI: 10.1186/s13567-018-0516-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
The aim of this work was to evaluate the immunogenicity and efficacy of DNA and MVA vaccines encoding the RVFV glycoproteins Gn and Gc in an ovine model of RVFV infection. Adult sheep of both sexes were challenged 12 weeks after the last immunization and clinical, virological, biochemical and immunological consequences, were analyzed. Strategies based on immunization with homologous DNA or heterologous DNA/MVA prime-boost were able to induce a rapid in vitro neutralizing antibody response as well as IFNγ production after in vitro virus specific re-stimulation. In these animals we observed reduced viremia levels and less clinical signs when compared with mock-immunized controls. In contrast, sheep inoculated with a homologous MVA prime-boost showed increased viremia correlating with the absence of detectable neutralizing antibody responses, despite of inducing cellular responses after the last immunization. However, faster induction of neutralizing antibodies and IFNγ production after challenge were found in this group when compared to the mock vaccinated group, indicative of a primed immune response. In conclusion, these results suggest that vaccination strategies based on DNA priming were able to mount and maintain specific anti-RVFV glycoprotein immune responses upon homologous or heterologous booster doses, warranting further optimization in large animal models of infection.
Collapse
Affiliation(s)
- Gema Lorenzo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130, Madrid, Spain
| | - Elena López-Gil
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130, Madrid, Spain
| | - Javier Ortego
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130, Madrid, Spain
| | - Alejandro Brun
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130, Madrid, Spain.
| |
Collapse
|
9
|
|
10
|
Current Status of Rift Valley Fever Vaccine Development. Vaccines (Basel) 2017; 5:vaccines5030029. [PMID: 28925970 PMCID: PMC5620560 DOI: 10.3390/vaccines5030029] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023] Open
Abstract
Rift Valley Fever (RVF) is a mosquito-borne zoonotic disease that presents a substantial threat to human and public health. It is caused by Rift Valley fever phlebovirus (RVFV), which belongs to the genus Phlebovirus and the family Phenuiviridae within the order Bunyavirales. The wide distribution of competent vectors in non-endemic areas coupled with global climate change poses a significant threat of the transboundary spread of RVFV. In the last decade, an improved understanding of the molecular biology of RVFV has facilitated significant progress in the development of novel vaccines, including DIVA (differentiating infected from vaccinated animals) vaccines. Despite these advances, there is no fully licensed vaccine for veterinary or human use available in non-endemic countries, whereas in endemic countries, there is no clear policy or practice of routine/strategic livestock vaccinations as a preventive or mitigating strategy against potential RVF disease outbreaks. The purpose of this review was to provide an update on the status of RVF vaccine development and provide perspectives on the best strategies for disease control. Herein, we argue that the routine or strategic vaccination of livestock could be the best control approach for preventing the outbreak and spread of future disease.
Collapse
|
11
|
Ikegami T. Rift Valley fever vaccines: an overview of the safety and efficacy of the live-attenuated MP-12 vaccine candidate. Expert Rev Vaccines 2017; 16:601-611. [PMID: 28425834 DOI: 10.1080/14760584.2017.1321482] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease endemic to Africa and the Arabian Peninsula. High rates of abortion among infected ruminants and hemorrhagic fever in infected humans are major public health concerns. Commercially available veterinary RVF vaccines are important for preventing the spread of the Rift Valley fever virus (RVFV) in endemic countries; however, RVFV outbreaks continue to occur frequently in endemic countries in the 21st century. In the U.S., the live-attenuated MP-12 vaccine has been developed for both animal and human vaccination. This vaccine strain is well attenuated, and a single dose induces neutralizing antibodies in both ruminants and humans. Areas covered: This review describes scientific evidences of MP-12 vaccine efficacy and safety, as well as MP-12 variants recently developed by reverse genetics, in comparison with other RVF vaccines. Expert commentary: The containment of active RVF outbreaks and long-term protection from RVF exposure to infected mosquitoes are important goals for RVF vaccination. MP-12 vaccine will allow immediate vaccination of susceptible animals in case of an unexpected RVF outbreak in the U.S., whereas MP-12 vaccine may be also useful for the RVF control in endemic regions.
Collapse
Affiliation(s)
- Tetsuro Ikegami
- a Department of Pathology, Sealy Center for Vaccine Development, Center for Biodefense and Emerging Infectious Diseases , The University of Texas Medical Branch , Galveston , TX , USA
| |
Collapse
|
12
|
Abstract
Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is an arbovirus that causes severe disease in humans and livestock in sub-Saharan African countries. The virus carries a tripartite, single-stranded, and negative-sense RNA genome, designated as L, M, and S RNAs. RVFV spread can be prevented by the effective vaccination of animals and humans. Although the MP-12 strain of RVFV is a live attenuated vaccine candidate, MP-12 showed neuroinvasiveness and neurovirulence in young mice and immunodeficiency mice. Hence, there is a concern for the use of MP-12 to certain individuals, especially those that are immunocompromised. To improve MP-12 safety, we have generated a single-cycle, replicable MP-12 (scMP-12), which carries L RNA, S RNA encoding green fluorescent protein in place of a viral nonstructural protein NSs, and an M RNA encoding a mutant envelope protein lacking an endoplasmic reticulum retrieval signal and defective for membrane fusion function. The scMP-12 undergoes efficient amplification in the Vero-G cell line, which is a Vero cell line stably expressing viral envelope proteins, while it undergoes single-cycle replication in naïve cells and completely lacks neurovirulence in suckling mice after intracranial inoculation. A single-dose vaccination of mice with scMP-12 confers protective immunity. Thus, scMP-12 represents a new, promising RVF vaccine candidate. Here we describe protocols for scMP-12 generation by using a reverse genetics system, establishment of Vero-G cells, and titration of scMP-12 in Vero-G cells.
Collapse
|
13
|
Makoschey B, van Kilsdonk E, Hubers WR, Vrijenhoek MP, Smit M, Wichgers Schreur PJ, Kortekaas J, Moulin V. Rift Valley Fever Vaccine Virus Clone 13 Is Able to Cross the Ovine Placental Barrier Associated with Foetal Infections, Malformations, and Stillbirths. PLoS Negl Trop Dis 2016; 10:e0004550. [PMID: 27031621 PMCID: PMC4816553 DOI: 10.1371/journal.pntd.0004550] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/24/2016] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne pathogen that affects domesticated ruminants and occasionally humans. Classical RVF vaccines are based on formalin-inactivated virus or the live-attenuated Smithburn strain. The inactivated vaccine is highly safe but requires multiple administrations and yearly re-vaccinations. Although the Smithburn vaccine provides solid protection after a single vaccination, this vaccine is not safe for pregnant animals. An alternative live-attenuated vaccine, named Clone 13, carries a large natural deletion in the NSs gene which encodes the major virulence factor of the virus. The Clone 13 vaccine was previously shown to be safe for young lambs and calves. Moreover, a study in pregnant ewes suggested that the vaccine could also be applied safely during gestation. To anticipate on a possible future incursion of RVFV in Europe, we have evaluated the safety of Clone 13 for young lambs and pregnant ewes. In line with the guidelines from the World Organisation for Animal health (Office International des Epizooties, OIE) and regulations of the European Pharmacopeia (EP), these studies were performed with an overdose. Our studies with lambs showed that Clone 13 dissemination within vaccinated animals is very limited. Moreover, the Clone 13 vaccine virus was not shed nor spread to in-contact sentinels and did not revert to virulence upon animal-to-animal passage. Importantly, a large experiment with pregnant ewes demonstrated that the Clone 13 virus is able to spread to the fetus, resulting in malformations and stillbirths. Altogether, our results suggest that Clone 13 can be applied safely in lambs, but that caution should be taken when Clone 13 is used in pregnant animals, particularly during the first trimester of gestation.
Collapse
Affiliation(s)
- Birgit Makoschey
- Intervet International BV/Merck Sharp and Dohme (MSD) Animal Health, Boxmeer, The Netherlands
- * E-mail:
| | - Emma van Kilsdonk
- Intervet International BV/Merck Sharp and Dohme (MSD) Animal Health, Boxmeer, The Netherlands
| | - Willem R. Hubers
- Intervet International BV/Merck Sharp and Dohme (MSD) Animal Health, Boxmeer, The Netherlands
| | - Mieke P. Vrijenhoek
- Intervet International BV/Merck Sharp and Dohme (MSD) Animal Health, Boxmeer, The Netherlands
| | - Marianne Smit
- Intervet International BV/Merck Sharp and Dohme (MSD) Animal Health, Boxmeer, The Netherlands
| | - Paul J. Wichgers Schreur
- Department of Virology, Central Veterinary Institute, Wageningen University and Research Centre, Lelystad, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology, Central Veterinary Institute, Wageningen University and Research Centre, Lelystad, The Netherlands
| | - Véronique Moulin
- Intervet International BV/Merck Sharp and Dohme (MSD) Animal Health, Boxmeer, The Netherlands
| |
Collapse
|
14
|
Pittman PR, McClain D, Quinn X, Coonan KM, Mangiafico J, Makuch RS, Morrill J, Peters CJ. Safety and immunogenicity of a mutagenized, live attenuated Rift Valley fever vaccine, MP-12, in a Phase 1 dose escalation and route comparison study in humans. Vaccine 2015; 34:424-429. [PMID: 26718688 DOI: 10.1016/j.vaccine.2015.12.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Rift Valley fever (RVF) poses a risk as a potential agent in bioterrorism or agroterrorism. A live attenuated RVF vaccine (RVF MP-12) has been shown to be safe and protective in animals and showed promise in two initial clinical trials. In the present study, healthy adult human volunteers (N=56) received a single injection of (a) RVF MP-12, administered subcutaneously (SQ) at a concentration of 10(4.7) plaque-forming units (pfu) (SQ Group); (b) RVF MP-12, administered intramuscularly (IM) at 10(3.4)pfu (IM Group 1); (c) RVF MP-12, administered IM at 10(4.4)pfu (IM Group 2); or (d) saline (Placebo Group). The vaccine was well tolerated by volunteers in all dose and route groups. Infrequent and minor adverse events were seen among recipients of both placebo and RVF MP-12. One subject had viremia detectable by direct plaque assay, and six subjects from IM Group 2 had transient low-titer viremia detectable only by nucleic acid amplification. Of the 43 vaccine recipients, 40 (93%) achieved neutralizing antibodies (measured as an 80% plaque reduction neutralization titer [PRNT80]) as well as RVF-specific IgM and IgG. The highest peak geometric mean PRNT80 titers were observed in IM Group 2. Of 34 RVF MP-12 recipients available for testing 1 year following inoculation, 28 (82%) remained seropositive (PRNT80≥1:20); this included 20 of 23 vaccinees (87%) from IM Group 2. The live attenuated RVF MP-12 vaccine was safe and immunogenic at the doses and routes studied. Given the need for an effective vaccine against RVF virus, further evaluation in humans is warranted.
Collapse
Affiliation(s)
- Phillip R Pittman
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD 21702-5011, United States.
| | - David McClain
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD 21702-5011, United States
| | - Xiaofei Quinn
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD 21702-5011, United States
| | - Kevin M Coonan
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD 21702-5011, United States
| | - Joseph Mangiafico
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD 21702-5011, United States
| | - Richard S Makuch
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD 21702-5011, United States
| | - John Morrill
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD 21702-5011, United States
| | - Clarence J Peters
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, MD 21702-5011, United States
| |
Collapse
|
15
|
Rift Valley fever MP-12 vaccine Phase 2 clinical trial: Safety, immunogenicity, and genetic characterization of virus isolates. Vaccine 2015; 34:523-530. [PMID: 26706271 DOI: 10.1016/j.vaccine.2015.11.078] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 11/23/2022]
Abstract
An outbreak or deliberate release of Rift Valley fever (RVF) virus could have serious public health and socioeconomic consequences. A safe RVF vaccine capable of eliciting long-lasting immunity after a single injection is urgently needed. The live attenuated RVF MP-12 vaccine candidate has shown promise in Phase 1 clinical trials; no evidence of reversion to virulence has been identified in numerous animal studies. The objective of this Phase 2 clinical trial was to (a) further examine the safety and immunogenicity of RVF MP-12 in RVF virus-naïve humans and (b) characterize isolates of RVF MP-12 virus recovered from the blood of vaccinated subjects to evaluate the genetic stability of MP-12 attenuation. We found that RVF MP-12 was well tolerated, causing mostly mild reactions that resolved without sequelae. Of 19 subjects, 18 (95%) and 19 (100%) achieved, respectively, 80% and 50% plaque reduction neutralization titers (PRNT80 and PRNT50)≥1:20 by postvaccination day 28. All 18 PRNT80 responders maintained PRNT80 and PRNT50≥1:40 until at least postvaccination month 12. Viremia was undetectable in the plasma of any subject by direct plaque assay techniques. However, 5 of 19 vaccinees were positive for MP-12 isolates in plasma by blind passage of plasma on Vero cells. Vaccine virus was also recovered from buffy coat material from one of those vaccinees and from one additional vaccinee. Through RNA sequencing of MP-12 isolates, we found no reversions of amino acids to those of the parent virulent virus (strain ZH548). Five years after a single dose of RVF MP-12 vaccine, 8 of 9 vaccinees (89%) maintained a PRNT80≥1:20. These findings support the continued development of RVF MP-12 as a countermeasure against RVF virus in humans.
Collapse
|
16
|
Evaluation of the Efficacy, Potential for Vector Transmission, and Duration of Immunity of MP-12, an Attenuated Rift Valley Fever Virus Vaccine Candidate, in Sheep. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:930-7. [PMID: 26041042 DOI: 10.1128/cvi.00114-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/30/2015] [Indexed: 11/20/2022]
Abstract
Rift Valley fever virus (RVFV) causes serious disease in ruminants and humans in Africa. In North America, there are susceptible ruminant hosts and competent mosquito vectors, yet there are no fully licensed animal vaccines for this arthropod-borne virus, should it be introduced. Studies in sheep and cattle have found the attenuated strain of RVFV, MP-12, to be both safe and efficacious based on early testing, and a 2-year conditional license for use in U.S. livestock has been issued. The purpose of this study was to further determine the vaccine's potential to infect mosquitoes, the duration of humoral immunity to 24 months postvaccination, and the ability to prevent disease and viremia from a virulent challenge. Vaccination experiments conducted in sheep found no evidence of a potential for vector transmission to 4 North American mosquito species. Neutralizing antibodies were elicited, with titers of >1:40 still present at 24 months postvaccination. Vaccinates were protected from clinical signs and detectable viremia after challenge with virulent virus, while control sheep had fever and high-titered viremia extending for 5 days. Antibodies to three viral proteins (nucleocapsid N, the N-terminal half of glycoprotein GN, and the nonstructural protein from the short segment NSs) were also detected to 24 months using competitive enzyme-linked immunosorbent assays. This study demonstrates that the MP-12 vaccine given as a single dose in sheep generates protective immunity to a virulent challenge with antibody duration of at least 2 years, with no evidence of a risk for vector transmission.
Collapse
|
17
|
Lorenzo G, López-Gil E, Warimwe GM, Brun A. Understanding Rift Valley fever: contributions of animal models to disease characterization and control. Mol Immunol 2015; 66:78-88. [PMID: 25725948 DOI: 10.1016/j.molimm.2015.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/26/2014] [Accepted: 02/03/2015] [Indexed: 11/30/2022]
Abstract
Rift Valley fever (RVF) is a mosquito-borne viral zoonosis with devastating health impacts in domestic ruminants and humans. Effective vaccines and accurate disease diagnostic tools are key components in the control of RVF. Animal models reproducing infection with RVF virus are of upmost importance in the development of these disease control tools. Rodent infection models are currently used in the initial steps of vaccine development and for the study of virus induced pathology. Translation of data obtained in these animal models to target species (ruminants and humans) is highly desirable but does not always occur. Small ruminants and non-human primates have been used for pathogenesis and transmission studies, and for testing the efficacy of vaccines and therapeutic antiviral compounds. However, the molecular mechanisms of the immune response elicited by RVF virus infection or vaccination are still poorly understood. The paucity of data in this area offers opportunities for new research activities and programs. This review summarizes our current understanding with respect to immunity and pathogenesis of RVF in animal models with a particular emphasis on small ruminants and non-human primates, including recent experimental infection data in sheep.
Collapse
Affiliation(s)
- Gema Lorenzo
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria (INIA-CISA), Valdeolmos, Madrid, Spain
| | - Elena López-Gil
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria (INIA-CISA), Valdeolmos, Madrid, Spain
| | - George M Warimwe
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria (INIA-CISA), Valdeolmos, Madrid, Spain.
| |
Collapse
|
18
|
Murakami S, Terasaki K, Ramirez SI, Morrill JC, Makino S. Development of a novel, single-cycle replicable rift valley Fever vaccine. PLoS Negl Trop Dis 2014; 8:e2746. [PMID: 24651859 PMCID: PMC3961198 DOI: 10.1371/journal.pntd.0002746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/30/2014] [Indexed: 12/25/2022] Open
Abstract
Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is an arbovirus that causes severe disease in humans and livestock in sub-Saharan African countries. Although the MP-12 strain of RVFV is a live attenuated vaccine candidate, neuroinvasiveness and neurovirulence of MP-12 in mice may be a concern when vaccinating certain individuals, especially those that are immunocompromised. We have developed a novel, single-cycle replicable MP-12 (scMP-12), which carries an L RNA, M RNA mutant encoding a mutant envelope protein lacking an endoplasmic reticulum retrieval signal and defective for membrane fusion function, and S RNA encoding N protein and green fluorescent protein. The scMP-12 underwent efficient amplification, then formed plaques and retained the introduced mutation after serial passages in a cell line stably expressing viral envelope proteins. However, inoculation of the scMP-12 into naïve cells resulted in a single round of viral replication, and production of low levels of noninfectious virus-like particles. Intracranial inoculation of scMP-12 into suckling mice did not cause clinical signs or death, a finding which demonstrated that the scMP-12 lacked neurovirulence. Mice immunized with a single dose of scMP-12 produced neutralizing antibodies, whose titers were higher than in mice immunized with replicon particles carrying L RNA and S RNA encoding N protein and green fluorescent protein. Moreover, 90% of the scMP-12-immunized mice were protected from wild-type RVFV challenge by efficiently suppressing viremia and replication of the challenge virus in the liver and the spleen. These data demonstrated that scMP-12 is a safe and immunogenic RVFV vaccine candidate.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Disease Models, Animal
- Female
- Mice
- Mutant Proteins/genetics
- Mutant Proteins/metabolism
- Rift Valley Fever/prevention & control
- Rift Valley fever virus/genetics
- Rift Valley fever virus/immunology
- Rift Valley fever virus/physiology
- Survival Analysis
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/adverse effects
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/adverse effects
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Virus Internalization
- Virus Replication
Collapse
Affiliation(s)
- Shin Murakami
- Department of Microbiology and Immunology, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kaori Terasaki
- Department of Microbiology and Immunology, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sydney I. Ramirez
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - John C. Morrill
- Department of Microbiology and Immunology, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shinji Makino
- Department of Microbiology and Immunology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, the University of Texas Medical Branch, Galveston, Texas, United States of America
- UTMB Center for Tropical Diseases, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, the University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
|
20
|
Koukuntla R, Mandell RB, Flick R. Virus-Like Particle-Based Countermeasures Against Rift Valley Fever Virus. Zoonoses Public Health 2012; 59 Suppl 2:142-50. [DOI: 10.1111/j.1863-2378.2012.01478.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Gray KK, Worthy MN, Juelich TL, Agar SL, Poussard A, Ragland D, Freiberg AN, Holbrook MR. Chemotactic and inflammatory responses in the liver and brain are associated with pathogenesis of Rift Valley fever virus infection in the mouse. PLoS Negl Trop Dis 2012; 6:e1529. [PMID: 22389738 PMCID: PMC3289610 DOI: 10.1371/journal.pntd.0001529] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/02/2012] [Indexed: 12/17/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a major human and animal pathogen associated with severe disease including hemorrhagic fever or encephalitis. RVFV is endemic to parts of Africa and the Arabian Peninsula, but there is significant concern regarding its introduction into non-endemic regions and the potentially devastating effect to livestock populations with concurrent infections of humans. To date, there is little detailed data directly comparing the host response to infection with wild-type or vaccine strains of RVFV and correlation with viral pathogenesis. Here we characterized clinical and systemic immune responses to infection with wild-type strain ZH501 or IND vaccine strain MP-12 in the C57BL/6 mouse. Animals infected with live-attenuated MP-12 survived productive viral infection with little evidence of clinical disease and minimal cytokine response in evaluated tissues. In contrast, ZH501 infection was lethal, caused depletion of lymphocytes and platelets and elicited a strong, systemic cytokine response which correlated with high virus titers and significant tissue pathology. Lymphopenia and platelet depletion were indicators of disease onset with indications of lymphocyte recovery correlating with increases in G-CSF production. RVFV is hepatotropic and in these studies significant clinical and histological data supported these findings; however, significant evidence of a pro-inflammatory response in the liver was not apparent. Rather, viral infection resulted in a chemokine response indicating infiltration of immunoreactive cells, such as neutrophils, which was supported by histological data. In brains of ZH501 infected mice, a significant chemokine and pro-inflammatory cytokine response was evident, but with little pathology indicating meningoencephalitis. These data suggest that RVFV pathogenesis in mice is associated with a loss of liver function due to liver necrosis and hepatitis yet the long-term course of disease for those that might survive the initial hepatitis is neurologic in nature which is supported by observations of human disease and the BALB/c mouse model.
Collapse
Affiliation(s)
- Kimberly K. Gray
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Melissa N. Worthy
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Terry L. Juelich
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Stacy L. Agar
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Allison Poussard
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Dan Ragland
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Alexander N. Freiberg
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michael R. Holbrook
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
22
|
Rusnak JM, Gibbs P, Boudreau E, Clizbe DP, Pittman P. Immunogenicity and safety of an inactivated Rift Valley fever vaccine in a 19-year study. Vaccine 2011; 29:3222-9. [DOI: 10.1016/j.vaccine.2011.02.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/02/2011] [Accepted: 02/12/2011] [Indexed: 11/29/2022]
|
23
|
Ikegami T, Makino S. Rift valley fever vaccines. Vaccine 2009; 27 Suppl 4:D69-72. [PMID: 19837291 DOI: 10.1016/j.vaccine.2009.07.046] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 07/15/2009] [Indexed: 12/13/2022]
Abstract
Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, is a negative-stranded RNA virus carrying a tripartite RNA genome. RVFV is transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis or ocular diseases, whereas ruminants experience abortions during outbreak. Effective vaccination of both humans and ruminants is the best approach to control Rift Valley fever. This article summarizes the development of inactivated RVFV vaccine, live attenuated vaccine, and other new generation vaccines.
Collapse
Affiliation(s)
- Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0438, USA.
| | | |
Collapse
|
24
|
|
25
|
Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) on a request from the Commission related to “The Risk of a Rift Valley Fever Incursion and its Persistence within the Community”. EFSA J 2005. [DOI: 10.2903/j.efsa.2005.238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
26
|
Abstract
Rift Valley fever (RVF) is an acute viral disease, affecting mainly livestock but also humans. The virus is transmitted to humans through mosquito bites or by exposure to blood and bodily fluids. Drinking raw, unpasteurized milk from infected animals can also transmit RVF. Routine vaccination of livestock in Africa has been prohibitively expensive, leading to endemicity of RVF in most African countries. Reports in September 2000 first documented RVF occurring outside of Africa in the Kingdom of Saudi Arabia and Yemen. Prior to this outbreak, the potential for RVF spread into the Arabian Peninsula had already been exemplified by a 1977 Egyptian epidemic. This appearance of RVF outside the African Continent might be related to importation of infected animals from Africa. In the most recent outbreak patients presented with a febrile haemorrhagic syndrome accompanied by liver and renal dysfunction. By the end of the outbreak, April 2001 statistics from the Saudi Ministry of Health documented a total of 882 confirmed cases with 124 deaths. Both the severity of disease and the relatively high 14% death rate might be a consequence of underreporting of less severe disease. Travellers to endemic areas may be at risk of acquiring the disease if exposed to animals or their body fluids directly or through mosquito bites. Special education regarding both modes of transmission and the geographical distribution of this disease needs to be given to travellers at risk.
Collapse
Affiliation(s)
- Hanan H Balkhy
- Department of Pediatrics, King Fahad National Guard Hospital, Riyadh, Saudi Arabia
| | | |
Collapse
|
27
|
Pittman PR, Liu CT, Cannon TL, Makuch RS, Mangiafico JA, Gibbs PH, Peters CJ. Immunogenicity of an inactivated Rift Valley fever vaccine in humans: a 12-year experience. Vaccine 1999; 18:181-9. [PMID: 10501248 DOI: 10.1016/s0264-410x(99)00218-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rift Valley fever (RVF) virus causes serious and fatal disease in animals and man. To protect personnel who work with RVF virus in the laboratory, or troops who may be exposed to this virus, the US Army successfully developed an improved version of inactivated RVF vaccine, TSI-GSD-200. From early 1986 to late 1997, 598 at-risk workers at the US Army Medical Research Institute of Infectious Diseases (USAMRIID) were vaccinated as part of an occupational safety and health program. The subjects of this study received three subcutaneous doses (0, 7 and 28 days) of 0.5 ml of TSI-GSD-200. A total of 540 vaccinees (90.3%) initially responded (group A) with an 80% plaque-reduction neutralization antibody titer (PRNT80) of > or =1:40; whereas 58 subjects (9.7%) were initial nonresponders (group B) failing to achieve this titer. Volunteers who either failed to respond or who achieved a titer of > or =1:40 but whose titer waned below 1:40 were boosted 1-4 times with the same vaccine. Among 247 group A subjects who received the first recall injection, 242 (98%) were successfully boosted, achieving a PRNT80 > or =1:40. Thirty-three of 44 (75%) initial nonresponders were converted to responder status after the first booster, which is a lower rate than that of group A (P < 0.001). After the primary series and the first booster, Kaplan-Meier analysis showed 50% probability of group A members maintaining a titer of > or =1:40 for approximately eight years; whereas group B had a 50% probability of maintaining a titer for only 204 days. Group A immune response rates to boosts 1-4 ranged from 87 to 100% with geometric mean titers (GMTs) ranging from 80 to 916. Boosts 1-4 immune response rates of group B volunteers ranged from 67 to 79% with GMTs ranging from 90 to 177. Minor side effects to TSI-GSD-200 were noted in 2.7% of all vaccinees after primaries and 3.5% of all vaccinees who had primaries and up to four boosters. We conclude that the use of TSI-GSD-200 is safe and provides good long-term immunity in humans when the primary series and one boost are administered.
Collapse
Affiliation(s)
- P R Pittman
- Division of Medicine, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA
| | | | | | | | | | | | | |
Collapse
|