1
|
Dobson J, Chowdhury A, Tai-A-Pin J, van der Ploeg H, Gillett A, Fry BG. The Clot Thickens: Differential Coagulotoxic and Cardiotoxic Activities of Anguimorpha Lizard Venoms. Toxins (Basel) 2024; 16:283. [PMID: 38922177 PMCID: PMC11209219 DOI: 10.3390/toxins16060283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Despite their evolutionary novelty, lizard venoms are much less studied in comparison to the intense research on snake venoms. While the venoms of helodermatid lizards have long been assumed to be for defensive purposes, there is increasing evidence of toxic activities more useful for predation than defence (such as paralytic neurotoxicity). This study aimed to ascertain the effects of Heloderma, Lanthanotus, and Varanus lizard venoms on the coagulation and cardiovascular systems. Anticoagulant toxicity was demonstrated for the Varanus species studied, with the venoms prolonging clotting times in human and bird plasma due to the destructive cleavage of fibrinogen. In contrast, thromboelastographic analyses on human and bird plasmas in this study demonstrated a procoagulant bioactivity for Heloderma venoms. A previous study on Heloderma venom using factor-depleted plasmas as a proxy model suggested a procoagulant factor was present that activated either Factor XI or Factor XII, but could not ascertain the precise target. Our activation studies using purified zymogens confirmed FXII activation. Comparisons of neonate and adult H. exasperatum, revealed the neonates to be more potent in the ability to activate FXII, being more similar to the venom of the smaller species H. suspectum than the adult H. exasperatum. This suggests potent FXII activation a basal trait in the genus, present in the small bodied last common ancestor. This also indicates an ontogenetic difference in prey preferences in the larger Heloderma species paralleing the change in venom biochemistry. In addition, as birds lack Factor XII, the ability to clot avian plasma suggested an additional procoagulant site of action, which was revealed to be the activation of Factor VII, with H. horridum being the most potent. This study also examined the effects upon the cardiovascular system, including the liberation of kinins from kininogen, which contributes to hypotension induction. This form of toxicity was previously described for Heloderma venoms, and was revealed in this study was to also be a pathophysiological effect of Lanthanotus and Varanus venoms. This suggests that this toxic activity was present in the venom of the last common ancestor of the anguimorph lizards, which is consistent with kallikrein enzymes being a shared toxin trait. This study therefore uncovered novel actions of anguimorph lizard venoms, not only contributing to the evolutionary biology body of knowledge but also revealing novel activities to mine for drug design lead compounds.
Collapse
Affiliation(s)
- James Dobson
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (J.D.); (A.C.)
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (J.D.); (A.C.)
| | | | - Harold van der Ploeg
- Working Group Adder Research Netherlands, RAVON, 6525 ED Nijmegen, The Netherlands;
| | - Amber Gillett
- FaunaVet Wildlife Consultancy, Glass House Mountains, QLD 4518, Australia;
| | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (J.D.); (A.C.)
| |
Collapse
|
2
|
Arestakesyan H, LeFevre N, Posnack N, Sarian A, Grigoryan V, Ayvazyan N, Voskanyan A, Sarvazyan N, Karabekian Z. Changes in attachment and metabolic activity of rat neonatal cardiomyocytes and nonmyocytes caused by Macrovipera lebetina obtusa venom. Toxicol In Vitro 2024; 95:105755. [PMID: 38061605 DOI: 10.1016/j.tiv.2023.105755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
The Caucasian viper Macrovipera lebetina obtusa (MLO) is one of the most prevalent and venomous snakes in the Caucasus and the surrounding regions, yet the effects of MLO venom on cardiac function remain largely unknown. We examined the influence of MLO venom (crude and with inhibited metalloproteinases and phospholipase A2) on attachment and metabolic activity of rat neonatal cardiomyocytes (CM) and nonmyocytes (nCM), assessed at 1 and 24 h. After exposing both CM and nCM to varying concentrations of MLO venom, we observed immediate cytotoxic effects at a concentration of 100 μg/ml, causing detachment from the culture substrate. At lower MLO venom concentrations both cell types detached in a dose-dependent manner. Inhibition of MLO venom metalloproteinases significantly improved CM and nCM attachment after 1-hour exposure. At 24-hour exposure to metalloproteinases inhibited venom statistically significant enhancement was observed only in nCM attachment. However, metabolic activity of CM and nCM did not decrease upon exposure to the lower dose of the venom. Moreover, we demonstrated that metalloproteinases and phospholipases A2 are not the components of the MLO venom that change metabolic activity of both CM and nCM. These results provide a valuable platform to study the impact of MLO venom on prey cardiac function. They also call for further exploration of individual venom components for pharmaceutical purposes.
Collapse
Affiliation(s)
- Hovhannes Arestakesyan
- Orbeli Institute of Physiology, National Academy of Sciences, 22 Orbeli Bros. St., Yerevan 0028, Armenia; Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Narine LeFevre
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Nikki Posnack
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; Children's National Heart Institute, Sheikh Zayed Institute of Pediatric Surgical Innovation, Washington, DC 20010, USA
| | - Arni Sarian
- Orbeli Institute of Physiology, National Academy of Sciences, 22 Orbeli Bros. St., Yerevan 0028, Armenia
| | - Vahan Grigoryan
- Orbeli Institute of Physiology, National Academy of Sciences, 22 Orbeli Bros. St., Yerevan 0028, Armenia
| | - Naira Ayvazyan
- Orbeli Institute of Physiology, National Academy of Sciences, 22 Orbeli Bros. St., Yerevan 0028, Armenia
| | - Armen Voskanyan
- Orbeli Institute of Physiology, National Academy of Sciences, 22 Orbeli Bros. St., Yerevan 0028, Armenia
| | - Narine Sarvazyan
- Orbeli Institute of Physiology, National Academy of Sciences, 22 Orbeli Bros. St., Yerevan 0028, Armenia; Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Zaruhi Karabekian
- Orbeli Institute of Physiology, National Academy of Sciences, 22 Orbeli Bros. St., Yerevan 0028, Armenia; Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
3
|
Averin A, Starkov V, Tsetlin V, Utkin Y. Effects of the Heterodimeric Neurotoxic Phospholipase A 2 from the Venom of Vipera nikolskii on the Contractility of Rat Papillary Muscles and Thoracic Aortas. Toxins (Basel) 2024; 16:100. [PMID: 38393179 PMCID: PMC10891809 DOI: 10.3390/toxins16020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Phospholipases A2 (PLA2s) are a large family of snake toxins manifesting diverse biological effects, which are not always related to phospholipolytic activity. Snake venom PLA2s (svPLA2s) are extracellular proteins with a molecular mass of 13-14 kDa. They are present in venoms in the form of monomers, dimers, and larger oligomers. The cardiovascular system is one of the multiple svPLA2 targets in prey organisms. The results obtained previously on the cardiovascular effects of monomeric svPLA2s were inconsistent, while the data on the dimeric svPLA2 crotoxin from the rattlesnake Crotalus durissus terrificus showed that it significantly reduced the contractile force of guinea pig hearts. Here, we studied the effects of the heterodimeric svPLA2 HDP-1 from the viper Vipera nikolskii on papillary muscle (PM) contractility and the tension of the aortic rings (ARs). HDP-1 is structurally different from crotoxin, and over a wide range of concentrations, it produced a long-term, stable, positive inotropic effect in PMs, which did not turn into contractures at the concentrations studied. This also distinguishes HDP-1 from the monomeric svPLA2s, which at high concentrations inhibited cardiac function. HDP-1, when acting on ARs preconstricted with 10 μM phenylephrine, induced a vasorelaxant effect, similar to some other svPLA2s. These are the first indications of the cardiac and vascular effects of true vipers' heterodimeric svPLA2s.
Collapse
Affiliation(s)
- Alexey Averin
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center of Biological Research”, Pushchino Branch, Russian Academy of Sciences, Pushchino 142290, Russia;
| | - Vladislav Starkov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (V.S.); (V.T.)
| | - Victor Tsetlin
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (V.S.); (V.T.)
| | - Yuri Utkin
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (V.S.); (V.T.)
| |
Collapse
|
4
|
Messadi E. Snake Venom Components as Therapeutic Drugs in Ischemic Heart Disease. Biomolecules 2023; 13:1539. [PMID: 37892221 PMCID: PMC10605524 DOI: 10.3390/biom13101539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Ischemic heart disease (IHD), especially myocardial infarction (MI), is a leading cause of death worldwide. Although coronary reperfusion is the most straightforward treatment for limiting the MI size, it has nevertheless been shown to exacerbate ischemic myocardial injury. Therefore, identifying and developing therapeutic strategies to treat IHD is a major medical challenge. Snake venoms contain biologically active proteins and peptides that are of major interest for pharmacological applications in the cardiovascular system (CVS). This has led to their use for the development and design of new drugs, such as the first-in-class angiotensin-converting enzyme inhibitor captopril, developed from a peptide present in Bothrops jararaca snake venom. This review discusses the potential usefulness of snake venom toxins for developing effective treatments against IHD and related diseases such as hypertension and atherosclerosis. It describes their biological effects at the molecular scale, their mechanisms of action according to their different pharmacological properties, as well as their subsequent molecular pathways and therapeutic targets. The molecules reported here have either been approved for human medical use and are currently available on the drug market or are still in the clinical or preclinical developmental stages. The information summarized here may be useful in providing insights into the development of future snake venom-derived drugs.
Collapse
Affiliation(s)
- Erij Messadi
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
5
|
Averin AS, Utkin YN. Cardiovascular Effects of Snake Toxins: Cardiotoxicity and Cardioprotection. Acta Naturae 2021; 13:4-14. [PMID: 34707893 PMCID: PMC8526186 DOI: 10.32607/actanaturae.11375] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Snake venoms, as complex mixtures of peptides and proteins, affect various vital systems of the organism. One of the main targets of the toxic components from snake venoms is the cardiovascular system. Venom proteins and peptides can act in different ways, exhibiting either cardiotoxic or cardioprotective effects. The principal classes of these compounds are cobra cardiotoxins, phospholipases A2, and natriuretic, as well as bradykinin-potentiating peptides. There is another group of proteins capable of enhancing angiogenesis, which include, e.g., vascular endothelial growth factors possessing hypotensive and cardioprotective activities. Venom proteins and peptides exhibiting cardiotropic and vasoactive effects are promising candidates for the design of new drugs capable of preventing or constricting the development of pathological processes in cardiovascular diseases, which are currently the leading cause of death worldwide. For example, a bradykinin-potentiating peptide from Bothrops jararaca snake venom was the first snake venom compound used to create the widely used antihypertensive drugs captopril and enalapril. In this paper, we review the current state of research on snake venom components affecting the cardiovascular system and analyse the mechanisms of physiological action of these toxins and the prospects for their medical application.
Collapse
Affiliation(s)
- A. S. Averin
- Institute of Cell Biophysics of the Russian Academy of Sciences PSCBR RAS, Pushchino, Moscow region, 142290 Russia
| | - Yu. N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
6
|
Tan CH, Wong KY, Tan NH, Ng TS, Tan KY. Distinctive Distribution of Secretory Phospholipases A₂ in the Venoms of Afro-Asian Cobras (Subgenus: Naja, Afronaja, Boulengerina and Uraeus). Toxins (Basel) 2019; 11:toxins11020116. [PMID: 30769779 PMCID: PMC6410299 DOI: 10.3390/toxins11020116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022] Open
Abstract
The protein abundances of phospholipases A2 in cobra venom proteomes appear to vary among cobra species. To determine the unique distribution of snake venom phospholipases A2 (svPLA2) in the cobras, the svPLA2 activities for 15 cobra species were examined with an acidimetric and a colorimetric assay, using egg yolk suspension and 4-nitro-3-octanoyloxy benzoic acid (NOBA) as the substrate. The colorimetric assay showed significant correlation between svPLA2 enzymatic activities with the svPLA2 protein abundances in venoms. High svPLA2 activities were observed in the venoms of Asiatic spitting cobras (Naja sputatrix, Naja sumatrana) and moderate activities in Asiatic non-spitters (Naja naja, Naja atra, Naja kaouthia), African spitters (subgenus Afronaja), and forest cobra (subgenus Boulengerina). African non-spitting cobras of subgenus Uraeus (Naja haje, Naja annulifera, Naja nivea, Naja senegalensis) showed exceptionally low svPLA2 enzymatic activities. The negligible PLA2 activity in Uraeus cobra venoms implies that PLA2 may not be ubiquitous in all snake venoms. The svPLA2 in cobra envenoming varies depending on the cobra species. This may potentially influence the efficacy of cobra antivenom in specific use for venom neutralization.
Collapse
Affiliation(s)
- Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kin Ying Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Tzu Shan Ng
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
7
|
Rodrigues MA, Dias L, Rennó AL, Sousa NC, Smaal A, Silva DAD, Hyslop S. Rat atrial responses to Bothrops jararacussu (jararacuçu) snake venom. Toxicology 2014; 323:109-24. [DOI: 10.1016/j.tox.2014.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 11/30/2022]
|
8
|
Functional proteomic approach to discover geographic variations of king cobra venoms from Southeast Asia and China. J Proteomics 2013; 89:141-53. [PMID: 23796489 DOI: 10.1016/j.jprot.2013.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 11/21/2022]
Abstract
UNLABELLED This study deciphers the geographic variations of king cobra (Ophiophagus hannah) venom using functional proteomics. Pooled samples of king cobra venom (abbreviated as Ohv) were obtained from Indonesia, Malaysia, Thailand, and two provinces of China, namely Guangxi and Hainan. Using two animal models to test and compare the lethal effects, we found that the Chinese Ohvs were more fatal to mice, while the Southeast Asian Ohvs were more fatal to lizards (Eutropis multifasciata). Various phospholipases A2 (PLA2s), three-finger toxins (3FTxs) and Kunitz-type inhibitors were purified from these Ohvs and compared. Besides the two Chinese Ohv PLA2s with known sequences, eight novel PLA2s were identified from the five Ohv samples and their antiplatelet activities were compared. While two 3FTxs (namely oh-55 and oh-27) were common in all the Ohvs, different sets of 3FTx markers were present in the Chinese and Southeast Asian Ohvs. All the Ohvs contain the Kunitz inhibitor, OH-TCI, while only the Chinese Ohvs contain the inhibitor variant, Oh11-1. Relative to the Chinese Ohvs which contained more phospholipases, the Southeast Asian Ohvs had higher metalloproteinase, acetylcholine esterase, and alkaline phosphatase activities. BIOLOGICAL SIGNIFICANCE Remarkable variations in five king cobra geographic samples reveal fast evolution and dynamic translational regulation of the venom which probably adapted to different prey ecology as testified by the lethal tests on mice and lizards. Our results predict possible variations of the king cobra envenoming to human and the importance of using local antivenin for snakebite treatment.
Collapse
|
9
|
Huancahuire-Vega S, Corrêa DHA, Hollanda LM, Lancellotti M, Ramos CHI, Ponce-Soto LA, Marangoni S. Chemical modifications of PhTX-I myotoxin from Porthidium hyoprora snake venom: effects on structural, enzymatic, and pharmacological properties. BIOMED RESEARCH INTERNATIONAL 2012; 2013:103494. [PMID: 23484072 PMCID: PMC3591178 DOI: 10.1155/2013/103494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/31/2012] [Indexed: 12/03/2022]
Abstract
We recently described the isolation of a basic PLA2 (PhTX-I) from Porthidium hyoprora snake venom. This toxin exhibits high catalytic activity, induces in vivo myotoxicity, moderates footpad edema, and causes in vitro neuromuscular blockade. Here, we describe the chemical modifications of specific amino acid residues (His, Tyr, Lys, and Trp), performed in PhTX-I, to study their effects on the structural, enzymatic, and pharmacological properties of this myotoxin. After chemical treatment, a single His, 4 Tyr, 7 Lys, and one Trp residues were modified. The secondary structure of the protein remained unchanged as measured by circular dichroism; however other results indicated the critical role played by Lys and Tyr residues in myotoxic, neurotoxic activities and mainly in the cytotoxicity displayed by PhTX-I. His residue and therefore catalytic activity of PhTX-I are relevant for edematogenic, neurotoxic, and myotoxic effects, but not for its cytotoxic activity. This dissociation observed between enzymatic activity and some pharmacological effects suggests that other molecular regions distinct from the catalytic site may also play a role in the toxic activities exerted by this myotoxin. Our observations supported the hypothesis that both the catalytic sites as the hypothetical pharmacological sites are relevant to the pharmacological profile of PhTX-I.
Collapse
Affiliation(s)
- Salomón Huancahuire-Vega
- Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| | - Daniel H. A. Corrêa
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luciana M. Hollanda
- Biotechnology Laboratory (LABIOTEC), Department of Biochemistry, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marcelo Lancellotti
- Biotechnology Laboratory (LABIOTEC), Department of Biochemistry, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carlos H. I. Ramos
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, RJ, Brazil
| | - Luis Alberto Ponce-Soto
- Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| | - Sergio Marangoni
- Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
10
|
Huang LF, Zheng JB, Xu Y, Song HT, Yu CX. A snake venom phospholipase A2 with high affinity for muscarinic acetylcholine receptors acts on guinea pig ileum. Toxicon 2008; 51:1008-16. [DOI: 10.1016/j.toxicon.2008.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 12/28/2007] [Accepted: 01/09/2008] [Indexed: 10/22/2022]
|
11
|
Karthikeya R, Karthigaya S, Balasubash MS, Vijayalaks S, Balasubram T. Histopathological Changes Induced in Mice after Inramuscular and Intra Peritoneal Injections of Venom from Spine-bellied Sea Snake, Lapemis curtus (Shaw, 1802). ACTA ACUST UNITED AC 2007. [DOI: 10.3923/jpt.2007.307.318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Yang WL, Peng LS, Zhong XF, Wei JW, Jiang XY, Ye LT, Zou L, Tu HB, Wu WY, Xu AL. Functional expression and characterization of a recombinant phospholipase A2 from sea snake Lapemis hardwickii as a soluble protein in E. coli. Toxicon 2003; 41:713-21. [PMID: 12727275 DOI: 10.1016/s0041-0101(03)00047-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Three full-length phospholipase A(2) (PLA(2)) cDNAs from sea snake Lapemis hardwickii venom were cloned and sequenced in our previous study. In order to investigate their biological functions, we established a fusion expression system for PLA(2)-9 in E. coli. The open reading frame encoding mature peptide of PLA(2)-9 was subcloned into the vector pTRX. The Trx-PLA(2)-9 fusion protein was expressed as a soluble protein by IPTG induction at 23 degrees C. The fusion protein was purified with metal-chelate affinity chromatography and then cleaved by enterokinase. The mature recombinant PLA(2)-9 was further purified by ion-exchange chromatography and a final yield of approximately 2.5mg pure PLA(2)-9 from 1l of bacteria culture was obtained. The catalytic activity of recombinant PLA(2)-9 (rPLA(2)-9) was measured and found to be similar to native enzyme. As the Austrelaps superbus PLA(2), which shares 90% nucleotide sequence similarity to PLA(2)-9, the rPLA(2)-9 displayed the anti-platelet aggregation effect. Site-directed mutagenesis of the two conserved residues, His-48 and Asp-49, resulted in the loss of catalytic activity, however did not affect the inhibition effect of platelet aggregation suggesting that these two activities of sea snake PLA(2)-9 may be dissociated.
Collapse
Affiliation(s)
- Wen-Li Yang
- The Open Laboratory for Marine Functional Genomics of State High-Tech Development, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang HL, Xu SJ, Wang QY, Song SY, Shu YY, Lin ZJ. Structure of a cardiotoxic phospholipase A(2) from Ophiophagus hannah with the "pancreatic loop". J Struct Biol 2002; 138:207-15. [PMID: 12217659 DOI: 10.1016/s1047-8477(02)00022-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The crystal structure of an acidic phospholipase A(2) from Ophiophagus hannah (king cobra) has been determined by molecular replacement at 2.6-A resolution to a crystallographic R factor of 20.5% (R(free)=23.3%) with reasonable stereochemistry. The venom enzyme contains an unusual "pancreatic loop." The conformation of the loop is well defined and different from those in pancreas PLA(2), showing its structural variability. This analysis provides the first structure of a PLA(2)-type cardiotoxin. The sites related to the cardiotoxic and myotoxic activities are explored and the oligomer observed in the crystalline state is described.
Collapse
Affiliation(s)
- Hai-Long Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, 100101, Beijing, China
| | | | | | | | | | | |
Collapse
|
14
|
Gao R, Kini RM, Li G, Luo R, Selvanayagam ZE, Gopalakrishnakone P. Purification and properties of three new phospholipase A2 isoenzymes from Micropechis ikaheka venom. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1545:30-40. [PMID: 11342029 DOI: 10.1016/s0167-4838(00)00258-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new phospholipase A2 (PLA2) isoenzymes were purified from the Micropechis ikaheka venom by successive chromatographies. The homogeneity of them was accessed by capillary zone electrophoresis and mass spectrometry. Their N-terminal sequences showed high identity (94, 88 and 90, respectively) with MiPLA-1, a group IB PLA2 also from this venom. In addition, strong immuno-cross-reaction with anti-MiPLA-1 serum was observed. These results suggested that three newly purified PLA2 belonged to group IB. Beside enzymatic activity, they induced various pharmacological effects, including myotoxic, anticoagulant effects and insulin secretion stimulating effects. Our results indicated that enzymatic activity is essential for their myotoxic and anticoagulant effects. On the other hand, no direct correlation between their insulin secretion stimulating effect and enzymatic activity was observed, suggesting that they may stimulate insulin secretion through a non-enzymatic mechanism.
Collapse
Affiliation(s)
- R Gao
- Venom and Toxin Research Programme, Department of Anatomy, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
15
|
Gomes A, De P, Dasgupta SC. Occurrence of a unique protein toxin from the Indian King Cobra (Ophiophagus hannah) venom. Toxicon 2001; 39:363-70. [PMID: 10978755 DOI: 10.1016/s0041-0101(00)00138-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A unique (lethal-cardiotoxic-hemorrhagic) protein toxin (Toxin CM55) was isolated and purified from Indian King Cobra (Ophiophagus hannah) venom by CM-sephadex ion exchange chromatography and reverse phase HPLC. The purified toxin had an SDS-molecular weight of 22 +/- 0.5 kD. UV absorption spectra of Toxin CM55 showed a peak at 280 nm, whereas when excited at 280 nm fluorescence, Toxin CM55 showed an E(max) at 333.4 nm. Toxin CM55 had an LD(50) of 28.28 microg/20 g (i. v.) in albino mice. The cardiotoxic action of the toxin was established on isolated guinea pig/rabbit heart and guinea pig auricle. In rats, Toxin CM55 caused ECG abnormalities including widened QRS complex and monomorphic ventricular tachycardia suggesting that the possible site of action of Toxin CM55 was the ventricle. Toxin CM55 produced significant vasoconstriction on peripheral blood vessels. It produced significant contraction of isolated guinea pig ileum, rat fundus and rat uterus, which was completely antagonised by methysergide. The toxin was found to release a significant amount of serotonin from rabbit platelets. Toxin CM55 produced cutaneous hemorrhage in albino mice, which was also produced in reserpine and p-chloro phenylalanine pretreated animals. Rabbit antiserum was raised against Toxin CM55, which gave prominent bands in immunogel diffusion and immunoelectrophoresis. The antiserum provided 2 LD(50) protection against Toxin CM55-induced lethality in mice and also neutralised 3 MHD hemorrhagic dose of the toxin.
Collapse
Affiliation(s)
- A Gomes
- Department of Physiology, Univerity of Calcutta, India.
| | | | | |
Collapse
|
16
|
Ali SA, Alam JM, Abbasi A, Zaidi ZH, Stoeva S, Voelter W. Sea snake Hydrophis cyanocinctus venom. II. Histopathological changes, induced by a myotoxic phospholipase A2 (PLA2-H1). Toxicon 2000; 38:687-705. [PMID: 10673160 DOI: 10.1016/s0041-0101(99)00184-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A toxic phospholipase A2 (PLA2-H1), isolated from the venom of the sea snake Hydrophis cyanocinctus, was tested for its ability to induce myonecrosis and histopathological changes in albino rats and mice. Induction of myonecrosis was demonstrated by their ability to release creatine kinase (CK) from damaged muscle fibers and direct histopathological examination of the injected muscles (i.m.). PLA2-H1 exhibits intense myonecrosis characterized by the changes including, necrosis and edematous appearance with cellular infiltrate, vacuolation and degenerated muscle cells with delta lesions and heavy edema in between the cells. No myoglobinuria was noted in any group of animals. The purified PLA2-H1 was also administered intraperitoneally into the experimental animals and tissue samples were taken at several time intervals. Light microscopic examination of the kidney sections revealed severe damage, evident by focal tubular necrosis, complete disquamation of epithelial lining and epithelial degeneration of tubules in all test animals. Light micrographs of liver sections after 24 h of injection shows fatty infiltration in parenchyma and squashed hepatocytes, while after 48 h, fatty vacuolation of parenchyma in a generalized pattern was observed. Furthermore, sections of the lungs of the same group of animals (48 h) show dilated bronchia and marked infiltration of inflammatory cells within alveoli. Our results suggest that the purified PLA2-H1 induced moderate myotoxicity in muscles and mild histopathological changes in other vital organs without myoglobinuria.
Collapse
Affiliation(s)
- S A Ali
- International Centre for Chemical Sciences, HEJ Research Institute of Chemistry, University of Karachi, Pakistan.
| | | | | | | | | | | |
Collapse
|
17
|
Ali SA, Alam JM, Stoeva S, Schütz J, Abbasi A, Zaidi ZH, Voelter W. Sea snake Hydrophis cyanocinctus venom. I. Purification, characterization and N-terminal sequence of two phospholipases A2. Toxicon 1999; 37:1505-20. [PMID: 10482386 DOI: 10.1016/s0041-0101(99)00091-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two phospholipases A2 (PLA2, H1 and H2) from sea snake Hydrophis cyanocinctus venom were purified to homogeneity in a single step using reversed-phase high performance liquid chromatography on a Nucleosil 7C18 column. The molecular weights of H1 and H2, as estimated by MALDI MS, were 13588.1 and 13247.2 Da, respectively. The N-terminal 60 amino acid residues were determined by direct automated Edman degradation analysis. Since both PLA2s show close sequence homologies to those of PLA2s from other Elapid snakes (60-84%) they have been tentatively classified as belonging to group-IA and Asp-49 phospholipases A2. Despite the sequence variation (18%) between H1 and H2, their general structural organization is very similar as shown by their clearly related CD spectra. Furthermore, both enzymes are quite thermostable (60-65 degrees C) as determined by temperature variable CD spectra, indicating that the enzymes contain compact folded structure, mainly based on the core structure of disulfide bridges. However, the major PLA2 (H1) shows higher toxicity to albino rats (LD50 i.p. 0.04 mg/kg) and purification resulted in 18-fold increase in toxicity over the crude or whole venom (LD50 i.p. 0.80 mg/kg). H1 also shows edema-inducing and indirect haemolytic but no haemorrhagic activity. Unlike the toxic PLA2-H1, enzyme H2 was not toxic to albino rats but showed edema-inducing and indirect haemolytic activities.
Collapse
Affiliation(s)
- S A Ali
- International Center for Chemical Sciences, HEJ Research Institute of Chemistry, University of Karachi, Pakistan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Rudrammaji LM, Gowda TV. Purification and characterization of three acidic, cytotoxic phospholipases A2 from Indian cobra (Naja naja naja) venom. Toxicon 1998; 36:921-32. [PMID: 9663698 DOI: 10.1016/s0041-0101(97)00097-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Three acidic phospholipases A2 (NN-I2c-PLA2, NN-I2d-PLA2 and NN-I2c-PLA2) were purified by successive chromatography of Indian cobra (Naja naja naja) venom on CM-Sephadex C-25, Sephadex G-50 and QAE Sephadex A-25 columns. They have molecular weights of 13,000-14,500 by sodium dodecyl sulphate polyacrylamide gel electrophoresis. They showed tryptophan specific fluorescence emission spectra (approximately 345 nm). All the three phospholipases A2 were enzymatically highly active with specific activities 9-17 micromol min(-1) mg(-1). They were non-lethal to mice when injected intraperitoneally in doses up to 10 mg kg(-1) body weight. They induced edema in mouse foot pads and were cytotoxic to Ehrlich ascites tumour cells. They did not exhibit direct haemolytic and anticoagulant activities.
Collapse
Affiliation(s)
- L M Rudrammaji
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, India
| | | |
Collapse
|
19
|
Huang MZ, Gopalakrishnakone P, Chung MC, Kini RM. Complete amino acid sequence of an acidic, cardiotoxic phospholipase A2 from the venom of Ophiophagus hannah (King Cobra): a novel cobra venom enzyme with "pancreatic loop". Arch Biochem Biophys 1997; 338:150-6. [PMID: 9028866 DOI: 10.1006/abbi.1996.9814] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A phospholipase A2 (OHV A-PLA2) from the venom of Ophiophagus hannah (King cobra) is an acidic protein exhibiting cardiotoxicity, myotoxicity, and antiplatelet activity. The complete amino acid sequence of OHV A-PLA2 has been determined using a combination of Edman degradation and mass spectrometric techniques. OHV A-PLA2 is composed of a single chain of 124 amino acid residues with 14 cysteines and a calculated molecular weight of 13719 Da. It contains the loop of residues (62-66) found in pancreatic PLA2s and hence belongs to class IB enzymes. This pancreatic loop is between two proline residues (Pro 59 and Pro 68) and contains several hydrophilic amino acids (Ser and Asp). This region has high degree of conformational flexibility and is on the surface of the molecule, and hence it may be a potential protein-protein interaction site. A relatively low sequence homology is found between OHV A-PLA2 and other known cardiotoxic PLA2s, and hence a contiguous segment could not be identified as a site responsible for the cardiotoxic activity.
Collapse
Affiliation(s)
- M Z Huang
- Department of Anatomy, Department of Biochemistry, Bioscience Centre, Bioprocessing Technology Centre, National University of Singapore, Lower Kent Ridge Road, 119260, Singapore
| | | | | | | |
Collapse
|
20
|
Huang MZ, Gopalakrishnakone P. Pathological changes induced by an acidic phospholipase A2 from Ophiophagus hannah venom on heart and skeletal muscle of mice after systemic injection. Toxicon 1996; 34:201-11. [PMID: 8711754 DOI: 10.1016/0041-0101(95)00128-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An acidic phospholipase A2 (OHV A-PLA2) isolated from the venom of the king cobra (Ophiophagus hannah) was tested for its ability to cause pathological changes to myocardium, skeletal muscle and cardiac ganglia. White mice were injected intravenously with dose of 8 mg/kg or 4 mg/kg of OHV A-PLA2 and tissue samples were taken at 6 or 24 hr. Light microscopic examination failed to show significant changes in cardiac muscle and ganglia. Skeletal muscle showed myofibre degeneration and necrosis. Electron microscopic study revealed myodegeneration in cardiac and skeletal muscles, and reduction in synaptic vesicle population of preganglionic nerve terminals in cardiac ganglia. Ultrastructural changes in tissues were dose related. The lower dose (4 mg/kg) of OHV A-PLA2 produced mild myocardial changes, the myofilaments were intact but contracted, and the A band and I band were skewed. OHV A-PLA2 caused myocardial degeneration at a higher dose of 8 mg/kg. The changes included dissolution of actin and myosin filaments, dilatation and disorganization of sarcoplasmic reticulum and degeneration of mitochondria. The skeletal muscle lesions were more severe than the myocardial changes. Some of the myofibrils were severely disorganized and lack typical striated appearance, sarcomeres disrupted, most of mitochondria were vesiculated and destroyed.
Collapse
Affiliation(s)
- M Z Huang
- Department of Anatomy, Faculty of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|