1
|
Fung PCW, Kong RKC. A Novel Apprehension of the Primary Lung Meridian, Sinew Channel, Divergent Channel, Luo-Connecting Channel Acting as a Single Unit System to Serve Respiration Function Based on Modern Neurophysiology and Kinesiology. Chin Med 2020. [DOI: 10.4236/cm.2020.112004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
2
|
Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans. J Neurosci 2017; 36:10673-10682. [PMID: 27733617 DOI: 10.1523/jneurosci.2376-16.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022] Open
Abstract
Spontaneous ventilation in mammals is driven by automatic brainstem networks that generate the respiratory rhythm and increase ventilation in the presence of increased carbon dioxide production. Hypocapnia decreases the drive to breathe and induces apnea. In humans, this occurs during sleep but not during wakefulness. We hypothesized that hypocapnic breathing would be associated with respiratory-related cortical activity similar to that observed during volitional breathing, inspiratory constraints, or in patients with defective automatic breathing (preinspiratory potentials). Nineteen healthy subjects were studied under passive (mechanical ventilation, n = 10) or active (voluntary hyperventilation, n = 9) profound hypocapnia. Ventilatory and electroencephalographic recordings were performed during voluntary sniff maneuvers, normocapnic breathing, hypocapnia, and after return to normocapnia. EEG recordings were analyzed with respect to the ventilatory flow signal to detect preinspiratory potentials in frontocentral electrodes and to construct time-frequency maps. After passive hyperventilation, hypocapnia was associated with apnea in 3 cases and ventilation persisted in 7 cases (3 and 6 after active hyperventilation, respectively). No respiratory-related EEG activity was observed in subjects with hypocapnia-related apneas. In contrast, preinspiratory potentials were present at vertex recording sites in 12 of the remaining 13 subjects (p < 0.001). This was corroborated by time-frequency maps. This study provides direct evidence of a cortical substrate to hypocapnic breathing in awake humans and fuels the notion of corticosubcortical cooperation to preserve human ventilation in a variety of situations. Of note, maintaining ventilatory activity at low carbon dioxide levels is among the prerequisites to speech production insofar as speech often induces hypocapnia. SIGNIFICANCE STATEMENT Human ventilatory activity persists, during wakefulness, even when hypocapnia makes it unnecessary. This peculiarity of human breathing control is important to speech and speech-breathing insofar as speech induces hypocapnia. This study evidences a specific respiratory-related cortical activity. This suggests that human hypocapnic breathing is driven, at least in part, by cortical mechanisms similar to those involved in volitional breathing, in breathing against mechanical constraints or with weak inspiratory muscle, and in patients with defective medullary breathing pattern generators. This fuels the notion that the human ventilatory drive during wakefulness often results from a corticosubcortical cooperation, and opens new avenues to study certain ventilatory and speech disorders.
Collapse
|
3
|
Nierat MC, Hudson AL, Chaskalovic J, Similowski T, Laviolette L. Repetitive transcranial magnetic stimulation over the supplementary motor area modifies breathing pattern in response to inspiratory loading in normal humans. Front Physiol 2015; 6:273. [PMID: 26483701 PMCID: PMC4586419 DOI: 10.3389/fphys.2015.00273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/14/2015] [Indexed: 11/13/2022] Open
Abstract
In awake humans, breathing depends on automatic brainstem pattern generators. It is also heavily influenced by cortical networks. For example, functional magnetic resonance imaging and electroencephalographic data show that the supplementary motor area becomes active when breathing is made difficult by inspiratory mechanical loads like resistances or threshold valves, which is associated with perceived respiratory discomfort. We hypothesized that manipulating the excitability of the supplementary motor area with repetitive transcranial magnetic stimulation would modify the breathing pattern response to an experimental inspiratory load and possibly respiratory discomfort. Seven subjects (three men, age 25 ± 4) were studied. Breathing pattern and respiratory discomfort during inspiratory loading were described before and after conditioning the supplementary motor area with repetitive stimulation, using an excitatory paradigm (5 Hz stimulation), an inhibitory paradigm, or sham stimulation. No significant change in breathing pattern during loading was observed after sham conditioning. Excitatory conditioning shortened inspiratory time (p = 0.001), decreased tidal volume (p = 0.016), and decreased ventilation (p = 0.003), as corroborated by an increased end-tidal expired carbon dioxide (p = 0.013). Inhibitory conditioning did not affect ventilation, but lengthened expiratory time (p = 0.031). Respiratory discomfort was mild under baseline conditions, and unchanged after conditioning of the supplementary motor area. This is the first study to show that repetitive transcranial magnetic stimulation conditioning of the cerebral cortex can alter breathing pattern. A 5 Hz conditioning protocol, known to enhance corticophrenic excitability, can reduce the amount of hyperventilation induced by inspiratory threshold loading. Further studies are needed to determine whether and under what circumstances rTMS can have an effect on dyspnoea.
Collapse
Affiliation(s)
- Marie-Cécile Nierat
- UMR S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Institut National de la Santé et de la Recherche Médicale, University Pierre et Marie Curie Paris, France
| | - Anna L Hudson
- Neuroscience Research Australia and University of New South Wales Sydney, NSW, Australia
| | - Joël Chaskalovic
- Institut Jean Le Rond D'Alembert, University Pierre et Marie Curie Paris, France
| | - Thomas Similowski
- UMR S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Institut National de la Santé et de la Recherche Médicale, University Pierre et Marie Curie Paris, France ; Assistance Publique - Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale Paris, France
| | - Louis Laviolette
- UMR S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Institut National de la Santé et de la Recherche Médicale, University Pierre et Marie Curie Paris, France ; Centre de Recherche de l'Institut de Cardiologie et de Pneumologie de Québec Québec, QC, Canada
| |
Collapse
|
4
|
Tremoureux L, Raux M, Hudson AL, Ranohavimparany A, Straus C, Similowski T. Does the supplementary motor area keep patients with Ondine's curse syndrome breathing while awake? PLoS One 2014; 9:e84534. [PMID: 24475031 PMCID: PMC3901646 DOI: 10.1371/journal.pone.0084534] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/15/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Congenital central hypoventilation syndrome (CCHS) is a rare neuro-respiratory disorder associated with mutations of the PHOX2B gene. Patients with this disease experience severe hypoventilation during sleep and are consequently ventilator-dependent. However, they breathe almost normally while awake, indicating the existence of cortical mechanisms compensating for the deficient brainstem generation of automatic breathing. Current evidence indicates that the supplementary motor area plays an important role in modulating ventilation in awake normal humans. We hypothesized that the wake-related maintenance of spontaneous breathing in patients with CCHS could involve supplementary motor area. METHODS We studied 7 CCHS patients (5 women; age: 20-30; BMI: 22.1 ± 4 kg.m(-2)) during resting breathing and during exposure to carbon dioxide and inspiratory mechanical constraints. They were compared with 8 healthy individuals. Segments of electroencephalographic tracings were selected according to ventilatory flow signal, from 2.5 seconds to 1.5 seconds after the onset of inspiration. After artefact rejection, 80 or more such segments were ensemble averaged. A slow upward shift of the EEG signal starting between 2 and 0.5 s before inspiration (pre-inspiratory potential) was considered suggestive of supplementary motor area activation. RESULTS In the control group, pre-inspiratory potentials were generally absent during resting breathing and carbon dioxide stimulation, and consistently identified in the presence of inspiratory constraints (expected). In CCHS patients, pre-inspiratory potentials were systematically identified in all study conditions, including resting breathing. They were therefore significantly more frequent than in controls. CONCLUSIONS This study provides a neurophysiological substrate to the wakefulness drive to breathe that is characteristic of CCHS and suggests that the supplementary motor area contributes to this phenomenon. Whether or not this "cortical breathing" can be taken advantage of therapeutically, or has clinical consequences (like competition with attentional resources) remains to be determined.
Collapse
Affiliation(s)
| | - Mathieu Raux
- UMR_S1158, Inserm-Université Paris 6, Paris, France
- Département d'Anesthésie Réanimation—Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Anna L. Hudson
- UMR_S1158, Inserm-Université Paris 6, Paris, France
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia
| | | | - Christian Straus
- UMR_S1158, Inserm-Université Paris 6, Paris, France
- Service Central des Explorations Fonctionelles Respiratoires de l'Exercice et de la Dyspnée—Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Assistance Publique—Hôpitaux de Paris, Paris, France
- Centre National de Référence Maladies Rares pour le syndrome d'Ondine (adultes)—Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Thomas Similowski
- UMR_S1158, Inserm-Université Paris 6, Paris, France
- Centre National de Référence Maladies Rares pour le syndrome d'Ondine (adultes)—Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Assistance Publique—Hôpitaux de Paris, Paris, France
- Service de Pneumologie et Réanimation Médicale—Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Assistance Publique—Hôpitaux de Paris, Paris, France
| |
Collapse
|
5
|
Murray NPS, McKenzie DK, Gandevia SC, Butler JE. Voluntary and involuntary ventilation do not alter the human inspiratory muscle loading reflex. J Appl Physiol (1985) 2010; 109:87-94. [DOI: 10.1152/japplphysiol.01128.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The reflex mechanism of the short-latency inhibitory reflex to transient loading of human inspiratory muscles is unresolved. Muscle afferents mediate this reflex, but they may act via pontomedullary inspiratory centers, other bulbar networks, or spinal circuits. We hypothesized that altered chemical drive to breathe would alter the initial inhibitory reflex if the neural pathways involve inspiratory medullary centers. Inspiration was transiently loaded in 11 subjects during spontaneous hypercapnic hyperpnea and matched voluntary hyperventilation. Electromyographic activity was recorded bilaterally from scalene muscles with surface electrodes. The latencies of the initial inhibitory response (IR) onset (32 ± 0.7 and 38 ± 1 ms for spontaneous and voluntary conditions respectively, P < 0.001) and subsequent excitatory response (ER) onset (80 ± 2.9 and 78 ± 2.6 ms, respectively, P = 0.46) and the normalized sizes of IR (65 ± 2 and 67 ± 3%, respectively, P = 0.50) and ER (51 ± 8 and 69 ± 6%, respectively, P = 0.005) were measured. Mean end-tidal Pco2 was 43 ± 1.5 Torr with dead space ventilation and was 14 ± 0.6 Torr with matched voluntary hyperventilation ( P < 0.001). A mean minute volume >30 liters was achieved in both conditions. The absence of significant difference in the size of the IR suggested that the IR reflex arc does not transit the brain stem inspiratory centers and that the reflex may be integrated at a spinal level. In voluntary hyperventilation, an initial excitation occurred more frequently and, consequently, the IR onset latency was significantly longer. The size of the later ER was also greater during voluntary hyperventilation, which is consistent with it being mediated via longer, presumably cortical, pathways, which are influenced by voluntary drive.
Collapse
Affiliation(s)
- N. P. S. Murray
- Prince of Wales Medical Research Institute and University of New South Wales, and
- Department of Respiratory and Sleep Medicine, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - D. K. McKenzie
- Prince of Wales Medical Research Institute and University of New South Wales, and
- Department of Respiratory and Sleep Medicine, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - S. C. Gandevia
- Prince of Wales Medical Research Institute and University of New South Wales, and
| | - J. E. Butler
- Prince of Wales Medical Research Institute and University of New South Wales, and
| |
Collapse
|
6
|
McKay LC, Critchley HD, Murphy K, Frackowiak RS, Corfield DR. Sub-cortical and brainstem sites associated with chemo-stimulated increases in ventilation in humans. Neuroimage 2010; 49:2526-35. [DOI: 10.1016/j.neuroimage.2009.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 01/29/2023] Open
|
7
|
Bell HJ, Ferguson C, Kehoe V, Haouzi P. Hypocapnia increases the prevalence of hypoxia-induced augmented breaths. Am J Physiol Regul Integr Comp Physiol 2008; 296:R334-44. [PMID: 19091914 DOI: 10.1152/ajpregu.90680.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Augmented breaths promote respiratory instability and have been implicated in triggering periods of sleep-disordered breathing. Since respiratory instability is well known to be exacerbated by hypocapnia, we asked whether one of the destabilizing effects of hypocapnia might be related to an increased prevalence of augmented breaths. With this question in mind, we first sought to determine whether hypoxia-induced augmented breaths are more prevalent when hypocapnia is also present. To do this, we studied the breath-by-breath ventilatory responses of a group of freely behaving adult rats in a variety of different respiratory background conditions. We found that the prevalence of augmented breaths was dramatically increased during hypocapnic-hypoxia compared with room air conditions. When hypocapnia was prevented during exposure to hypoxia by adding 5% CO2 to the inspired air, the rate of occurrence of augmented breaths was no greater than that observed in room air. The addition of CO2 alone to room air had no effect on the prevalence of augmented breaths. We conclude that in spontaneously breathing rats, hypoxia promotes the generation of augmented breaths, but only in poikilocapnic conditions, where hypocapnia develops. Our results, therefore, reveal a means by which CO2 exerts a stabilizing influence on breathing, which may be of particular relevance during sleep in conditions commonly associated with respiratory instability.
Collapse
Affiliation(s)
- Harold J Bell
- Penn State University College of Medicine, Heart and Vascular Institute, Milton S. Hershey Medical Center, 500 Univ. Dr., P.O. Box 850, Mail Code H047, Hershey, PA 17033-0850, USA.
| | | | | | | |
Collapse
|
8
|
Fiamma MN, Straus C, Thibault S, Wysocki M, Baconnier P, Similowski T. Effects of hypercapnia and hypocapnia on ventilatory variability and the chaotic dynamics of ventilatory flow in humans. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1985-93. [PMID: 17218438 DOI: 10.1152/ajpregu.00792.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In humans, lung ventilation exhibits breath-to-breath variability and dynamics that are nonlinear, complex, sensitive to initial conditions, unpredictable in the long-term, and chaotic. Hypercapnia, as produced by the inhalation of a CO2-enriched gas mixture, stimulates ventilation. Hypocapnia, as produced by mechanical hyperventilation, depresses ventilation in animals and in humans during sleep, but it does not induce apnea in awake humans. This emphasizes the suprapontine influences on ventilatory control. How cortical and subcortical commands interfere thus depend on the prevailing CO2 levels. However, CO2 also influences the variability and complexity of ventilation. This study was designed to describe how this occurs and to test the hypothesis that CO2 chemoreceptors are important determinants of ventilatory dynamics. Spontaneous ventilatory flow was recorded in eight healthy subjects. Breath-by-breath variability was studied through the coefficient of variation of several ventilatory variables. Chaos was assessed with the noise titration method (noise limit) and characterized with numerical indexes [largest Lyapunov exponent (LLE), sensitivity to initial conditions; Kolmogorov-Sinai entropy (KSE), unpredictability; and correlation dimension (CD), irregularity]. In all subjects, under all conditions, a positive noise limit confirmed chaos. Hypercapnia reduced breathing variability, increased LLE ( P = 0.0338 vs. normocapnia; P = 0.0018 vs. hypocapnia), increased KSE, and slightly reduced CD. Hypocapnia increased variability, decreased LLE and KSE, and reduced CD. These results suggest that chemoreceptors exert a strong influence on ventilatory variability and complexity. However, complexity persists in the quasi-absence of automatic drive. Ventilatory variability and complexity could be determined by the interaction between the respiratory central pattern generator and suprapontine structures.
Collapse
|
9
|
Green DA, Bray A, Golding JF, Bronstein AM, Gresty MA. Tachypnea and hypocapnia are induced by ‘buffeting’ in vehicles. Clin Auton Res 2006; 16:281-5. [PMID: 16832596 DOI: 10.1007/s10286-006-0360-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 05/22/2006] [Indexed: 10/24/2022]
Abstract
Normal physiological responses to vehicular buffeting were studied during a 5 minute mild 'off road' exposure in a motion simulator. The ride provoked an initial increase in heart rate and blood pressure and a significant hypocapnia of P(ET) CO(2) 34 mm Hg caused by tachypnea, which took 5 minutes to recover. Motion induced hypocapnia could be a source of distress for vulnerable subjects and patients when travelling.
Collapse
Affiliation(s)
- David Andrew Green
- Division of Neuroscience and Psychological Medicine, Imperial College London, Charing Cross Hospital Campus, Hammersmith, London, UK.
| | | | | | | | | |
Collapse
|
10
|
Kotajima F, Meadows GE, Morrell MJ, Corfield DR. Cerebral blood flow changes associated with fluctuations in alpha and theta rhythm during sleep onset in humans. J Physiol 2005; 568:305-13. [PMID: 16002438 PMCID: PMC1474761 DOI: 10.1113/jphysiol.2005.092577] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/14/2005] [Accepted: 07/05/2005] [Indexed: 12/30/2022] Open
Abstract
Cerebral blood flow (CBF) is typically reduced during stable non-rapid eye movement (non-REM) sleep compared with the waking level. It is not known when in the sleep cycle these changes occur. However, spontaneous fluctuations in alpha and theta rhythm during sleep onset are associated with marked changes in cardio-respiratory control. The aim of this study was to test the hypothesis that changes in CBF would occur during sleep onset and would be related to changes in cortical activity. Middle cerebral artery velocity (MCAV) was measured using transcranial Doppler ultrasound, as an index of CBF, in 10 healthy subjects. Sleep state, ventilation, end tidal carbon dioxide (PET,CO2), arterial oxygen saturation (SaO2), mean arterial blood pressure (MABP) and cardiac R-R interval (RR) were monitored simultaneously. Immediately following the transition from alpha to theta rhythm (the transition from wake to sleep), ventilation decreased by 13.4% and tidal volume (VT) by 12.2% (P<0.01); PET,CO2 increased by 1.9% (P<0.01); respiratory frequency (fR) and SaO2 did not change significantly. MCAV increased by 9.7% (P<0.01); MABP decreased by 3.2% (P<0.01) but RR did not change significantly. Immediately following the transition from theta to alpha rhythm (spontaneous awakening), increased by 13.3% (P<0.01); VT increased by 11.4% (P<0.01); PET,CO2 decreased by 1.9% (P<0.01); MCAV decreased by 11.1% (P<0.01) and MABP decreased by 7.5%; fR, SaO2 and RR did not change significantly. These changes in MCAV during sleep onset cannot be attributed to changes in ventilation or MABP. We speculate that the changes in cerebral vascular tone during sleep onset are mediated neurally, by regulatory mechanisms linked to the changes in cortical state, and that these mechanisms are different from those regulating the longer-term reduction in CBF associated with stable non-REM sleep.
Collapse
|
11
|
Mahamed S, Tsai J, Duffin J. Cardio-respiratory measures following isocapnic voluntary hyperventilation. Respir Physiol Neurobiol 2004; 142:13-25. [PMID: 15351301 DOI: 10.1016/j.resp.2004.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2004] [Indexed: 11/17/2022]
Abstract
In some individuals, breathing is greater than at rest following voluntary hyperventilation. Most previous investigations have employed short hyperventilation periods; here we examine the time course of cardio-respiratory measures before, during, and after a 5-min voluntary hyperventilation, maintaining isocapnia throughout. We examined the possible co-involvement of the cardiovascular system; hypothesising that post-hyperventilation hyperpnoea results from an increase in autonomic arousal. In four subjects (two males, two females) of 18 (nine males, nine females) we observed a post-hyperventilation hyperpnoea, characterised by a slow decline of ventilation toward resting levels with a time constant of 109.0 +/- 16.1s. By contrast, heart rate, and systolic and diastolic blood pressure were unchanged from rest during and after voluntary hyperventilation for all subjects. We concluded that males and females were equally likely to exhibit post-hyperventilation hyperpnoea, and suggest that they may be characterised by an increased resting heart rate and the choice of breathing frequency to increase ventilation during the voluntary hyperventilation. We further concluded that post-hyperventilation hyperpnoea is rare, but when present is a strong and lasting phenomenon, and that it is not the result of an increased autonomic arousal.
Collapse
Affiliation(s)
- Safraaz Mahamed
- Department of Physiology, University of Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
12
|
Cooper HE, Clutton-Brock TH, Parkes MJ. Contribution of the respiratory rhythm to sinus arrhythmia in normal unanesthetized subjects during positive-pressure mechanical hyperventilation. Am J Physiol Heart Circ Physiol 2004; 286:H402-11. [PMID: 12958033 DOI: 10.1152/ajpheart.00504.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The precise contribution of the CO2-dependent respiratory rhythm to sinus arrhythmia in eupnea is unclear. The respiratory rhythm and sinus arrhythmia were measured in 12 normal, unanesthetized subjects in normocapnia and hypocapnia during mechanical hyperventilation with positive pressure. In normocapnia (41 +/- 1 mmHg), the respiratory rhythm was always detectable from airway pressure and inspiratory electromyogram activity. The amplitude of sinus arrhythmia (138 +/- 21 ms) during mechanical hyperventilation with positive pressure was not significantly different from that in eupnea. During the same mechanical hyperventilation pattern but in hypocapnia (24 +/- 1 mmHg), the respiratory rhythm was undetectable and the amplitude of sinus arrhythmia was significantly reduced (to 40 +/- 5 ms). These results show a greater contribution to sinus arrhythmia from the respiratory rhythm during hypocapnia caused by mechanical hyperventilation than previously indicated in normal subjects during hypocapnia caused by voluntary hyperventilation. We discuss whether the respiratory rhythm provides the principal contribution to sinus arrhythmia in eupnea.
Collapse
Affiliation(s)
- H E Cooper
- School of Sport and Exercise Sciences, Univ. of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
13
|
Cooper HE, Parkes MJ, Clutton-Brock TH. CO2-dependent components of sinus arrhythmia from the start of breath holding in humans. Am J Physiol Heart Circ Physiol 2003; 285:H841-8. [PMID: 12730051 DOI: 10.1152/ajpheart.01101.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A substantial portion of sinus arrhythmia in conscious humans appears to be caused by the CO2-dependent central respiratory rhythm. Under some circumstances, therefore, sinus arrhythmia might indicate the presence of the central respiratory rhythm. Humans can voluntarily modify their central respiratory rhythm (e.g., by pacing breathing or by delaying or advancing breaths), but it is not clear what happens to it from the start of breath holding. In this study, we show that sinus arrhythmia persists from the start of breath holds prolonged by preoxygenation. We also show that some of the frequency components of sinus arrhythmia start within each subject's eupneic frequency range and change when end-tidal Pco2 is lowered or raised, as we would expect if the central respiratory rhythm continues from the start of breath holding. We discuss whether sinus arrhythmia can indicate if the central respiratory rhythm continues from the start of breath holding.
Collapse
Affiliation(s)
- H E Cooper
- School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
14
|
Rice AJ, Nakayama HC, Haverkamp HC, Pegelow DF, Skatrud JB, Dempsey JA. Controlled versus assisted mechanical ventilation effects on respiratory motor output in sleeping humans. Am J Respir Crit Care Med 2003; 168:92-101. [PMID: 12714346 DOI: 10.1164/rccm.200207-675oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Central apneas occur after cessation of mechanical ventilation despite normocapnic conditions. We asked whether this was due to ventilator-induced increases in respiratory rate or VT. Accordingly, we compared the effects of increased VT (135 to 220% of eupneic VT) with and without increased respiratory rate, using controlled and assist control mechanical ventilation, respectively, upon transdiaphragmatic pressure in sleeping humans. Increasing ventilator frequency +1 per minute and VT to 165-200% of baseline eupnea eliminated transdiaphragmatic pressure during controlled mechanical ventilation and prolonged expiratory time (two to four times control) after mechanical ventilation. During and after assist control mechanical ventilation at 135-220% of eupneic VT, transdiaphragmatic pressure was reduced in proportion to the increase in ventilator volume. However, every ventilator cycle was triggered by an active inspiration, and immediately after mechanical ventilation, expiratory time during spontaneous breathing was prolonged less than 20% of that observed after controlled mechanical ventilation at similar VT. We conclude that both increased frequency and VT during mechanical ventilation significantly inhibited respiratory motor output via nonchemical mechanisms. Controlled mechanical ventilation at increased frequency plus moderate elevations in VT reset respiratory rhythm and inhibited respiratory motor output to a much greater extent than did increased VT alone.
Collapse
Affiliation(s)
- Anthony J Rice
- Department of Population Health Sciences, The John Rankin Laboratory of Pulmonary Medicine, 504 North Walnut Street, Madison, WI 53726-2368, USA
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Longobardo G, Evangelisti CJ, Cherniack NS. Effects of neural drives on breathing in the awake state in humans. RESPIRATION PHYSIOLOGY 2002; 129:317-33. [PMID: 11788135 DOI: 10.1016/s0034-5687(01)00325-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have developed a mathematical model of the regulation of ventilation that successfully simulates breathing in the awake as well as in sleeping states. In previous models, which were used to simulate Cheyne-Stokes breathing and respiration during sleep, the controller was only responsive to chemical stimuli, and allowed no ventilation at sub-normal carbon dioxide levels. The current model includes several new features. The chemical controller responds continuously to changes in P(CO(2)) with a lower sensitivity during hypocapnia than in the hypercapnic ranges. Hypoxia interacts multiplicatively with P(CO(2)) over the entire range of activity. The controller in the current model, besides the chemical drive, includes also a neural component. This neural drive increases and decreases as the level of alertness changes, and adds or subtracts from ventilation levels demanded by the chemical controller. The model also includes the effects of post-stimulus potentiation (PSP) and hypoxic ventilatory depression (HVD). While PSP eliminates apneas after a disturbance and also dampens the subsequent dynamics of the respiration, it is not a major factor in the damping of the response. Another finding is that HVD is destabilizing. The model is the first to reproduce results reported in conscious humans after hyperventilation and after acute and longer-term hypoxia. It also reproduces the effects of NREM sleep.
Collapse
Affiliation(s)
- Guy Longobardo
- Department of Medicine, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, MSB/I-510, Newark, NJ 07103, USA
| | | | | |
Collapse
|
17
|
Preas HL, Jubran A, Vandivier RW, Reda D, Godin PJ, Banks SM, Tobin MJ, Suffredini AF. Effect of endotoxin on ventilation and breath variability: role of cyclooxygenase pathway. Am J Respir Crit Care Med 2001; 164:620-6. [PMID: 11520726 DOI: 10.1164/ajrccm.164.4.2003031] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To evaluate the effects of endotoxemia on respiratory controller function, 12 subjects were randomized to receive endotoxin or saline; six also received ibuprofen, a cyclooxygenase inhibitor, and six received placebo. Administration of endotoxin produced fever, increased respiratory frequency, decreased inspiratory time, and widened alveolar-arterial oxygen tension gradient (all p < or = 0.001); these responses were blocked by ibuprofen. Independent of ibuprofen, endotoxin produced dyspnea, and it increased fractional inspiratory time, minute ventilation, and mean inspiratory flow (all p < or = 0.025). Endotoxin altered the autocorrelative behavior of respiratory frequency by increasing its autocorrelation coefficient at a lag of one breath, the number of breath lags with significant serial correlations, and its correlated fraction (all p < 0.05); these responses were blocked by ibuprofen. Changes in correlated behavior of respiratory frequency were related to changes in arterial carbon dioxide tension (r = 0.86; p < 0.03). Endotoxin decreased the oscillatory fraction of inspiratory time in both the placebo (p < 0.05) and ibuprofen groups (p = 0.06). In conclusion, endotoxin produced increases in respiratory motor output and dyspnea independent of fever and symptoms, and it curtailed the freedom to vary respiratory timing-a response that appears to be mediated by the cyclooxygenase pathway.
Collapse
Affiliation(s)
- H L Preas
- Critical Care Medicine Department, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Satoh M, Eastwood PR, Smith CA, Dempsey JA. Nonchemical Elimination of Inspiratory Motor Output via Mechanical Ventilation in Sleep. Am J Respir Crit Care Med 2001; 163:1356-64. [PMID: 11371401 DOI: 10.1164/ajrccm.163.6.2004169] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In six dogs studied in nonrapid eye movement (NREM) sleep, we found that the frequency, volume, and timing of application of mechanical ventilator breaths had marked and sustained inhibitory effects on diaphragm electromyogram (EMG(di)). Single ventilator breaths of tidal volume (VT) 75-200% of control caused apnea (up to three times eupneic expiratory time [TE]) when applied during the initial 25-65% of expiratory time. When continuous controlled mechanical ventilation (CMV) was applied with ventilator frequency increased as little as 1 cycle/min > eupnea and Pa(CO(2)) and VT maintained at near eupneic control levels, EMG(di) was silenced and triangularis sterni EMG (EMG(ts)) became tonic within 2 to 5 ventilator cycles. On cessation of normocapnic CMV, apnea ensued with TE ranging from 1.2 to five times eupneic TE. The spontaneous VT and EMG(di) determined immediately after these prolonged apneas were also markedly reduced in amplitude. The larger the VT applied during the isocapnic CMV (120-200% of eupnea) and the longer the duration of the CMV (3-90 s), the longer the duration of the postventilator apnea. Significant postventilator apneas and postapneic hypoventilation also occurred even when end-tidal CO(2) pressure (PET(CO(2))) was raised 3-5 mm Hg > eupnea (and 7-10 mm Hg > normal apneic threshold) throughout CMV trials at raised frequency and VT. Our findings demonstrate that the increased frequency of CMV was critical to the elimination of inspiratory motor output and the onset of tonic expiratory muscle activity; furthermore, once EMG(di) was silenced, the tidal volume and duration of the passive mechanical ventilation determined the magnitude of the short-term inhibition of inspiratory motor output after cessation of CMV.
Collapse
Affiliation(s)
- M Satoh
- John Rankin Laboratory of Pulmonary Medicine and Department of Preventive Medicine, University of Wisconsin, Madison, WI 53706-2368, USA
| | | | | | | |
Collapse
|
19
|
Hoit JD, Lohmeier HL. Influence of continuous speaking on ventilation. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2000; 43:1240-1251. [PMID: 11063244 DOI: 10.1044/jslhr.4305.1240] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study was conducted to explore the influence of speaking on ventilation. Twenty healthy young men were studied during periods of quiet breathing and prolonged speaking using noninvasive methods to measure chest wall surface motions and expired gas composition. Results indicated that all subjects ventilated more during speaking than during quiet breathing, usually by augmenting both tidal volume and breathing frequency. Ventilation did not change across repeated speaking trials. Quiet breathing was altered from its usual behavior following speaking, often for several minutes. Speaking-related increases in ventilation were found to be strongly correlated with lung volume expenditures per syllable. These findings have clinical implications for the respiratory care practitioner and the speech-language pathologist.
Collapse
Affiliation(s)
- J D Hoit
- National Center for Neurogenic Communication Disorders and Department of Speech and Hearing Sciences, The University of Arizona, Tucson 85721, USA.
| | | |
Collapse
|
20
|
Van Diest I, Stegen K, Van de Woestijne KP, Schippers N, Van den Bergh O. Hyperventilation and attention: effects of hypocapnia on performance in a stroop task. Biol Psychol 2000; 53:233-52. [PMID: 10967234 DOI: 10.1016/s0301-0511(00)00045-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate the effect of hypocapnia on attentional performance. Hyperventilation, producing hypocapnia, is associated with physiological changes in the brain and with subjective symptoms of dizziness, concentration problems and derealization. In this study (N=42), we examined cognitive performance on a Stroop-like task, following either 3 min of hypocapnic or normocapnic overbreathing. Both overbreathing trials were run on separate days, each preceded by a baseline trial with the same task during normal breathing. More and other symptoms were reported after hypocapnia compared to normocapnia. Also, more errors were made and progressively slower reaction times (RT's) were observed during recovery from hypocapnia. These performance deficits were only found in participants characterized by apneas. The number of symptoms did not correlate with RT's or errors. The pattern of data suggested that hypoxia, as a result of apneas during recovery from hypocapnia, caused the cognitive performance deficit.
Collapse
Affiliation(s)
- I Van Diest
- Department of Psychology, University of Leuven, Tiensestraat 102, B-3000, Leuven, Belgium.
| | | | | | | | | |
Collapse
|
21
|
Corfield DR, Roberts CA, Guz A, Murphy K, Adams L. Modulation of the corticospinal control of ventilation by changes in reflex respiratory drive. J Appl Physiol (1985) 1999; 87:1923-30. [PMID: 10562638 DOI: 10.1152/jappl.1999.87.5.1923] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have determined whether changes in PCO(2) above and below eucapnia modulate the precision of the voluntary control of breathing. Twelve trained subjects performed a compensatory tracking task in which they had to maintain the position of a cursor (perturbed by a variable triangular forcing function) on a fixed target by breathing in and out of a spirometer (ventilatory tracking; at 10 l/min). Before each task, subjects hyperventilated for 5 min, and the end-tidal PCO(2) (PET(CO(2))) was controlled; tracking was then performed separately at hypocapnia, eucapnia, and hypercapnia (PET(CO(2)) approximately 25, 37, and 43 Torr, respectively). Ventilatory tracking error was unchanged during hypocapnia (P > 0.05) but was significantly worse during hypercapnia (P < 0.003), compared with eucapnia; arm tracking error, performed as a control, was not significantly affected by PET(CO(2)) (P > 0. 05). In conclusion, ventilatory tracking performance is unaffected by the eucapnic PCO(2). From this, we suggest that resting breathing in awake humans may be independent of chemical drives and of the prevailing PCO(2).
Collapse
Affiliation(s)
- D R Corfield
- National Heart and Lung Institute, Imperial College School of Medicine, London W6 8RP, United Kingdom.
| | | | | | | | | |
Collapse
|
22
|
Corfield DR, Roberts CA, Griffiths MJ, Adams L. Sleep-related changes in the human 'neuromuscular' ventilatory response to hypoxia. RESPIRATION PHYSIOLOGY 1999; 117:109-20. [PMID: 10563439 DOI: 10.1016/s0034-5687(99)00064-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The ventilatory responses to hypercapnia and hypoxia are reduced during sleep compared to wakefulness. However, sleep-related increases in upper airways' resistance could reduce these ventilatory responses independently of any change in the neural output to the respiratory pump muscles. It is therefore possible that respiratory chemosensitivity, per se, is unchanged by sleep. To investigate this, four healthy male subjects were mechanically ventilated to abolish spontaneous respiratory muscle activity. The response to transient isocapnic hypoxia was quantified from the magnitude of the electromyographic activity induced in the diaphragm and from the associated reduction in peak inspiratory pressure; these indicies of respiratory motor output will not be affected by any sleep-related changes in upper airways' resistance. In all individuals, the responses to hypoxia were markedly attenuated during sleep compared to wakefulness. These observations, assessing the 'neuromuscular' ventilatory response, are consistent with a sleep-related reduction in respiratory chemosensitivity that is independent of any changes that may be due to increases in upper airways' resistance.
Collapse
Affiliation(s)
- D R Corfield
- Department of Respiratory Medicine, National Heart & Lung Institute, Imperial College School of Medicine, London, UK.
| | | | | | | |
Collapse
|
23
|
Wilson CR, Satoh M, Skatrud JB, Dempsey JA. Non-chemical inhibition of respiratory motor output during mechanical ventilation in sleeping humans. J Physiol 1999; 518 ( Pt 2):605-18. [PMID: 10381605 PMCID: PMC2269431 DOI: 10.1111/j.1469-7793.1999.0605p.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. To determine the magnitude and time course of changes in respiratory motor output caused by non-chemical influences, six sleeping subjects underwent assist-control mechanical ventilation (ACMV) at increased tidal volume (VT). During ACMV, end-tidal PCO2 (PET,CO2) was either held at normocapnic levels (PET,CO2, 0.6-1.1 mmHg > control) by adding CO2 to the inspirate, or it was allowed to fall (hypocapnia). 2. Each sleeping subject underwent several repeat trials of twenty-five ACMV breaths (VT, 1.3 or 2.1 times control; peak flow rate, 30-40 l min-1; inspiratory time, +/- 0.3 s of control). The end-tidal to arterial PCO2 difference throughout normocapnic ACMV at raised VT was unchanged from eupnoeic levels during studies in wakefulness. 3. Normocapnic ACMV at both the smaller and larger increases in VT decreased the amplitude of respiratory motor output, as judged by decreased maximum rate of rise of mask pressure (Pm) (mean dPm/dtmax, 46-68% of control), reduced diaphragmatic EMG (to 55% of control) and reduced VT on the first spontaneous breath after ACMV (to 70% of control). Expiratory time (TE) was slightly prolonged (13-32% > control). This inhibition of amplitude of respiratory motor output progressed over the first five to seven ventilator cycles, was maintained over the remaining 18-20 cycles and persisted for three to five spontaneous breaths immediately following cessation of ACMV. 4. Hypocapnia did not further inhibit respiratory motor output amplitude beyond the effect of normocapnic ACMV at high VT, but did cause highly variable prolongation of TE when PET,CO2 was reduced by greater than 3 mmHg for at least five ventilator cycles. 5. These data in sleeping humans support the existence of a significant, non-chemical inhibitory influence of ACMV at increased VT and positive pressure upon the amplitude of respiratory motor output; this effect is manifested both during and following normocapnic mechanical ventilation.
Collapse
Affiliation(s)
- C R Wilson
- John Rankin Laboratory of Pulmonary Medicine, Department of Preventive Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | | | | | | |
Collapse
|
24
|
Corfield DR, Murphy K, Guz A. Does the motor cortical control of the diaphragm 'bypass' the brain stem respiratory centres in man? RESPIRATION PHYSIOLOGY 1998; 114:109-17. [PMID: 9865585 DOI: 10.1016/s0034-5687(98)00083-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In humans, cortico-motor excitation of the diaphragm may act directly on the phrenic motor nucleus via the cortico-spinal tract 'bypassing' brain stem respiratory centres (RC); alternatively, or in addition, this control may be indirect via the RC and bulbo-spinal paths. To investigate this, we stimulated the motor cortex using transcranial magnetic stimulation (TMS) in six subjects at end-expiration (diaphragm relaxed) and during voluntary inspiration. The sizes of the evoked compound action potentials in the diaphragm and also, as a control, in the thumb were no different whether TMS was delivered during normocapnia or during hypocapnia (PET(CO2) = 25 mmHg) when, presumably, the respiratory 'oscillator' was silent. In a further six subjects, TMS was performed during relaxed spontaneous breathing at three different points in the respiratory cycle. No perturbations in respiratory pattern (either tidal volume or respiratory timing) were seen. Thus we have been unable to demonstrate that the cortico-motor excitation of the diaphragm acts via the brain stem RC.
Collapse
Affiliation(s)
- D R Corfield
- Imperial College School of Medicine, National Heart and Lung Institute, Charing Cross Campus, London, UK.
| | | | | |
Collapse
|
25
|
Poulin MJ, Liang PJ, Robbins PA. Fast and slow components of cerebral blood flow response to step decreases in end-tidal PCO2 in humans. J Appl Physiol (1985) 1998; 85:388-97. [PMID: 9688710 DOI: 10.1152/jappl.1998.85.2.388] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This study examined the dynamics of the middle cerebral artery (MCA) blood flow response to hypocapnia in humans (n = 6) by using transcranial Doppler ultrasound. In a control protocol, end-tidal PCO2 (PETCO2) was held near eucapnia (1.5 Torr above resting) for 40 min. In a hypocapnic protocol, PETCO2 was held near eucapnia for 10 min, then at 15 Torr below eucapnia for 20 min, and then near eucapnia for 10 min. During both protocols, subjects hyperventilated throughout and PETCO2 and end-tidal PO2 were controlled by using the dynamic end-tidal forcing technique. Beat-by-beat values were calculated for the intensity-weighted mean velocity (VIWM), signal power (P), and their instantaneous product (P.VIWM). A simple model consisting of a delay, gain terms, time constants (tauf,on, tauf, off) and baseline levels of flow for the on- and off-transients, and a gain term (gs) and time constant (taus) for a second slower component was fitted to the hypocapnic protocol. The cerebral blood flow response to hypocapnia was characterized by a significant (P < 0.001) slow progressive adaptation in P.VIWM, with gs = 1.26 %/Torr and taus = 427 s, that persisted throughout the hypocapnic period. Finally, the responses at the onset and relief of hypocapnia were asymmetric (P < 0.001), with tauf,on (6.8 s) faster than tauf,off (14.3 s).
Collapse
Affiliation(s)
- M J Poulin
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, United Kingdom
| | | | | |
Collapse
|
26
|
Abstract
This review attempts to summarize: (i) evidence on how man voluntarily or behaviourally (as in speech) alters breathing; and (ii) evidence on how the breathlessness induced by CO2 inhalation, is perceived. The application of new methods to study these problems, e.g. functional brain imaging and transcranial focal brain stimulation, is summarized. Studies of patients with specific neurological lesions have shed considerable light in this area. The key requirement for the ponto-medullary respiratory oscillator to be both 'intact' and 'responsive' for the perception of CO2-induced air hunger is emphasized. We are ignorant as to how the voluntary/behavioural control system interacts with the automatic system at any site above the final common pathway of the respiratory anterior horn cells in the cervical and thoracic spinal cord. The opportunities for further work are outlined.
Collapse
Affiliation(s)
- A Guz
- Charing Cross and Westminster Medical School, London, UK.
| |
Collapse
|
27
|
Mohan R, Duffin J. The effect of hypoxia on the ventilatory response to carbon dioxide in man. RESPIRATION PHYSIOLOGY 1997; 108:101-15. [PMID: 9232684 DOI: 10.1016/s0034-5687(97)00024-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We used rebreathing with prior hyperventilation to measure ventilatory responses to CO2 at iso-oxic PO2's of 100, 80, 60 and 40 mmHg in seven subjects. The mean sub-threshold ventilation (S.E.) of 7.60 (1.31) L min-1 did not vary with iso-oxic PO2. The mean peripheral-chemoreflex threshold of 41 (0.6)) mmHg PCO2 at an iso-oxic PO2 of 100 was greater than 39 (1.2) and 39 (0.6) at 60 and 40, respectively. The mean peripheral-chemoreflex sensitivity of 11.5 (5.2) L min-1 mmHg-1 at an iso-oxic PO2 of 40 was significantly greater than 3.0 (1.3), 2.7 (1.2) and 2.4 (1.2) at 60, 80 and 100, respectively. The mean central-chemoreflex threshold of 45 (1.5) mmHg PCO2 at an iso-oxic PO2 of 40 was significantly less than 48 (0.4) and 48 (0.7) at 80 and 100, respectively. The mean central-chemoreflex sensitivity of 5.0 (1.1) L min-1 mmHg-1 did not vary with iso-oxic PO2. These findings provide insights into the control of breathing in humans, including the implication that CO2 must exceed its peripheral-chemoreflex threshold before hypoxia can effectively increase ventilation.
Collapse
Affiliation(s)
- R Mohan
- Department of Physiology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
28
|
Heywood P, Murphy K, Corfield DR, Morrell MJ, Howard RS, Guz A. Control of breathing in man; insights from the 'locked-in' syndrome. RESPIRATION PHYSIOLOGY 1996; 106:13-20. [PMID: 8946573 DOI: 10.1016/0034-5687(96)00060-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Control of breathing was studied in a patient with a lesion in the ventral pons; no volitional behaviour, including voluntary breathing acts, was possible (locked-in syndrome, LIS). Spontaneous breathing via a tracheostomy maintained a normal PETCO2 of 39-40 mmHg. Variability of ventilatory parameters awake was similar to that seen in five tracheostomized control subjects during stage IV sleep but much smaller than during resting wakefulness. Emotion associated with laughter caused disturbances of breathing. The ventilatory response to CO2 was normal and was associated with 'hunger for air' when the PETCO2 was 49-50 mmHg. Mechanical ventilation to reduce PETCO2 by as little as 1 mmHg resulted in apnoea when the ventilator was disconnected; breathing resumed when PETCO2 crossed the threshold of 39-40 mmHg. These results demonstrate the functional dependence of the human medullary respiratory oscillator on a threshold level of PCO2 in the absence of cortico-bulbar input, even during wakefulness. The absence of such input may explain the regularity of breathing.
Collapse
Affiliation(s)
- P Heywood
- Department of Medicine, Charing Cross and Westminster Medical School, London, UK
| | | | | | | | | | | |
Collapse
|
29
|
Manchanda S, Leevers AM, Wilson CR, Simon PM, Skatrud JB, Dempsey JA. Frequency and volume thresholds for inhibition of inspiratory motor output during mechanical ventilation. RESPIRATION PHYSIOLOGY 1996; 105:1-16. [PMID: 8897646 DOI: 10.1016/0034-5687(96)00037-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We quantified volume and frequency thresholds necessary for the inhibition of respiratory motor output during prolonged normocapnic mechanical ventilation in healthy subjects during wakefulness (n = 7) and NREM sleep (n = 5). Subjects were ventilated at eupneic frequency (fR) with 3 min step-wise increases in tidal volume (VT), or at eupneic VT with step-wise increases in fR, or by combinations of these two parameters. Inhibition of respiratory motor output was determined using mask pressure and, when available, esophageal pressure and diaphragmatic EMG. During wakefulness, the volume threshold (at eupneic fR) averaged 969 +/- 94 ml or 1.3-1.4 times the average eupneic tidal volume; the frequency threshold (at eupneic VT was 14.1 +/- 0.7 min-1 or 1.2 times the average eupneic frequency. The volume threshold was reduced when MV was provided at an fR above the eupneic value, and the frequency threshold was decreased when MV was provided at a VT above the eupneic level. During NREM sleep (n = 5) the volume threshold for inhibition was 835 +/- 108 ml or 1.4-1.5 times eupneic VT. The inhibitory thresholds for VT and fR were reproducible upon repeat trials within subjects. We conclude that inhibition of respiratory motor output during prolonged normocapnic mechanical ventilation in wakefulness or NREM sleep is highly sensitive to changes in ventilator VT, fR and their combination.
Collapse
Affiliation(s)
- S Manchanda
- Medical Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, USA
| | | | | | | | | | | |
Collapse
|
30
|
Roberts CA, Corfield DR, Murphy K, Calder NA, Hanson MA, Adams L, Guz A. Modulation by "central" PCO2 of the response to carotid body stimulation in man. RESPIRATION PHYSIOLOGY 1995; 102:149-61. [PMID: 8904007 DOI: 10.1016/0034-5687(95)00067-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We describe a method to assess the effects of PCO2, around and below eucapnia, on the neuromuscular ventilatory response to a standard peripheral chemoreceptor stimulus. Subjects were "passively" hyperventilated (without respiratory muscle activity), at a constant level of ventilation. Stimuli (3-7 breaths N2) were delivered over a range of steady-state PETCO2 (25-43 mmHg). Stimuli during hypocapnia were coupled with a transient increase in FICO2 so that the stimulus to the peripheral chemoreceptors was always "hypoxia at eucapnia". Responses to the stimuli (quantified from the reduction in peak inflation pressure and the magnitude of the evoked diaphragm electromyographic activity) decreased in a graded manner as steady-state PETCO2 fell, disappearing at 7.5 mmHg below eucapnia. Carotid body chemoreceptor recordings from two anaesthetised cats, indicated that the peak firing rate during such stimuli was independent of steady-state PETCO2. The results suggest that the central sensitivity to a peripheral chemoreceptor input may be modulated by changes in steady-state PCO2 around eucapnia and during mild hypocapnia.
Collapse
Affiliation(s)
- C A Roberts
- Department of Medicine, Charing Cross and Westminster Medical School, London, UK
| | | | | | | | | | | | | |
Collapse
|