1
|
Lang F, Rönicke F, Wagenknecht HA. Cell-resistant wavelength-shifting molecular beacons made of L-DNA and a clickable L-configured uridine. Org Biomol Chem 2024; 22:4568-4573. [PMID: 38771639 DOI: 10.1039/d4ob00692e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Wavelength-shifting molecular beacons were prepared from L-DNA. The clickable anchor for the two dyes, Cy3 and Cy5, was 2'-O-propargyl-L-uridine and was synthesized from L-ribose. Four clickable molecular beacons were prepared and double-modified with the azide dyes by a combination of click chemistry on a solid support for Cy3 during DNA synthesis and postsynthetic click chemistry for Cy5 in solution. Cy3 and Cy5 successfully formed a FRET pair in the beacons, and the closed form (red fluorescence) and the open form (green fluorescence) can be distinguished by the two-color fluorescence readout. Two molecular beacons were identified to show the greatest fluorescence contrast in temperature-dependent fluorescence measurements. The stability of the L-configured molecular beacons was demonstrated after several heating and cooling cycles as well as in the cell lysate. In comparison, D-configured molecular beacons showed a rapid decrease of fluorescence contrast in the cell lysate, which is caused by the opening of the beacons, probably due to degradation. This was confirmed in cell experiments using confocal microscopy. The L-configured molecular beacons are potential intracellular thermometers for future applications.
Collapse
Affiliation(s)
- Fabian Lang
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Franziska Rönicke
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
2
|
Okabe K, Sotoma S, Harada Y. Cellular Thermal Biology Using Fluorescent Nanothermometers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:97-108. [PMID: 39289276 DOI: 10.1007/978-981-97-4584-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
It has been known that cells have mechanisms to sense and respond to environmental noxiousness and mild temperature changes, such as heat shock response and thermosensitive TRP channels. Meanwhile, new methods of measuring temperature at the cellular level has recently been developed using fluorescent nanothermometers. Among these thermometers, fluorescent polymeric thermometers and fluorescent nanodiamonds excel in the properties required for intracellular thermometry. By using these novel methods to measure the temperature of single cells in cultures and tissues, it was revealed that spontaneous spatiotemporal temperature fluctuations occur within cells. Furthermore, the temperature fluctuations were related to organelles such as mitochondria and cellular and physiological functions, revealing a close relationship between intracellular temperature and cellular functions.
Collapse
Affiliation(s)
- Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
- JST, PRESTO, Saitama, Japan.
| | - Shingo Sotoma
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan.
| | - Yoshie Harada
- Institute for Protein Research, Osaka University, Osaka, Japan
- Center for Quantum Information and Quantum Biology, Osaka, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Sun Y, Fu M, Bian M, Zhu Q. Recent progress on small molecular temperature-sensitive fluorescent probes. Biotechnol Bioeng 2023; 120:7-21. [PMID: 36200389 DOI: 10.1002/bit.28250] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Temperature is an important biophysical parameter that is closely related with the metabolic activity in living cells. Therefore, the detection of intracellular temperature changes is crucial for exploring temperature-related biological processes. Fluorescence probe is an ideal tool for observing temperature changes in cells, which has many advantages, such as high sensitivity, good selectivity, and noninvasive, and thus aroused the great interest of researchers. In this paper, we summarize the recent progress of organic small molecule temperature-sensitive fluorescence probes in recent years was reviewed. Particularly, we describe the common response mode to the temperature and the practical applications of the probe in living cells and even animal models. Moreover, an outlook regarding temperature detection in clinical applications is discussed. The temperature-sensitive fluorescent probe is a "black box" to many researchers. This review aims to open a window on the prospect of the noninvasive in vivo detection of temperature which is helpful to deeper understand this rich research area.
Collapse
Affiliation(s)
- Yue Sun
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Manlin Fu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Mianli Bian
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Hiruta Y. Poly(N-isopropylacrylamide)-based temperature- and pH-responsive polymer materials for application in biomedical fields. Polym J 2022. [DOI: 10.1038/s41428-022-00687-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
Chung CW, Stephens AD, Konno T, Ward E, Avezov E, Kaminski CF, Hassanali AA, Kaminski Schierle GS. Intracellular Aβ42 Aggregation Leads to Cellular Thermogenesis. J Am Chem Soc 2022; 144:10034-10041. [PMID: 35616634 PMCID: PMC9185738 DOI: 10.1021/jacs.2c03599] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The aggregation of
Aβ42 is a hallmark of Alzheimer’s
disease. It is still not known what the biochemical changes are inside
a cell which will eventually lead to Aβ42 aggregation. Thermogenesis
has been associated with cellular stress, the latter of which may
promote aggregation. We perform intracellular thermometry measurements
using fluorescent polymeric thermometers to show that Aβ42 aggregation
in live cells leads to an increase in cell-averaged temperatures.
This rise in temperature is mitigated upon treatment with an aggregation
inhibitor of Aβ42 and is independent of mitochondrial damage
that can otherwise lead to thermogenesis. With this, we present a
diagnostic assay which could be used to screen small-molecule inhibitors
to amyloid proteins in physiologically relevant settings. To interpret
our experimental observations and motivate the development of future
models, we perform classical molecular dynamics of model Aβ
peptides to examine the factors that hinder thermal dissipation. We
observe that this is controlled by the presence of ions in its surrounding
environment, the morphology of the amyloid peptides, and the extent
of its hydrogen-bonding interactions with water. We show that aggregation
and heat retention by Aβ peptides are favored under intracellular-mimicking
ionic conditions, which could potentially promote thermogenesis. The
latter will, in turn, trigger further nucleation events that accelerate
disease progression.
Collapse
Affiliation(s)
- Chyi Wei Chung
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Amberley D Stephens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Tasuku Konno
- UK Dementia Research Institute, Department of Clinical Neuroscience, University of Cambridge, Cambridge CB2 0AH, U.K
| | - Edward Ward
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Edward Avezov
- UK Dementia Research Institute, Department of Clinical Neuroscience, University of Cambridge, Cambridge CB2 0AH, U.K
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ali A Hassanali
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy
| | - Gabriele S Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
6
|
Garvas M, Acosta S, Urbančič I, Koklič T, Štrancar J, Nunes LAO, Guttmann P, Umek P, Bittencourt C. Single cell temperature probed by Eu
+3
doped TiO
2
nanoparticles luminescence. NANO SELECT 2021. [DOI: 10.1002/nano.202000207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Maja Garvas
- Jožef Stefan Institute Ljubljana 1000 Slovenia
| | - Selene Acosta
- Chimie des Interactions Plasma–Surface (ChIPS) Research Institute for Materials Science and Engineering Université de Mons Mons Belgium
| | | | | | | | - Luiz A. O. Nunes
- Instituto de Física de São Carlos Universidade de São Paulo São Carlos São Paulo Brazil
| | - Peter Guttmann
- Department X‐ray Microscopy Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH Berlin D‐12489 Germany
| | - Polona Umek
- Jožef Stefan Institute Ljubljana 1000 Slovenia
| | - Carla Bittencourt
- Chimie des Interactions Plasma–Surface (ChIPS) Research Institute for Materials Science and Engineering Université de Mons Mons Belgium
| |
Collapse
|
7
|
Nakata E, Hirose H, Gerelbaatar K, Arafiles JVV, Zhang Z, Futaki S, Morii T. A facile combinatorial approach to construct a ratiometric fluorescent sensor: application for the real-time sensing of cellular pH changes. Chem Sci 2021; 12:8231-8240. [PMID: 34194714 PMCID: PMC8208317 DOI: 10.1039/d1sc01575c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 02/02/2023] Open
Abstract
Realtime monitoring of the cellular environment, such as the intracellular pH, in a defined cellular space provides a comprehensive understanding of the dynamics processes in a living cell. Considering the limitation of spatial resolution in conventional microscopy measurements, multiple types of fluorophores assembled within that space would behave as a single fluorescent probe molecule. Such a character of microscopic measurements enables a much more flexible combinatorial design strategy in developing fluorescent probes for given targets. Nanomaterials with sizes smaller than the microscopy spatial resolution provide a scaffold to assemble several types of fluorophores with a variety of optical characteristics, therefore providing a convenient strategy for designing fluorescent pH sensors. In this study, fluorescein (CF) and tetramethylrhodamine (CR) were assembled on a DNA nanostructure with controlling the number of each type of fluorophore. By taking advantage of the different responses of CF and CR emissions to the pH environment, an appropriate assembly of both CF and CR on DNA origami enabled a controlled intensity of fluorescence emission and ratiometric pH monitoring within the space defined by DNA origami. The CF and CR-assembled DNA origami was successfully applied for monitoring the intracellular pH changes.
Collapse
Affiliation(s)
- Eiji Nakata
- Institute of Advanced Energy, Kyoto University Kyoto Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University Kyoto Japan
| | | | | | | | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University Kyoto Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University Kyoto Japan
| |
Collapse
|
8
|
Nexha A, Carvajal JJ, Pujol MC, Díaz F, Aguiló M. Lanthanide doped luminescence nanothermometers in the biological windows: strategies and applications. NANOSCALE 2021; 13:7913-7987. [PMID: 33899861 DOI: 10.1039/d0nr09150b] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The development of lanthanide-doped non-contact luminescent nanothermometers with accuracy, efficiency and fast diagnostic tools attributed to their versatility, stability and narrow emission band profiles has spurred the replacement of conventional contact thermal probes. The application of lanthanide-doped materials as temperature nanosensors, excited by ultraviolet, visible or near infrared light, and the generation of emissions lying in the biological window regions, I-BW (650 nm-950 nm), II-BW (1000 nm-1350 nm), III-BW (1400 nm-2000 nm) and IV-BW (centered at 2200 nm), are notably growing due to the advantages they present, including reduced phototoxicity and photobleaching, better image contrast and deeper penetration depths into biological tissues. Here, the different mechanisms used in lanthanide ion-doped nanomaterials to sense temperature in these biological windows for biomedical and other applications are summarized, focusing on factors that affect their thermal sensitivity, and consequently their temperature resolution. Comparing the thermometric performance of these nanomaterials in each biological window, we identified the strategies that allow boosting of their sensing properties.
Collapse
Affiliation(s)
- Albenc Nexha
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS, Campus Sescelades, E-43007, Tarragona, Spain.
| | | | | | | | | |
Collapse
|
9
|
Abstract
Temperature is an important factor in the process of life, as thermal energy transfer participates in all biological events in organisms. Due to technical limitations, there is still a lot more information to be explored regarding the correlation between life activities and temperature changes. In recent years, the emergence of a variety of new temperature measurement methods has facilitated further research in this field. Here, we introduce the latest advances in temperature sensors for biological detection and their related applications in metabolic research. Various technologies are discussed in terms of their advantages and shortcomings, and future prospects are presented.
Collapse
Affiliation(s)
- Fangxu Wang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuexia Han
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
10
|
Chung CW, Kaminski Schierle GS. Intracellular Thermometry at the Micro-/Nanoscale and its Potential Application to Study Protein Aggregation Related to Neurodegenerative Diseases. Chembiochem 2021; 22:1546-1558. [PMID: 33326160 DOI: 10.1002/cbic.202000765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Indexed: 11/11/2022]
Abstract
Temperature is a fundamental physical parameter that influences biological processes in living cells. Hence, intracellular temperature mapping can be used to derive useful information reflective of thermodynamic properties and cellular behaviour. Herein, existing publications on different thermometry systems, focusing on those that employ fluorescence-based techniques, are reviewed. From developments based on fluorescent proteins and inorganic molecules to metal nanoclusters and fluorescent polymers, the general findings of intracellular measurements from different research groups are discussed. Furthermore, the contradiction of mitochondrial thermogenesis and nuclear-cytoplasmic temperature differences to current thermodynamic understanding are highlighted. Lastly, intracellular thermometry is proposed as a tool to quantify the energy flow and cost associated with amyloid-β42 (Aβ42) aggregation, a hallmark of Alzheimer's disease.
Collapse
Affiliation(s)
- Chyi Wei Chung
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Gabriele S Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
11
|
Iyisan B, Thiramanas R, Nazarova N, Avlasevich Y, Mailänder V, Baluschev S, Landfester K. Temperature Sensing in Cells Using Polymeric Upconversion Nanocapsules. Biomacromolecules 2020; 21:4469-4478. [PMID: 32432855 PMCID: PMC7656512 DOI: 10.1021/acs.biomac.0c00377] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/20/2020] [Indexed: 12/17/2022]
Abstract
Monitoring local temperature inside cells is crucial when interpreting biological activities as enhanced cellular metabolism leads to higher heat production and is commonly correlated with the presence of diseases such as cancer. In this study, we report on polymeric upconversion nanocapsules for potential use as local nanothermometers in cells by exploiting the temperature dependence of the triplet-triplet annihilation upconversion phenomenon. Nanocapsules synthesized by the miniemulsion solvent evaporation technique are composed of a polymer shell and a liquid core of rice bran oil, hosting triplet-triplet annihilation upconversion active dyes as sensitizer and emitter molecules. The sensitivity of the triplet-triplet annihilation upconversion to the local oxygen concentration was overcome by the oxygen reduction ability of the rice bran oil core. The triplet-triplet annihilation upconversion process could thus successfully be applied at different levels of oxygen presence including at ambient conditions. Using this method, the local temperature within a range of 22 to 40 °C could be determined when the upconversion nanocapsules were taken up by HeLa cells with good cellular viability. Thus, the higher cell temperatures where the cells show enhanced metabolic activity led to a significant increase in the delayed fluorescence spectrum of the upconversion nanocapsules. These findings are promising for further development of novel treatment and diagnostic tools in medicine.
Collapse
Affiliation(s)
- Banu Iyisan
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Raweewan Thiramanas
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Nadzeya Nazarova
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuri Avlasevich
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University
Mainz, Langenbeckstr.
1, 55131 Mainz, Germany
| | - Stanislav Baluschev
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Optics and Spectroscopy
Department, Faculty of Physics, Sofia University,“St. Kliment Ochridski”,
5 James Bourchier, 1164 Sofia, Bulgaria
| | - Katharina Landfester
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
12
|
Qiao J, Hwang YH, Kim DP, Qi L. Simultaneous Monitoring of Temperature and Ca2+ Concentration Variation by Fluorescent Polymer during Intracellular Heat Production. Anal Chem 2020; 92:8579-8583. [DOI: 10.1021/acs.analchem.0c01534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Juan Qiao
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yoon-Ho Hwang
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology, Nam-Gu, Pohang-Si, Gyungsangbuk-do 37673, South Korea
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology, Nam-Gu, Pohang-Si, Gyungsangbuk-do 37673, South Korea
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Wang S, Cao J, Lu C. A naphthalimide-based thermometer: heat-induced fluorescence “turn-on” sensing in a wide temperature range in ambient atmosphere. NEW J CHEM 2020. [DOI: 10.1039/c9nj06101k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heat-induced fluorescent “turn-on” sensor based on naphthalimide, NapPT-1, in which thioether chains were joined at the 4-site of naphthalimide, was designed and synthesized.
Collapse
Affiliation(s)
- Shuxin Wang
- School of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- P. R. China
| | - Jian Cao
- School of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- P. R. China
| | - Chenhong Lu
- School of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- P. R. China
| |
Collapse
|
14
|
Sobrinho JA, Brito Júnior GA, Mazali IO, Sigoli FA. Water-soluble poly(N-isopropylacrylamide) nanoparticles grafted to trivalent lanthanide complexes as highly sensitive ratiometric nanothermometers. NEW J CHEM 2020. [DOI: 10.1039/d0nj01263g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new water-soluble, luminescent ratiometric nanothermometer with a tunable temperature-responsive range, high thermal sensitivity and good repeatability was designed and synthesized by grafting lanthanide complexes to pNIPAM polymeric nanoparticles.
Collapse
Affiliation(s)
| | | | - Italo Odone Mazali
- Laboratory of Functional Materials
- Institute of Chemistry
- University of Campinas, UNICAMP
- Brazil
| | | |
Collapse
|
15
|
Sigaeva A, Ong Y, Damle VG, Morita A, van der Laan KJ, Schirhagl R. Optical Detection of Intracellular Quantities Using Nanoscale Technologies. Acc Chem Res 2019; 52:1739-1749. [PMID: 31187980 PMCID: PMC6639779 DOI: 10.1021/acs.accounts.9b00102] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 12/11/2022]
Abstract
Optical probes that can be used to measure certain quantities with subcellular resolution give us access to a new level of information at which physics, chemistry, life sciences, and medicine become strongly intertwined. The emergence of these new technologies is owed to great advances in the physical sciences. However, evaluating and improving these methods to new standards requires a joint effort with life sciences and clinical practice. In this Account, we give an overview of the probes that have been developed for measuring a few highly relevant parameters at the subcellular scale: temperature, pH, oxygen, free radicals, inorganic ions, genetic material, and biomarkers. Luminescent probes are available in many varieties, which can be used for measuring temperature, pH, and oxygen. Since they are influenced by virtually any metabolic process in the healthy or diseased cell, these quantities are extremely useful to understand intracellular processes. Probes for them can roughly be divided into molecular dyes with a parameter dependent fluorescence or phosphorescence and nanoparticle platforms. Nanoparticle probes can provide enhanced photostability, measurement quality, and potential for multiple functionalities. Embedding into coatings can improve biocompatibility or prevent nonspecific interactions between the probe and the cellular environment. These qualities need to be matched however with good uptake properties, colloidal properties and eventually intracellular targeting to optimize their practical applicability. Inorganic ions constitute a broad class of compounds or elements, some of which play specific roles in signaling, while others are toxic. Their detection is often difficult due to the cross-talk with similar ions, as well as other parameters. The detection of free radicals, DNA, and biomarkers at extremely low levels has significant potential for biomedical applications. Their presence is linked more directly to physiological and clinical manifestations. Since existing methods for free radical detection are generally poor in sensitivity and spatiotemporal resolution, new reliable methods that are generally applicable can contribute greatly to advancing this topic in biology. Optical methods that detect DNA or RNA and protein biomarkers exist for intracellular applications, but are mostly relevant for the development of rapid point-of-care sample testing. To elucidate the inner workings of cells, focused multidisciplinary research is required to define the validity and limitations of a nanoparticle probe, in both physical and biological terms. Multifunctional platforms and those that are easily made compatible with conventional research equipment have an edge over other techniques in growing the body of research evidencing their versatility.
Collapse
Affiliation(s)
- Alina Sigaeva
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Yori Ong
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Viraj G. Damle
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Aryan Morita
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Dept.
Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Kiran J. van der Laan
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Romana Schirhagl
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
16
|
Gschwend PM, Starsich FHL, Keitel RC, Pratsinis SE. Nd 3+-Doped BiVO 4 luminescent nanothermometers of high sensitivity. Chem Commun (Camb) 2019; 55:7147-7150. [PMID: 31140484 DOI: 10.1039/c9cc03180d] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neodymium-doped BiVO4 nanoparticles are explored for luminescent nanothermometry in the first and second biological windows. The nanothermometer sensitivity can be increased by an order of magnitude through careful selection of excitation wavelength and emission peaks, leading to sub-degree resolution and penetration depth up to 6 mm in biological tissues.
Collapse
Affiliation(s)
- Pascal M Gschwend
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland.
| | - Fabian H L Starsich
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland.
| | - Robert C Keitel
- Optical Materials Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, CH-8092 Zurich, Switzerland
| | - Sotiris E Pratsinis
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland.
| |
Collapse
|
17
|
Yang F, Yang N, Huo X, Xu S. Thermal sensing in fluid at the micro-nano-scales. BIOMICROFLUIDICS 2018; 12:041501. [PMID: 30867860 PMCID: PMC6404956 DOI: 10.1063/1.5037421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/19/2018] [Indexed: 06/09/2023]
Abstract
Temperature is one of the most fundamental parameters for the characterization of a physical system. With rapid development of lab-on-a-chip and biology at single cell level, a great demand has risen for the temperature sensors with high spatial, temporal, and thermal resolution. Nevertheless, measuring temperature in liquid environment is always a technical challenge. Various factors may affect the sensing results, such as the fabrication parameters of built-in sensors, thermal property of electrical insulating layer, and stability of fluorescent thermometers in liquid environment. In this review, we focused on different kinds of micro/nano-thermometers applied in the thermal sensing for microfluidic systems and cultured cells. We discussed the advantages and limitations of these thermometers in specific applications and the challenges and possible solutions for more accurate temperature measurements in further studies.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| | - Nana Yang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| | - Xiaoye Huo
- Faculty of Mechanical Engineering, Micro-and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Shengyong Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
18
|
Okabe K, Sakaguchi R, Shi B, Kiyonaka S. Intracellular thermometry with fluorescent sensors for thermal biology. Pflugers Arch 2018; 470:717-731. [PMID: 29397424 PMCID: PMC5942359 DOI: 10.1007/s00424-018-2113-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/27/2022]
Abstract
Temperature influences the activities of living organisms at various levels. Cells not only detect environmental temperature changes through their unique temperature-sensitive molecular machineries but also muster an appropriate response to the temperature change to maintain their inherent functions. Despite the fundamental involvement of temperature in physiological phenomena, the mechanism by which cells produce and use heat is largely unknown. Recently, fluorescent thermosensors that function as thermometers in live cells have attracted much attention in biology. These new tools, made of various temperature-sensitive molecules, have allowed for intracellular thermometry at the single-cell level. Intriguing spatiotemporal temperature variations, including organelle-specific thermogenesis, have been revealed with these fluorescent thermosensors, which suggest an intrinsic connection between temperature and cell functions. Moreover, fluorescent thermosensors have shown that intracellular temperature changes at the microscopic level are largely different from those assumed for a water environment at the macroscopic level. Thus, the employment of fluorescent thermosensors will uncover novel mechanisms of intracellular temperature-assisted physiological functions.
Collapse
Affiliation(s)
- Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
- JST, PRESTO, 4-8-1 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Reiko Sakaguchi
- World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Beini Shi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| |
Collapse
|
19
|
Microcirculation-mediated preconditioning and intracellular hypothermia. Med Hypotheses 2018; 115:8-12. [PMID: 29685204 DOI: 10.1016/j.mehy.2018.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/19/2018] [Indexed: 01/08/2023]
Abstract
Microcirculation is a network of perfused capillaries that connects macrocirculation with the cells. Although research has provided insight into microcirculatory blood flow, our knowledge remains limited. In this article, we propose a new role of microcirculation in physiological and shock states. In healthy individuals, microcirculation maintains cellular homeostasis via preconditioning. When blood volume decreases, the ensuing microcirculatory changes result in heterogeneity of perfusion and tissue oxygenation. Initially, this is partly compensated by the preserved autoregulation and the increase in the metabolism rate of cells, but at later stages, the loss of autoregulation activates the cascade of intracellular hypothermia.
Collapse
|
20
|
YAMANOUCHI T, KATSUYAMA N, HIRUTA Y, AYANO E, KANAZAWA H. Development of Nanocarriers Functionalized with Stimuli-Responsive Polymer for Controlled Cellular Uptake. KOBUNSHI RONBUNSHU 2018. [DOI: 10.1295/koron.2017-0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Yuki HIRUTA
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University
| | - Eri AYANO
- Faculty of Pharmacy, Keio University
| | | |
Collapse
|
21
|
Muller AWJ. Cancer is an adaptation that selects in animals against energy dissipation. Med Hypotheses 2017; 104:104-115. [PMID: 28673566 DOI: 10.1016/j.mehy.2017.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/30/2017] [Accepted: 05/25/2017] [Indexed: 02/06/2023]
Abstract
As cancer usually follows reproduction, it is generally assumed that cancer does not select. Graham has however argued that juvenile cancer, which precedes reproduction, could during evolution have implemented a "cancer selection" that resulted in novel traits that suppress this juvenile cancer; an example is protection against UV sunlight-induced cancer, required for the emergence of terrestrial animals from the sea. We modify the cancer selection mechanism to the posited "cancer adaptation" mechanism, in which juvenile mortality is enhanced through the diminished care received by juveniles from their (grand) parents when these suffer from cancer in old age. Moreover, it is posited that the cancer adaptation selects against germline "dissipative genes", genes that result in enhanced free energy dissipation. Cancer's progression is interpreted as a cascade at increasing scale of repeated amplification of energy dissipation, a cascade involving heat shock, the Warburg effect, the cytokine IL-6, tumours, and hypermetabolism. Disturbance of any physiological process must enhance energy dissipation if the animal remains functioning normally, what explains multicausality, why "everything gives you cancer". The hypothesis thus comprises two newly invoked partial processes-diminished (grand) parental care and dissipation amplification-and results in a "selection against enhanced energy dissipation" which gives during evolution the benefit of energy conservation. Due to this benefit, cancer would essentially be an adaptation, and not a genetic disease, as assumed in the "somatic mutation theory". Cancer by somatic mutations is only a side process. The cancer adaptation hypothesis is substantiated by (1) cancer's extancy, (2) the failure of the somatic mutation theory, (3) cancer's initiation by a high temperature, (4) the interpretation of cancer's progression as a thermal process, and (5) the interpretation of tumours as organs that implement thermogenesis. The hypothesis could in principle be verified by monitoring in a population over several generations (1) the presence of dissipative genes, (2) the incidence of cancer, and (3) the beneficial effect of dissipative gene removal by cancer on starvation/famine survival.
Collapse
Affiliation(s)
- Anthonie W J Muller
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Qiao J, Mu X, Qi L. Construction of fluorescent polymeric nano-thermometers for intracellular temperature imaging: A review. Biosens Bioelectron 2016; 85:403-413. [DOI: 10.1016/j.bios.2016.04.070] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/14/2016] [Accepted: 04/21/2016] [Indexed: 12/15/2022]
|
23
|
Sierra-Martin B, Fernandez-Barbero A. Inorganic/polymer hybrid nanoparticles for sensing applications. Adv Colloid Interface Sci 2016; 233:25-37. [PMID: 26782148 DOI: 10.1016/j.cis.2015.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
This paper reviews a wide set of sensing applications based on the special properties associated with inorganic/polymer composite nanoparticles. We first describe optical sensing applications performed with hybrid nanoparticles and hybrid microgels with special emphasis on photoluminescence detection and imaging. Analyte detection with molecularly imprinted polymers and HPLC-based sensing using hybrid nanoparticles as stationary phase is also summarized. The final part is devoted to the study of ultra-sensitive molecule detection by surface-enhanced Raman spectroscopy using core-shell hybrid materials composed of noble metal nanoparticles and cross-linked polymers.
Collapse
|
24
|
Dong F, Zheng T, Zhu R, Wang S, Tian Y. An engineered thermo-sensitive nanohybrid particle for accurate temperature sensing at the single-cell level and biologically controlled thermal therapy. J Mater Chem B 2016; 4:7681-7688. [DOI: 10.1039/c6tb02589g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel type of thermo-sensitive nanohybrid particle was developed for intracellular temperature sensing, as well as temperature-controlled drug release.
Collapse
Affiliation(s)
- Fangyuan Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Tingting Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Rongrong Zhu
- Research Center for Translational Medicine at East Hospital
- School of Life Science
- Tongji University
- Shanghai 200092
- China
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital
- School of Life Science
- Tongji University
- Shanghai 200092
- China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| |
Collapse
|
25
|
Yamada A, Hiruta Y, Wang J, Ayano E, Kanazawa H. Design of Environmentally Responsive Fluorescent Polymer Probes for Cellular Imaging. Biomacromolecules 2015; 16:2356-62. [DOI: 10.1021/acs.biomac.5b00591] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arisa Yamada
- Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yuki Hiruta
- Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Jian Wang
- Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Eri Ayano
- Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
26
|
Microcalorimetric assays for measuring cell growth and metabolic activity: Methodology and applications. Methods 2015; 76:27-34. [DOI: 10.1016/j.ymeth.2014.10.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 11/16/2022] Open
|
27
|
Braissant O, Keiser J, Meister I, Bachmann A, Wirz D, Göpfert B, Bonkat G, Wadsö I. Isothermal microcalorimetry accurately detects bacteria, tumorous microtissues, and parasitic worms in a label-free well-plate assay. Biotechnol J 2015; 10:460-8. [PMID: 25511812 PMCID: PMC4406140 DOI: 10.1002/biot.201400494] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/07/2014] [Accepted: 12/15/2014] [Indexed: 12/04/2022]
Abstract
Isothermal microcalorimetry is a label-free assay that allows monitoring of enzymatic and metabolic activities. The technique has strengths, but most instruments have a low throughput, which has limited their use for bioassays. Here, an isothermal microcalorimeter, equipped with a vessel holder similar to a 48-well plate, was used. The increased throughput of this microcalorimeter makes it valuable for biomedical and pharmaceutical applications. Our results show that the sensitivity of the instrument allows the detection of 3 × 10(4) bacteria per vial. Growth of P. mirabilis in Luria Broth medium was detected between 2 and 9 h with decreasing inoculum. The culture released 2.1J with a maximum thermal power of 76 μW. The growth rate calculated using calorimetric and spectrophotometric data were 0.60 and 0.57 h(-1) , respectively. Additional insight on protease activities of P. mirabilis matching the last peak in heat production could be gathered as well. Growth of tumor microtissues releasing a maximum thermal power of 2.1 μW was also monitored and corresponds to a diameter increase of the microtissues from ca. 100 to 428 μm. This opens new research avenues in cancer research, diagnostics, and development of new antitumor drugs. For parasitic worms, the technique allows assessment of parasite survival using motor and metabolic activities even with a single worm.
Collapse
Affiliation(s)
- Olivier Braissant
- Center for Biomechanics and Biocalorimetry, c/o Biozentrum-Pharmazentrum, Basel, Switzerland; Department of Urology, University Hospital of Basel, Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Huo X, Liu H, Liang Y, Fu M, Sun W, Chen Q, Xu S. A nano-stripe based sensor for temperature measurement at the submicrometer and nano scales. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3869-75. [PMID: 24888901 DOI: 10.1002/smll.201303942] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 02/28/2014] [Indexed: 05/04/2023]
Abstract
Submicrometer dual-stripe temperature sensors made from a single piece of metal thin film (e.g., Pd) are developed. With the narrowest sensor being 900 nm in width, they show sensitivity of 1-2 μV/K for the full range of 10-300 K. The results confirm the size effect in Seebeck coefficient previously observed in microstripe sensors of the same device configuration.
Collapse
Affiliation(s)
- Xiaoye Huo
- Key Laboratory for Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Hiruta Y, Shimamura M, Matsuura M, Maekawa Y, Funatsu T, Suzuki Y, Ayano E, Okano T, Kanazawa H. Temperature-Responsive Fluorescence Polymer Probes with Accurate Thermally Controlled Cellular Uptakes. ACS Macro Lett 2014; 3:281-285. [PMID: 35590521 DOI: 10.1021/mz5000569] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(N-isopropylacrylamide) (PNIPAAm)-based temperature-responsive fluorescence polymer probes were developed using radical polymerization, with 3-mercaptopropionic acid as the chain-transfer agent, followed by activation of terminal carboxyl groups with N-hydroxysuccinimide and reaction with 5-aminofluorescein (FL). The lower critical solution temperatures (LCSTs) of the resulting fluorescent polymer probes differed depending on the copolymer composition, and had a sharp phase-transition (hydrophilic/hydrophobic) boundary at the LCST. The cellular uptakes of the fluorescent polymer probes were effectively suppressed below the LCST, and increased greatly above the LCST. In particular, the cellular uptake of a copolymer with N,N-dimethylaminopropylacrylamide, P(NIPAAm-co-DMAPAAm2%)-FL (LCST: 37.4 °C), can be controlled within only 1 °C near body temperature, which is suitable for biological applications. These results indicated that the cellular uptakes of thermoresponsive polymers could be accurately controlled by the temperature, and such polymers have potential applications in discriminating between normal and pathological cells, and in intracellular drug delivery systems with local hyperthermia.
Collapse
Affiliation(s)
- Yuki Hiruta
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Mirai Shimamura
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Minami Matsuura
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Yutaro Maekawa
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Takaaki Funatsu
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Yuichi Suzuki
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Eri Ayano
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Teruo Okano
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| | - Hideko Kanazawa
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| |
Collapse
|
30
|
Abstract
Isothermal microcalorimetry (IMC) is a nonspecific analytical tool for measurement of heat. With sensitivity in the order of 0.2 μW, IMC can detect very small amounts of heat produced by only a small number of microorganisms or eukaryotic cells. This report is intended to introduce IMC to the urological audience and to give an overview about the past, present and future of this cutting edge technology in the urological context.
Collapse
|
31
|
Hammerer F, Garcia G, Charles P, Sourdon A, Achelle S, Teulade-Fichou MP, Maillard P. Glycoconjugated porphyrin dimers as robust ratiometric temperature sensors. Chem Commun (Camb) 2014; 50:9529-32. [DOI: 10.1039/c4cc03367a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report the properties of glycoconjugated porphyrin dimers behaving as highly sensitive ratiometric temperature sensors in water.
Collapse
Affiliation(s)
- Fabien Hammerer
- Laboratoire de Chimie Bioorganique et Bioinorganique
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- F-91405 Orsay cedex, France
| | | | | | - Aude Sourdon
- CSVB-UMR176
- Institut Curie
- F-91405 Orsay cedex, France
| | - Sylvain Achelle
- UMR CNRS 6226
- IUT de Lannion
- Institut des Sciences Chimiques de Rennes
- F-22302 Lannion cedex, France
| | | | | |
Collapse
|
32
|
Luminescent Ru(bpy)3 2+-doped silica nanoparticles for imaging of intracellular temperature. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1092-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Chung CYS, Yam VWW. Dual pH- and Temperature-Responsive Metallosupramolecular Block Copolymers with Tunable Critical Micelle Temperature by Modulation of the Self-Assembly of NIR-Emissive Alkynylplatinum(II) Complexes Induced by Changes in Hydrophilicity and Electrostatic Ef. Chemistry 2013; 19:13182-92. [DOI: 10.1002/chem.201301547] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Indexed: 12/18/2022]
|
34
|
Naccache R, Rodríguez EM, Bogdan N, Sanz-Rodríguez F, de la Cruz MDCI, de la Fuente ÁJ, Vetrone F, Jaque D, Solé JG, Capobianco JA. High resolution fluorescence imaging of cancers using lanthanide ion-doped upconverting nanocrystals. Cancers (Basel) 2012; 4:1067-105. [PMID: 24213500 PMCID: PMC3712733 DOI: 10.3390/cancers4041067] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/20/2012] [Accepted: 10/15/2012] [Indexed: 12/17/2022] Open
Abstract
During the last decade inorganic luminescent nanoparticles that emit visible light under near infrared (NIR) excitation (in the biological window) have played a relevant role for high resolution imaging of cancer. Indeed, semiconductor quantum dots (QDs) and metal nanoparticles, mostly gold nanorods (GNRs), are already commercially available for this purpose. In this work we review the role which is being played by a relatively new class of nanoparticles, based on lanthanide ion doped nanocrystals, to target and image cancer cells using upconversion fluorescence microscopy. These nanoparticles are insulating nanocrystals that are usually doped with small percentages of two different rare earth (lanthanide) ions: The excited donor ions (usually Yb3+ ion) that absorb the NIR excitation and the acceptor ions (usually Er3+, Ho3+ or Tm3+), that are responsible for the emitted visible (or also near infrared) radiation. The higher conversion efficiency of these nanoparticles in respect to those based on QDs and GNRs, as well as the almost independent excitation/emission properties from the particle size, make them particularly promising for fluorescence imaging. The different approaches of these novel nanoparticles devoted to "in vitro" and "in vivo" cancer imaging, selective targeting and treatment are examined in this review.
Collapse
Affiliation(s)
- Rafik Naccache
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Canada; E-Mails: (R.N.); (E.M.R.); (N.B.)
| | - Emma Martín Rodríguez
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Canada; E-Mails: (R.N.); (E.M.R.); (N.B.)
| | - Nicoleta Bogdan
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Canada; E-Mails: (R.N.); (E.M.R.); (N.B.)
| | - Francisco Sanz-Rodríguez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain; E-Mail: (F.S.-R.); (A.J.F.)
| | | | - Ángeles Juarranz de la Fuente
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain; E-Mail: (F.S.-R.); (A.J.F.)
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications, Université du Québec, Varennes J3X 1S2, Canada; E-Mail:
| | - Daniel Jaque
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid 28049, Spain; E-Mail:
| | - José García Solé
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid 28049, Spain; E-Mail:
| | - John A. Capobianco
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Canada; E-Mails: (R.N.); (E.M.R.); (N.B.)
| |
Collapse
|
35
|
Brites CDS, Lima PP, Silva NJO, Millán A, Amaral VS, Palacio F, Carlos LD. Thermometry at the nanoscale. NANOSCALE 2012; 4:4799-829. [PMID: 22763389 DOI: 10.1039/c2nr30663h] [Citation(s) in RCA: 608] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Non-invasive precise thermometers working at the nanoscale with high spatial resolution, where the conventional methods are ineffective, have emerged over the last couple of years as a very active field of research. This has been strongly stimulated by the numerous challenging requests arising from nanotechnology and biomedicine. This critical review offers a general overview of recent examples of luminescent and non-luminescent thermometers working at nanometric scale. Luminescent thermometers encompass organic dyes, QDs and Ln(3+)ions as thermal probes, as well as more complex thermometric systems formed by polymer and organic-inorganic hybrid matrices encapsulating these emitting centres. Non-luminescent thermometers comprise of scanning thermal microscopy, nanolithography thermometry, carbon nanotube thermometry and biomaterials thermometry. Emphasis has been put on ratiometric examples reporting spatial resolution lower than 1 micron, as, for instance, intracellular thermometers based on organic dyes, thermoresponsive polymers, mesoporous silica NPs, QDs, and Ln(3+)-based up-converting NPs and β-diketonate complexes. Finally, we discuss the challenges and opportunities in the development for highly sensitive ratiometric thermometers operating at the physiological temperature range with submicron spatial resolution.
Collapse
Affiliation(s)
- Carlos D S Brites
- Department of Physics, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | | | |
Collapse
|
36
|
Weber SC, Spakowitz AJ, Theriot JA. Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci. Proc Natl Acad Sci U S A 2012; 109:7338-43. [PMID: 22517744 PMCID: PMC3358901 DOI: 10.1073/pnas.1119505109] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chromosomal loci jiggle in place between segregation events in prokaryotic cells and during interphase in eukaryotic nuclei. This motion seems random and is often attributed to brownian motion. However, we show here that locus dynamics in live bacteria and yeast are sensitive to metabolic activity. When ATP synthesis is inhibited, the apparent diffusion coefficient decreases, whereas the subdiffusive scaling exponent remains constant. Furthermore, the magnitude of locus motion increases more steeply with temperature in untreated cells than in ATP-depleted cells. This "superthermal" response suggests that untreated cells have an additional source of molecular agitation, beyond thermal motion, that increases sharply with temperature. Such ATP-dependent fluctuations are likely mechanical, because the heat dissipated from metabolic processes is insufficient to account for the difference in locus motion between untreated and ATP-depleted cells. Our data indicate that ATP-dependent enzymatic activity, in addition to thermal fluctuations, contributes to the molecular agitation driving random (sub)diffusive motion in the living cell.
Collapse
Affiliation(s)
| | | | - Julie A. Theriot
- Department of Biochemistry
- Howard Hughes Medical Institute
- Biophysics Program, and
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305
| |
Collapse
|
37
|
Wang C, Xu R, Tian W, Jiang X, Cui Z, Wang M, Sun H, Fang K, Gu N. Determining intracellular temperature at single-cell level by a novel thermocouple method. Cell Res 2011; 21:1517-9. [PMID: 21788987 PMCID: PMC3193458 DOI: 10.1038/cr.2011.117] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Changling Wang
- School of Biological Science and Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, State Key Laboratory of BioElectronics, Southeast University, Nanjing 210009, China
| | - Ruizhi Xu
- Jiangsu Institute of Metrology, Nanjing 210007, China
| | - Wenjuan Tian
- School of Biological Science and Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, State Key Laboratory of BioElectronics, Southeast University, Nanjing 210009, China
| | - Xiaoli Jiang
- School of Biological Science and Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, State Key Laboratory of BioElectronics, Southeast University, Nanjing 210009, China
| | - Zhengyu Cui
- School of Biological Science and Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, State Key Laboratory of BioElectronics, Southeast University, Nanjing 210009, China
| | - Meng Wang
- School of Biological Science and Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, State Key Laboratory of BioElectronics, Southeast University, Nanjing 210009, China
| | - Huaming Sun
- School of Biological Science and Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, State Key Laboratory of BioElectronics, Southeast University, Nanjing 210009, China
| | - Kun Fang
- School of Biological Science and Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, State Key Laboratory of BioElectronics, Southeast University, Nanjing 210009, China
| | - Ning Gu
- School of Biological Science and Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, State Key Laboratory of BioElectronics, Southeast University, Nanjing 210009, China
| |
Collapse
|
38
|
Santoro R, Braissant O, Müller B, Wirz D, Daniels A, Martin I, Wendt D. Real-time measurements of human chondrocyte heat production during in vitro proliferation. Biotechnol Bioeng 2011; 108:3019-24. [DOI: 10.1002/bit.23268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/31/2011] [Accepted: 07/08/2011] [Indexed: 11/08/2022]
|
39
|
Maestro LM, Jacinto C, Silva UR, Vetrone F, Capobianco JA, Jaque D, Solé JG. CdTe quantum dots as nanothermometers: towards highly sensitive thermal imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1774-8. [PMID: 21567943 DOI: 10.1002/smll.201002377] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/01/2011] [Indexed: 05/05/2023]
Affiliation(s)
- Laura M Maestro
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Wan X, Liu S. Fluorescent water-soluble responsive polymers site-specifically labeled with FRET dyes possessing pH- and thermo-modulated multicolor fluorescence emissions as dual ratiometric probes. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm10332f] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Hu J, Zhang X, Wang D, Hu X, Liu T, Zhang G, Liu S. Ultrasensitive ratiometric fluorescent pH and temperature probes constructed from dye-labeled thermoresponsive double hydrophilic block copolymers. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm13575a] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Wu W, Zhou S. Hybrid micro-/nanogels for optical sensing and intracellular imaging. NANO REVIEWS 2010; 1:NANO-1-5730. [PMID: 22110866 PMCID: PMC3215222 DOI: 10.3402/nano.v1i0.5730] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 11/14/2010] [Accepted: 11/14/2010] [Indexed: 12/22/2022]
Abstract
Hybrid micro-/nanogels are playing an increasing important part in a diverse range of applications, due to their tunable dimensions, large surface area, stable interior network structure, and a very short response time. We review recent advances and challenges in the developments of hybrid micro-/nanogels toward applications for optical sensing of pH, temperature, glucose, ions, and other species as well as for intracellular imaging. Due to their unique advantages, hybrid micro-/nanogels as optical probes are attracting substantial interests for continuous monitoring of chemical parameters in complex samples such as blood and bioreactor fluids, in chemical research and industry, and in food quality control. In particular, their intracellular probing ability enables the monitoring of the biochemistry and biophysics of live cells over time and space, thus contributing to the explanation of intricate biological processes and the development of novel diagnoses. Unlike most other probes, hybrid micro-/nanogels could also combine other multiple functions into a single probe. The rational design of hybrid micro-/nanogels will not only improve the probing applications as desirable, but also implement their applications in new arenas. With ongoing rapid advances in bionanotechnology, the well-designed hybrid micro-/nanogel probes will be able to provide simultaneous sensing, imaging diagnosis, and therapy toward clinical applications.
Collapse
Affiliation(s)
- Weitai Wu
- Department of Chemistry of The College of Staten Island, and The Graduate Center, The City University of New York, Staten Island, NY, USA
| | | |
Collapse
|
43
|
Gota C, Okabe K, Funatsu T, Harada Y, Uchiyama S. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J Am Chem Soc 2010; 131:2766-7. [PMID: 19199610 DOI: 10.1021/ja807714j] [Citation(s) in RCA: 354] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first methodology to measure intracellular temperature is described. A highly hydrophilic fluorescent nanogel thermometer developed for this purpose stays in the cytoplasm and emits stronger fluorescence at a higher temperature. Thus, intracellular temperature variations associated with biological processes can be monitored by this novel thermometer with a temperature resolution of better than 0.5 degrees C.
Collapse
Affiliation(s)
- Chie Gota
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
44
|
Wang F, Yao J, Wang Y, Tian L, Chen H, Djak A, Choi MME, Stupar J. Microcalorimetric Investigation of the Toxic Effect of Iron Species onEscherichia coli. Toxicol Mech Methods 2008; 17:325-30. [DOI: 10.1080/15376510601069992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Dai J, Zhang YZ, Liu Y. Microcalorimetric investigation on metabolic activity and effects of La (III) in mitochondria isolated from indica rice 9311. Biol Trace Elem Res 2008; 121:60-8. [PMID: 18186001 DOI: 10.1007/s12011-007-0062-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/02/2007] [Accepted: 05/03/2007] [Indexed: 10/22/2022]
Abstract
Thermogenic metabolic curves were determined by the ampoule method at 303 K using a TAM air isothermal microcalorimeter in mitochondria isolated from rice 9311 (Oryza sativa L). From the thermogenic curves the activity recovery rate constant k and the maximum heat power Pm were obtained. Both were positively correlated to the protein content of rice mitochondria. The corresponding correlation coefficients were 0.9959 and 0.9950, respectively, indicating that the in vitro metabolic activity of mitochondria can be reliably expressed by these parameters. Addition of La (III) ions in concentrations ranging from 0 to 130 microg/mL resulted in significantly higher k and Pm values. Concentrations from 140 to 180 microg/mL had the opposite effect. These results are consistent with previous reports on the effects of rare earth elements on plant growth. We propose that the lanthanum-induced change of mitochondrial metabolic activity is a possible mechanism by which La (III) ions influence indica rice 9311 growth.
Collapse
Affiliation(s)
- Jie Dai
- Department of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | | | | |
Collapse
|
46
|
Microcalorimetric study of the metabolism of U-937 cells undergoing apoptosis induced by the combined treatment of hyperthermia and chemotherapy. J Therm Biol 2002. [DOI: 10.1016/s0306-4565(01)00074-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Ruming Z, Yi L, Zhixiong X, Ping S, Songsheng Q. A microcalorimetric method for studying the biological effects of La(3+) on Escherichia coli. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2000; 46:1-9. [PMID: 11086189 DOI: 10.1016/s0165-022x(00)00124-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A microcalorimetric technique based on the bacterial heat-output was explored to evaluate the stimulatory effect of La(3+) on Escherichia coli. The power-time curves of the growth metabolism of E. coli and the effect of La(3+) on it were studied using an LKB-2277 BioActivity Monitor, stopped-flow method, at 37 degrees C. For evaluation of the results, the maximum power (P(max)), the growth rate constants (k) and the heat effects (Q(LOG), Q(STAT)) for the log phase, the stationary phase and the total heat effect (Q(T)) for E. coli were determined. The microcalorimetric method agreed with the conventional methods, such as cell numbers and biomass. La(3+) in the concentration ranges of 0-400 microg/ml has stimulatory effects on E. coli, while La(3+) ion of higher concentrations (>400 microg/ml) can inhibit the growth. This phenomenon is very similar to those observed from the in vitro cells and tissues from animals, plants and some microorganisms by other methods.
Collapse
Affiliation(s)
- Z Ruming
- College of Life Sciences, Wuhan University, 430072, Wuhan, PR China
| | | | | | | | | |
Collapse
|
48
|
Kallerhoff M, Karnebogen M, Singer D, Dettenbach A, Gralher U, Ringert RH. Microcalorimetric measurements carried out on isolated tumorous and nontumorous tissue samples from organs in the urogenital tract in comparison to histological and impulse-cytophotometric investigations. UROLOGICAL RESEARCH 1996; 24:83-91. [PMID: 8740977 DOI: 10.1007/bf00431084] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this comparative study, microcalorimetric measurements were carried out on a total of 96 tumorous and nontumorous tissue samples taken from organs of the urogenital tract using a thermal activity monitor (TAM). Changes in the heat emission of the tissue samples were measured at 1-min intervals and graphically displayed as a function of time. The aim of the study was to compare the microcalorimetric results with impulse-cytophotometric and histological findings and provide evidence for the metabolic activity of tumorous and nontumorous tissue. In order to obtain the variation in metabolic activity, the maxima (Pmax) of the curves were determined as a value of the maximum thermal power of a tissue sample, the mean values (P) were determined by the mean thermal power and the contour integrals (W) were defined by the behavior of the energy reserves and their mobilization. The first part of the study was carried out to investigate whether tumorous and nontumorous tissue samples differ in general according to their metabolic activity. We discovered, using the parameters described above, that in general tumorous tissue exhibited a higher metabolic activity than nontumorous tissue samples. For example, both W and P in tumorous prostate tissue samples were eightfold higher and the (Pmax) value was 8.4-fold higher than in normal tissue. Additional investigations on testicle and kidney tissues were performed to find a possible correlation between microcalorimetric results and histological grading. We found that an increasing malignancy correlated with a higher metabolic activity of the tissue. Based upon these results we were able to differentiate the various histological gradings of these tumorous tissues by microcalorimetric measurements. The results show it is possible to differentiate between normal and tumorous tissue samples by microcalorimetric measurement based on the distinctly higher metabolic activity of malignant tissue. Furthermore, microcalorimetry allows a differentiation and classification of tissue samples into their histological grading. With the help of microcalorimetry, it might be possible in future to detect and record the metabolic processes of isolated tissue structures and changes in these activities as a result of medical intervention such as cytostatic treatment.
Collapse
Affiliation(s)
- M Kallerhoff
- Department of Urology, Georg-August Universität, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|