1
|
Greene S, Gilbert M, Wolk B, Campleman S, Ruha AM. Geographic variation in the clinical features of Mohave rattlesnake ( Crotalus scutulatus) envenomations reported to the North American Snakebite Registry. Toxicon X 2024; 21:100171. [PMID: 38047156 PMCID: PMC10689943 DOI: 10.1016/j.toxcx.2023.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/04/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
The geographic variation of Mohave rattlesnake (Crotalus scutulatus) venom is well established. We reviewed all the Mohave rattlesnake bites reported to the Toxicology Investigators Consortium's North American Snakebite Registry between January 1, 2015 and 12/31/2021. Data reviewed for this study included details regarding the snake encounter, patient demographics, signs and symptoms, treatment, and outcomes. Our objective was to describe the epidemiology, clinical manifestations, and management of Mohave rattlesnake envenomations using prospective data from two geographically distinct sites. There were 20 subjects, including eight nonpregnant females. Ages ranged from seven to 75 years, median age 48. Nine of the bites were managed in Arizona and 11 in California. In Arizona, all envenomated patients had local swelling. None had neurological toxicity. In California, swelling was present in nine patients. Neurological effects were observed in five subjects. Four Arizona patients and one California patient had hypotension requiring treatment. Each site had one patient with thrombocytopenia. An Arizona patient who sustained a bite to the face was intubated. Rhabdomyolysis occurred in two California patients. All envenomated patients received antivenom. Mohave rattlesnakes have the potential to cause significant local and/or systemic toxicity. Neurotoxicity was not observed in envenomations from Mohave rattlesnakes that presumably lack Mohave toxin, but hypotension and gastrointestinal signs were more common than in bites from snakes believed to possess Mohave toxin. Neurological toxicity was limited to paresthesias and fasciculations. Significant skeletal or respiratory muscle weakness was not observed in our study population.
Collapse
Affiliation(s)
- Spencer Greene
- University of Houston/HCA Kingwood Emergency Medicine Residency Program, Kingwood, TX, USA
| | - Matthew Gilbert
- University of Houston/HCA Kingwood Emergency Medicine Residency Program, Kingwood, TX, USA
| | - Brian Wolk
- Department of Emergency Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | - Anne-Michelle Ruha
- Department of Medical Toxicology, Banner University Medical Center – Phoenix, Phoenix, AZ, USA
| | - on behalf of the ToxIC Snakebite Study Group
- University of Houston/HCA Kingwood Emergency Medicine Residency Program, Kingwood, TX, USA
- Department of Emergency Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
- American College of Medical Toxicology, Phoenix, AZ, USA
- Department of Medical Toxicology, Banner University Medical Center – Phoenix, Phoenix, AZ, USA
| |
Collapse
|
2
|
Smith CF, Nikolakis ZL, Perry BW, Schield DR, Meik JM, Saviola AJ, Castoe TA, Parker J, Mackessy SP. The best of both worlds? Rattlesnake hybrid zones generate complex combinations of divergent venom phenotypes that retain high toxicity. Biochimie 2023; 213:176-189. [PMID: 37451532 DOI: 10.1016/j.biochi.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Studying the consequences of hybridization between closely related species with divergent traits can reveal patterns of evolution that shape and maintain extreme trophic adaptations. Snake venoms are an excellent model system for examining the evolutionary and ecological patterns that underlie highly selected polymorphic traits. Here we investigate hybrid venom phenotypes that result from natural introgression between two rattlesnake species that express highly divergent venom phenotypes: Crotalus o. concolor and C. v. viridis. Though not yet documented, interbreeding between these species may lead to novel venom phenotypes with unique activities that break the typical trends of venom composition in rattlesnakes. The characteristics of these unusual phenotypes could unveil the roles of introgression in maintaining patterns of venom composition and variation, including the near ubiquitous dichotomy between neurotoxic or degradative venoms observed across rattlesnakes. We use RADseq data to infer patterns of gene flow and hybrid ancestry between these diverged lineages and link these genetic data with analyses of venom composition, biological activity, and whole animal model toxicity tests to understand the impacts of introgression on venom composition. We find that introgressed populations express admixed venom phenotypes that do not sacrifice biological activity (lethal toxicity) or overall abundance of dominant toxins compared to parental venoms. These hybridized venoms therefore do not represent a trade-off in functionality between the typical phenotypic extremes but instead represent a unique combination of characters whose expression appears limited to the hybrid zone.
Collapse
Affiliation(s)
- Cara F Smith
- School of Biological Sciences, 501 20th Street, University of Northern Colorado, Greeley, CO, 80639, USA
| | - Zachary L Nikolakis
- Department of Biology, 501 S. Nedderman Drive, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Blair W Perry
- Department of Biology, 501 S. Nedderman Drive, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Drew R Schield
- Department of Biology, 501 S. Nedderman Drive, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Jesse M Meik
- Department of Biological Sciences, Tarleton State University, 1333 W. Washington Street, Stephenville, TX, 76402, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, 12801 East 17th Avenue, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Todd A Castoe
- Department of Biology, 501 S. Nedderman Drive, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Joshua Parker
- Fresno City College, 1101 E. University Avenue, Fresno, CA, 93741, USA
| | - Stephen P Mackessy
- School of Biological Sciences, 501 20th Street, University of Northern Colorado, Greeley, CO, 80639, USA.
| |
Collapse
|
3
|
Keyler D. Timber rattlesnake ( Crotalus horridus): Biology, conservation, and envenomation in the Upper Mississippi River Valley (1982-2020). Toxicon X 2023; 19:100167. [PMID: 37483845 PMCID: PMC10359930 DOI: 10.1016/j.toxcx.2023.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
The Timber Rattlesnake (Crotalus horridus) is the largest pit viper in the Northern United States and is the prominent venomous snake species indigenous to the bluff land habitats of the Upper Mississippi River Valley (UMRV). Conservation of C. horridus in this geographic region not only preserves the ecosystem's biodiversity and ecological balance, but also assures the continued study of their biomedically important venoms/toxins. Field studies of C. horridus biology and natural history performed from 1985 to 2015 in southeastern Minnesota and western Wisconsin along the Mississippi River showed populations have declined. Consequently, the implementation of improved conservation measures afforded the species protective status in both states. Historically, accounts of Timber Rattlesnake bites in the UMRV have been sparse, and medical consequences of envenomation have had limited documentation. However, in recent decades cases of envenomation by C. horridus have continued to occur. Retrospective analysis of clinical toxinology consultations documented from 1982 to 2020 on cases of envenomation by C. horridus in the UMRV revealed a very low incidence of bites annually and revealed that their venom can induce a rapid and precipitous decline in platelets.
Collapse
Affiliation(s)
- D.E. Keyler
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, Hennepin County Medical Center (retired), Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Smelski G, Cardwell M, Larsen J. Neurotoxic respiratory failure absent following Arizona rattlesnake bites. Toxicon 2023; 224:107034. [PMID: 36690088 DOI: 10.1016/j.toxicon.2023.107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Warnings of neurotoxic respiratory paralysis following envenomation by rattlesnakes (Crotalus sp.) have been included in numerous scholarly publications over the past 60 years, resulting in fear and anxiety in the public and among clinicians. We examine the validity of the widespread belief that rattlesnakes in the arid southwestern United States, and particularly the Mohave Rattlesnake (Crotalus scutulatus), pose a significant risk of medically relevant respiratory weakness and paralysis in humans. A retrospective review of 3440 suspected rattlesnake bites reported to the Arizona Poison and Drug Information Center between 1999 and 2020 produced no evidence of respiratory weakness in a region with three species known to express significant amounts of neurotoxin in their venoms: Crotalus concolor, C. tigris, and the more widely distributed C. scutulatus. A literature review produced numerous warnings regarding respiratory paralysis following envenomation by rattlesnakes in our region that either lacked references or cited sources that did not contain strong supportive data. We found no case reports of neurotoxic respiratory weakness following Arizona rattlesnake bites in the literature and such reports in surrounding states were scant. We conclude that neurotoxic respiratory failure in this region following rattlesnake envenomation is extraordinarily rare. All rattlesnake bites should receive the same consideration and critical care, and warnings about significant risk of respiratory failure are unwarranted, regardless of species involved.
Collapse
Affiliation(s)
- Geoffrey Smelski
- Arizona Poison and Drug Information Center, 1295 N Martin Ave., Tucson, AZ, USA.
| | - Michael Cardwell
- Arizona Poison and Drug Information Center, 1295 N Martin Ave., Tucson, AZ, USA; Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA, USA.
| | - Jaiva Larsen
- Arizona Poison and Drug Information Center, 1295 N Martin Ave., Tucson, AZ, USA; Department of Emergency Medicine, University of Arizona College of Medicine, 1501 N Campbell Ave., Tucson, AZ, USA.
| |
Collapse
|
5
|
Myers EA, Strickland JL, Rautsaw RM, Mason AJ, Schramer TD, Nystrom GS, Hogan MP, Yooseph S, Rokyta DR, Parkinson CL. De Novo Genome Assembly Highlights the Role of Lineage-Specific Duplications in the Evolution of Venom in Fea’s Viper. Genome Biol Evol 2022; 14:6603630. [PMID: 35670514 PMCID: PMC9256536 DOI: 10.1093/gbe/evac082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/12/2022] Open
Abstract
Despite the medical significance to humans and important ecological roles filled by vipers, few high-quality genomic resources exist for these snakes outside of a few genera of pitvipers. Here we sequence, assemble, and annotate the genome of Fea’s Viper (Azemiops feae). This taxon is distributed in East Asia and belongs to a monotypic subfamily, sister to the pitvipers. The newly sequenced genome resulted in a 1.56 Gb assembly, a contig N50 of 1.59 Mb, with 97.6% of the genome assembly in contigs >50 Kb, and a BUSCO completeness of 92.4%. We found that A. feae venom is primarily composed of phospholipase A2 (PLA2) proteins expressed by genes that likely arose from lineage-specific PLA2 gene duplications. Additionally, we show that renin, an enzyme associated with blood pressure regulation in mammals and known from the venoms of two viper species including A. feae, is expressed in the venom gland at comparative levels to known toxins and is present in the venom proteome. The cooption of this gene as a toxin may be more widespread in viperids than currently known. To investigate the historical population demographics of A. feae, we performed coalescent-based analyses and determined that the effective population size has remained stable over the last 100 kyr. This suggests Quaternary glacial cycles likely had minimal influence on the demographic history of A. feae. This newly assembled genome will be an important resource for studying the genomic basis of phenotypic evolution and understanding the diversification of venom toxin gene families.
Collapse
Affiliation(s)
- Edward A. Myers
- Department of Biological Sciences, Clemson University , Clemson, SC 29634, USA
| | - Jason L. Strickland
- Department of Biological Sciences, Clemson University , Clemson, SC 29634, USA
- Department of Biology, University of South Alabama , Mobile, AL 36688, USA
| | - Rhett M. Rautsaw
- Department of Biological Sciences, Clemson University , Clemson, SC 29634, USA
| | - Andrew J. Mason
- Department of Biological Sciences, Clemson University , Clemson, SC 29634, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University , Columbus, OH 43210, USA
| | - Tristan D. Schramer
- Department of Biological Sciences, Clemson University , Clemson, SC 29634, USA
| | - Gunnar S. Nystrom
- Department of Biological Science, Florida State University , Tallahassee, FL 32306, USA
| | - Michael P. Hogan
- Department of Biological Science, Florida State University , Tallahassee, FL 32306, USA
| | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, 4000 Central Florida Blvd , Orlando, FL, 32816, USA
| | - Darin R. Rokyta
- Department of Biological Science, Florida State University , Tallahassee, FL 32306, USA
| | - Christopher L. Parkinson
- Department of Biological Sciences, Clemson University , Clemson, SC 29634, USA
- Department of Forestry and Environmental Conservation, Clemson University , Clemson, SC 29634, USA
| |
Collapse
|
6
|
Gómez A, Solano G, Chang-Castillo A, Chacón D, Corrales G, Segura Á, Estrada R, León G. Intraspecific variability of the Central American rattlesnake (Crotalus simus) venom and its usefulness to obtain a representative standard venom. Toxicon 2021; 202:20-26. [PMID: 34562491 DOI: 10.1016/j.toxicon.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Snake venoms are mixtures of proteins whose physicochemical features confer them toxicity and immunogenicity. Animals (e.g., horses or sheep) immunized with snake venoms produce antibodies towards the venom proteins. Since these antibodies can neutralize the venom toxicity, they have been used to formulate snake antivenoms. The efficacy of the antivenoms is widely accepted, and standard venoms are expected to be representative of the snake's population that inhabit in the region where the antivenom is intended to be used. The representativeness of a single venom collected from a Crotalus simus snake, and its usefulness as standard venom to produce an antivenom is evaluated. The use of an "average venom" might be as representative of the population intended to be used, as the standard venom composed by many venom samples. Variations in the relative abundance concentration of crotoxin in the C. simus leads to different clinical manifestations, as well as differences in the neutralization efficacy of the antivenoms. A monovalent anti-Cs antivenom was produced from a single venom C. simus specimen, and its efficacy in neutralizing the lethal activity of 30 C. simus snakes was tested. Despite the variations in the relative abundance content of crotoxin found in the proteomes, the monovalent anti-Cs antivenom was successful in neutralize the toxicity caused by the variations on the venom composition of three different snake population used. Interestingly, it seems that the sex is not a key factor in the lethality of the venoms tested. The concept of representative venom mixtures for immunization should be revised for the case of C. simus on the populations found in Costa Rica, since it might use as less as one representative individual whose venom covers the mainly toxic enzymes.
Collapse
Affiliation(s)
- Aarón Gómez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | - Gabriela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Arturo Chang-Castillo
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Danilo Chacón
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Greivin Corrales
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Ricardo Estrada
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
7
|
Franco-Servín C, Neri-Castro E, Bénard-Valle M, Alagón A, Rosales-García RA, Guerrero-Alba R, Poblano-Sánchez JE, Silva-Briano M, Guerrero-Barrera AL, Sigala-Rodríguez JJ. Biological and Biochemical Characterization of Coronado Island Rattlesnake ( Crotalus helleri caliginis) Venom and Antivenom Neutralization. Toxins (Basel) 2021; 13:toxins13080582. [PMID: 34437453 PMCID: PMC8402616 DOI: 10.3390/toxins13080582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023] Open
Abstract
The Baja California Peninsula has over 250 islands and islets with many endemic species. Among them, rattlesnakes are the most numerous but also one of the least studied groups. The study of island rattlesnake venom could guide us to a better understanding of evolutionary processes and the description of novel toxins. Crotalus helleri caliginis venom samples were analyzed to determine possible ontogenetic variation with SDS-PAGE in one and two dimensions and with RP-HPLC. Western Blot, ELISA, and amino-terminal sequencing were used to determine the main components of the venom. The biological and biochemical activities demonstrate the similarity of C. helleri caliginis venom to the continental species C. helleri helleri, with both having low proteolytic and phospholipase A2 (PLA2) activity but differing due to the absence of neurotoxin (crotoxin-like) in the insular species. The main components of the snake venom were metalloproteases, serine proteases, and crotamine, which was the most abundant toxin group (30–35% of full venom). The crotamine was isolated using size-exclusion chromatography where its functional effects were tested on mouse phrenic nerve–hemidiaphragm preparations in which a significant reduction in muscle twitch contractions were observed. The two Mexican antivenoms could neutralize the lethality of C. helleri caliginis venom but not the crotamine effects.
Collapse
Affiliation(s)
- Cristian Franco-Servín
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
- Colección Zoológica, Departamento de Biología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
| | - Edgar Neri-Castro
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001 Colonia Chamilpa, Cuernavaca CP 62210, Morelos, Mexico; (E.N.-C.); (M.B.-V.); (A.A.)
| | - Melisa Bénard-Valle
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001 Colonia Chamilpa, Cuernavaca CP 62210, Morelos, Mexico; (E.N.-C.); (M.B.-V.); (A.A.)
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001 Colonia Chamilpa, Cuernavaca CP 62210, Morelos, Mexico; (E.N.-C.); (M.B.-V.); (A.A.)
| | - Ramsés Alejandro Rosales-García
- Colección Zoológica, Departamento de Biología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
| | - Raquel Guerrero-Alba
- Laboratorio de Electrofisiología, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
| | - José Emanuel Poblano-Sánchez
- Laboratorio Clínico de Especialidades del Hospital General ISSSTE, Av. Universidad 410, Aguascalientes CP 20010, Ags, Mexico;
| | - Marcelo Silva-Briano
- Laboratorio de Ecología, Departamento de Biología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
| | - Alma Lilián Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
- Correspondence: (A.L.G.-B.); (J.J.S.-R.)
| | - José Jesús Sigala-Rodríguez
- Colección Zoológica, Departamento de Biología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
- Correspondence: (A.L.G.-B.); (J.J.S.-R.)
| |
Collapse
|
8
|
Seneci L, Zdenek CN, Bourke LA, Cochran C, Sánchez EE, Neri-Castro E, Bénard-Valle M, Alagón A, Frank N, Fry BG. A symphony of destruction: Dynamic differential fibrinogenolytic toxicity by rattlesnake (Crotalus and Sistrurus) venoms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109034. [PMID: 33766656 PMCID: PMC8162888 DOI: 10.1016/j.cbpc.2021.109034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022]
Abstract
What factors influence the evolution of a heavily selected functional trait in a diverse clade? This study adopts rattlesnakes as a model group to investigate the evolutionary history of venom coagulotoxicity in the wider context of phylogenetics, natural history, and biology. Venom-induced clotting of human plasma and fibrinogen was determined and mapped onto the rattlesnake phylogenetic tree to reconstruct the evolution of coagulotoxicity across the group. Our results indicate that venom phenotype is often independent of phylogenetic relationships in rattlesnakes, suggesting the importance of diet and/or other environmental variables in driving venom evolution. Moreover, the striking inter- and intraspecific variability in venom activity on human blood highlights the considerable variability faced by physicians treating envenomation. This study is the most comprehensive effort to date to describe and characterize the evolutionary and biological aspects of coagulotoxins in rattlesnake venom. Further research at finer taxonomic levels is recommended to elucidate patterns of variation within species and lineages.
Collapse
Affiliation(s)
- Lorenzo Seneci
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; Institute of Biology Leiden (IBL), Leiden University, 2333 BE Leiden, the Netherlands
| | - Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lachlan A Bourke
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Chip Cochran
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Elda E Sánchez
- National Natural Toxins Research Center (NNTRC), Department of Chemistry, Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Melisa Bénard-Valle
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | | | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
9
|
Mason AJ, Margres MJ, Strickland JL, Rokyta DR, Sasa M, Parkinson CL. Trait differentiation and modular toxin expression in palm-pitvipers. BMC Genomics 2020; 21:147. [PMID: 32046632 PMCID: PMC7014597 DOI: 10.1186/s12864-020-6545-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
Background Modularity is the tendency for systems to organize into semi-independent units and can be a key to the evolution and diversification of complex biological systems. Snake venoms are highly variable modular systems that exhibit extreme diversification even across very short time scales. One well-studied venom phenotype dichotomy is a trade-off between neurotoxicity versus hemotoxicity that occurs through the high expression of a heterodimeric neurotoxic phospholipase A2 (PLA2) or snake venom metalloproteinases (SVMPs). We tested whether the variation in these venom phenotypes could occur via variation in regulatory sub-modules through comparative venom gland transcriptomics of representative Black-Speckled Palm-Pitvipers (Bothriechis nigroviridis) and Talamancan Palm-Pitvipers (B. nubestris). Results We assembled 1517 coding sequences, including 43 toxins for B. nigroviridis and 1787 coding sequences including 42 toxins for B. nubestris. The venom gland transcriptomes were extremely divergent between these two species with one B. nigroviridis exhibiting a primarily neurotoxic pattern of expression, both B. nubestris expressing primarily hemorrhagic toxins, and a second B. nigroviridis exhibiting a mixed expression phenotype. Weighted gene coexpression analyses identified six submodules of transcript expression variation, one of which was highly associated with SVMPs and a second which contained both subunits of the neurotoxic PLA2 complex. The sub-module association of these toxins suggest common regulatory pathways underlie the variation in their expression and is consistent with known patterns of inheritance of similar haplotypes in other species. We also find evidence that module associated toxin families show fewer gene duplications and transcript losses between species, but module association did not appear to affect sequence diversification. Conclusion Sub-modular regulation of expression likely contributes to the diversification of venom phenotypes within and among species and underscores the role of modularity in facilitating rapid evolution of complex traits.
Collapse
Affiliation(s)
- Andrew J Mason
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC, 29634, USA
| | - Mark J Margres
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC, 29634, USA
| | - Jason L Strickland
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC, 29634, USA
| | - Darin R Rokyta
- Department of Biological Sciences, Florida State University, Tallahassee, FL, 24105, USA
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiologia, Universidad de Costa Rica, San Jose, Costa Rica
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC, 29634, USA. .,Department of Forestry, and Environmental Conservation, Clemson University, Clemson, SC, USA.
| |
Collapse
|
10
|
Abstract
The Mojave rattlesnake is a unique species of pit viper that expresses either a highly potent phospholipase A2 (PLA2)-dependent neurotoxin containing venom nearly devoid of fibrinogenolytic metalloproteinases (venom type A) or a hemotoxic venom with a high percentage of metalloproteinases and PLA2 without any neurotoxin present (venom type B) depending on its geographical location in the Southwestern United States and Mexico. Given that PLA2 have been demonstrated to affect coagulation, it was hypothesized that the anticoagulant effects of both type A and B venoms could be assessed by thrombelastography, and determination made if these venoms were heme modulated. Both venom types were exposed to carbon monoxide releasing molecule-2 or its inactivated molecule (0 or 100 µM) in isolation and then placed in human plasma with consequent coagulation kinetics assessed by thrombelastography. It was determined that type A venom was twice as potent as an anticoagulant compared to type B venom, and that both venoms were inhibited by carbon monoxide releasing molecule-2 but not its inactivated molecule. Given the lack of proteolytic activity of type A venom and the dependence of neurotoxicity on PLA2 activity, it may be possible that carbon monoxide could inhibit neurotoxicity based on inhibition of PLA2 anticoagulant activity. These data may serve as the rationale for extension of these observations into animal models to determine if CO may inhibit not just hemotoxic venom, but also PLA2-dependent neurotoxic venom.
Collapse
|
11
|
Evidence for divergent patterns of local selection driving venom variation in Mojave Rattlesnakes (Crotalus scutulatus). Sci Rep 2018; 8:17622. [PMID: 30514908 PMCID: PMC6279745 DOI: 10.1038/s41598-018-35810-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/09/2018] [Indexed: 01/20/2023] Open
Abstract
Snake venoms represent an enriched system for investigating the evolutionary processes that lead to complex and dynamic trophic adaptations. It has long been hypothesized that natural selection may drive geographic variation in venom composition, yet previous studies have lacked the population genetic context to examine these patterns. We leverage range-wide sampling of Mojave Rattlesnakes (Crotalus scutulatus) and use a combination of venom, morphological, phylogenetic, population genetic, and environmental data to characterize the striking dichotomy of neurotoxic (Type A) and hemorrhagic (Type B) venoms throughout the range of this species. We find that three of the four previously identified major lineages within C. scutulatus possess a combination of Type A, Type B, and a ‘mixed’ Type A + B venom phenotypes, and that fixation of the two main venom phenotypes occurs on a more fine geographic scale than previously appreciated. We also find that Type A + B individuals occur in regions of inferred introgression, and that this mixed phenotype is comparatively rare. Our results support strong directional local selection leading to fixation of alternative venom phenotypes on a fine geographic scale, and are inconsistent with balancing selection to maintain both phenotypes within a single population. Our comparisons to biotic and abiotic factors further indicate that venom phenotype correlates with fang morphology and climatic variables. We hypothesize that links to fang morphology may be indicative of co-evolution of venom and other trophic adaptations, and that climatic variables may be linked to prey distributions and/or physiology, which in turn impose selection pressures on snake venoms.
Collapse
|
12
|
Schield DR, Adams RH, Card DC, Corbin AB, Jezkova T, Hales NR, Meik JM, Perry BW, Spencer CL, Smith LL, García GC, Bouzid NM, Strickland JL, Parkinson CL, Borja M, Castañeda-Gaytán G, Bryson RW, Flores-Villela OA, Mackessy SP, Castoe TA. Cryptic genetic diversity, population structure, and gene flow in the Mojave rattlesnake (Crotalus scutulatus). Mol Phylogenet Evol 2018; 127:669-681. [DOI: 10.1016/j.ympev.2018.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 05/30/2018] [Accepted: 06/06/2018] [Indexed: 10/28/2022]
|
13
|
Strickland JL, Mason AJ, Rokyta DR, Parkinson CL. Phenotypic Variation in Mojave Rattlesnake (Crotalus scutulatus) Venom Is Driven by Four Toxin Families. Toxins (Basel) 2018; 10:toxins10040135. [PMID: 29570631 PMCID: PMC5923301 DOI: 10.3390/toxins10040135] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 02/04/2023] Open
Abstract
Phenotypic diversity generated through altered gene expression is a primary mechanism facilitating evolutionary response in natural systems. By linking the phenotype to genotype through transcriptomics, it is possible to determine what changes are occurring at the molecular level. High phenotypic diversity has been documented in rattlesnake venom, which is under strong selection due to its role in prey acquisition and defense. Rattlesnake venom can be characterized by the presence (Type A) or absence (Type B) of a type of neurotoxic phospholipase A2 (PLA2), such as Mojave toxin, that increases venom toxicity. Mojave rattlesnakes (Crotalus scutulatus), represent this diversity as both venom types are found within this species and within a single panmictic population in the Sonoran Desert. We used comparative venom gland transcriptomics of nine specimens of C. scutulatus from this region to test whether expression differences explain diversity within and between venom types. Type A individuals expressed significantly fewer toxins than Type B individuals owing to the diversity of C-type lectins (CTLs) and snake venom metalloproteinases (SVMPs) found in Type B animals. As expected, both subunits of Mojave toxin were exclusively found in Type A individuals but we found high diversity in four additional PLA2s that was not associated with a venom type. Myotoxin a expression and toxin number variation was not associated with venom type, and myotoxin a had the highest range of expression of any toxin class. Our study represents the most comprehensive transcriptomic profile of the venom type dichotomy in rattlesnakes and C. scutulatus. Even intra-specifically, Mojave rattlesnakes showcase the diversity of snake venoms and illustrate that variation within venom types blurs the distinction of the venom dichotomy.
Collapse
Affiliation(s)
- Jason L Strickland
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA.
| | - Andrew J Mason
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC 29634, USA.
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA.
| | - Christopher L Parkinson
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA.
| |
Collapse
|
14
|
Dowell NL, Giorgianni MW, Griffin S, Kassner VA, Selegue JE, Sanchez EE, Carroll SB. Extremely Divergent Haplotypes in Two Toxin Gene Complexes Encode Alternative Venom Types within Rattlesnake Species. Curr Biol 2018; 28:1016-1026.e4. [PMID: 29576471 DOI: 10.1016/j.cub.2018.02.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/11/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022]
Abstract
Natural selection is generally expected to favor one form of a given trait within a population. The presence of multiple functional variants of traits involved in activities such as feeding, reproduction, or the defense against predators is relatively uncommon within animal species. The genetic architecture and evolutionary mechanisms underlying the origin and maintenance of such polymorphisms are of special interest. Among rattlesnakes, several instances of the production of biochemically distinct neurotoxic or hemorrhagic venom types within the same species are known. Here, we investigated the genetic basis of this phenomenon in three species and found that neurotoxic and hemorrhagic individuals of the same species possess markedly different haplotypes at two toxin gene complexes. For example, neurotoxic and hemorrhagic Crotalus scutulatus individuals differ by 5 genes at the phospholipase A2 (PLA2) toxin gene complex and by 11 genes at the metalloproteinase (MP) gene complex. A similar set of extremely divergent haplotypes also underlies alternate venom types within C. helleri and C. horridus. We further show that the MP and PLA2 haplotypes of neurotoxic C. helleri appear to have been acquired through hybridization with C. scutulatus-a rare example of the horizontal transfer of a potentially highly adaptive suite of genes. These large structural variants appear analogous to immunity gene complexes in host-pathogen arms races and may reflect the impact of balancing selection at the PLA2 and MP complexes for predation on different prey.
Collapse
Affiliation(s)
- Noah L Dowell
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Matt W Giorgianni
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Sam Griffin
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Victoria A Kassner
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Jane E Selegue
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Elda E Sanchez
- National Natural Toxins Research Center and Department of Chemistry, Texas A&M University, Kingsville, MSC 224, Kingsville, TX 78363, USA
| | - Sean B Carroll
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
15
|
Dobson J, Yang DC, Op den Brouw B, Cochran C, Huynh T, Kurrupu S, Sánchez EE, Massey DJ, Baumann K, Jackson TNW, Nouwens A, Josh P, Neri-Castro E, Alagón A, Hodgson WC, Fry BG. Rattling the border wall: Pathophysiological implications of functional and proteomic venom variation between Mexican and US subspecies of the desert rattlesnake Crotalus scutulatus. Comp Biochem Physiol C Toxicol Pharmacol 2018; 205:62-69. [PMID: 29074260 PMCID: PMC5825281 DOI: 10.1016/j.cbpc.2017.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022]
Abstract
While some US populations of the Mohave rattlesnake (Crotalus scutulatus scutulatus) are infamous for being potently neurotoxic, the Mexican subspecies C. s. salvini (Huamantlan rattlesnake) has been largely unstudied beyond crude lethality testing upon mice. In this study we show that at least some populations of this snake are as potently neurotoxic as its northern cousin. Testing of the Mexican antivenom Antivipmyn showed a complete lack of neutralisation for the neurotoxic effects of C. s. salvini venom, while the neurotoxic effects of the US subspecies C. s. scutulatus were time-delayed but ultimately not eliminated. These results document unrecognised potent neurological effects of a Mexican snake and highlight the medical importance of this subspecies, a finding augmented by the ineffectiveness of the Antivipmyn antivenom. These results also influence our understanding of the venom evolution of Crotalus scutulatus, suggesting that neurotoxicity is the ancestral feature of this species, with the US populations which lack neurotoxicity being derived states.
Collapse
Affiliation(s)
- James Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Daryl C Yang
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Bianca Op den Brouw
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Chip Cochran
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Tam Huynh
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sanjaya Kurrupu
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Elda E Sánchez
- National Natural Toxins Research Center (NNTRC), Department of Chemistry, Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Daniel J Massey
- Arizona Poison and Drug Information Center, 1295 N Martin Room B308, Tucson, AZ 85721, USA; Banner University Medical Center, 1501 N. Campbell Ave, Tucson, AZ 85745, USA
| | - Kate Baumann
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Timothy N W Jackson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Parkville, Victoria 3000, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Peter Josh
- School of Chemistry and Molecular Biology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Edgar Neri-Castro
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Wayne C Hodgson
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
16
|
Biological and Proteolytic Variation in the Venom of Crotalus scutulatus scutulatus from Mexico. Toxins (Basel) 2018; 10:toxins10010035. [PMID: 29316683 PMCID: PMC5793122 DOI: 10.3390/toxins10010035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/24/2017] [Accepted: 01/04/2018] [Indexed: 11/18/2022] Open
Abstract
Rattlesnake venoms may be classified according to the presence/absence and relative abundance of the neurotoxic phospholipases A2s (PLA2s), such as Mojave toxin, and snake venom metalloproteinases (SVMPs). In Mexico, studies to determine venom variation in Mojave Rattlesnakes (Crotalus scutulatus scutulatus) are limited and little is known about the biological and proteolytic activities in this species. Tissue (34) and venom (29) samples were obtained from C. s. scutulatus from different locations within their distribution in Mexico. Mojave toxin detection was carried out at the genomic (by PCR) and protein (by ELISA) levels for all tissue and venom samples. Biological activity was tested on representative venoms by measuring LD50 and hemorrhagic activity. To determine the approximate amount of SVMPs, 15 venoms were separated by RP-HPLC and variation in protein profile and proteolytic activity was evaluated by SDS-PAGE (n = 28) and Hide Powder Azure proteolytic analysis (n = 27). Three types of venom were identified in Mexico which is comparable to the intraspecific venom diversity observed in the Sonoran Desert of Arizona, USA: Venom Type A (∼Type II), with Mojave toxin, highly toxic, lacking hemorrhagic activity, and with scarce proteolytic activity; Type B (∼Type I), without Mojave toxin, less toxic than Type A, highly hemorrhagic and proteolytic; and Type A + B, containing Mojave toxin, as toxic as venom Type A, variable in hemorrhagic activity and with intermediate proteolytic activity. We also detected a positive correlation between SVMP abundance and hemorrhagic and proteolytic activities. Although more sampling is necessary, our results suggest that venoms containing Mojave toxin and venom lacking this toxin are distributed in the northwest and southeast portions of the distribution in Mexico, respectively, while an intergradation in the middle of both zones is present.
Collapse
|
17
|
Sousa LF, Portes-Junior JA, Nicolau CA, Bernardoni JL, Nishiyama-Jr MY, Amazonas DR, Freitas-de-Sousa LA, Mourão RHV, Chalkidis HM, Valente RH, Moura-da-Silva AM. Functional proteomic analyses of Bothrops atrox venom reveals phenotypes associated with habitat variation in the Amazon. J Proteomics 2017; 159:32-46. [DOI: 10.1016/j.jprot.2017.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 12/17/2022]
|
18
|
Cantú E, Mallela S, Nyguen M, Báez R, Parra V, Johnson R, Wilson K, Suntravat M, Lucena S, Rodríguez-Acosta A, Sánchez EE. The binding effectiveness of anti-r-disintegrin polyclonal antibodies against disintegrins and PII and PIII metalloproteases: An immunological survey of type A, B and A+B venoms from Mohave rattlesnakes. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:168-176. [PMID: 27989783 PMCID: PMC5362346 DOI: 10.1016/j.cbpc.2016.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/17/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022]
Abstract
Snake venoms are known to have different venom compositions and toxicity, but differences can also be found within populations of the same species contributing to the complexity of treatment of envenomated victims. One of the first well-documented intraspecies venom variations comes from the Mohave rattlesnake (Crotalus scutulatus scutulatus). Initially, three types of venoms were described; type A venom is the most toxic as a result of ~45% Mojave toxin in the venom composition, type B lacks the Mojave toxin but contains over 50% of snake venom metalloproteases (SVMPs). Also, type A+B venom contains a combination of Mojave toxin and SVMP. The use of an anti-disintegrin antibody in a simple Enzyme-Linked Immunosorbent Assay (ELISA) can be used to identify the difference between the venoms of the type A, B, and A+B Mohave rattlesnakes. This study implements the use of an anti-recombinant disintegrin polyclonal antibody (ARDPA) for the detection of disintegrins and ADAMs (a disintegrin and metalloproteases) in individual crude snake venoms of Mohave rattlesnakes (Crotalus scutulatus scutulatus) of varying geographical locations. After correlation with Western blots, coagulation activity and LD50 data, it was determined that the antibody allows for a quick and cost-efficient identification of venom types.
Collapse
Affiliation(s)
- Esteban Cantú
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Sahiti Mallela
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Matthew Nyguen
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Raúl Báez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Victoria Parra
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Rachel Johnson
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Kyle Wilson
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Sara Lucena
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Alexis Rodríguez-Acosta
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela, Caracas 1041, Venezuela
| | - Elda E Sánchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA.
| |
Collapse
|
19
|
The effects of hybridization on divergent venom phenotypes: Characterization of venom from Crotalus scutulatus scutulatus × Crotalus oreganus helleri hybrids. Toxicon 2016; 120:110-23. [DOI: 10.1016/j.toxicon.2016.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/27/2016] [Accepted: 08/01/2016] [Indexed: 11/20/2022]
|
20
|
Zancolli G, Baker TG, Barlow A, Bradley RK, Calvete JJ, Carter KC, de Jager K, Owens JB, Price JF, Sanz L, Scholes-Higham A, Shier L, Wood L, Wüster CE, Wüster W. Is Hybridization a Source of Adaptive Venom Variation in Rattlesnakes? A Test, Using a Crotalus scutulatus × viridis Hybrid Zone in Southwestern New Mexico. Toxins (Basel) 2016; 8:toxins8060188. [PMID: 27322321 PMCID: PMC4926154 DOI: 10.3390/toxins8060188] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/02/2016] [Accepted: 06/09/2016] [Indexed: 11/16/2022] Open
Abstract
Venomous snakes often display extensive variation in venom composition both between and within species. However, the mechanisms underlying the distribution of different toxins and venom types among populations and taxa remain insufficiently known. Rattlesnakes (Crotalus, Sistrurus) display extreme inter- and intraspecific variation in venom composition, centered particularly on the presence or absence of presynaptically neurotoxic phospholipases A₂ such as Mojave toxin (MTX). Interspecific hybridization has been invoked as a mechanism to explain the distribution of these toxins across rattlesnakes, with the implicit assumption that they are adaptively advantageous. Here, we test the potential of adaptive hybridization as a mechanism for venom evolution by assessing the distribution of genes encoding the acidic and basic subunits of Mojave toxin across a hybrid zone between MTX-positive Crotalus scutulatus and MTX-negative C. viridis in southwestern New Mexico, USA. Analyses of morphology, mitochondrial and single copy-nuclear genes document extensive admixture within a narrow hybrid zone. The genes encoding the two MTX subunits are strictly linked, and found in most hybrids and backcrossed individuals, but not in C. viridis away from the hybrid zone. Presence of the genes is invariably associated with presence of the corresponding toxin in the venom. We conclude that introgression of highly lethal neurotoxins through hybridization is not necessarily favored by natural selection in rattlesnakes, and that even extensive hybridization may not lead to introgression of these genes into another species.
Collapse
Affiliation(s)
- Giulia Zancolli
- Molecular Ecology and Fisheries Genetics Lab, School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK.
| | - Timothy G Baker
- Molecular Ecology and Fisheries Genetics Lab, School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK.
| | - Axel Barlow
- Molecular Ecology and Fisheries Genetics Lab, School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK.
- Evolutionary and Adaptive Genomics Group, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Haus 29, 14476 Potsdam (Golm), Germany.
| | - Rebecca K Bradley
- Molecular Ecology and Fisheries Genetics Lab, School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK.
| | - Juan J Calvete
- Venomics and Structural Proteomics Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain.
| | - Kimberley C Carter
- Molecular Ecology and Fisheries Genetics Lab, School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK.
| | - Kaylah de Jager
- Molecular Ecology and Fisheries Genetics Lab, School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK.
| | - John Benjamin Owens
- Molecular Ecology and Fisheries Genetics Lab, School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK.
| | - Jenny Forrester Price
- Molecular Ecology and Fisheries Genetics Lab, School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK.
| | - Libia Sanz
- Venomics and Structural Proteomics Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain.
| | - Amy Scholes-Higham
- Molecular Ecology and Fisheries Genetics Lab, School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK.
| | - Liam Shier
- Molecular Ecology and Fisheries Genetics Lab, School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK.
| | - Liam Wood
- Molecular Ecology and Fisheries Genetics Lab, School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK.
| | - Catharine E Wüster
- Molecular Ecology and Fisheries Genetics Lab, School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK.
| | - Wolfgang Wüster
- Molecular Ecology and Fisheries Genetics Lab, School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK.
- Chiricahua Desert Museum, P.O. Box 376, Rodeo, NM 88056, USA.
| |
Collapse
|
21
|
Sunagar K, Morgenstern D, Reitzel AM, Moran Y. Ecological venomics: How genomics, transcriptomics and proteomics can shed new light on the ecology and evolution of venom. J Proteomics 2015; 135:62-72. [PMID: 26385003 DOI: 10.1016/j.jprot.2015.09.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 01/18/2023]
Abstract
Animal venom is a complex cocktail of bioactive chemicals that traditionally drew interest mostly from biochemists and pharmacologists. However, in recent years the evolutionary and ecological importance of venom is realized as this trait has direct and strong influence on interactions between species. Moreover, venom content can be modulated by environmental factors. Like many other fields of biology, venom research has been revolutionized in recent years by the introduction of systems biology approaches, i.e., genomics, transcriptomics and proteomics. The employment of these methods in venom research is known as 'venomics'. In this review we describe the history and recent advancements of venomics and discuss how they are employed in studying venom in general and in particular in the context of evolutionary ecology. We also discuss the pitfalls and challenges of venomics and what the future may hold for this emerging scientific field.
Collapse
Affiliation(s)
- Kartik Sunagar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - David Morgenstern
- Proteomics Resource Center, Langone Medical Center, New York University, New York, USA.
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
22
|
Borja M, Castañeda G, Espinosa J, Neri E, Carbajal A, Clement H, García O, Alagon A. Mojave Rattlesnake (Crotalus scutulatus scutulatus) with Type B Venom from Mexico. COPEIA 2014. [DOI: 10.1643/ot-12-041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Castro EN, Lomonte B, del Carmen Gutiérrez M, Alagón A, Gutiérrez JM. Intraspecies variation in the venom of the rattlesnake Crotalus simus from Mexico: Different expression of crotoxin results in highly variable toxicity in the venoms of three subspecies. J Proteomics 2013; 87:103-21. [DOI: 10.1016/j.jprot.2013.05.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 11/27/2022]
|
24
|
Durban J, Pérez A, Sanz L, Gómez A, Bonilla F, Rodríguez S, Chacón D, Sasa M, Angulo Y, Gutiérrez JM, Calvete JJ. Integrated "omics" profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. BMC Genomics 2013; 14:234. [PMID: 23575160 PMCID: PMC3660174 DOI: 10.1186/1471-2164-14-234] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 03/14/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Understanding the processes that drive the evolution of snake venom is a topic of great research interest in molecular and evolutionary toxinology. Recent studies suggest that ontogenetic changes in venom composition are genetically controlled rather than environmentally induced. However, the molecular mechanisms underlying these changes remain elusive. Here we have explored the basis and level of regulation of the ontogenetic shift in the venom composition of the Central American rattlesnake, Crotalus s. simus using a combined proteomics and transcriptomics approach. RESULTS Proteomic analysis showed that the ontogenetic shift in the venom composition of C. s. simus is essentially characterized by a gradual reduction in the expression of serine proteinases and PLA2 molecules, particularly crotoxin, a β-neurotoxic heterodimeric PLA2, concominantly with an increment of PI and PIII metalloproteinases at age 9-18 months. Comparison of the transcriptional activity of the venom glands of neonate and adult C. s. simus specimens indicated that their transcriptomes exhibit indistinguisable toxin family profiles, suggesting that the elusive mechanism by which shared transcriptomes generate divergent venom phenotypes may operate post-transcriptionally. Specifically, miRNAs with frequency count of 1000 or greater exhibited an uneven distribution between the newborn and adult datasets. Of note, 590 copies of a miRNA targeting crotoxin B-subunit was exclusively found in the transcriptome of the adult snake, whereas 1185 copies of a miRNA complementary to a PIII-SVMP mRNA was uniquely present in the newborn dataset. These results support the view that age-dependent changes in the concentration of miRNA modulating the transition from a crotoxin-rich to a SVMP-rich venom from birth through adulthood can potentially explain what is observed in the proteomic analysis of the ontogenetic changes in the venom composition of C. s. simus. CONCLUSIONS Existing snake venom toxins are the result of early recruitment events in the Toxicofera clade of reptiles by which ordinary genes were duplicated, and the new genes selectively expressed in the venom gland and amplified to multigene families with extensive neofunctionalization throughout the approximately 112-125 million years of ophidian evolution. Our findings support the view that understanding the phenotypic diversity of snake venoms requires a deep knowledge of the mechanisms regulating the transcriptional and translational activity of the venom gland. Our results suggest a functional role for miRNAs. The impact of specific miRNAs in the modulation of venom composition, and the integration of the mechanisms responsible for the generation of these miRNAs in the evolutionary landscape of the snake's venom gland, are further challenges for future research.
Collapse
Affiliation(s)
- Jordi Durban
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, Valencia 46010, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Massey DJ, Calvete JJ, Sánchez EE, Sanz L, Richards K, Curtis R, Boesen K. Venom variability and envenoming severity outcomes of the Crotalus scutulatus scutulatus (Mojave rattlesnake) from Southern Arizona. J Proteomics 2012; 75:2576-87. [PMID: 22446891 DOI: 10.1016/j.jprot.2012.02.035] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 02/24/2012] [Accepted: 02/29/2012] [Indexed: 10/28/2022]
Abstract
Twenty-one Mojave rattlesnakes, Crotalus scutulatus scutulatus (C. s. scutulatus), were collected from Arizona and New Mexico U.S.A. Venom proteome of each specimen was analyzed using reverse-phase HPLC and SDS-PAGE. The toxicity of venoms was analyzed using lethal dose 50 (LD(50)). Health severity outcomes between two Arizona counties U.S.A., Pima and Cochise, were determined by retrospective chart review of the Arizona Poison and Drug Information Center (APDIC) database between the years of 2002 and 2009. Six phenotypes (A-F) were identified based on three venom protein families; Mojave toxin, snake venom metalloproteinases PI and PIII (SVMP), and myotoxin-A. Venom changed geographically from SVMP-rich to Mojave toxin-rich phenotypes as you move from south central to southeastern Arizona. Phenotypes containing myotoxin-A were only found in the transitional zone between the SVMP and Mojave toxin phenotypes. Venom samples containing the largest amounts of SVMP or Mojave toxin had the highest and lowest LD(50s), respectively. There was a significant difference when comparing the presence of neurotoxic effects between Pima and Cochise counties (p=0.001). No significant difference was found when comparing severity (p=0.32), number of antivenom vials administered (p=0.17), days spent in a health care facility (p=0.23) or envenomation per 100,000 population (p=0.06). Although not part of the original data to be collected, death and intubations, were also noted. There is a 10× increased risk of death and a 50× increased risk of intubations if envenomated in Cochise County.
Collapse
Affiliation(s)
- Daniel J Massey
- Arizona Poison and Drug Information Center, Tucson, AZ 85721, United States.
| | | | | | | | | | | | | |
Collapse
|
26
|
Wang YM, Parmelee J, Guo YW, Tsai IH. Absence of phospholipase A(2) in most Crotalus horridus venom due to translation blockage: comparison with Crotalus horridus atricaudatus venom. Toxicon 2010; 56:93-100. [PMID: 20347857 DOI: 10.1016/j.toxicon.2010.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/15/2010] [Accepted: 03/18/2010] [Indexed: 11/24/2022]
Abstract
To investigate the peculiar absence of phospholipases A(2) (PLA(2)s) in most Crotalus horridus (CH) venom, we cloned and sequenced the venom PLA(2)s of three CH specimens from different regions. The results revealed that all the venom glands contained mRNAs that encoded an acidic PLA(2) (designated as either CH-E6 or CH-E6'). The predicted CH-E6 from the Iowan CH and CH-E6' from the South Carolinian CH differed by only one amino acid residue, while the PLA(2) cDNA cloned from the Kentuckian CH contained an early stop codon instead of a Tyr(22) codon. Only the individual South Carolinian CH venom was found to contain the CH-E6' protein whose mass was confirmed by MALDI-TOF analysis. Our results suggest that low PLA(2) expression levels in most CH venom can be attributed to translation blockage. We also purified two acidic PLA(2)s and canebrake toxin from the pooled venom of Crotalus horridus atricaudatus (neurotoxic CH subspecies). One of the acidic PLA(2)s was identical to CH-E6 and showed high lipolytic activity and weak anti-platelet activities. The possibility that C. h. atricaudatus could be a hybrid between CH and Crotalus scutulatus is discussed.
Collapse
Affiliation(s)
- Ying-Ming Wang
- Institute of Biological Chemistry, Academia Sinica, and Institute of Biochemical Sciences, National Taiwan University, P.O. Box 23-106, Taipei, Taiwan
| | | | | | | |
Collapse
|
27
|
Galan JA, Guo M, Sanchez EE, Cantu E, Rodriguez-Acosta A, Perez JC, Tao WA. Quantitative analysis of snake venoms using soluble polymer-based isotope labeling. Mol Cell Proteomics 2008; 7:785-99. [PMID: 18089550 PMCID: PMC2401333 DOI: 10.1074/mcp.m700321-mcp200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 12/17/2007] [Indexed: 11/06/2022] Open
Abstract
We present the design and synthesis of a new quantitative strategy termed soluble polymer-based isotope labeling (SoPIL) and its application as a novel and inclusive method for the identification and relative quantification of individual proteins in complex snake venoms. The SoPIL reagent selectively captures and isolates cysteine-containing peptides, and the subsequent tagged peptides are released and analyzed using nanoflow liquid chromatography-tandem mass spectrometry. The SoPIL strategy was used to quantify venom proteins from two pairs of venomous snakes: Crotalus scutulatus scutulatus type A, C. scutulatus scutulatus type B, Crotalus oreganus helleri, and Bothrops colombiensis. The hemorrhagic, hemolytic, clotting ability, and fibrinogenolytic activities of crude venoms were measured and correlated with difference in protein abundance determined by the SoPIL analysis. The SoPIL approach could provide an efficient and widely applicable tool for quantitative proteomics.
Collapse
Affiliation(s)
- Jacob A Galan
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Inhibition of lung tumor colonization and cell migration with the disintegrin crotatroxin 2 isolated from the venom of Crotalus atrox. Toxicon 2008; 51:1186-96. [PMID: 18387648 DOI: 10.1016/j.toxicon.2008.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 02/04/2008] [Accepted: 02/05/2008] [Indexed: 01/17/2023]
Abstract
Disintegrins are low molecular weight proteins (4-15 kDa) with an RGD binding region at their binding loop. Disintegrin and disintegrin-like proteins are found in the venom of four families of snakes: Atractaspididae, Elapidae, Viperidae, and Colubridae. This report describes the biological activity of a disintegrin, crotatroxin 2, isolated by a three-step chromatography procedure from the venom of the Western diamondback rattlesnake (Crotalus atrox). The intact molecular mass for crotatroxin 2 was 7.384 kDa and 71 amino acids. Crotatroxin 2 inhibited human whole blood platelet aggregation with an IC(50) of 17.5 nM, inhibited cell (66.3p) migration by 63%, and inhibited experimental lung tumor colonization in BALB/c mice at 1000 microg/kg. Our data suggest that while crotatroxin 2 inhibits platelet aggregation, cancer cell migration, and lung tumor colonization, it is done via different integrins.
Collapse
|
29
|
Aguilar I, Guerrero B, Maria Salazar A, Girón ME, Pérez JC, Sánchez EE, Rodríguez-Acosta A. Individual venom variability in the South American rattlesnake Crotalus durissus cumanensis. Toxicon 2007; 50:214-24. [PMID: 17482229 DOI: 10.1016/j.toxicon.2007.03.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 03/16/2007] [Accepted: 03/20/2007] [Indexed: 11/26/2022]
Abstract
Crotalus durissus cumanensis snake venoms from different Venezuelan regions, showed biochemical and hemostatic variations. Fibrino(geno)lytic, hemorrhagic and procoagulant activities and gel-filtration chromatography and SDS-PAGE profiles were analyzed. Differences were observed in fibrinolytic activity: kallikrein-like amidolytic activity was highest in venoms of Santa Teresa, and Margarita. Lagunetica and Carrizales venoms showed the maximum fibrin lysis. The highest hemorrhagic activity was seen in Lagunetica venom. Margarita had the lowest LD(50) of 0.18. Lagunetica, Carrizales and Anzoátegui induced a rapid degradation of fibrinogen alpha chains and slower degradation on beta chains, which could possibly due to a higher content of alpha fibrinogenases in these venoms. This fibrinogenolytic activity is decreased by metalloprotease inhibitors. All venoms, except Carrizales, presented thrombin-like activity. Anzoátegui, Carrizales and Lagunetica, in which fibrinolytic activity was present, showed the largest concentration of high molecular mass components. These results represent a new finding, not previously described, of fibrinolytic activity in South American C. durissus venoms. Santa Teresa and Margarita had fibrinolytic activity, and lack of hemorrhagic activity, representing an important finding in Venezuelan venoms since the description of a fibrinolytic molecule without hemorrhagic activity can have valuable potential in thrombolytic therapy.
Collapse
Affiliation(s)
- Irma Aguilar
- Sección de Inmunoquímica, Instituto de Medicina Tropical de la Universidad Central de Venezuela, Apartado 47423, Caracas 1041, Venezuela
| | | | | | | | | | | | | |
Collapse
|
30
|
Sánchez EE, Galán JA, Powell RL, Reyes SR, Soto JG, Russell WK, Russell DH, Pérez JC. Disintegrin, hemorrhagic, and proteolytic activities of Mohave rattlesnake, Crotalus scutulatus scutulatus venoms lacking Mojave toxin. Comp Biochem Physiol C Toxicol Pharmacol 2005; 141:124-32. [PMID: 16005687 DOI: 10.1016/j.cca.2005.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 04/01/2005] [Accepted: 04/03/2005] [Indexed: 12/01/2022]
Abstract
Venom from the Mohave rattlesnake, Crotalus scutulatus scutulatus, has been reported to be either: (1) neurotoxic; (2) hemorrhagic, or both (3) neurotoxic and hemorrhagic. In this study, 14 Mohave rattlesnakes from Arizona and Texas (USA) were analyzed for the presence of disintegrins and Mojave toxin. All venom samples were analyzed for the presence of hemorrhagic, proteolytic and disintegrin activities. The venoms were each chromatographed by reverse phase and their fractions tested for disintegrin activity. All specimens containing Mojave toxin were the most toxic and lacked proteolytic, hemorrhagic and disintegrin activities. In contrast, the venoms containing these activities lacked Mojave toxin. Two disintegrin genes, scutustatin and mojavestatin, were identified by PCR of genomic sequences. Scutustatin is a highly conserved disintegrin, while mojavestatin shows low conservation to other known disintegrins. Venoms with the highest LD50 measurements lacked both disintegrin genes, while the specimens with intermediate and low LD50 contained both genes. The intermediate LD50 group contained Mojave toxin and both disintegrin genes, but lacked hemorrhagic and disintegrin activity. Our results raise the possibility that scutustatin and mojavestatin are not expressed in the intermediate LD50 group, or that they may not be the same disintegrins responsible for the disintegrin activity found in the venom. Therefore, it is possible that Mohave rattlesnakes may produce more than two disintegrins.
Collapse
Affiliation(s)
- Elda E Sánchez
- Natural Toxins Research Center, College of Arts and Science, Texas A&M University-Kingsville, 700 University Blvd., MSC 158, Kingsville, TX 78363, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
French WJ, Hayes WK, Bush SP, Cardwell MD, Bader JO, Rael ED. Mojave toxin in venom of Crotalus helleri (Southern Pacific Rattlesnake): molecular and geographic characterization. Toxicon 2005; 44:781-91. [PMID: 15500854 DOI: 10.1016/j.toxicon.2004.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 08/17/2004] [Accepted: 08/23/2004] [Indexed: 10/26/2022]
Abstract
Mojave toxin (MT) was detected in five of 25 Crotalus helleri (Southern Pacific rattlesnake) sampled using anti-MT antibodies and nucleotide sequence analysis. All of the venoms that were positive for MT were collected from Mt San Jacinto in Riverside Co., California. Since this population is geographically isolated from C. scutulatus scutulatus (Mojave rattlesnake), it is unlikely that this finding is due to recent hybridization. MT concentration differences between C. helleri and C. s. scutulatus reflected the presence of 'isoforms' of the toxin in the venom. Whereas C. s. scutulatus generally has several isoforms of the toxin (detected by Western blotting), only one 'isoform' that focused at pI 5.1 was detected in C. helleri. Both acidic and basic subunits of MT sequences were obtained from C. helleri DNA with primers specific for MT, but only from snakes that had MT in their venom. The sequence identity of the C. helleri acidic subunit to the C. s. scutulatus subunit was 84.9%, whereas the sequence identity of the C. helleri basic subunit was 97% to the C. s. scutulatus basic subunit. Using casein, fibrin, and hide powder azure as substrates, assays for proteolytic activity suggested that C. helleri possesses several different types of metalloproteinases in their venom. However, proteolytic activity was not detected, or present in reduced amounts, in specimens having MT. Clinical neurotoxicity following envenomation by certain populations of C. helleri may be due to MT.
Collapse
Affiliation(s)
- Wendy J French
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Galán JA, Sánchez EE, Rodríguez-Acosta A, Pérez JC. Neutralization of venoms from two Southern Pacific Rattlesnakes (Crotalus helleri) with commercial antivenoms and endothermic animal sera. Toxicon 2004; 43:791-9. [PMID: 15284013 DOI: 10.1016/j.toxicon.2004.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Indexed: 11/26/2022]
Abstract
The Southern Pacific Rattlesnake (Crotalus helleri) is found in southwestern California (USA), southward through north Baja California (MX) into the northern part of southern Baja California (MX). In this study, the venoms from two Southern Pacific Rattlesnakes were characterized. The two venoms were different in color, concentration, and enzyme activities. Two commercial antivenoms neutralized both C. helleri venoms differently. Antivipmyn (Fab2H) and CroFab (FabO) neutralized both venoms but had different ED50. Four times more Fab2H antivenom was required to neutralize the C. helleri venom No. 011-084-009 than the venom from the snake No. 010-367-284. The hemorrhagic activity of two C. helleri venoms were neutralized differently by endothermic animal sera having a natural resistance to hemorrhagic activity of snake venoms. Opossums and Mexican ground squirrel sera did not neutralize the hemorrhagic activity of the venom No. 010-367-284. The sera of gray woodrats and hispid cotton rats neutralized all hemorrhagins in both C. helleri venoms. This is the first reported case in which opossum serum has not neutralized hemorrhagic activity of pit viper venom. Differences in the compositions of C. helleri venoms and their ability to be neutralized may help explain why snakebites are a difficult medical problem to treat and why effective polyvalent antivenoms are difficult to produce.
Collapse
Affiliation(s)
- Jacob A Galán
- Department of Biology, Natural Toxins Research Center (NTRC), Texas A&M University-Kingsville, MSC 158, Kingsville, TX 78363, USA
| | | | | | | |
Collapse
|
33
|
Mackessy SP, Williams K, Ashton KG. Ontogenetic Variation in Venom Composition and Diet of Crotalus oreganus concolor: A Case of Venom Paedomorphosis? COPEIA 2003. [DOI: 10.1643/ha03-037.1] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Sánchez EE, Ramírez MS, Galán JA, López G, Rodríguez-Acosta A, Pérez JC. Cross reactivity of three antivenoms against North American snake venoms. Toxicon 2003; 41:315-20. [PMID: 12565754 DOI: 10.1016/s0041-0101(02)00293-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The antivenom in the United States today is in short supply, expensive and may not even be the most effective in neutralizing venoms from snakes in certain geographical locations. The ED(50) is considered to be the best indicator of antivenom efficacy, however, other tests are needed. In this study, three antivenoms (Antivipmyn (Fab(2)H), Crotalidae Polyvalent Immune Fab (Ovine) (FabO) and UCV (FabV) were used to test the effectiveness of neutralization of eight venoms (Agkistrodon piscivorus piscivorus, Bothrops asper, Crotalus adamanteus, C. durissus durissus, C. horridus atricaudatus, C. h. horridus, C. atrox, and C. molossus molossus). Four different assays were used to study the efficacy of the antivenoms: the antihemorrhagic, antigelatinase, antifibrinolytic and antihide powder azure. Fab(2)H antivenom was more effective in neutralizing the enzymatic activities of these eight venoms than FabO and FabV antivenoms.
Collapse
Affiliation(s)
- Elda E Sánchez
- Department of Biology, Natural Toxins Research Center (NTRC), Texas A&M University-Kingsville, MSC 158, Kingsville, TX 78363, USA
| | | | | | | | | | | |
Collapse
|
35
|
Shashidharamurthy R, Jagadeesha DK, Girish KS, Kemparaju K. Variations in biochemical and pharmacological properties of Indian cobra (Naja naja naja) venom due to geographical distribution. Mol Cell Biochem 2002; 229:93-101. [PMID: 11936852 DOI: 10.1023/a:1017972511272] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Indian cobra (Naja naja naja) venom obtained from three different geographical regions was studied in terms of electrophoretic pattern, biochemical and pharmacological activities. SDS-PAGE banding pattern revealed significant variation in the protein constituents of the three regional venoms. The eastern venom showed highest indirect hemolysis and hyaluronidase activity. In contrast, western and southern venoms were rich in proteolytic activity. All the three regional venoms were devoid of p-tosyl-L-arginine methyl ester hydrolysing activity. The eastern venom was found to be most lethal among the three regional venoms. The lethal potency varied as eastern > western > southern regional venoms. In addition, all the three regional venoms showed marked variations in their ability to induce symptoms/signs of neurotoxicity, myotoxicity, edema and effect on plasma coagulation process. Polyclonal antiserum prepared against the venom of eastern region cross-reacted with both southern and western regional venoms, but varied in the extent of cross-reactivity by ouchterlony immunodiffusion and ELISA.
Collapse
Affiliation(s)
- R Shashidharamurthy
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, India
| | | | | | | |
Collapse
|
36
|
Wooldridge BJ, Pineda G, Banuelas-Ornelas JJ, Dagda RK, Gasanov SE, Rael ED, Lieb CS. Mojave rattlesnakes (Crotalus scutulatus scutulatus) lacking the acidic subunit DNA sequence lack Mojave toxin in their venom. Comp Biochem Physiol B Biochem Mol Biol 2001; 130:169-79. [PMID: 11544087 DOI: 10.1016/s1096-4959(01)00422-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The venom composition of Mojave rattlesnakes (Crotalus scutulatus scutulatus) differs in that some individuals have Mojave toxin and others do not. In order to understand the genetic basis for this difference, genomic DNA samples from Mojave rattlesnakes collected in Arizona, New Mexico, and Texas were analyzed for the presence of DNA sequences that relate to the acidic (Mta) and basic (Mtb) subunits of this toxin. DNA samples were subjected to PCR to amplify nucleotide sequences from second to fourth exons of the acidic and basic subunits. These nucleotide sequences were cloned and sequenced. The nucleotide sequences generated aligned exactly to previously published nucleotide sequences of Mojave toxin. All DNA samples analyzed generated product using the basic subunit primers, and aligned identically to the Mtb nucleotide sequence. However, only 11 out of the 14 samples generated a product with the acidic subunit primers. These 11 sequences aligned identically to the Mta nucleotide sequence. The venom from the three snakes whose DNA did not amplify with the acidic subunit primers were not recognized by antibodies to Mojave toxin. This suggests that snakes with venom lacking Mojave toxin also lack the productive nucleotide sequence for the acidic subunit in their DNA.
Collapse
Affiliation(s)
- B J Wooldridge
- Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Perez JC, McKeller MR, Pérez JC, Sánchez EE, Ramírez MS. An internet database of crotaline venom found in the United States. Toxicon 2001; 39:621-32. [PMID: 11072040 DOI: 10.1016/s0041-0101(00)00186-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many snake venoms have been shown to be complex mixtures of pharmacologically important molecules, some of which have potential therapeutic value in the treatment of clot-induced ischemia, cancer and other human disorders. The literature contains many references on how venom and/or venom components are being used in medicine. Within the United States, there are 44 subspecies of poisonous snakes. Despite this rather vast diversity, 90% of the venom-related biomedical research conducted on native snakes found in the United States has been done on a limited number of the more common species. Since the venoms from most of the native species are not available or characterized, their composition and potential usefulness in medicine and applied biomedical research has not been explored. The Natural Toxins Research Center (NTRC) at Texas A&M University-Kingsville has developed a serpentarium that presently houses a population of over 250 snakes composed of 11 species and 20 subspecies. These snakes are cataloged on the Internet database along with their geographical location data, proteolytic activities, high performance liquid chromatography (HPLC) and electrophoretic titration (ET) profiles. Many of these snake venoms have never been characterized and few locale-specific differences within a species have been examined. These venoms can be queried through an on-line search routine. The database will be a useful starting point for anyone interested in isolating fibrinolytic enzymes, specific toxins, hemorrhagins, or other pharmacologically active proteins from snake venoms.
Collapse
Affiliation(s)
- J C Perez
- Conrad Blucher Insttitute for Surveying and Science, Texas A&M University-Corpus Christi, 78412, USA.
| | | | | | | | | |
Collapse
|
38
|
Francischetti IM, Gombarovits ME, Valenzuela JG, Carlini CR, Guimarães JA. Intraspecific variation in the venoms of the South American rattlesnake (Crotalus durissus terrificus). Comp Biochem Physiol C Toxicol Pharmacol 2000; 127:23-36. [PMID: 11081410 DOI: 10.1016/s0742-8413(00)00129-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The venom of eight individual Crotalus durissus terrificus snakes from the State of Minas Gerais, Brazil, in addition to pooled venom from Butantan Institute, were compared. Snakes were captured in distinct locations, some of them 600 km apart: Conselheiro Lafaiete, Entre Rios de Minas, Itauna, Itapecerica, Lavras, Patos de Minas, Paracatu, and Santo Antonio do Amparo. The crude venoms were tested for proteolytic, phospholipase A2, platelet aggregating, and hemagglutinating activities. The venoms were also analyzed by polyacrylamide gel electrophoresis (PAGE) and isoelectric focusing (IEF). Chromatographic patterns of venom proteins on both gel-filtration and anion-exchange chromatographies were also performed. All venoms presented high phospholipase A2 and platelet-aggregating activities, but only minimal hemagglutinating or proteolytic activities were found. Gel-filtration chromatography showed a characteristic profile for most venoms where four main peaks were separated, including the typical ones where convulxin and crotoxin were identified; however, peaks with high amounts of lower molecular weight proteins were found in the venoms from the Santo Antonio do Amparo location and Butantan Institute, characterizing these venoms as crotamine positive. Anion-exchange chromatographies presented a similar protein distribution pattern, although the number of peaks (up to ten) distinguished some venom samples. Consistent with these results, polyacrylamide gels that were silver stained after venom separation by PAGE or IEF presented a similar qualitative band distribution, although a quantitative heterogeneity was detected among venoms. Our results suggest that the variability found in venom components of C. d. terrificus venoms captured in Minas Gerais State may be genetically inherited and/or environmentally induced.
Collapse
Affiliation(s)
- I M Francischetti
- Department of Medical Biochemistry, ICB/CCS, Federal University of Rio de Janeiro, Cidade Universitária-Ilha do Fundão, RJ, CEP, Brazil
| | | | | | | | | |
Collapse
|
39
|
Tubbs KA, Nelson RW, Krone JR, Bieber AL. MASS SPECTRAL STUDIES OF SNAKE VENOMS AND SOME OF THEIR TOXINS. ACTA ACUST UNITED AC 2000. [DOI: 10.1081/txr-100100313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Bush SP, Wu VH, Corbett SW. Rattlesnake venom-induced thrombocytopenia response to Antivenin (Crotalidae) Polyvalent: a case series. Acad Emerg Med 2000; 7:181-5. [PMID: 10691078 DOI: 10.1111/j.1553-2712.2000.tb00524.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To test the hypothesis that rattlesnake venom-induced thrombocytopenia would improve following Antivenin (Crotalidae) Polyvalent administration, and that the degree of platelet increase would correlate with the dosage of antivenom. METHODS The authors conducted a retrospective review of all patients admitted for rattlesnake envenomation at two southern California hospitals between 1980 and 1998. Patients were included if platelet count was less than 150 x 10(9)/L following a rattlesnake bite. Patients were excluded if they received platelet transfusion. The relationship between Antivenin (Crotalidae) Polyvalent administration and venom-induced thrombocytopenia was evaluated by linear regression and paired t-test. RESULTS The authors identified 103 cases of rattlesnake envenomation. Seventeen cases met inclusion criteria for thrombocytopenia. Two patients were excluded because they received platelet transfusions. One additional patient was excluded from paired t-test only because no antivenom was given. Thrombocytopenia usually improved between presentation and discharge (mean difference, 44 x 10(9)/L), although complete resolution was often not achieved. A statistically significant partial improvement in platelet counts immediately after antivenom administration was observed in a subset of patients with severe thrombocytopenia (platelet count <100 x 10(9)/L) (mean difference, 64 x 10(9)/L). Using regression analysis, the authors did not detect a linear relationship between the amount of Antivenin (Crotalidae) Polyvalent administered and the degree of improvement. CONCLUSIONS Although rattlesnake venom-induced thrombocytopenia usually improves immediately after Antivenin (Crotalidae) Polyvalent administration and by the time of discharge, the degree of improvement is frequently incomplete and of uncertain clinical significance in the absence of life-threatening bleeding. The authors found no correlation between the degree of improvement and the dosage of Antivenin (Crotalidae) Polyvalent.
Collapse
Affiliation(s)
- S P Bush
- Loma Linda University Medical Center, Department of Emergency Medicine, CA 92354, USA.
| | | | | |
Collapse
|
41
|
Bush SP, Siedenburg E. Neurotoxicity associated with suspected southern Pacific rattlesnake (Crotalus viridis helleri) envenomation. Wilderness Environ Med 2000; 10:247-9. [PMID: 10628285 DOI: 10.1580/1080-6032(1999)010[0247:nawssp]2.3.co;2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
An 18-year-old man was bitten on the hand by a snake he believed to be a Southern Pacific rattlesnake (Crotalus viridis helleri). Within minutes he developed generalized weakness, difficulty breathing, diplopia, dysphagia, and dysphonia. Neurological examination revealed ptosis and decreased motor strength. These symptoms partially improved after administration of Antivenin (Crotalidae) Polyvalent, but the patient continued to have difficulty walking for several days due to weakness. In addition to neurological symptoms, the patient also experienced pain immediately after the bite occurred and rapid swelling of the entire extremity, which extended beyond the shoulder. He complained of a metallic taste in his mouth and developed intense muscle fasciculations of the face, tongue, and upper extremities, which lasted for 2 days and did not improve with antivenin treatment. He exhibited laboratory evidence of coagulopathy and rhabdomyolysis. Although neurotoxins are known to occur in the venom of certain populations of rattlesnakes, only a few clinical reports describing severe neurological symptoms appear in the literature. To our knowledge, this is the first reported case of neurotoxicity associated with a suspected Southern Pacific rattlesnake envenomation.
Collapse
Affiliation(s)
- S P Bush
- Department of Emergency Medicine, Loma Linda University School of Medicine, CA, USA
| | | |
Collapse
|
42
|
Prasad NB, Uma B, Bhatt SK, Gowda VT. Comparative characterisation of Russell's viper (Daboia/Vipera russelli) venoms from different regions of the Indian peninsula. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1428:121-36. [PMID: 10434030 DOI: 10.1016/s0304-4165(99)00053-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Russell's viper (Daboia/Vipera russelli) venom from different regions of India was subjected to chromatographic, electrophoretic, biochemical and immunological analysis. The elution profiles from ion-exchange chromatography and protein banding pattern from SDS-PAGE showed a significant variation in the constituents of venoms. The acidic proteins are found to be predominant in the venoms of eastern and western regions while basic proteins are the major contributors of the northern and southern regional venoms. The major variation of phospholipases A(2) in the venom samples of India may be described as: southern regional venom is rich in basic, toxic PLA(2) while this activity showed a dramatic decrease as one moves towards west, north and eastern regions of India. In addition, the caseinolytic, TAME-hydrolytic, anticoagulant, oedema-inducing and haemorrhagic activities of the venoms have also varied from one region to another. The muscle specimens of mice injected with venoms of different regions showed variable change in the muscle fibre damage and cell morphology. The eastern regional venom is most lethal among all the venoms. The lethal potencies for four regional venoms vary as: eastern>western>southern>northern. The polyclonal antibodies prepared against the venom of southern region showed cross-reaction with the venoms of other regions, but the extent of cross-reaction and diffusion patterns are different. However, the polyclonal antibodies prepared against southern regional venom showed no protection against lethal toxicity of other regional venoms.
Collapse
Affiliation(s)
- N B Prasad
- Department of Studies in Biochemistry, University of Mysore, Mysore 570006, India.
| | | | | | | |
Collapse
|
43
|
Abstract
Envenomations are uncommon, challenging causes of critical care admissions. This article describes the diagnosis and treatment of envenomations that cause the most critical care admissions in the United States. Most are caused by the following animals: rattlesnakes, copperheads, cottonmouths, coral snakes, brown recluse spiders, and bark scorpions.
Collapse
Affiliation(s)
- F G Walter
- Section of Medical Toxicology, University of Arizona College of Medicine, Tucson, USA.
| | | | | |
Collapse
|
44
|
Santoro ML, Sousa-e-Silva MC, Gonçalves LR, Almeida-Santos SM, Cardoso DF, Laporta-Ferreira IL, Saiki M, Peres CA, Sano-Martins IS. Comparison of the biological activities in venoms from three subspecies of the South American rattlesnake (Crotalus durissus terrificus, C. durissus cascavella and C. durissus collilineatus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1999; 122:61-73. [PMID: 10190029 DOI: 10.1016/s0742-8413(98)10079-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The subspecies of the South American rattlesnake, Crotalus durissus are classified according to their external morphological features and geographical distribution. We have determined some biological activities of C. durissus cascavella, C. durissus collilineatus and C. durissus terrificus venoms. C. durissus terrificus had a significantly higher clotting activity on bovine plasma and fibrinogen, human fibrinogen and rabbit plasma. C. durissus cascavella presented a statistically higher phospholipase A2 (PLA2) activity in regard to C. durissus collilineatus. Their myotoxic and proteolytic activity, median lethal doses, or median platelet aggregating doses (on rabbit and human platelets) could not differentiate the three subspecies examined. However, the electrophoretic profile and the dose-response curve for edematogenic activity for C.d. cascavella venom were different from the others. With regard to the inorganic element content of the venoms, higher levels of Br, Cl and Mg, and a lower level of Zn, were found in C.d. cascavella venom. Crotamine-like activity could not be detected in C.d. cascavella venom. Furthermore, equine antivenom specific for C. durissus terrificus venom cross-reacted equally with the antigens of the three venom pools by ELISA and Western blotting. These results indicate that the venoms from the three studied subspecies of C. durissus were very similar, except for minor differences in paw edema-inducing activity, electrophoretic profile, phospholipase A2 activity, crotamine-like activity and inorganic element contents of C.d. cascavella venom.
Collapse
Affiliation(s)
- M L Santoro
- Laboratory of Pathophysiology, Instituto Butantan, São Paulo-SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Farstad D, Thomas T, Chow T, Bush S, Stiegler P. Mojave rattlesnake envenomation in southern California: a review of suspected cases. Wilderness Environ Med 1997; 8:89-93. [PMID: 11990148 DOI: 10.1580/1080-6032(1997)008[0089:mreisc]2.3.co;2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
To clarify whether Mojave rattlesnake (Crotalus scutulatus scutulatus) envenomations occurring in California cause typical crotalid tissue effects, pain, edema, and ecchymosis, we reviewed charts of snakebite victims at a tertiary care teaching hospital and a moderate-size community hospital. Forty-two patients were bitten within the range of Mojave rattlesnakes. Eight snakes were identified as Mojave rattlesnakes (group 1); of these, four were confirmed by experts in snake identification (group 1a). Fifteen patients were reported bitten by other rattlesnake species (group 2), and in 19 envenomations the species was unknown (group 3). Seventy-five percent of patients in group 1 were reported to have local edema at the envenomation site compared with all of the patients in group 2. Ecchymosis was found in 25% of group 1 patients and 73% of group 2 patients. Pain was documented in only 12% of group 1 and 67% of group 2 victims. Neurotropic events, many severe, were found in 75% of group 1 patients compared with 7% of those in group 2. Although this study does not have the power to justify statistical evaluation, C. scutulatus envenomations do appear inclined to less tissue reaction. A disturbing trend toward severe neurotropic manifestations was also suggested in presumed Mojave rattlesnake envenomations.
Collapse
Affiliation(s)
- D Farstad
- Department of Emergency Medicine, Loma Linda University Medical Center, CA, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
A 7-year-old boy presented to the emergency department with severe hypotension and lethargy after a rattlesnake bite. He developed anaphylaxis to antivenom and required intubation, epinephrine, antihistamines, and steroids. Severe rhabdomyolysis and myoglobinuric kidney failure developed over 24 hours, with a peak creatine phosphokinase level of 214,500 units/L. Severe hypocalcemic tetany was treated with replacement therapy. Local wound swelling was never severe and the patient had no coagulopathies. Marked motor weakness improved with antivenom administration. Because of the myotoxic and neurologic effects in the absence of fibrinogenolysis/thrombocytopenia and minimal tissue signs, as well as the similarity to a previously reported case from our area, the envenomation was most likely caused by a Mojave rattlesnake.
Collapse
Affiliation(s)
- S P Bush
- Department of Emergency Medicine, Loma Linda University Medical Center, California, USA
| | | |
Collapse
|
47
|
Glenn JL, Straight RC, Wolt TB. Regional variation in the presence of canebrake toxin in Crotalus horridus venom. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PHARMACOLOGY, TOXICOLOGY AND ENDOCRINOLOGY 1994; 107:337-46. [PMID: 8061939 DOI: 10.1016/1367-8280(94)90059-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Reverse-phase HPLC was used to isolate the PLA complex neurotoxin "canebrake toxin" from the venom of Crotalus horridus from northern Florida. Individual venoms from 107 specimens of C. horridus throughout its range were investigated for the presence of the toxin. The distribution of canebrake toxin was limited to two separate regions, including a region of Louisiana, Arkansas and Oklahoma, and a separate region from southeastern South Carolina through eastern Georgia to northern Florida. Four distinct venom types were found and designated Venoms A (neurotoxic), B (hemorrhagic), A + B (neurotoxic and hemorrhagic) and C (lacking in both neurotoxic and hemorrhagic activities).
Collapse
Affiliation(s)
- J L Glenn
- Venom Research Laboratory, Veterans Affairs Medical Center, Salt Lake City, UT 84148
| | | | | |
Collapse
|
48
|
Biochemical analysis of degeneration and regeneration in rat soleus muscle induced by venom from three subspecies of Daboia russelli. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0305-0491(94)90044-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Rael ED, Lieb CS, Maddux N, Varela-Ramirez A, Perez J. Hemorrhagic and Mojave toxins in the venoms of the offspring of two Mojave rattlesnakes (Crotalus scutulatus scutulatus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1993; 106:595-600. [PMID: 8281754 DOI: 10.1016/0305-0491(93)90136-s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. The venoms of two Mojave rattlesnakes and those of their offsprings were analyzed for Mojave toxin and hemorrhagic toxin. 2. The venom of one female, collected in Pima County, Arizona, and the venoms of her six offspring contained hemorrhagic toxin but not Mojave toxin (venom B). 3. The venom of the second female, captured in El Paso County, Texas, contained both toxins (A+B venom). Of her 10 offspring, five contained venom with both toxins, two had hemorrhagic toxin only, and three contained neither toxin. 4. Venoms that caused hemorrhage also inactivated complement. A pool of the venoms of the venom B offspring was less toxic than adult pooled venom A.
Collapse
Affiliation(s)
- E D Rael
- Department of Biological Sciences, University of Texas at El Paso 79968
| | | | | | | | | |
Collapse
|
50
|
Ferreira ML, Moura-da-Silva AM, França FO, Cardoso JL, Mota I. Toxic activities of venoms from nine Bothrops species and their correlation with lethality and necrosis. Toxicon 1992; 30:1603-8. [PMID: 1488769 DOI: 10.1016/0041-0101(92)90032-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The comparison of seven toxic activities contained in venoms from nine different species of Bothrops and the correlation of each activity with lethality and necrosis was the subject of this study. The haemorrhagic, coagulant, necrotizing, myotoxic, proteolytic and phospholipase activities were not equally distributed among the venoms studied except for the oedema-inducing activity which was almost equally distributed among them. The correlation coefficient was estimated for each activity in relation to lethality and necrosis induced by the venom. Lethality was significantly related to haemorrhagic and oedema-inducing activities, whereas the necrotizing activity showed significant correlation with phospholipase and coagulant activities. Proteolytic activity presented a significant inverse correlation with lethality.
Collapse
Affiliation(s)
- M L Ferreira
- Centro de Imunologia O.G. Bier, São Paulo, Brazil
| | | | | | | | | |
Collapse
|