1
|
Scudeler EL, Daquila BV, de Carvalho SF, Conte H, Padovani CR, Dos Santos DC. Azadirachtin-based insecticide impairs testis morphology and spermatogenesis of the southern armyworm Spodoptera eridania (Lepidoptera: Noctuidae). PEST MANAGEMENT SCIENCE 2023; 79:1650-1659. [PMID: 36565161 DOI: 10.1002/ps.7338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND In the search for alternative tools for integrated pest management, azadirachtin, a botanical insecticide, has been used with the most promising activity against Spodoptera spp., but the mechanism of cytotoxicity on reproductive organs remains unclear. Spodoptera eridania (Stoll, 1782) is a polyphagous pest with great economic importance that has become an important target to elucidate the action of azadirachtin on the reproductive organs of insect pests, helping to understand the deleterious effects caused by its exposure. This study evaluated the effects of chronic exposure to azadirachtin on the morphology and ultrastructure of S. eridania larval testes as well as larval development. RESULTS Azadirachtin exposure (6 or 18 mg a.i. L-1 ) caused a progressive increase in cumulative mortality and reduced gain in body mass after 5 days. Testicular structure indicated a reduction in their size with internal morphological changes such as spermatogonia, spermatogonial, spermatocytes and spermatid cysts in degeneration. The occurrence of cell death in germ and somatic cells was evidenced by the TUNEL technique. Electron microscopy revealed changes in cystic cells, such as cytoplasmic membrane rupture and cytoplasmic vacuolization. Chromatin compaction, changes in the rough endoplasmic reticulum and Golgi complex cisternae were observed in germ cells. Apoptotic bodies occurred between germ cell cysts. CONCLUSION Azadirachtin damaged the testes of S. eridania larvae, and these changes compromised spermatogenesis and consequently the development of the reproductive potential of this specimen, making azadirachtin a promising botanical insecticide for application in integrated pest management programs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elton Luiz Scudeler
- Laboratory of Insects, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Bruno Vinicius Daquila
- Laboratory of Biological Control and Bioprospection of Insects. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | - Shelly Favorito de Carvalho
- Electron Microscopy Center, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Helio Conte
- Laboratory of Biological Control and Bioprospection of Insects. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | - Carlos Roberto Padovani
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Daniela Carvalho Dos Santos
- Laboratory of Insects, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil
- Electron Microscopy Center, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil
| |
Collapse
|
2
|
Chatterjee S, Bag S, Biswal D, Sarkar Paria D, Bandyopadhyay R, Sarkar B, Mandal A, Dangar TK. Neem-based products as potential eco-friendly mosquito control agents over conventional eco-toxic chemical pesticides-A review. Acta Trop 2023; 240:106858. [PMID: 36750152 DOI: 10.1016/j.actatropica.2023.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Mosquitoes cause serious health hazards for millions of people across the globe by acting as vectors of deadly communicable diseases like malaria, filariasis, dengue and yellow fever. Use of conventional chemical insecticides to control mosquito vectors has led to the development of biological resistance in them along with adverse environmental consequences. In this light, the recent years have witnessed enormous efforts of researchers to develop eco-friendly and cost-effective alternatives with special emphasis on plant-derived mosquitocidal compounds. Neem oil, derived from neem seeds (Azadirachta indica A. Juss, Meliaceae), has been proved to be an excellent candidate against a wide range of vectors of medical and veterinary importance including mosquitoes. It is environment-friendly, and target-specific at the same time. The active ingredients of neem oil include limonoids like azadirachtin A, nimbin, salannin and numerous other substances that are still waiting to be discovered. Of these, azadirachtin has been shown to be very effective and is mainly responsible for its toxic effects. The quality of the neem oil depends on its azadirachtin content which, in turn, depends on its manufacturing process. Neem oil can be used directly or as nanoemulsions or nanoparticles or even in the form of effervescent tablets. When added to natural breeding habitat waters they exert their mosquitocidal effects by acting as ovicides, larvicides, pupicides and/or oviposition repellents. The effects are generated by impairing the physiological pathways of the immature stages of mosquitoes or directly by causing physical deformities that impede their development. Neem oil when used directly has certain disadvantages mainly related to its disintegration under atmospheric conditions rendering it ineffective. However, many of its formulations have been reported to remain stable under environmental conditions retaining its efficiency for a long time. Similarly, neem seed cake has also been found to be effective against the mosquito vectors. The greatest advantage is that the target species do not develop resistance against neem-based products mainly because of the innumerable number of chemicals present in neem and their combinations. This makes neem-based products highly potential yet unexplored candidates of mosquito control agents. The current review helps to elucidate the roles of neem oil and its various derivatives on mosquito vectors of public health concern.
Collapse
Affiliation(s)
- Soumendranath Chatterjee
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India.
| | - Souvik Bag
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Debraj Biswal
- Department of Zoology, Government General Degree College at Mangalkote, Burdwan 713132, West Bengal, India
| | | | | | - Basanta Sarkar
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Abhijit Mandal
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Tushar Kanti Dangar
- Microbiology Laboratory, Division of Crop Production, National Rice Research Institute, Cuttack 753006, Odisha, India
| |
Collapse
|
3
|
Hashem FM, Elgazzar E, Mostafa WA. Ultrastructural changes in the fat body of desert locust, Schistocerca gregaria (Orthoptera: Acrididae) treated with zinc chromium oxide nanostructures via chemical co-precipitation approach. BMC Chem 2023; 17:7. [PMID: 36803540 PMCID: PMC9940394 DOI: 10.1186/s13065-023-00914-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
The present work aims to investigate the ultrastructural changes in the fat body of fifth instar nymphs Schistocerca gregaria (Orthoptera: Acrididae) treated with zinc chromium oxide (ZnCrO). The nanoparticles (NPs) were prepared by co-precipitation route and characterized using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The ZnCrO NPs exhibited polycrystalline hexagonal structure, composed of spherical-hexagonal shapes with an average size ~ 25 nm. Besides, the UV-Vis spectrophotometer (Jasco-V-570) was utilized for optical measurements. The energy gap [Formula: see text] was estimated from the transmittance (T%) and reflectance (R%) spectra through the range of 3.307-3.840 eV. In biological sections, S. gregaria 5th instar nymphs, TEM images demonstrated that the fat body was strongly impacted with the concentration 2 mg NPs result in great agglomeration of chromatin in the nucleus as well as haemoglobin cells (HGCs) pierced with malformed trachea (Tr) at 5th and 7th days post treatment. The obtained results indicated a positive action of the prepared nanomaterial on Schistocerca gregaria fat body organelles.
Collapse
Affiliation(s)
- Fatma M. Hashem
- grid.31451.320000 0001 2158 2757Entomology Section, Zoology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Elsayed Elgazzar
- grid.33003.330000 0000 9889 5690Department of Physics, Faculty of Science, Suez Canal University, Ismailia, 41522 Egypt
| | - Wageha A. Mostafa
- grid.31451.320000 0001 2158 2757Entomology Section, Zoology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| |
Collapse
|
4
|
Sun C, Li S, Wang K, Yin X, Wang Y, Du M, Wei J, An S. Cyclosporin A as a Potential Insecticide to Control the Asian Corn Borer Ostrinia furnacalis Guenée (Lepidoptera: Pyralidae). INSECTS 2022; 13:965. [PMID: 36292912 PMCID: PMC9604310 DOI: 10.3390/insects13100965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The long-term use of chemical insecticides has caused serious problems of insect resistance and environmental pollution; new insecticides are needed to solve this problem. Cyclosporin A (CsA) is a polypeptide produced by many fungi, which is used to prevent or treat immune rejection during organ transplantation. However, little is known about the utility of CsA as an insecticide. Therefore, this study evaluated the insecticidal activity of CsA using Ostrinia furnacalis as a model. The results demonstrated that CsA was toxic to O. furnacalis with LC50 values of 113.02 μg/g and 198.70 μg/g for newly hatched neonates and newly molted third-instar larvae, respectively. Furthermore, CsA treatment had sublethal effects on the development of O. furnacalis, and significantly reduced the fecundity of adults; this suggests that CsA has great potential to suppress O. furnacalis populations. Further analysis revealed that CsA suppressed calcineurin activity in larvae. CsA had independent or synergistic toxic effects on O. furnacalis when combined with β-cypermethrin, indoxacarb, emamectin benzoate, azadirachtin, and the Bacillus thuringiensis toxin Cry1Ac, which suggests that CsA can help prevent or manage resistance. Our study provides detailed information on the potential of CsA as an insecticide for controlling lepidopterans.
Collapse
Affiliation(s)
- Chengxian Sun
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shunjia Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Kai Wang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinming Yin
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanmei Wang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Mengfang Du
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jizhen Wei
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiheng An
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
5
|
Mahajan E, Singh S, Diksha, Kaur S, Sohal SK. The genotoxic, cytotoxic and growth regulatory effects of plant secondary metabolite β-caryophyllene on polyphagous pest Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Toxicon 2022; 219:106930. [PMID: 36167142 DOI: 10.1016/j.toxicon.2022.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022]
Abstract
Use of secondary metabolites as an alternative to organic pesticides is an eco-friendly and safe strategy in pest management. β-caryophyllene [(1R,4E,9S)-4,11,11-trimethyl-8-methylene bicyclo [7.2.0]undec-4-ene], a natural sesquiterpene is found as an essential oil in many plants like Syzygium aromaticum, Piper nigrum, Cannabis sativa. The present study aims at exploring the insecticidal, genotoxic and cytotoxic potential of β-caryophyllene against common cutworm Spodoptera litura (Fab.), a major polyphagous pest. S. litura larvae were fed on different concentrations (5, 25, 125, 625 and 3125 ppm) of β-caryophyllene. Results revealed delay in larval and pupal period with increase in concentration. Larval mortality increased and adult emergence declined significantly with increase in concentration. Higher concentrations of β-caryophyllene caused pupal and adult deformities. A negative impact of β-caryophyllene was also seen on the nutritional physiology of S. litura. Parameters such as relative growth rate, relative consumption rate, efficiency of conversion of ingested food, efficiency of conversion of digested food and approximate digestibility showed a significant reduction in a dose dependent manner. DNA damage assessed using comet assay revealed significant genotoxic effects at LC30 and LC50 concentrations. There was an increase in tail length, percent tail DNA, tail moment and olive tail moment. Phenol oxidase activity was suppressed at LC50 concentration with respect to control. Total hemocyte count also declined significantly at LC30 and LC50 concentrations as compared to control. β-caryophyllene induced genotoxic and cytotoxic damage affecting the growth and survival of S. litura larvae. Our findings suggest that β-caryophyllene has the potential to be used for the management of insect pests.
Collapse
Affiliation(s)
- Evani Mahajan
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India
| | - Sumit Singh
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India
| | - Diksha
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India
| | - Sanehdeep Kaur
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India
| | - Satwinder Kaur Sohal
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India.
| |
Collapse
|
6
|
Li H, Zhang J, Ma T, Li C, Ma Z, Zhang X. Acting target of toosendanin locates in the midgut epithelium cells of Mythimna separate Walker larvae (lepidoptera: Noctuidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110828. [PMID: 32531576 DOI: 10.1016/j.ecoenv.2020.110828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Toosendanin (TSN), which is extracted from the root bark of Melia toosendan Siebold and Zuccarini, has multiple modes of action against insects. Especially, this compound has a potent stomach poisoning activity against several lepidoptera pests. In this paper, the signs of toxicity, digestive enzymes activity, the histopathological changes and immuno-electron microscopic localization of TSN in the midgut epithelium of Mythimna separate Walker larvae were investigated for better understanding its action mechanism against insects. The bioassay results indicated that TSN has strong stomach poisoning against the fifth-instar larvae of M. separata (LC50 = 252.23 μg/mL). The typical poisoned symptom were regurgitation and paralysis. Activities of digestive enzymes had no obvious changes after treatment with LC80 dose of TSN. The midgut epithelial cells of insect were damaged by TSN, showing the degeneration of microvilli, hyperplasia of smooth endoplasmic reticulum and condensation of chromatin. Immunohistochemical analysis revealed that the gold particles existed on the microvilli of columnar cells and goblet cells, and gradually accumulated with the exacerbation of poisoning symptoms, showing that TSN targets on the microvilli of the midgutcells. Therefore, TSN acts on digestive system and locates in the microvilli of midgutcells of M. separata.
Collapse
Affiliation(s)
- Hai Li
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, 571010, China
| | - Ting Ma
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Li
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province, 712100, China.
| | - Xing Zhang
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province, 712100, China
| |
Collapse
|
7
|
El-Fattah AYA, El-Wahab ASA, Jamal ZA, El-Helaly AA. Histopathological studies of red palm weevil Rhynchophorus ferrugineus, (Olivier) larvae and adults to evaluate certain nano pesticides. BRAZ J BIOL 2020; 81:195-201. [PMID: 32159618 DOI: 10.1590/1519-6984.227621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/23/2019] [Indexed: 09/01/2023] Open
Abstract
Rhynchophorus ferrugineus (RPW) (Olivier) (Coleoptera: Curculionidae) is one of the most destructive pest of palm according to dozens of literature, a lot of effort have been made since three decades up to date to solve this problem, one of newest solution raised is using nano pesticides. Imidacloprid and Chloropyrophos and their nano form were tested against 10 days-old larvae and newly emerged adults of the red palm weevil. The pesticides had toxicological and pathological effects on Rh. ferrugineus larvae and adults. The toxicity effect of nano chloropyrophos was more than others. The damage included vaculation of cytoplasm, analyzes and destroyed nuclei of the epithelial cells. The larvae were more sensitive in the total damages in comparison with adults. This investigation is the first record to the histopathological effects of nano pesticides.
Collapse
Affiliation(s)
- A Y Abd El-Fattah
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - A S Abd El-Wahab
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Z A Jamal
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, 46429, Kingdom of Saudi Arabia
| | - A A El-Helaly
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Zhao T, Lai D, Zhou Y, Xu H, Zhang Z, Kuang S, Shao X. Azadirachtin A inhibits the growth and development of Bactrocera dorsalis larvae by releasing cathepsin in the midgut. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109512. [PMID: 31398584 DOI: 10.1016/j.ecoenv.2019.109512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Azadirachtin, a botanical insecticide with high potential, has been widely used in pest control. Azadirachtin has shown strong biological activity against Bactrocera dorsalis in toxicological reports, but its mechanism remains unclear. This study finds that azadirachtin A inhibits the growth and development of Bactrocera dorsalis larvae. The larval weights and body sizes of the azadirachtin-treated group were significantly less than those of the control group in a concentration-dependent manner. Further, pathological sections revealed that azadirachtin destroyed the midgut cell structure and intestinal walls, while TUNEL staining showed that azadirachtin could induce apoptosis of midgut cells, and Western blot analysis indicated that Bcl-XL expression was inhibited and cytochrome c (CytC) released into the cytoplasm. The results also imply azadirachtin-induced structural alterations in the Bactrocera dorsalis larvae midgut by activation of apoptosis. RNA-seq analysis of midgut cells found that 482 and 708 unique genes were upregulated and downregulated, respectively. These differentially expressed genes (DEGs) were enriched in apoptotic and lysosomal signaling pathways and included 26 genes of the cathepsin family. qRT-PCR verified the expression patterns of some DEGs, indicating that Cathepsin F was upregulated by 278.47-fold and that Cathepsin L and Cathepsin D were upregulated by 28.06- and 8.97-fold, respectively. Finally, association analysis between DEGs and DEMs (differentially expressed metabolites) revealed that azadirachtin significantly reduced the digestion and absorption of carbohydrates, proteins, fats, vitamins and minerals in the midgut. In conclusion, azadirachtin induces the release of cathepsin from lysosomes, causing apoptosis in the midgut. Ultimately, this leads to reduced digestion and absorption of nutrient metabolites in the midgut and inhibition of the growth and development of Bactrocera dorsalis larvae.
Collapse
Affiliation(s)
- Tianyi Zhao
- College of Animal Science and Technology, Shihezi University, Xinjiang, 832003, China
| | - Duo Lai
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - You Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zhixiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Shizi Kuang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Xuehua Shao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
9
|
Santorum M, Brancalhão RMC, Guimarães ATB, Padovani CR, Tettamanti G, Dos Santos DC. Negative impact of Novaluron on the nontarget insect Bombyx mori (Lepidoptera: Bombycidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:82-90. [PMID: 30878865 DOI: 10.1016/j.envpol.2019.02.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/31/2019] [Accepted: 02/26/2019] [Indexed: 05/28/2023]
Abstract
Due to increased use of agrochemicals and growing concerns about ecotoxicology, the development of new insecticides, moving away from those with neurotoxic and broad spectrum effects towards insecticides that are safer for the environment and nontarget beneficial species, has been a research priority. Novaluron stands out among these newer insecticides, is an insect growth regulator that is used for the control of insect pests in crops grown close to mulberry plantations. Mulberry serves as food for the silkworm Bombyx mori, which is a nontarget insect of great economic importance to silk production. We investigated the lethal and sublethal effects of Novaluron on the development of B. mori. Larvae were segregated into experimental groups: the control groups (CGs) and the treatment groups (TGs), which were treated with the Novaluron concentration of 0.15 mL/L. Following exposure, we analyzed: larval mortality, changes in the insect life cicle and cytotoxic effects on the midgut cells. This is the first report about the Novaluron's effects on B.mori. We detected rupture in the integument, complete cessation of feeding, late development, incomplete ecdysis and production of defective cocoons. After 240 h of exposure, there was 100% mortality in TG larvae exposed in the 3rd instar and 20% mortality from larvae exposed in the 5th instar. Cytotoxic effects was observed, such as dilation of cells, emission of cytoplasmic protrusions, extreme rarefaction of the cytoplasm and nuclei, dilation of the endoplasmic reticulum in addition to changes in mitochondria, the presence of large digestive vacuoles and intercellular spaces and the presence of active caspase. Novaluron exposure impairs the midgut and may affect the physiological functions of this organ. Novaluron additionally compromises several phases of insect development, indicating the importance of toxicology studies that utilize different life stages of nontarget species to evaluate the safe use of insecticides.
Collapse
Affiliation(s)
- Marilucia Santorum
- Laboratory of Insects, Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Rose Meire Costa Brancalhão
- Center of Biological Sciences and Health, State University of Western Paraná, UNIOESTE, Cascavel, PR, Brazil
| | | | - Carlos Roberto Padovani
- Department of Biostatistics, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Daniela Carvalho Dos Santos
- Laboratory of Insects, Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil; Electron Microscopy Center of the Institute of Biosciences of Botucatu, UNESP, SP, Brazil.
| |
Collapse
|
10
|
Garcia ASG, Scudeler EL, Pinheiro PFF, Dos Santos DC. Can exposure to neem oil affect the spermatogenesis of predator Ceraeochrysa claveri? PROTOPLASMA 2019; 256:693-701. [PMID: 30460415 DOI: 10.1007/s00709-018-1329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Novel biological control methods and integrated pest management strategies are basic requirements for the development of sustainable agriculture. As a result, there is a growing demand for research on the use of plant extracts and natural enemies such as the green lacewing, Ceraeochrysa claveri, as natural pest control methods. Studies have shown that although natural compounds such as neem oil (Azadirachta indica) are effective as pest control strategies, they also cause sublethal effects on nontarget insects, such as C. claveri. The aim of this study was to examine the effects of neem oil on C. claveri testes. C. claveri larvae were fed Diatraea saccharalis eggs, which were pretreated with 0.5%, 1%, and 2% neem oil. Testes were collected from larvae, pupae, and adults and analyzed using light and electron (transmission and scanning) microscopy. Changes in cellular stress and possible cell death were also determined by TUNEL assay and the marker HSP-70. The results showed that neem oil affects the organization and distribution of cysts in the testes and the normal sequence of cyst development, causing a delay in spermatogenesis in the testes of treated insects. Tests for cellular stress and DNA fragmentation indicated there was no cellular alteration in the treated groups. Although neem oil does not induce cell death or changes in HSP-70 expression, this biopesticide negatively impacts the process of spermatogenesis and could decrease the perpetuation of this species in the agroecosystem, indicating that the use of neem oil in association with green lacewings as a biological control should be carefully evaluated.
Collapse
Affiliation(s)
- Ana Silvia Gimenes Garcia
- Laboratory of Insects, Department of Morphology, Institute of Biosciences of Botucatu, UNESP - São Paulo State University, Botucatu, SP, 18618-689, Brazil
| | - Elton Luiz Scudeler
- Laboratory of Insects, Department of Morphology, Institute of Biosciences of Botucatu, UNESP - São Paulo State University, Botucatu, SP, 18618-689, Brazil
| | | | - Daniela Carvalho Dos Santos
- Laboratory of Insects, Department of Morphology, Institute of Biosciences of Botucatu, UNESP - São Paulo State University, Botucatu, SP, 18618-689, Brazil.
- Electron Microscopy Center, Institute of Biosciences of Botucatu, UNESP - São Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
11
|
Scudeler EL, Garcia ASG, Padovani CR, Dos Santos DC. Pest and natural enemy: how the fat bodies of both the southern armyworm Spodoptera eridania and the predator Ceraeochrysa claveri react to azadirachtin exposure. PROTOPLASMA 2019; 256:839-856. [PMID: 30643985 DOI: 10.1007/s00709-019-01347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
The effects of biopesticides on insects can be demonstrated by morphological and ultrastructural tools in ecotoxicological analysis. Azadirachtin-based products are widely used as biopesticides, affecting numerous insect populations. Through morphological biomarkers, this study aimed to characterize the fat bodies of both the southern armyworm Spodoptera eridania and the predator Ceraeochrysa claveri after chronic exposure to azadirachtin. Larvae of S. eridania and C. claveri were fed with fresh purple lettuce leaves (Lactuca sativa) and egg clusters of Diatraea saccharalis treated with azadirachtin solution of 6 mg active ingredient (a.i.)/L and 18 mg a.i./L for 7 days, respectively. The biological data showed a significant reduction in survival and body mass in S. eridania and cytotoxic effects in the parietal and perivisceral fat bodies in both species. Ultrastructural cell damage was observed in the trophocytes of both species such as dilated cisternae of the rough endoplasmic reticulum and swollen mitochondria. Trophocytes of S. eridania and C. claveri of the parietal and perivisceral layers responded to those injuries by different cytoprotective and detoxification means such as an increase in the amount of cytoplasmic granules containing calcium, expression of heat shock protein (HSP)70/HSP90, and development of the smooth endoplasmic reticulum. Despite all the different means of cytoprotection and detoxification, they were not sufficient to recover from all the cellular damages. Azadirachtin exhibited an excellent performance for the control of S. eridania and a moderate selectivity for the predator C. claveri, which presents better biological and cytoprotective responses to chronic exposure to azadirachtin.
Collapse
Affiliation(s)
- Elton Luiz Scudeler
- Laboratory of Insects, Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Ana Silvia Gimenes Garcia
- Laboratory of Insects, Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Carlos Roberto Padovani
- Department of Biostatistics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Daniela Carvalho Dos Santos
- Laboratory of Insects, Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
- Electron Microscopy Center, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
12
|
Abdellaoui K, Boussadia O, Miladi M, Boughattas I, Omri G, Mhafdhi M, Hazzoug M, Acheuk F, Brahem M. Olive Leaf Extracts Toxicity to the Migratory Locust, Locusta migratoria: Histopathological Effects on the Alimentary Canal and Acetylcholinesterase and Glutathione S-Transferases Activity. NEOTROPICAL ENTOMOLOGY 2019; 48:246-259. [PMID: 30151672 DOI: 10.1007/s13744-018-0628-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
The migratory locust, Locusta migratoria (Linnaeus), is the most widespread locust species. Frequent applications of insecticides have inevitably resulted in environmental pollution and development of resistance in some natural populations of the locust. To find a new and safe alternative to conventional insecticides, experiments were conducted to assess the effect of olive leaf extracts on L. migratoria fifth instar larvae. The methanolic extracts were prepared from the leaves sampled during four phenological growth stages of olive tree which are as follows: Cluster formation (Cf), Swelling inflorescence buds (Sib), Full flowering (Ff), and Endocarp hardening (Eh). The most relevant result was noted with the extract prepared from the leaves collected at the Sib-stage. Results showed that treatment of newly emerged larvae resulted in a significant mortality with a dose-response relationship. The olive leaf extracts toxicity was also demonstrated by histopathological changes in the alimentary canal resulting in a considerable disorganization and serious damage of the midgut, ceca, and proventriculus structure. Epithelial cells alterations, less dense and degraded striated border, disintegrated regeneration crypts, vacuolarized cells, extrusion of cytoplasmic contents, and rupture of muscular layer were evident in the midgut and ceca of treated larvae. Data of biochemical analyzes showed that olive leaf extracts induced a significant decrease of the hemolymph metabolites (proteins, carbohydrates, and lipids). In a second series of experiments, we showed that the olive leaf extracts reduced the activity of acetylcholinesterase and induced the glutathione S-transferases with a dose-response relationship.
Collapse
Affiliation(s)
- K Abdellaoui
- Dept of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott Mariem, Sousse Univ, Sousse, Tunisia.
| | - O Boussadia
- Unit of Sousse, Olive Tree Institute, Sousse, Tunisia
| | - M Miladi
- Dept of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott Mariem, Sousse Univ, Sousse, Tunisia
| | - I Boughattas
- Dept of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott Mariem, Sousse Univ, Sousse, Tunisia
| | - G Omri
- Dept of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott Mariem, Sousse Univ, Sousse, Tunisia
| | - M Mhafdhi
- General Directorate of Plant Health and Agricultural Inputs Control, Ministry of Agriculture, Tunis, Tunisia
| | - M Hazzoug
- Dept of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott Mariem, Sousse Univ, Sousse, Tunisia
| | - F Acheuk
- Lab of Valorization and Conservation of Biological Resources "Valcore," Dept of Biology, Faculty of Sciences, Univ of Boumerdes, Boumerdes, Algeria
| | - M Brahem
- Unit of Sousse, Olive Tree Institute, Sousse, Tunisia
| |
Collapse
|
13
|
Wang Z, Perumalsamy H, Wang X, Ahn YJ. Toxicity and possible mechanisms of action of honokiol from Magnolia denudata seeds against four mosquito species. Sci Rep 2019; 9:411. [PMID: 30674912 PMCID: PMC6344527 DOI: 10.1038/s41598-018-36558-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
Abstract
This study was performed to determine the toxicity and possible mechanism of the larvicidal action of honokiol, extracted from Magnolia denudata seeds, and its 10 related compounds against third-instar larvae of insecticide-susceptible Culex pipiens pallens, Aedes aegypti, and Aedes albopictus and Anopheles sinensis resistant to deltamethrin and temephos. Honokiol (LC50, 6.13–7.37 mg/L) was highly effective against larvae of all of the four mosquito species, although the toxicity of the compound was lower than that of the synthetic larvicide temephos. Structure–activity relationship analyses indicated that electron donor and/or bulky groups at the ortho or para positions of the phenol were required for toxicity. Honokiol moderately inhibited acetylcholinesterase and caused a considerable increase in cyclic AMP levels, indicating that it might act on both acetylcholinesterase and octopaminergic receptors. Microscopy analysis clearly indicated that honokiol was mainly targeted to the midgut epithelium and anal gills, resulting in variably dramatic degenerative responses of the midgut through sequential epithelial disorganization. Honokiol did not affect the AeCS1 mRNA expression level in Ae. aegypti larvae, but did enhance expression of the genes encoding vacuolar-type H+-ATPase and aquaporin 4, indicating that it may disturb the Na+, Cl− and K+ co-transport systems. These results demonstrate that honokiol merits further study as a potential larvicide, with a specific target site, and as a lead molecule for the control of mosquito populations.
Collapse
Affiliation(s)
- Zhangqian Wang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, China
| | - Haribalan Perumalsamy
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xue Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Young-Joon Ahn
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea. .,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
14
|
Pradeep Kumar R, Dinesh Babu KV, Evans DA. Isolation, characterization and mode of action of a larvicidal compound, 22-hydroxyhopane from Adiantum latifolium Lam. against Oryctes rhinoceros Linn. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:161-170. [PMID: 30744890 DOI: 10.1016/j.pestbp.2018.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/18/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Oryctes rhinoceros Linn. is one of the most serious pests of coconuts and other palms. Following bioassay guided method, a larvicidal compound, 22-hydroxyhopane has been isolated for the first time from methanol extract of leaves of Adiantum latifolium Lam. against the pest (LC50 value 20.81 μg/g). It is a hopanoid triterpene with molecular mass of 442.42 g/mol. The compound exhibited antibacterial activity against symbiotic gut bacteria, caused histolysis of midgut tissues and inhibited secretion of digestive enzymes such as protease, amylase and trehalase resulting in weight loss of larvae. Enzyme immunoassay showed an elevation of 20-hydroxyecdysone level in haemolymph causing disruption of metamorphosis of larvae.
Collapse
Affiliation(s)
- R Pradeep Kumar
- Department of Zoology, University College, Thiruvananthapuram, Kerala 695034, India.
| | - K V Dinesh Babu
- Department of Chemistry, Government College for Women, Thiruvananthapuram, Kerala 695014, India
| | - D A Evans
- Department of Zoology, University College, Thiruvananthapuram, Kerala 695034, India.
| |
Collapse
|
15
|
Richardi VS, Vicentini M, Morais GS, Rebechi D, da Silva TA, Fávaro LF, Navarro-Silva MA. Effects of phenanthrene on different levels of biological organization in larvae of the sediment-dwelling invertebrate Chironomus sancticaroli (Diptera: Chironomidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:277-287. [PMID: 29990935 DOI: 10.1016/j.envpol.2018.06.091] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
The hydrocarbon phenanthrene is an organic compound commonly found in the environment. In aquatic ecosystems, it is highly toxic to organisms, although little is known about its effects on sediment-dwelling organisms. The purpose of this study was to evaluate phenanthrene effects on biochemical, histological, and ontogenetic levels in larvae of the sediment-dwelling invertebrate Chironomus sancticaroli at acute and chronic exposure. Lethal concentrations were estimated and toxicity (acute-96 h and chronic- 8 d) tests were performed at phenanthrene concentrations from 0.12 to 1.2 mg L-1. At acute and chronic exposure, we evaluated acetylcholinesterase (AChE), alpha esterase (EST-α), and beta esterase (EST-β) activities as well as histological alterations. In the assays with chronic exposure, effects on larval development were estimated using antennae length (instar estimative) and body length (growth estimative). The EST-α showed a significantly increased activity after 48 h at acute exposure to high concentrations of phenanthrene, while EST-β activity was increased after 48 and 72 h at acute exposure at higher concentrations and at 0.12 mg L-1 at chronic exposure. At acute exposure, the midgut showed alterations such as brush border disruption, gastric caeca regression, and lumen area reduction; the fat body showed nuclear alteration in the trophocytes, while the Malpighian tubules showed brush border reduction and the salivary glands were subject to cytoplasm vacuolation. At chronic exposure, the same alterations were observed, in addition to vacuolar coalescence in the trophocytes of the fat body. Regarding larval development, a reduction of body length was observed with increasing phenanthrene concentrations. Similarly, molting was delayed; in the control group, all larvae were in the fourth instar, while at higher phenanthrene concentrations, larvae were predominantly in the third instar. Phenanthrene had toxic effects on this chironomid, indicating risks for natural populations.
Collapse
Affiliation(s)
- V S Richardi
- Department of Zoology, Federal University of Parana, Box 19020, 81530-990, Curitiba, Paraná, Brazil.
| | - M Vicentini
- Department of Pharmacology, Federal University of Parana, Box 19031, 81530-990, Curitiba, Paraná, Brazil
| | - G S Morais
- Department of Zoology, Federal University of Parana, Box 19020, 81530-990, Curitiba, Paraná, Brazil
| | - D Rebechi
- Forrest Inovations, Curitiba, Paraná, Brazil
| | - T A da Silva
- Department of Chemistry, Federal University of Parana, Box 19032, 81530-990, Curitiba, Paraná, Brazil
| | - L F Fávaro
- Department of Cell Biology, Federal University of Parana, Box 19031, 81530-990, Curitiba, Paraná, Brazil
| | - M A Navarro-Silva
- Department of Zoology, Federal University of Parana, Box 19020, 81530-990, Curitiba, Paraná, Brazil.
| |
Collapse
|
16
|
Saleem S, Muhammad G, Hussain MA, Bukhari SNA. A comprehensive review of phytochemical profile, bioactives for pharmaceuticals, and pharmacological attributes of Azadirachta indica. Phytother Res 2018; 32:1241-1272. [PMID: 29671907 DOI: 10.1002/ptr.6076] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/25/2018] [Accepted: 02/28/2018] [Indexed: 11/08/2022]
Abstract
Azadirachta indica L. is a multipurpose medicinal tree of family Meliaceae. It occurs in tropical and semitropical regions of the world. Different parts of this miraculous tree are used to treat pyrexia, headache, ulcer, respiratory disorders, cancer, diabetes, leprosy, malaria, dengue, chicken pox, and dermal complications. The tree is popular for its pharmacological attributes such as hypolipidemic, antifertility, microbicidal, antidiabetic, anti-inflammatory, hepatoprotective, antipyretic, hypoglycemic, insecticidal, nematicidal, antiulcer, antioxidant, neuroprotective, cardioprotective, and antileishmaniasis properties. A. indica is also rich in various phytochemicals for pharmaceuticals such as alkaloids, steroids, flavonoids, terpenoids, fatty acids, and carbohydrates. The fungicidal potential of the tree is due to the presence of azadirachtin and nimbin. Herein, we have compiled a comprehensive review of phytochemical profile, pharmacological attributes, and therapeutic prospective of this multipurpose tree.
Collapse
Affiliation(s)
- Sumaira Saleem
- Department of Chemistry, GC University Lahore, Lahore, 54000, Pakistan
| | - Gulzar Muhammad
- Department of Chemistry, GC University Lahore, Lahore, 54000, Pakistan.,Department of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf, Sakakah, 2014, Saudi Arabia
| |
Collapse
|
17
|
Al-Mekhlafi FA. Larvicidal, ovicidal activities and histopathological alterations induced by Carum copticum (Apiaceae) extract against Culex pipiens (Diptera: Culicidae). Saudi J Biol Sci 2018; 25:52-56. [PMID: 29379357 PMCID: PMC5775081 DOI: 10.1016/j.sjbs.2017.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/15/2017] [Accepted: 02/25/2017] [Indexed: 11/22/2022] Open
Abstract
An experiment was carried out, firstly, to determine the possible toxicity of Carum copticum (Apiaceae) extract against Culex pipiens (Diptera: Culicidae), and, secondly, to study the histopathological alterations in the midgut of Cx. pipiens as a result of treatment with C. copticum extract. Larvicidal and ovicidal activities of C. copticum extract against the larvae of Cx. pipiens was determined according to World health organization (WHO). The inhibition effect of C. copticum was assessed by determining the mortality of the treated larvae and eggs. The histopathological effect of the C. copticum extracts on midgut epithelium of the larvae was examined under both light and transmission electron microscopy. The crude extract of C. copticum exerted 100% mortality for Cx. pipiens after 24 h at 200 μm/ml, and zero hatchability (100% mortality) at 150 μm/ml for Cx. pipiens. The histopathological study showed that larvae treated with C. copticum extract had cytopathological alterations of the midgut epithelium. The study provided information on various effects of C. copticum extract against Cx. pipiens.
Collapse
|
18
|
Kaur M, Kumar R, Upendrabhai DP, Singh IP, Kaur S. Impact of sesquiterpenes from Inula racemosa (Asteraceae) on growth, development and nutrition of Spodoptera litura (Lepidoptera: Noctuidae). PEST MANAGEMENT SCIENCE 2017; 73:1031-1038. [PMID: 27607232 DOI: 10.1002/ps.4429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/23/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The use of botanical pesticides for protecting crops from insect pests has assumed greater importance all over the world owing to growing awareness of harmful effects of indiscriminate use of synthetic pesticides. Inula racemosa Hook. f. (Asteraceae), a medicinally important perennial herb, is rich in sesquiterpenes with many biological activities. The present studies were conducted with the objective to evaluate the sesquiterpenes isolated from I. racemosa for insecticidal activity against Spodoptera litura (F.). RESULTS Alantolactone and isoalantolactone isolated from I. racemosa exerted growth inhibitory effects on S. litura. Addition of both the sesquiterpenes to larval diet extended the development period and reduced pupation as well as adult emergence. The dietary utilisation experiments on third-instar larvae of S. litura revealed reduction in consumption and growth rates of larvae as well as efficiency of conversion of ingested and digested food owing to alantolactone and isoalantolactone. CONCLUSION The root extract of I. racemosa, which is rich in two sesquiterpenes, i.e. alantolactone and isoalantolactone, has the potential for management of S. litura. However, there is a need to understand the specific mechanism of action of these compounds. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rakesh Kumar
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Deep Patel Upendrabhai
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Sanehdeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
19
|
Scudeler EL, Garcia ASG, Pinheiro PFF, Santos DCD. Neem oil (Azadirachta indica A. Juss) affects the ultrastructure of the midgut muscle of Ceraeochrysa claveri (Navás, 1911) (Neuroptera: Chrysopidae). Acta Histochem 2017; 119:84-91. [PMID: 27939524 DOI: 10.1016/j.acthis.2016.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 01/31/2023]
Abstract
Cytomorphological changes, by means of ultrastructural analyses, have been used to determine the effects of the biopesticide neem oil on the muscle fibers of the midgut of the predator Ceraeochrysa claveri. Insects, throughout the larval period, were fed eggs of Diatraea saccharalis treated with neem oil at a concentration of 0.5%, 1% or 2%. In the adult stage, the midgut was collected from female insects at two stages of adulthood (newly emerged and at the start of oviposition) and processed for ultrastructural analyses. In the newly emerged insects obtained from neem oil treatments, muscle fibers showed a reduction of myofilaments as well as swollen mitochondria and an accumulation of membranous structures. Muscular fibers responded to those cellular injuries with the initiation of detoxification mechanisms, in which acid phosphatase activity was observed in large vesicles located at the periphery of the muscle fiber. At the start of oviposition in the neem oil treated insects, muscle fibers exhibited signs of degeneration, containing vacant areas in which contractile myofilaments were reduced or completely absent, and an accumulation of myelin structures, a dilatation of cisternae of sarcoplasmic reticulum, and mitochondrial swelling and cristolysis were observed. Enzymatic activity for acid phosphatase was present in large vesicles, indicating that mechanisms of lytic activity during the cell injury were utilized but insufficient for recovery from all the cellular damage. The results indicate that the visceral muscle layer is also the target of action of neem oil, and the cytotoxic effects observed may compromise the function of that organ.
Collapse
Affiliation(s)
- Elton Luiz Scudeler
- Laboratory of Insects, Department of Morphology, Institute of Biosciences of Botucatu, UNESP - São Paulo State University, Botucatu, SP, Brazil.
| | - Ana Silvia Gimenes Garcia
- Laboratory of Insects, Department of Morphology, Institute of Biosciences of Botucatu, UNESP - São Paulo State University, Botucatu, SP, Brazil.
| | | | - Daniela Carvalho Dos Santos
- Laboratory of Insects, Department of Morphology, Institute of Biosciences of Botucatu, UNESP - São Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
20
|
Cytotoxic effects of neem oil in the midgut of the predator Ceraeochrysa claveri. Micron 2015; 80:96-111. [PMID: 26520254 DOI: 10.1016/j.micron.2015.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 11/24/2022]
Abstract
Studies of morphological and ultrastructural alterations in target organs have been useful for evaluating the sublethal effects of biopesticides regarded as safe for non-target organisms in ecotoxicological analyses. One of the most widely used biopesticides is neem oil, and its safety and compatibility with natural enemies have been further clarified through bioassays performed to analyze the effects of indirect exposure by the intake of poisoned prey. Thus, this study examined the cellular response of midgut epithelial cells of the adult lacewing, Ceraeochrysa claveri, to neem oil exposure via intake of neem oil-contaminated prey during the larval stage. C. claveri larvae were fed Diatraea saccharalis eggs treated with neem oil at concentrations of 0.5%, 1% and 2% throughout the larval stage. The adult females obtained from these treatments were used at two ages (newly emerged and at the start of oviposition) in morphological and ultrastructural analyses. Neem oil was found to cause pronounced cytotoxic effects in the adult midgut, such as cell dilation, emission of cytoplasmic protrusions, cell lysis, loss of integrity of the cell cortex, dilation of cisternae of the rough endoplasmic reticulum, swollen mitochondria, vesiculated appearance of the Golgi complex and dilated invaginations of the basal labyrinth. Epithelial cells responded to those injuries with various cytoprotective and detoxification mechanisms, including increases in cell proliferation, the number of calcium-containing cytoplasmic granules, and HSP 70 expression, autophagic processes and the development of smooth endoplasmic reticulum, but these mechanisms were insufficient for recovery from all of the cellular damage to the midgut. This study demonstrates that neem oil exposure impairs the midgut by causing sublethal effects that may affect the physiological functions of this organ, indicating the importance of studies of different life stages of this species and similar species to evaluate the safe and compatible integrated use of biopesticides.
Collapse
|
21
|
Mishra M, Gupta KK, Kumar S. Impact of the Stem Extract of Thevetia neriifolia on the Feeding Potential and Histological Architecture of the Midgut Epithelial Tissue of Early Fourth Instars of Helicoverpa armigera Hübner. INTERNATIONAL JOURNAL OF INSECT SCIENCE 2015; 7:53-60. [PMID: 26813920 PMCID: PMC4722878 DOI: 10.4137/ijis.s29127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 05/18/2023]
Abstract
Helicoverpa armigera Hübner is one of the most important agricultural crop pests in the world causing heavy crop yield losses. The continued and indiscriminate use of synthetic insecticides in agriculture for their control has received wide public apprehension because of multifarious problems, including insecticide resistance, resurgence of pest species, environmental pollution, and toxic hazards to humans and nontarget organisms. These problems have necessitated the need to explore and develop alternative strategies using eco-friendly and biodegradable plant products. In view of this, the efficacy of Thevetia neriifolia methanol stem extract was evaluated against the early fourth instars of H. armigera as an antifeedant and stomach poison agent. Feeding of larvae with the diet containing 0.005%-5.0% extract resulted in 2.06%-37.35% antifeedant index; the diet with 5.0% extract caused 54.3% reduced consumption. The negative impact of extract on larval feeding resulted in 37.5%-77.7% starvation, causing adverse effects on the larval weight. Choice between control and experimental diet resulted in feeding preference of larvae for the control diet, leading to 7.3%-42.9% reduced consumption of extract-containing diet. The only exception was the diet with 0.005% extract, which could not cause any deterrence. The midgut histological architecture of H. armigera larvae fed with 0.005%-0.05% extract-containing diet with negligible antifeedant potential showed significant damage, shrinkage, and distortion and vacuolization of gut tissues and peritrophic membrane, causing the disintegration of epithelial, goblet, and regenerative cells; the damage increased with the increase in concentration. These changes in the gut caused negative impact on the digestion and absorption of food and thus nutritional deficiency in the larvae, which could probably affect their growth and development. This study reveal the appreciable stomach poison potential of T. neriifolia stem methanol extract against H. armigera larvae, which can be explored as an eco-friendly pest control strategy.
Collapse
Affiliation(s)
- Monika Mishra
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| | - Kamal Kumar Gupta
- Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, India
| | - Sarita Kumar
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| |
Collapse
|
22
|
Scudeler EL, Padovani CR, Santos DCD. Effects of neem oil (Azadirachta indica A. Juss) on the replacement of the midgut epithelium in the lacewing Ceraeochrysa claveri during larval-pupal metamorphosis. Acta Histochem 2014; 116:771-80. [PMID: 24560939 DOI: 10.1016/j.acthis.2014.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 12/13/2022]
Abstract
Larvae of the lacewing Ceraeochrysa claveri were fed on eggs of Diatraeasaccharalis treated with neem oil at concentrations of 0.5%, 1% and 2% throughout the larval period. Pupae obtained from treated larvae were used in the study at five days after the completion of cocoon spinning to investigate the effects of neem oil on the replacement of the midgut epithelium during the larval-pupal transition. We observed that the old larval epithelium was shed into the midgut lumen and transformed into the yellow body. Old cells from the yellow body were destroyed by apoptosis and autophagy and were not affected by neem oil. However, neem oil did affect the new pupal epithelium. Cells from treated pupae showed cellular injuries such as a loss of microvilli, cytoplasmic vacuolization, an increase of glycogen stores, deformation of the rough endoplasmic reticulum and dilation of the perinuclear space. Additionally, the neem oil treatment resulted in the release of cytoplasmic protrusions, rupture of the plasma membrane and leakage of cellular debris into the midgut lumen, characteristics of cell death by necrosis. The results indicate that neem oil ingestion affects the replacement of midgut epithelium, causing cytotoxic effects that can alter the organism's physiology due to extensive cellular injuries.
Collapse
|
23
|
Scudeler EL, Santos DC. Side Effects of Neem Oil on the Midgut Endocrine Cells of the Green Lacewing Ceraeochrysa claveri (Navás) (Neuroptera: Chrysopidae). NEOTROPICAL ENTOMOLOGY 2014; 43:154-160. [PMID: 27193522 DOI: 10.1007/s13744-013-0191-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 12/09/2013] [Indexed: 06/05/2023]
Abstract
We described the ultrastructure of Ceraeochrysa claveri (Navás) midgut endocrine cells in larva, pupa, and adult, and evaluated the side effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree (Azadirachta indica), on these cells. During the larval period, C. claveri were fed (ad libitum) Diatraea saccharalis (F.) eggs treated with neem oil at concentrations of 0.5%, 1%, or 2%. Transmission electron microscopy showed that two subtypes of endocrine cells, namely granular and vesicular, occurred in the midgut epithelium during the three stages of the life cycle. Both cell types did not reach the midgut lumen and were positioned basally in the epithelium. The endocrine cells did not show extensive infoldings of the basal plasma membrane, and there were numerous secretory granules in the basal region of the cytoplasm. In the granular endocrine cells, the granules were completely filled with a dense matrix. In the vesicular endocrine cells, the main secretory products consisted of haloed vesicles. Ultrastructural examination indicated that only the granular endocrine cells exhibited signs of morphologic changes of cell injury present in all life cycle stages after the larvae were chronically exposed to neem oil by ingestion. The major cellular damage consisted of dilatation and vesiculation of the rough endoplasmic reticulum and the development of smooth endoplasmic reticulum and mitochondrial swelling. Our data suggest that cytotoxic effects on midgut endocrine cells can contribute to a generalized disruption of the physiological processes in this organ due to a general alteration of endocrine function.
Collapse
Affiliation(s)
- E L Scudeler
- Lab de Insetos, Depto de Morfologia, Instituto de Biociências, UNESP, Botucatu, SP, 18618-970, Brasil.
| | - D C Santos
- Lab de Insetos, Depto de Morfologia, Instituto de Biociências, UNESP, Botucatu, SP, 18618-970, Brasil
- Centro de Microscopia Eletrônica, Instituto de Biociências, UNESP, Botucatu, SP, Brasil
| |
Collapse
|
24
|
Senthil-Nathan S. Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front Physiol 2013; 4:359. [PMID: 24391591 PMCID: PMC3868951 DOI: 10.3389/fphys.2013.00359] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/22/2013] [Indexed: 11/13/2022] Open
Abstract
This review described the physiological and biochemical effects of various secondary metabolites from Meliaceae against major Lepidopteran insect pest including, Noctuidae and Pyralidae. The biochemical effect of major Meliaceae secondary metabolites were discussed more in this review. Several enzymes based on food materials have critical roles in nutritional indices (food utilization) of the insect pest population. Several research work has been referred and the effect of Meliaceae secondary metabolites on feeding parameters of insects by demonstrating food consumption, approximate digestibility of consumed food, efficiency of converting the ingested food to body substance, efficiency of converting digested food to body substance and consumption index was reviewed in detail. Further how the digestive enzymes including a-Amylases, α and β-glucosidases (EC 3.2.1.1), lipases (EC 3.1.1) Proteases, serine, cysteine, and aspartic proteinases affected by the Meliaceae secondary metabolites was reviewed. Further effect of Meliaceae secondary metabolites on detoxifying enzymes have been found to react against botanical insecticides including general esterases (EST), glutathione S-transferase (GST) and phosphatases was reviewed. Alkaline phosphatase (ALP, E.C.3.1.3.1) and acid phosphatase (ACP, E.C.3.1.3.2) are hydrolytic enzymes, which hydrolyze phosphomonoesters under alkaline or acid conditions, respectively. These enzymes were affected by the secondary metabolites treatment. The detailed mechanism of action was further explained in this review. Acethylcholine esterase (AChE) is a key enzyme that terminates nerve impulses by catalyzing the hydrolysis of neurotransmitter, acetylcholine, in the nervous system of various organisms. How the AChE activity was altered by the Meliaceae secondary metabolites reviewed in detail.
Collapse
Affiliation(s)
- Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar UniversityTirunelveli, India
| |
Collapse
|
25
|
Perumalsamy H, Kim JR, Oh SM, Jung JW, Ahn YJ, Kwon HW. Novel histopathological and molecular effects of natural compound pellitorine on larval midgut epithelium and anal gills of Aedes aegypti. PLoS One 2013; 8:e80226. [PMID: 24260359 PMCID: PMC3832413 DOI: 10.1371/journal.pone.0080226] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 10/01/2013] [Indexed: 11/19/2022] Open
Abstract
The yellow fever mosquito, Aedes aegypti, is a vector for transmitting dengue fever and yellow fever. In this study, we assessed the histopathological and molecular effects of pellitorine, an isobutylamide alkaloid, on the third instar of Ae. aegypti larvae. At 5 mg/l concentration of pellitorine, the whole body of the treated larvae became dark in color, particularly damaged thorax and abdominal regions. Pellitorine was targeted mainly on midgut epithelium and anal gills, indicating variably dramatic degenerative responses of the midgut through a sequential epithelial disorganization. The anterior and posterior midgut was entirely necrosed, bearing only gut lumen residues inside the peritrophic membranes. Pellitorine caused comprehensive damage of anal gill cells and branches of tracheole and debris was found in hemolymph of the anal gills. RT-PCR analysis indicates that the compound inhibited gene expression encoding V-type H+-ATPase and aquaporine 4 after treatment with 2.21 mg/l pellitorine. These results verify that pellitorine merits further study as a potential larvicide with a specific target site and a lead molecule for the control of mosquito populations.
Collapse
Affiliation(s)
- Haribalan Perumalsamy
- Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jun-Ran Kim
- Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sang Mi Oh
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Je Won Jung
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Young-Joon Ahn
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- * E-mail: (Y-JA); (HWK)
| | - Hyung Wook Kwon
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- * E-mail: (Y-JA); (HWK)
| |
Collapse
|
26
|
Scudeler EL, Garcia ASG, Padovani CR, Santos DC. Action of neem oil (Azadirachta indica A. Juss) on cocoon spinning in Ceraeochrysa claveri (Neuroptera: Chrysopidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 97:176-182. [PMID: 23993219 DOI: 10.1016/j.ecoenv.2013.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/29/2013] [Accepted: 08/09/2013] [Indexed: 06/02/2023]
Abstract
Neem oil is a biopesticide that disturbs the endocrine and neuroendocrine systems of pests and may interfere with molting, metamorphosis and cocoon spinning. The cocoon serves protective functions for the pupa during metamorphosis, and these functions are dependent on cocoon structure. To assess the changes in cocoon spinning caused by neem oil ingestion, Ceraeochrysa claveri larvae, a common polyphagous predator, were fed with neem oil throughout the larval period. When treated with neem oil, changes were observed on the outer and inner surfaces of the C. claveri cocoon, such as decreased wall thickness and impaired ability to attach to a substrate. These negative effects may reduce the effectiveness of the mechanical and protective functions of cocoons during pupation, which makes the specimen more vulnerable to natural enemies and environmental factors.
Collapse
Affiliation(s)
- Elton Luiz Scudeler
- Laboratory of Insects, Department of Morphology, Bioscience Institute, UNESP-São Paulo State University, Botucatu, SP 18618-970, Brazil.
| | | | | | | |
Collapse
|
27
|
Scudeler EL, dos Santos DC. Effects of neem oil (Azadirachta indica A. Juss) on midgut cells of predatory larvae Ceraeochrysa claveri (Navás, 1911) (Neuroptera: Chrysopidae). Micron 2012; 44:125-32. [PMID: 22739123 DOI: 10.1016/j.micron.2012.05.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/09/2012] [Accepted: 05/18/2012] [Indexed: 11/18/2022]
Abstract
The effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree, Azadirachta indica, on the midgut cells of predatory larvae Ceraeochrysa claveri were analyzed. C. claveri were fed on eggs of Diatraea saccharalis treated with neem oil at a concentration of 0.5%, 1% and 2% during throughout the larval period. Light and electron microscopy showed severe damages in columnar cells, which had many cytoplasmic protrusions, clustering and ruptured of the microvilli, swollen cells, ruptured cells, dilatation and vesiculation of rough endoplasmic reticulum, development of smooth endoplasmic reticulum, enlargement of extracellular spaces of the basal labyrinth, intercellular spaces and necrosis. The indirect ingestion of neem oil with prey can result in severe alterations showing direct cytotoxic effects of neem oil on midgut cells of C. claveri larvae. Therefore, the safety of neem oil to non-target species as larvae of C. claveri was refuted, thus the notion that plants derived are safer to non-target species must be questioned in future ecotoxicological studies.
Collapse
Affiliation(s)
- Elton Luiz Scudeler
- Universidade Estadual Paulista (UNESP), Departamento de Morfologia, Instituto de Biociências, Campus de Botucatu, 18618-970 Botucatu, SP, Brazil.
| | | |
Collapse
|
28
|
Rizwan-ul-Haq M, Gong L, Hu M, Luo J. Apolipophorin III and transmission electron microscopy as toxicity indicators for harmaline and tea saponin in Spodoptera exigua (Noctuidae: Lepidoptera). CHEMOSPHERE 2011; 85:995-1001. [PMID: 21783224 DOI: 10.1016/j.chemosphere.2011.06.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 06/15/2011] [Accepted: 06/22/2011] [Indexed: 05/31/2023]
Abstract
Apolipophorin III, traditionally known for lipid transport in insects is fairly established as toxicity indicator against harmaline and tea saponin during this study. Apolipophorin III expressed in the hemolymph and midgut tissues of 3rd, 4th, 5th larval instars and pupae of Spodoptera exigua. Apolipophorin III presence was further confirmed by achieving its partial cDNA (Genbank accession no. FJ606822) of 448bp. qRT PCR revealed that tea saponin resulted in significant reduction of gene expression in 3rd and 4th larval instars but increased in 5th instar as compared to control. Harmaline caused gradual increase of gene expression in 3rd, 4th and 5th instars after feeding on the treated diet. Fifth instar larvae synonymously resulted in the highest gene expressions against both the biochemicals. After the injection of harmaline and tea saponin abrupt increase in gene expression of 4th, 5th larval instar and pupae was observed as compared to control treatment. Transmission electron microscopy of midgut epithelium after being fed with harmaline and tea saponin depicted certain cytological changes. Harmaline treatment lead to cytoplasm vacuolization, mitochondrial disruption, spherocrystals with concentric layers, irregular nucleus and floating nuclei in cytoplasm. Tea saponin treatment resulted in denser cytoplasm, higher intracellular osmotic concentration and reduced complement of apical microvilli. Cells were found to have only a few mitochondria and glycogen deposits in comparison to control treatment.
Collapse
Affiliation(s)
- Muhammad Rizwan-ul-Haq
- Key Laboratory of Natural Pesticide and Chemical Biology, South China Agriculture University, Ministry of Education, Guangzhou 510640, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Qin-Gang Tan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, P.R.China
- Guilin Medical University, Guilin, 541004, P.R.China
| | - Xiao-Dong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, P.R.China
| |
Collapse
|
30
|
Kovendan K, Murugan K, Vincent S, Kamalakannan S. Larvicidal efficacy of Jatropha curcas and bacterial insecticide, Bacillus thuringiensis, against lymphatic filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 2011; 109:1251-7. [DOI: 10.1007/s00436-011-2368-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/22/2011] [Indexed: 11/27/2022]
|
31
|
Qi Z, Shi B, Hu Z, Zhang Y, Wu W. Ultrastructural effects of Celangulin V on midgut cells of the oriental armyworm, Mythimna separata walker (Lepidoptera: Noctuidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:439-444. [PMID: 20970855 DOI: 10.1016/j.ecoenv.2010.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 09/19/2010] [Accepted: 10/04/2010] [Indexed: 05/30/2023]
Abstract
The ultrastructural effects of ingested Celangulin V (CA-V), an insecticidal component extracted from the root bark of Chinese bittersweet (Celastrus angulatus Maxim), on the midgut epithelial cells of the oriental armyworm larva (Mythimna separata Walker) were studied. Transmission electron microscopy showed that CA-V could induce a severe, time-dependent cytotoxicity of the midgut epithelial cells, which had large cytoplasmic spaces, disrupted microvilli and swollen mitochondria. The cisternae of the rough endoplasmic reticulum were excessively dilated, vesiculated and then fragmented. The nuclei were pycnotic and contained one or two divided nucleoli and agglomerated chromatin. Numerous lysosome-like vacuoles and secretion granules were observed. Finally, the CA-V resulted in cell death by necrosis with plasma membrane lysis and the cytoplasm content leakage into the migdut lumen.
Collapse
Affiliation(s)
- Zhijun Qi
- Institute of Pesticide Science, Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Box 61, Xinong Road 22, Yangling, Shaanxi 712100, China.
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Ortiz-Urquiza A, Garrido-Jurado I, Santiago-Alvarez C, Quesada-Moraga E. Purification and characterisation of proteins secreted by the entomopathogenic fungus Metarhizium anisopliae with insecticidal activity against adults of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). PEST MANAGEMENT SCIENCE 2009; 65:1130-1139. [PMID: 19548300 DOI: 10.1002/ps.1803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
BACKGROUND The control of the Mediterranean fruit fly (medfly) Ceratitis capitata (Wied) is usually performed with protein bait sprays incorporating chemical insecticides that may have adverse effects on humans, non-target organisms and the environment. In recent years, scientists have sought more environmentally friendly insecticides for medfly control, such as plant- and microorganism-derived compounds. Among these compounds, entomopathogenic fungi are an unexplored source of natural insecticides. RESULTS The crude soluble protein extract (CSPE) of the entomopathogenic fungus Metarhizium anisopliae (Mestch.) (strain EAMa 01/58-Su) shows chronic insecticidal activity when administered per os. Mortality in flies exhibits a dose response. The CSPE produces an antifeedant effect in adult flies, a result probably due to a progressive deterioration of the fly midgut after ingestion of the extract. Protease and temperature treatments show that insecticidal activity against C. capitata is due to proteinaceous compounds that are highly thermostable. Four monomeric proteins from this crude extract have been purified by liquid chromatography and gel electroelution. Although all four monomers seem to be involved in the insecticidal activity of the CSPE, the 15 kDa and the 11 kDa proteins appear to be mainly responsible for the observed insecticidal effect. CONCLUSIONS Four new fungal proteins with insecticidal activity have been purified and identified. These proteins might be combined with insect baits for C. capitata biocontrol.
Collapse
Affiliation(s)
- Almudena Ortiz-Urquiza
- Department of Agricultural and Forestry Sciences, ETSIAM, University of Cordoba, Campus de Rabanales, Building C4 Celestino Mutis, Cordoba 14071, Spain
| | | | | | | |
Collapse
|
34
|
Senthil-Nathan S, Choi MY, Paik CH, Kalaivani K. The toxicity and physiological effect of goniothalamin, a styryl-pyrone, on the generalist herbivore, Spodoptera exigua Hübner. CHEMOSPHERE 2008; 72:1393-1400. [PMID: 18499224 DOI: 10.1016/j.chemosphere.2008.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 02/04/2008] [Accepted: 03/13/2008] [Indexed: 05/26/2023]
Abstract
Efficacy of Goniothalamin a styryl-pyrone isolated from Goniothalamus wightii Hook.f. and Thoms, against beet armyworm, Spodoptera exigua (Hübner), populations was determined under laboratory condition. The experiments were carried out with concentrations of 5, 10, 15 and 30 ppm in an artificial diet and compared with control insects. Laboratory bioassay showed that the goniothalamin had a strong effect on food utilization, moulting and gut histology. The food consumption and conversion of ingested and digested food to body matter decreased with increasing pyrone concentration. The antifeedant activity was also observed in larvae of S. exigua. The treated third instar larvae exhibited mortality in a dose dependent manner. At 5, 10, 15 and 30 ppm/insect, the pyrone gave 23%, 45% 63% and 100% mortality respectively. The larvae of S. exigua gained significantly less weight until pupation in the 10 and 15 ppm pyrone concentrations. Duration of larval period was also affected after treatment with pyrone. The metamorphosis was delayed with additional moulting (7th instar) after treatment with 10 and 15 ppm of goniothalamin, the percentage of larvae successfully moulted into progressive instars was significantly decreased with an increase in pyrone concentrations. The effects of goniothalamin on midgut ultrastructure of third instar larvae of S. exigua were investigated by using light microscopy. Cross sections of the midgut showed that the epithelial cells were destroyed. Significant damage of the midgut epithelium was observed along with lysis.
Collapse
Affiliation(s)
- Sengottayan Senthil-Nathan
- Plant Environment Division, Honam Agricultural Research Institute, National Institute of Crop Science, Rural Development Administration, #381 Songhak-dong, Iksan, Chonbuk, Republic of Korea.
| | | | | | | |
Collapse
|
35
|
Sayah F. Ultrastructural changes in the corpus allatum after azadirachtin and 20-hydroxyecdysone treatment in adult females of Labidura riparia (Dermaptera). Tissue Cell 2002; 34:53-62. [PMID: 12165239 DOI: 10.1016/s0040-8166(02)00002-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In previous reports, we have shown that the injection of azadirachtin (AZA) as well as 20-hydroxyecdysone (20E) into vitellogenic females of Labidura riparia induces inhibition of vitellogenin synthesis and ovarian development. Juvenile hormone (JH) treatment rescues vitellogenin synthesis and ovarian growth (Sayah et al., 1995, 1996). In this work, we have studied ultrastructural changes of corpus allatum (CA) after injection of 200, 400, and 600 ng of 20E or 1, 3, and 5 microg of AZA. CA cells exhibit signs of inactivity in both AZA and females treated with 20E at doses of 3 microg and 400 ng, respectively. Conspicuous cytological effects consisting of multivesicular bodies with dense contents, abnormally large intercellular spaces comprising myelinic structures, and rare smooth endoplasmic reticula occurred in cytoplasm of CA glandular cells in both experimental females. However, the CA ultrastructure of females injected with 20E differs from CA cells of females injected with AZA in having a cytoplasm containing numerous electron-lucent intracellular areas and marked glycogen zones. They also differ in having abundant microtubules and well-developed junctional membranes. At a dose of 600 ng of 20E or 5 microg of AZA, the intensity of the cytotoxic effects is more apparent. CA cells display pycnotic nuclei, spherical mitochondria, large multivesicular bodies, and vacuolization of the cytoplasm. These results are discussed and compared with observations made on other insect species.
Collapse
Affiliation(s)
- Fouad Sayah
- Laboratory of Applied Biology, Department of Life Sciences, Faculty of Science and Technology of Tangier, PO Box 416, Tangier, Morocco.
| |
Collapse
|
36
|
Nisbet AJ, Mordue Luntz AJ, Grossman RB, Jennens L, Ley SV, Mordue W. Characterization of azadirachtin binding to Sf9 nuclei in vitro. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2001; 46:78-86. [PMID: 11276064 DOI: 10.1002/arch.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
[22,23-(3)H(2)]dihydroazadirachtin was incorporated by Sf9 cells in culture and was bound specifically to the nuclear fraction. The observed association constant of the binding of the radioligand to a purified nuclear fraction was determined to be 0.037 +/- 0.008 min(-1) using a one-phase exponential association equation, and binding appeared to be to a single population of sites. The binding was essentially irreversible, and the dissociation constant was estimated to be 0.00065 +/- 0.00013 min(-1). An association rate constant of 7.3 x 10(6) M(-1) min(-1) was calculated from these data. Binding was saturable, and the receptor number and affinity were determined as B(max) = 23.87 +/- 1.15 pmol/mg protein, K(d) = 18.1 +/- 2.1 nM. The order of potency of semisynthetic azadirachtin analogues for competition for the binding site was as follows (IC(50) in parentheses): azadirachtin (1.55 x 10(-8) M) > dihydroazadirachtin (3.16 x 10(-8) M) > dansyl dihydroazadirachtin (7.40 x 10(-8) M) > DNP-azadirachtin (7.50 x 10(-8) M) > biotin dihydroazadirachtin (1.27 x 10(-7) M) >> 11-methoxy 22,23-dihydroazadirachtin (6.67 x 10(-7) M). [Originally published in Volume 34, Archives of Insect Biochemistry and Physiology, 34:461-473 (1997).]
Collapse
Affiliation(s)
- A J Nisbet
- Department of Zoology, University of Aberdeen, Tillydrone Ave., Aberdeen AB24 2TZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
37
|
Mordue(Luntz) AJ, Nisbet AJ. Azadirachtin from the neem tree Azadirachta indica: its action against insects. ACTA ACUST UNITED AC 2000. [DOI: 10.1590/s0301-80592000000400001] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neem tree has long been recognized for its unique properties both against insects and in improving human health. It is grown in most tropical and sub-tropical areas of the world for shade, reforestation and for the production of row material for natural insecticides and medicines. Azadirachtin, a complex tetranortriterpenoid limonoid from the neem seeds, is the main component responsible for the toxic effects in insects. Six international conferences on neem and a vast scientific literature report both the antifeedant and physiological effects of neem. This article reviews the behavioral and physiological properties of azadirachtin, including effects on insect reproduction, direct and "secondary" antifeedancy, and the physiological effects measured as growth reduction, increased mortality and abnormal and delayed moults. These effects are here categorized in two ways: direct effects on cells and tissues and indirect effects exerted via the endocrine system. It also describes the work carried out to date to identify the mode of action of azadirachtin at the cellular level. The differential effects between animal phyla and over non-target organisms are discussed and point to its potential success as a safe insecticide.
Collapse
|
38
|
J Mordue (Luntz) A, J Nisbet A, M Linton Y. The effects of azadirachtin on the testes of the desert locust, Schistocerca gregaria (Forskål). JOURNAL OF INSECT PHYSIOLOGY 1997; 43:1077-1084. [PMID: 12770479 DOI: 10.1016/s0022-1910(97)00060-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Testes removed from Schistocerca gregaria, injected with 5 or 7&mgr;g azadirachting(-1) body wt on day 0-2 of the Vth instar and killed by decapitation 20days after treatment, showed significant reductions between the widths, lengths and volumes of the treated groups, compared to control insects. Under cytological examination these testes, from insects exhibiting classical signs of azadirachtin poisoning, showed arrested spermatogenic meiosis at Metaphase I.
Collapse
Affiliation(s)
- A J Mordue (Luntz)
- Department of Zoology, University of Aberdeen, Tillydrone Avenue, Aberdeen, U.K
| | | | | |
Collapse
|
39
|
Effect of Azadirachtin on vitellogenesis of Labidura riparia (Insect Dermaptera). Tissue Cell 1996; 28:741-9. [DOI: 10.1016/s0040-8166(96)80077-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/1996] [Accepted: 07/25/1996] [Indexed: 11/24/2022]
|