1
|
Lettin L, Erbay B, Blair GE. Viruses and Cajal Bodies: A Critical Cellular Target in Virus Infection? Viruses 2023; 15:2311. [PMID: 38140552 PMCID: PMC10747631 DOI: 10.3390/v15122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Nuclear bodies (NBs) are dynamic structures present in eukaryotic cell nuclei. They are not bounded by membranes and are often considered biomolecular condensates, defined structurally and functionally by the localisation of core components. Nuclear architecture can be reorganised during normal cellular processes such as the cell cycle as well as in response to cellular stress. Many plant and animal viruses target their proteins to NBs, in some cases triggering their structural disruption and redistribution. Although not all such interactions have been well characterised, subversion of NBs and their functions may form a key part of the life cycle of eukaryotic viruses that require the nucleus for their replication. This review will focus on Cajal bodies (CBs) and the viruses that target them. Since CBs are dynamic structures, other NBs (principally nucleoli and promyelocytic leukaemia, PML and bodies), whose components interact with CBs, will also be considered. As well as providing important insights into key virus-host cell interactions, studies on Cajal and associated NBs may identify novel cellular targets for development of antiviral compounds.
Collapse
Affiliation(s)
- Lucy Lettin
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
| | - Bilgi Erbay
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
- Moleküler Biyoloji ve Genetik Bölümü, Fen Fakültesi, Van Yuzuncu Yil University, Van 65140, Türkiye
| | - G. Eric Blair
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
| |
Collapse
|
2
|
Pyle JD, Whelan SPJ, Bloyet LM. Structure and function of negative-strand RNA virus polymerase complexes. Enzymes 2021; 50:21-78. [PMID: 34861938 DOI: 10.1016/bs.enz.2021.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Viruses with negative-strand RNA genomes (NSVs) include many highly pathogenic and economically devastating disease-causing agents of humans, livestock, and plants-highlighted by recent Ebola and measles virus epidemics, and continuously circulating influenza virus. Because of their protein-coding orientation, NSVs face unique challenges for efficient gene expression and genome replication. To overcome these barriers, NSVs deliver a large and multifunctional RNA-dependent RNA polymerase into infected host cells. NSV-encoded polymerases contain all the enzymatic activities required for transcription and replication of their genome-including RNA synthesis and mRNA capping. Here, we review the structures and functions of NSV polymerases with a focus on key domains responsible for viral replication and gene expression. We highlight shared and unique features among polymerases of NSVs from the Mononegavirales, Bunyavirales, and Articulavirales orders.
Collapse
Affiliation(s)
- Jesse D Pyle
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States; Ph.D. Program in Virology, Harvard Medical School, Boston, MA, United States
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
3
|
Sreenivasan CC, Thomas M, Kaushik RS, Wang D, Li F. Influenza A in Bovine Species: A Narrative Literature Review. Viruses 2019; 11:v11060561. [PMID: 31213032 PMCID: PMC6631717 DOI: 10.3390/v11060561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
It is quite intriguing that bovines were largely unaffected by influenza A, even though most of the domesticated and wild animals/birds at the human-animal interface succumbed to infection over the past few decades. Influenza A occurs on a very infrequent basis in bovine species and hence bovines were not considered to be susceptible hosts for influenza until the emergence of influenza D. This review describes a multifaceted chronological review of literature on influenza in cattle which comprises mainly of the natural infections/outbreaks, experimental studies, and pathological and seroepidemiological aspects of influenza A that have occurred in the past. The review also sheds light on the bovine models used in vitro and in vivo for influenza-related studies over recent years. Despite a few natural cases in the mid-twentieth century and seroprevalence of human, swine, and avian influenza viruses in bovines, the evolution and host adaptation of influenza A virus (IAV) in this species suffered a serious hindrance until the novel influenza D virus (IDV) emerged recently in cattle across the world. Supposedly, certain bovine host factors, particularly some serum components and secretory proteins, were reported to have anti-influenza properties, which could be an attributing factor for the resilient nature of bovines to IAV. Further studies are needed to identify the host-specific factors contributing to the differential pathogenetic mechanisms and disease progression of IAV in bovines compared to other susceptible mammalian hosts.
Collapse
Affiliation(s)
- Chithra C Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Milton Thomas
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA.
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- BioSystems Networks and Translational Research Center (BioSNTR), Brookings, SD 57007, USA.
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- BioSystems Networks and Translational Research Center (BioSNTR), Brookings, SD 57007, USA.
| |
Collapse
|
4
|
Kumar D, Broor S, Rajala MS. Interaction of Host Nucleolin with Influenza A Virus Nucleoprotein in the Early Phase of Infection Limits the Late Viral Gene Expression. PLoS One 2016; 11:e0164146. [PMID: 27711134 PMCID: PMC5053498 DOI: 10.1371/journal.pone.0164146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 09/20/2016] [Indexed: 12/17/2022] Open
Abstract
Influenza A virus nucleoprotein, is a multifunctional RNA-binding protein, encoded by segment-5 of the negative sense RNA genome. It serves as a key connector between the virus and the host during virus replication. It continuously shuttles between the cytoplasm and the nucleus interacting with various host cellular factors. In the current study, host proteins interacting with nucleoprotein of Influenza A virus of H1N1 2009 pandemic strain were identified by co-immunoprecipitation studies followed by MALDI-TOF/MS analysis. Here we report the host nucleolin, a major RNA-binding protein of the nucleolus as a novel interacting partner to influenza A virus nucleoprotein. We thus, explored the implications of this interaction in virus life cycle and our studies have shown that these two proteins interact early during infection in the cytoplasm of infected cells. Depletion of nucleolin in A549 cells by siRNA targeting endogenous nucleolin followed by influenza A virus infection, disrupted its interaction with viral nucleoprotein, resulting in increased expression of gene transcripts encoding late viral proteins; matrix (M1) and hemagglutinin (HA) in infected cells. On the contrary, over expression of nucleolin in cells transiently transfected with pEGFP-NCL construct followed by virus infection significantly reduced the late viral gene transcripts, and consequently the viral titer. Altered expression of late viral genes and titers following manipulation of host cellular nucleolin, proposes the functional importance of its interaction with nucleoprotein during influenza A virus infection.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Dogs
- Gene Expression Regulation, Viral
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/metabolism
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza, Human/epidemiology
- Influenza, Human/metabolism
- Influenza, Human/virology
- Madin Darby Canine Kidney Cells
- Nucleocapsid Proteins
- Pandemics
- Phosphoproteins/deficiency
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Binding
- RNA Interference
- RNA, Small Interfering/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Seasons
- Transcription, Genetic
- Viral Core Proteins/genetics
- Viral Core Proteins/metabolism
- Nucleolin
Collapse
Affiliation(s)
- Deepshikha Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shobha Broor
- Department of Microbiology, Faculty of Medicine and Health Science, Shree Guru Gobind Singh Tricentenary University, Gurgaon, Haryana, India
| | | |
Collapse
|
5
|
Terrier O, Carron C, De Chassey B, Dubois J, Traversier A, Julien T, Cartet G, Proust A, Hacot S, Ressnikoff D, Lotteau V, Lina B, Diaz JJ, Moules V, Rosa-Calatrava M. Nucleolin interacts with influenza A nucleoprotein and contributes to viral ribonucleoprotein complexes nuclear trafficking and efficient influenza viral replication. Sci Rep 2016; 6:29006. [PMID: 27373907 PMCID: PMC4931502 DOI: 10.1038/srep29006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/09/2016] [Indexed: 01/18/2023] Open
Abstract
Influenza viruses replicate their single-stranded RNA genomes in the nucleus of infected cells and these replicated genomes (vRNPs) are then exported from the nucleus to the cytoplasm and plasma membrane before budding. To achieve this export, influenza viruses hijack the host cell export machinery. However, the complete mechanisms underlying this hijacking remain not fully understood. We have previously shown that influenza viruses induce a marked alteration of the nucleus during the time-course of infection and notably in the nucleolar compartment. In this study, we discovered that a major nucleolar component, called nucleolin, is required for an efficient export of vRNPs and viral replication. We have notably shown that nucleolin interacts with the viral nucleoprotein (NP) that mainly constitutes vRNPs. Our results suggest that this interaction could allow vRNPs to "catch" the host cell export machinery, a necessary step for viral replication.
Collapse
Affiliation(s)
- Olivier Terrier
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Coralie Carron
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Benoît De Chassey
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Julia Dubois
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Aurélien Traversier
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Thomas Julien
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Lyon 1, Lyon, France
| | - Gaëlle Cartet
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Anaïs Proust
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Lyon 1, Lyon, France
| | - Sabine Hacot
- Centre de Recherche en Cancérologie de Lyon, UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, Lyon, France and Université de Lyon, Lyon, France
| | - Denis Ressnikoff
- CIQLE, Centre d’imagerie quantitative Lyon-Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Vincent Lotteau
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bruno Lina
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Hospices Civils de Lyon, Laboratory of Virology, Lyon, France
| | - Jean-Jacques Diaz
- Centre de Recherche en Cancérologie de Lyon, UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, Lyon, France and Université de Lyon, Lyon, France
| | - Vincent Moules
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Lyon 1, Lyon, France
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Lyon 1, Lyon, France
| |
Collapse
|
6
|
The host protein CLUH participates in the subnuclear transport of influenza virus ribonucleoprotein complexes. Nat Microbiol 2016; 1:16062. [DOI: 10.1038/nmicrobiol.2016.62] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/31/2016] [Indexed: 11/08/2022]
|
7
|
Yuk SS, Lee DH, Park JK, Tseren-Ochir EO, Kwon JH, Noh JY, Lee JB, Park SY, Choi IS, Song CS. Pre-immune state induced by chicken interferon gamma inhibits the replication of H1N1 human and H9N2 avian influenza viruses in chicken embryo fibroblasts. Virol J 2016; 13:71. [PMID: 27121613 PMCID: PMC4847267 DOI: 10.1186/s12985-016-0527-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/17/2016] [Indexed: 12/27/2022] Open
Abstract
Background Interferon gamma (IFN-γ), an immunoregulatory cytokine, is known to control many microbial infections. In a previous study, chicken interferon gamma (chIFN-γ) was found to be up-regulated following avian influenza virus (AIV) infection in specific pathogen-free chickens. We aimed to investigate whether the pre-immune state induced by chIFN-γ could generate an antiviral response against influenza virus. Methods We generated a chIFN-γ-expressing plasmid and transfected it into chicken embryo fibroblasts (CEFs) and then infected the cells with human origin H1N1 or avian origin H9N2 influenza viruses. Viral titers of culture medium were evaluated in MDCK cell and the viral RNA and IFN-stimulated genes (ISGs) were then quantified by real-time reverse transcriptase polymerase. To further evaluate the role of the antiviral effect of chIFN-γ by using a backward approach, synthetic small interfering RNAs (siRNA) targeting chIFN-γ were used to suppress chIFN-γ. Results The chIFN-γ-stimulated CEFs inhibited the replication of viral RNA (vRNA) and showed a mild decrease in the infectious virus load released in the culture medium. Compared to the mock-transfected control, the messenger RNA (mRNA) levels of type I IFNs and IFN-stimulated genes were up-regulated in the cells expressing chIFN-γ. After treatment with the siRNA, we detected a higher expression of viral genes than that observed in the mock-transfected control. Conclusions Our results suggest that apart from the important role played by chIFN-γ in the antiviral state generated against influenza virus infection, the pre-immune state induced by chIFN-γ can be helpful in mitigating the propagation of influenza virus. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0527-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seong-Su Yuk
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Dong-Hun Lee
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jae-Keun Park
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Erdene-Ochir Tseren-Ochir
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jung-Hoon Kwon
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jin-Yong Noh
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Joong-Bok Lee
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Seung-Yong Park
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - In-Soo Choi
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Chang-Seon Song
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea.
| |
Collapse
|
8
|
Inoue T, Tsai B. How viruses use the endoplasmic reticulum for entry, replication, and assembly. Cold Spring Harb Perspect Biol 2013; 5:a013250. [PMID: 23284050 DOI: 10.1101/cshperspect.a013250] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To cause infection, a virus enters a host cell, replicates, and assembles, with the resulting new viral progeny typically released into the extracellular environment to initiate a new infection round. Virus entry, replication, and assembly are dynamic and coordinated processes that require precise interactions with host components, often within and surrounding a defined subcellular compartment. Accumulating evidence pinpoints the endoplasmic reticulum (ER) as a crucial organelle supporting viral entry, replication, and assembly. This review focuses on the molecular mechanism by which different viruses co-opt the ER to accomplish these crucial infection steps. Certain bacterial toxins also hijack the ER for entry. An interdisciplinary approach, using rigorous biochemical and cell biological assays coupled with advanced microscopy strategies, will push to the next level our understanding of the virus-ER interaction during infection.
Collapse
Affiliation(s)
- Takamasa Inoue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | | |
Collapse
|
9
|
Terrier O, Moules V, Carron C, Cartet G, Frobert E, Yver M, Traversier A, Wolff T, Riteau B, Naffakh N, Lina B, Diaz JJ, Rosa-Calatrava M. The influenza fingerprints: NS1 and M1 proteins contribute to specific host cell ultrastructure signatures upon infection by different influenza A viruses. Virology 2012; 432:204-18. [PMID: 22770924 DOI: 10.1016/j.virol.2012.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 12/22/2022]
Abstract
Influenza A are nuclear replicating viruses which hijack host machineries in order to achieve optimal infection. Numerous functional virus-host interactions have now been characterized, but little information has been gathered concerning their link to the virally induced remodeling of the host cellular architecture. In this study, we infected cells with several human and avian influenza viruses and we have analyzed their ultrastructural modifications by using electron and confocal microscopy. We discovered that infections lead to a major and systematic disruption of nucleoli and the formation of a large number of diverse viral structures showing specificity that depended on the subtype origin and genomic composition of viruses. We identified NS1 and M1 proteins as the main actors in the remodeling of the host ultra-structure and our results suggest that each influenza A virus strain could be associated with a specific cellular fingerprint, possibly correlated to the functional properties of their viral components.
Collapse
Affiliation(s)
- Olivier Terrier
- Equipe VirCell, Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610, Université de Lyon, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculté de médecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Human annexin A6 interacts with influenza a virus protein M2 and negatively modulates infection. J Virol 2011; 86:1789-801. [PMID: 22114333 DOI: 10.1128/jvi.06003-11] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus M2 ion channel protein has the longest cytoplasmic tail (CT) among the three viral envelope proteins and is well conserved between different viral strains. It is accessible to the host cellular machinery after fusion with the endosomal membrane and during the trafficking, assembly, and budding processes. We hypothesized that identification of host cellular interactants of M2 CT could help us to better understand the molecular mechanisms regulating the M2-dependent stages of the virus life cycle. Using yeast two-hybrid screening with M2 CT as bait, a novel interaction with the human annexin A6 (AnxA6) protein was identified, and their physical interaction was confirmed by coimmunoprecipitation assay and a colocalization study of virus-infected human cells. We found that small interfering RNA (siRNA)-mediated knockdown of AnxA6 expression significantly increased virus production, while its overexpression could reduce the titer of virus progeny, suggesting a negative regulatory role for AnxA6 during influenza A virus infection. Further characterization revealed that AnxA6 depletion or overexpression had no effect on the early stages of the virus life cycle or on viral RNA replication but impaired the release of progeny virus, as suggested by delayed or defective budding events observed at the plasma membrane of virus-infected cells by transmission electron microscopy. Collectively, this work identifies AnxA6 as a novel cellular regulator that targets and impairs the virus budding and release stages of the influenza A virus life cycle.
Collapse
|
11
|
Sugita Y, Noda T, Sagara H, Kawaoka Y. Ultracentrifugation deforms unfixed influenza A virions. J Gen Virol 2011; 92:2485-2493. [PMID: 21795472 DOI: 10.1099/vir.0.036715-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Negatively stained influenza virions sometimes show irregular morphology and are often referred to as pleomorphic. However, this irregular morphology has not been visualized when ultrathin-section transmission and scanning electron microscopies are used. This study focused on the effects of ultracentrifugation on influenza A virion morphology, as negative staining often involves ultracentrifugation to concentrate or purify virions. The morphologies of unfixed, glutaraldehyde-fixed and osmium tetroxide-fixed virions were quantitatively compared before and after ultracentrifugation, and it was found that, without chemical fixation, approximately 30% of virions were altered from oval to irregular shapes following ultracentrifugation. By contrast, most glutaraldehyde-fixed virions remained uniformly elliptical, even after ultracentrifugation. When a virus with an 11 aa deletion at the C terminus of its M2 cytoplasmic tail was ultracentrifuged, its morphology was appreciably deformed compared with that of the wild-type virus. These results demonstrate that the native morphology of influenza A virions is regular but is disrupted by ultracentrifugation, and that the cytoplasmic tail of M2 is important for virion integrity.
Collapse
Affiliation(s)
- Yukihiko Sugita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Takeshi Noda
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroshi Sagara
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshihiro Kawaoka
- ERATO Infection-Induced Host Responses Project, Saitama 332-0012, Japan
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Department of Pathological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
12
|
Zakaryan H, Stamminger T. Nuclear remodelling during viral infections. Cell Microbiol 2011; 13:806-13. [PMID: 21501365 PMCID: PMC7162193 DOI: 10.1111/j.1462-5822.2011.01596.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/10/2011] [Accepted: 03/16/2011] [Indexed: 01/09/2023]
Abstract
Because of their limited coding capacity, viruses are not able to encode all proteins that are required for their replication. Therefore, they depend on a wide variety of cellular functions and structures, such as the host cell nucleus. It has been shown that DNA, as well as RNA viruses, exploit the nucleus because it provides essential machinery for viral replication. On the other hand, the nucleus undergoes significant remodelling during viral usurpation or exploitation. Moreover, it is becoming increasingly clear that some subnuclear structures, such as promyelocytic leukaemia nuclear bodies, act as an antiviral defence mechanism, and several viruses antagonize this intracellular defence by modifying subnuclear structures. This article reviews the main alterations that take place in nucleus during viral infections.
Collapse
Affiliation(s)
- H Zakaryan
- Laboratory of Cell Biology, Institute of Molecular Biology of NAS, Yerevan, Armenia.
| | | |
Collapse
|
13
|
Noda T, Kawaoka Y. Structure of influenza virus ribonucleoprotein complexes and their packaging into virions. Rev Med Virol 2011; 20:380-91. [PMID: 20853340 DOI: 10.1002/rmv.666] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The influenza A virus genome consists of eight segmented, single-stranded, negative-sense RNAs. Each viral RNA (vRNA) segment forms a ribonucleoprotein (RNP) complex together with NPs and a polymerase complex, which is a fundamental unit for transcription and replication of the viral genome. Although the exact structure of the intact RNP remains poorly understood, recent electron microscopic studies have revealed certain structural characteristics of the RNP. This review focuses on the findings of these various electron microscopic analyses of RNPs extracted from virions and RNPs inside virions. Based on the morphological and structural observations, we present the architecture of RNPs within a virion and discuss the genome packaging mechanism by which the vRNA segments are incorporated into virions.
Collapse
Affiliation(s)
- Takeshi Noda
- Department of Special Pathogens, International Research Center for Infectious Diseases, University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
14
|
Emmott E, Wise H, Loucaides EM, Matthews DA, Digard P, Hiscox JA. Quantitative proteomics using SILAC coupled to LC-MS/MS reveals changes in the nucleolar proteome in influenza A virus-infected cells. J Proteome Res 2010; 9:5335-45. [PMID: 20701360 DOI: 10.1021/pr100593g] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Influenza A virus (IAV) is a major human pathogen whose genotypic diversity results in unpredictable pandemics and epidemics. Interaction with the cell nucleus is essential to IAV infection, allowing recruitment of cellular components to facilitate virus replication. Viral proteins are also targeted to the nucleolus, a subnuclear structure involved in ribosomal biogenesis, RNA maturation, stress response, and control of cell growth, but the functional consequences of this are unclear. We took an unbiased approach to studying IAV-nucleolar interactions by using stable isotope labeling with amino acids in cell culture (SILAC) in conjunction with LC-MS/MS to quantify changes in the nucleolar proteome following infection with A/PR/8/34 (H1N1) and A/Udorn/72 (H3N2) strains of the virus. Only a minority of nucleolar proteins showed significant changes in abundance after infection; these alterations were mostly different between the two strains but could be validated by confocal microscopy of infected cells. Many of the affected proteins comprised functional groupings, including components of ribonuclease P, RNA polymerase I, the MLL1 histone methyltransferase complex, as well as nuclear paraspeckles and the RNA editing apparatus. This, as well as comparison with other viruses that cause changes in the nucleolar proteome, suggests that IAV targets specific nucleolar pathways.
Collapse
Affiliation(s)
- Edward Emmott
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Sterz I, Weiss E. Elektronenmikroskopische Untersuchungen zur Phagozytose und Vermehrung des Virus der Klassischen Geflügelpest (KP) in Thrombozyten infizierter Hühner. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1439-0450.1973.tb01158.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Welsch S, Kolesnikova L, Krähling V, Riches JD, Becker S, Briggs JAG. Electron tomography reveals the steps in filovirus budding. PLoS Pathog 2010; 6:e1000875. [PMID: 20442788 PMCID: PMC2861712 DOI: 10.1371/journal.ppat.1000875] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 03/24/2010] [Indexed: 11/23/2022] Open
Abstract
The filoviruses, Marburg and Ebola, are non-segmented negative-strand RNA viruses causing severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. The sequence of events that leads to release of filovirus particles from cells is poorly understood. Two contrasting mechanisms have been proposed, one proceeding via a “submarine-like” budding with the helical nucleocapsid emerging parallel to the plasma membrane, and the other via perpendicular “rocket-like” protrusion. Here we have infected cells with Marburg virus under BSL-4 containment conditions, and reconstructed the sequence of steps in the budding process in three dimensions using electron tomography of plastic-embedded cells. We find that highly infectious filamentous particles are released at early stages in infection. Budding proceeds via lateral association of intracellular nucleocapsid along its whole length with the plasma membrane, followed by rapid envelopment initiated at one end of the nucleocapsid, leading to a protruding intermediate. Scission results in local membrane instability at the rear of the virus. After prolonged infection, increased vesiculation of the plasma membrane correlates with changes in shape and infectivity of released viruses. Our observations demonstrate a cellular determinant of virus shape. They reconcile the contrasting models of filovirus budding and allow us to describe the sequence of events taking place during budding and release of Marburg virus. We propose that this represents a general sequence of events also followed by other filamentous and rod-shaped viruses. The filoviruses, Marburg and Ebola, cause lethal hemorrhagic fever and are highest-priority bioterrorism agents. Filovirus particles contain a rod-like nucleocapsid and are normally filamentous, though other shapes are seen. It is poorly understood how such large filamentous particles are assembled and released from infected cells. Here we have studied Marburg virus production in infected cells using electron tomography. This technique allows virus particles to be visualized in three dimensions at different stages during assembly. We find that in early stages of virus production, highly infectious filamentous viruses are produced, whereas after prolonged infection poorly infectious spherical viruses are released. We also define the sequence of steps in filamentous virus release. The intracellular nucleocapsid first travels to the plasma membrane of the cell, where it binds laterally along its whole length. One end is then wrapped by the plasma membrane and wrapping proceeds rapidly until the virus protrudes vertically from the cell surface. The rear end of the virus particle then pinches off from the cell. We propose that other important filamentous and rod-shaped viruses also follow this series of steps of assembly and budding.
Collapse
Affiliation(s)
- Sonja Welsch
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Verena Krähling
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
| | - James D. Riches
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Stephan Becker
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
- * E-mail: (SB); (JAGB)
| | - John A. G. Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail: (SB); (JAGB)
| |
Collapse
|
17
|
Abstract
Influenza A virus buds through the apical plasma membrane, forming enveloped virus particles that can take the shape of pleomorphic spheres or vastly elongated filaments. For either type of virion, the factors responsible for separation of viral and cell membranes are not known. We find that cellular Rab11 (a small GTP-binding protein involved in endocytic recycling) and Rab11-family interacting protein 3 ([FIP3] which plays a role in membrane trafficking and regulation of actin dynamics) are both required to support the formation of filamentous virions, while Rab11 is additionally involved in the final budding step of spherical particles. Cells transfected with Rab11 GTP-cycling mutants or depleted of Rab11 or FIP3 content by small interfering RNA treatment lost the ability to form virus filaments. Depletion of Rab11 resulted in up to a 100-fold decrease in titer of spherical virus released from cells. Scanning electron microscopy of Rab11-depleted cells showed high densities of virus particles apparently stalled in the process of budding. Transmission electron microscopy of thin sections confirmed that Rab11 depletion resulted in significant numbers of abnormally formed virus particles that had failed to pinch off from the plasma membrane. Based on these findings, we see a clear role for a Rab11-mediated pathway in influenza virus morphogenesis and budding.
Collapse
|
18
|
Hutchinson EC, von Kirchbach JC, Gog JR, Digard P. Genome packaging in influenza A virus. J Gen Virol 2009; 91:313-28. [PMID: 19955561 DOI: 10.1099/vir.0.017608-0] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The negative-sense RNA genome of influenza A virus is composed of eight segments, which encode 12 proteins between them. At the final stage of viral assembly, these genomic virion (v)RNAs are incorporated into the virion as it buds from the apical plasma membrane of the cell. Genome segmentation confers evolutionary advantages on the virus, but also poses a problem during virion assembly as at least one copy of each of the eight segments is required to produce a fully infectious virus particle. Historically, arguments have been presented in favour of a specific packaging mechanism that ensures incorporation of a full genome complement, as well as for an alternative model in which segments are chosen at random but packaged in sufficient numbers to ensure that a reasonable proportion of virions are viable. The question has seen a resurgence of interest in recent years leading to a consensus that the vast majority of virions contain no more than eight segments and that a specific mechanism does indeed function to select one copy of each vRNA. This review summarizes work leading to this conclusion. In addition, we describe recent progress in identifying the specific packaging signals and discuss likely mechanisms by which these RNA elements might operate.
Collapse
Affiliation(s)
- Edward C Hutchinson
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | |
Collapse
|
19
|
|
20
|
Influenza A replication and host nuclear compartments: Many changes and many questions. J Clin Virol 2008; 43:381-90. [DOI: 10.1016/j.jcv.2008.08.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 08/14/2008] [Indexed: 11/18/2022]
|
21
|
Abstract
The nucleolus is a dynamic subnuclear structure that is crucial to the successful functioning of a cell. Its functions include ribosomal RNA synthesis, cell growth and cell-cycle control as well as responding to cellular stress. Recent studies show that the nucleolus is not a steady-state structure but instead is made up of numerous protein–protein and protein–nucleic-acid interactions that are constantly changing in response to the metabolic conditions of the cell. Many different viruses target the nucleolus to disrupt host-cell function and to recruit cellular proteins to aid in virus replication. The study of viral-protein trafficking to the nucleolus and the interaction of viral proteins with nucleolar proteins is providing many insights into the cell biology of the nucleolus. Because the nucleolus is fundamental to the life cycle of many viruses, disrupting the interaction between the nucleolus and the virus could lead to the design of novel therapeutic strategies.
RNA viruses, particularly positive-strand RNA viruses, interact with the nucleolus to usurp host-cell functions and recruit nucleolar proteins to facilitate virus replication. Here, Julian Hiscox reviews the latest data on RNA-virus interactions with this dynamic subnuclear structure. The nucleolus is a dynamic subnuclear structure with roles in ribosome subunit biogenesis, mediation of cell-stress responses and regulation of cell growth. The proteome and structure of the nucleolus are constantly changing in response to metabolic conditions. RNA viruses interact with the nucleolus to usurp host-cell functions and recruit nucleolar proteins to facilitate virus replication. Investigating the interactions between RNA viruses and the nucleolus will facilitate the design of novel anti-viral therapies, such as recombinant vaccines and therapeutic molecular interventions, and also contribute to a more detailed understanding of the cell biology of the nucleolus.
Collapse
Affiliation(s)
- Julian A Hiscox
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, Garstang Building, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
22
|
Leser GP, Lamb RA. Influenza virus assembly and budding in raft-derived microdomains: a quantitative analysis of the surface distribution of HA, NA and M2 proteins. Virology 2005; 342:215-27. [PMID: 16249012 DOI: 10.1016/j.virol.2005.09.049] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/02/2005] [Accepted: 09/20/2005] [Indexed: 11/24/2022]
Abstract
Influenza virus hemagglutinin (HA) and neuraminidase (NA) are known to associate with lipid rafts, membrane microdomains comprised of densely packed cholesterol and sphingolipids. These specialized membrane regions are believed to be involved in the budding of many enveloped viruses including influenza virus. Quantitative analysis of HA distribution on the surface of virus-infected cells by immunogold staining shows an organization into clusters that grow in size as the expression level of HA increases with time post-infection (p.i.) ( approximately 325-500 nm at 4 h p.i. and approximately 425-600 nm at 6 h p.i.). These HA-containing clusters are likely derived from lipid rafts as they contain a high density of the raft marker ganglioside GM1 and are dependent upon the presence of cholesterol. The clustering of HA is an intrinsic property of the HA protein and occurs in the absence of expression of other viral proteins. NA is also found sequestered within the same microdomains as HA, whereas the M2 ion channel protein does not concentrate within the raft-like microdomains. Quantification of the distribution of surface expressed HA by examining serial sections of virus-infected cells suggests that the HA-containing microdomains give rise to regions of influenza assembly and budding.
Collapse
Affiliation(s)
- George P Leser
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA
| | | |
Collapse
|
23
|
Abstract
Lipid molecules of the plasma membrane are not distributed homogeneously, but form a lateral organization resulting from preferential packaging of sphingolipid and cholesterol into lipid microdomain rafts, in which specific membrane proteins become incorporated. Evidence has accumulated that a variety of viruses including influenza virus use the raft during some steps of their replication cycles. Influenza virus glycoproteins, hemagglutinin (HA) and neuraminidase, associate intrinsically with the rafts. The HA protein is distributed in clusters at the plasma membrane and concentrated in the small area by interacting with the raft. A mutant influenza virus, whose HA protein lacks the ability to associate with the raft, contains reduced amounts of the HA proteins and exhibits a decreased virus to cell fusion activity, resulting in greatly reduced infectivity. Thus, the raft may play an important role in virus production by acting as a concentrating devise or an efficient carrier to transport the HA protein to the site of virus budding.
Collapse
Affiliation(s)
- Makoto Takeda
- Department of Virology, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
24
|
Hagmaier K, Gelderblom HR, Kochs G. Functional comparison of the two gene products of Thogoto virus segment 6. J Gen Virol 2004; 85:3699-3708. [PMID: 15557243 DOI: 10.1099/vir.0.80300-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sixth genomic segment of Thogoto virus (THOV) encodes two proteins, the viral matrix protein (M) and an accessory protein with an interferon (IFN)-antagonistic function named ML. M and ML are shown in this study to be structural components of the virion. Using an in vivo system based on the reconstitution of functional THOV ribonucleoprotein complexes from cloned cDNAs, it was demonstrated that M has an inhibitory effect on the viral RNA-dependent RNA polymerase (RdRP) and is essential for the formation of virus-like particles (VLPs). The functional domain responsible for the regulation of RdRP activity resides within the C-terminal half of M, while full-length M protein is required for VLP formation. The ML protein cannot complement M with respect to either RdRP downregulation or particle formation, although it is identical to M apart from a 38 aa extension at the C terminus. In contrast, ML, but not M, is able to prevent the induction of IFN-beta by double-stranded RNA. This function is contained within the C-terminal half of ML. These data suggest major structural differences between M and ML that could explain the different activities of the two proteins.
Collapse
Affiliation(s)
- Kathrin Hagmaier
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany
| | | | - Georg Kochs
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany
| |
Collapse
|
25
|
Takeda M, Leser GP, Russell CJ, Lamb RA. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc Natl Acad Sci U S A 2003; 100:14610-7. [PMID: 14561897 PMCID: PMC299746 DOI: 10.1073/pnas.2235620100] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipid raft microdomains are enriched in sphingomyelin and cholesterol and function as platforms for signal transduction and as the site of budding of several enveloped viruses, including influenza virus. The influenza virus hemagglutinin (HA) glycoprotein, which mediates both viral-cell attachment and membrane fusion, associates intrinsically with lipid rafts. Residues in the HA transmembrane (TM) domain are important for raft association as sequence substitutions in the HA TM domain ablate HA association with rafts (nonraft HA). Cells expressing either WT or nonraft HA cause complete fusion (lipid mixing and content mixing) over widely varying HA expression levels. However, the number of fusion events measured for nonraft HA mutant protein at all HA surface densities was reduced to approximately 55% of the events for WT HA protein. Mutant influenza viruses were generated that contain the nonraft HA TM domain alterations. Electron microscopy experiments showed that WT HA was distributed at the cell surface in clusters of 200-280 nm in diameter, whereas nonraft HA was distributed mostly randomly at the plasma membrane. Nonraft HA virus showed reduced budding, contained reduced amounts of HA protein, was greatly reduced in infectivity, and exhibited decreased virus-membrane fusion activity. Cholesterol depletion of virus did not affect the ability of virions to cause either virus-cell lipid mixing or virus-mediated hemolysis, a surrogate for content mixing. Taken together, the data suggest that HA clusters in rafts to provide a sufficient concentration of HA in budding virus to mediate efficient virus-cell fusion.
Collapse
Affiliation(s)
- Makoto Takeda
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208-3500, USA
| | | | | | | |
Collapse
|
26
|
Harris A, Forouhar F, Qiu S, Sha B, Luo M. The crystal structure of the influenza matrix protein M1 at neutral pH: M1-M1 protein interfaces can rotate in the oligomeric structures of M1. Virology 2001; 289:34-44. [PMID: 11601915 DOI: 10.1006/viro.2001.1119] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The influenza matrix protein (M1) forms a protein layer under the viral membrane and is essential for viral stability and integrity. M1 mediates the encapsidation of the viral RNPs into the viral membrane by its membrane and RNP-binding activities. In order to understand the roles of M1-M1 protein interactions in forming the M1 layer, X-ray crystallographic studies of a M1 fragment (1-162) were carried out at neutral pH and compared with an acidic pH structure. At neutral pH the asymmetric unit was a stacked dimer of M1. A long molecular ribbon of neutral stacked dimers was formed by translation as dictated by the P1 space group. The elongated ribbon had a positively charged stripe on one side of the ribbon. A similar M1-M1 stacking interface was also found in the acidic asymmetric unit. However, within the acidic stacked dimer the molecules were not straight, but rotated in relation to each other by slightly changing the M1-M1 stacking interface. The acidic structure possessed an additional M1-M1 twofold interface. Protein docking confirmed that the M1-M1 stacking and M1-M1 twofold interfaces could be used to form a double ribbon of M1 molecules. By iterative repetition of the rotated relationship among the M1 molecules, a helix of M1 was generated. These studies suggest that M1 has the ability to form straight or bent elongated ribbons and helices. These oligomers are consistent with previous electron microscopic studies of M1, which demonstrated that isolated M1 formed elongated and flexible ribbons when isolated from what appeared to be a helical shell of M1 in the influenza virus.
Collapse
Affiliation(s)
- A Harris
- Department of Microbiology and Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Moussa A. Assembly of enveloped respiratory syncytial virus particles within the cytoplasm of infected Vero cells. Arch Virol 1994; 134:205-11. [PMID: 8279956 DOI: 10.1007/bf01379119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Electron microscopic examination of syncytia induced by a bovine respiratory syncytial virus strain in Vero cell cultures revealed the presence in the cytoplasm of assembled enveloped virus particles within inclusions of variable sizes. Moreover, budding virus particles were shown occasionally in the intracytoplasmic vesicles. These particles were filamentous in form, about 80-120 nm in diameter, variable in length, containing 12 nm diameter nucleocapsids, and looked like the extracellular particles budding at the plasma membranes. This is the first report on assembly of intracellular virus particles in cells infected by a member of the family Paramyxoviridae. Vero cell-dependent variations appear to be the factor leading to the defect in the late virus replication cycle.
Collapse
Affiliation(s)
- A Moussa
- Centre National d'Etudes Veterinaires et Alimentaires, Laboratorie de Pathologie Bovine, Lyon, France
| |
Collapse
|
29
|
Rey O, Nayak DP. Nuclear retention of M1 protein in a temperature-sensitive mutant of influenza (A/WSN/33) virus does not affect nuclear export of viral ribonucleoproteins. J Virol 1992; 66:5815-24. [PMID: 1527844 PMCID: PMC241457 DOI: 10.1128/jvi.66.10.5815-5824.1992] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We investigated the properties of ts51, an influenza virus (A/WSN/33) temperature-sensitive RNA segment 7 mutant. Nucleotide sequence analysis revealed that ts51 possesses a single nucleotide mutation, T-261----C, in RNA segment 7, resulting in a single amino acid change. Phenylalanine (position 79) in the wild-type M1 protein was substituted by serine in ts51. This mutation was phenotypically characterized by dramatic nuclear accumulation of the M1 protein and interfered with some steps at the late stage of virus replication, possibly affecting the assembly and/or budding of viral particles. However, although M1 protein was retained within the nucleus, export of the newly synthesized viral ribonucleoprotein containing the minus-strand RNA into the cytoplasm was essentially the same at both permissive and nonpermissive temperatures. The roles of M1 in the export of viral ribonucleoproteins from the nucleus into the cytoplasm and in the virus particle assembly process are discussed.
Collapse
Affiliation(s)
- O Rey
- Department of Microbiology and Immunology, Jonsson Comprehensive Cancer Center, University of California at Los Angeles School of Medicine 90024-1747
| | | |
Collapse
|
30
|
Abstract
Influenza virus infections continue to cause substantial morbidity and mortality with a worldwide social and economic impact. The past five years have seen dramatic advances in our understanding of viral replication, evolution, and antigenic variation. Genetic analyses have clarified relationships between human and animal influenza virus strains, demonstrating the potential for the appearance of new pandemic reassortants as hemagglutinin and neuraminidase genes are exchanged in an intermediate host. Clinical trials of candidate live attenuated influenza virus vaccines have shown the cold-adapted reassortants to be a promising alternative to the currently available inactivated virus preparations. Modern molecular techniques have allowed serious consideration of new approaches to the development of antiviral agents and vaccines as the functions of the viral genes and proteins are further elucidated. The development of techniques whereby the genes of influenza viruses can be specifically altered to investigate those functions will undoubtedly accelerate the pace at which our knowledge expands.
Collapse
Affiliation(s)
- M W Shaw
- Department of Epidemiology, University of Michigan, Ann Arbor 48109
| | | | | |
Collapse
|
31
|
Morré DM. Role of the Golgi apparatus in cellular pathology. JOURNAL OF ELECTRON MICROSCOPY TECHNIQUE 1991; 17:200-11. [PMID: 2013821 PMCID: PMC7166452 DOI: 10.1002/jemt.1060170207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/19/1989] [Accepted: 10/13/1989] [Indexed: 12/29/2022]
Abstract
The Golgi apparatus response to pathological disorders is predominantly as an intermediary component of membrane biogenesis where it is involved in processing, sorting and secretion of materials via secretory granules, and in the formation of lysosomes. A common initial response of the Golgi apparatus to any stress is an alteration or cessation of secretory activity. In the transformed cell, the Golgi apparatus is altered both morphologically and biochemically, suggesting a shift from a secretory to a membrane-generating mode of functioning. However, since fewer or less well-developed Golgi apparatus are frequently found in transformed cells, analytical methods of membrane isolation developed for normal tissues may not always yield equivalent results when applied to tumors. Cell surface alterations characteristic of malignant cells may result from modifications occurring at the level of the Golgi apparatus. Some lysosomal dysfunctions may result from underglycosylation of acid hydrolases by the Golgi apparatus. The use of cell-free systems between endoplasmic reticulum and Golgi apparatus or within Golgi apparatus cisterane is providing a new approach to the elucidation of the role of the Golgi apparatus in normal as well as pathological states.
Collapse
Affiliation(s)
- D M Morré
- Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
32
|
Tobita K, Tanaka T, Odagiri T, Tashiro M, Feng SY. Nucleotide sequence and some biological properties of the NS gene of a newly isolated influenza B virus mutant which has a long carboxyl terminal deletion in the NS1 protein. Virology 1990; 174:314-9. [PMID: 2136779 DOI: 10.1016/0042-6822(90)90082-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
By a heterotypic cross between influenza viruses A/WSN (H1N1) and B/Yamagata/1/73, we obtained a mutant of B/Yamagata (AWBY-234), which expressed a greatly truncated NS1 protein with molecular weight of 13,500. Direct sequencing of the NS gene of the mutant revealed a deletion of a single uridine base at the position 310, 311, or 312 of the plus sense RNA, giving rise to a new stop codon at the position 314-316. The resulting NS1 protein was predicted to be composed of only 90 amino acids, compared with 281 with the NS1 of the wild-type B/Yamagata. AWBY-234 grew normally and induced a typical cytopathic effect in infected MDCK cells much earlier after infection than did the wild-type B/Yamagata. A single gene reassortant in which the NS gene of AWBY-234 was transferred to B/Lee/40 inherited these characteristics from AWBY-234 parent. The single gene reassortant, but not the control reassortant, contained a significant amount of defective particles which can complement each other to produce infectious virus.
Collapse
Affiliation(s)
- K Tobita
- Department of Virology, Jichi Medical School, Tochigi-Ken, Japan
| | | | | | | | | |
Collapse
|
33
|
Dimmock NJ, Dolbear HS, Guest AR. Chemical crosslinking of proteins of the influenza virion. 1. Interrelationships. Arch Virol 1989; 108:169-82. [PMID: 2604545 DOI: 10.1007/bf01310932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Purified influenza virus (A/FPV/Rostock/34; H7N1) was reacted with one of three chemical crosslinking reagents [dimethylsuberimidate (DMS), tartryl diazide (TDA) and formaldehyde] under conditions designed to give a ladder of crosslinked polypeptides (putative homo- and heteropolymers) when analysed by SDS-polyacrylamide gel electrophoresis under reducing conditions. The different virion polypeptides were identified by Western blotting with monospecific antisera against HA1, HA2, NP, and M1. When reacted with any crosslinker NP preferentially formed 2mer and 4mer homopolymers while M1 formed 2mers, 4mers, 6mers, and 8mers. 2mers and 3mers of HA1 were detected after crosslinking with TDA and DMS but homopolymers of HA2 could not be identified with certainty due to comigrating M1. One heteropolymer was clearly identified as 1NP:1M1 (with DMS and TDA) and others, as expected, as components of the haemagglutinin spike 1HA1:1HA2, 2HA1:2HA2, and 3HA1:3HA2. Formaldehyde gave rise only to HA1:HA2 polymers. The presence of other heteropolymers containing NP in conjunction with HA2 and HA1 seemed likely. Whenever HA2 ran with an Mr of about 50k it comigrated with M1 suggesting it may have formed (with DMS or TDA) a 1HA2:1M1 heterodimer. However it is possible that this band consisted of HA2 homodimers comigrating with M1 homodimers. Patterns of crosslinking with DMS and TDA were similar although not identical, but those obtained with formaldehyde were markedly different. All patterns were highly reproducible.
Collapse
Affiliation(s)
- N J Dimmock
- Department of Biological Sciences, University of Warwick, Coventry, England
| | | | | |
Collapse
|
34
|
Pattnaik AK, Brown DJ, Nayak DP. Formation of influenza virus particles lacking hemagglutinin on the viral envelope. J Virol 1986; 60:994-1001. [PMID: 3783822 PMCID: PMC253338 DOI: 10.1128/jvi.60.3.994-1001.1986] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We investigated the intracellular block in the transport of hemagglutinin (HA) and the role of HA in virus particle formation by using temperature-sensitive (ts) mutants (ts134 and ts61S) of influenza virus A/WSN/33. We found that at the nonpermissive temperature (39.5 degrees C), the exit of ts HA from the rough endoplasmic reticulum to the Golgi complex was blocked and that no additional block was apparent in either the exit from the Golgi complex or post-Golgi complex transport. When MDBK cells were infected with these mutant viruses, they produced noninfectious virus particles at 39.5 degrees C. The efficiency of particle formation at 39.5 degrees C was essentially the same for both wild-type (wt) and ts virus-infected cells. When compared with the wt virus produced at either 33 or 39.5 degrees C or the ts virus formed at 33 degrees C, these noninfectious virus particles were lighter in density and lacked spikes on the envelope. However, they contained the full complement of genomic RNA as well as all of the structural polypeptides of influenza virus with the exception of HA. In these spikeless particles, HA could not be detected at the limit of 0.2% of the HA present in wt virions. In contrast, neuraminidase appeared to be present in a twofold excess over the amount present in ts virus formed at 33 degrees C. These observations suggest that the presence of HA is not an obligatory requirement for the assembly and budding of influenza virus particles from infected cells. The implications of these results and the possible role of other viral proteins in influenza virus morphogenesis are discussed.
Collapse
|
35
|
Abstract
The amino acid sequence of the influenza C/JHB/1/66 glycoprotein was predicted from sequence analysis of cloned DNA. The glycoprotein exhibited several similarities to the haemagglutinin (HA) glycoproteins of influenza A and B viruses, although its overall homology to these glycoproteins was low. A comparison between the sequences of C/JHB/1/66 and C/Cal/78 strains revealed 96% homology. The nucleotide and amino acid changes appeared to be non-random, with a high proportion occurring between amino acid positions 182-212. A comparison between the JHB/1/66 glycoprotein and the influenza A/X31 HA sequence suggested that this region may be structurally analogous to the 'A' antigenic site of the HA glycoprotein.
Collapse
|
36
|
Saburi Y, Uno F, Akatsuka K, Uno N, Kumon H, Takahashi T, Okuda K. Ultrastructures of leuco-adsorption on monolayers infected with influenza virus. Microbiol Immunol 1984; 28:913-21. [PMID: 6503744 DOI: 10.1111/j.1348-0421.1984.tb00747.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Leuco-adsorption occurring in influenza virus infected-cell cultures was studied morphologically to clarify the mechanisms of adsorption of leukocytes. Among the various types of chicken leukocytes studied, such as lymphocytes, monocytes, granulocytes, and thrombocytes, all were found to adhere to the virus-infected cells. The adsorption seems to occur through at least two processes, one is mediated by microvilli (microvillus-attachment), and the other is direct adherence of both cells (cell-to-cell-attachment). In the former, the leukocytes are bound to the microvilli protruding from the infected MDCK cells and in the latter both cell membranes attach directly. In the cell-to-cell-attachment, there was an electron-lucent gap of about 12 nm in width in the intermembranous space of the junctional regions. This region was similar morphologically to the gap junction. As a result of leucoadsorption no cytolytic effects occurred in the MDCK cells under the experimental conditions.
Collapse
|
37
|
Abstract
Exposure of purified influenza virions to [14C]dansyl chloride resulted in the covalent attachment of the dansyl chromophore to the virion. Gel electrophoresis revealed that the dansyl chromophore was specifically coupled to the internal membrane (M) protein. Purification of the M protein by gel filtration followed by cyanogen bromide cleavage and peptide fractionation revealed that four of six peptide peaks contained dansyl label. Acid hydrolysis of the separated peptide peaks followed by thin-layer chromatography revealed that dansyl label was coupled to lysine residues present in these peptides. The results of these investigations have demonstrated that the M protein molecule is the major viral polypeptide labeled when intact virions are exposed to dansyl chloride.
Collapse
|
38
|
|
39
|
Aoki H, Maeno K, Tsurumi T, Takeura S, Shibata M, Hamaguchi M, Nagai Y, Sugiura Y. Analysis of the inhibitory effect of canavanine on the replication of influenza RI/5+ virus. II. Interaction of M protein with the plasma membrane. Microbiol Immunol 1981; 25:1279-89. [PMID: 7038406 DOI: 10.1111/j.1348-0421.1981.tb00137.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
When influenza A/RI/5+ virus-infected cells were incubated in medium to which 2 micrograms of canavanine (arginine analog) per ml had been added 4 hr after infection, all viral polypeptides were synthesized but the budding-like process with the appearance of extracellular virus was completely inhibited. The plasma membrane isolated from these cells contained exclusively hemagglutinin (HA), and membrane (M) protein and nucleoprotein (NP) appeared to be associated with the nucleus, in contrast to untreated cells whose plasma membrane contained abundant HA, M protein, and NP. Disruption of canavanine-treated cells by freeze-thawing generated a number of hemagglutinating membranous vesicles or fragments containing exclusively HA. By isotope labeling it was found that the M protein synthesized in the presence of canavanine, together with HA and NP, is a canavanine-substituted polypeptide. It is suggested that canavanine inhibits the formation of the mature envelope of influenza RI/5+, because of the inability of M protein to associate with the plasma membrane.
Collapse
|
40
|
Winter G, Fields S. The structure of the gene encoding the nucleoprotein of human influenza virus A/PR/8/34. Virology 1981; 114:423-8. [PMID: 7292985 DOI: 10.1016/0042-6822(81)90223-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
41
|
Kohn DF, Chinookoswong N, Magill LS. Pathogenicity of influenza A virus in ependymal organ culture. TERATOLOGY 1981; 24:201-13. [PMID: 7336363 DOI: 10.1002/tera.1420240211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ependymal organ culture was used as a model to study the effect of influenza A virus on the ciliated ependyma of the rat. One-square-milli-meter portions of cerebellum from newborn rats were harvested in roller tubes containing Ham's F-12 medium calf serum, and glutamine. Ciliary activity was monitored by stereomicroscopy and, after vigorous ciliary motion was established, tubes were inoculated with 0.1 ml of an inoculum containing 35 plaque-forming units (PFU) of neurotropic influenza A virus (WSN strain). Explants were examined by scanning electron microscopy (SEM) at 2 and 7 days and by transmission electron microscopy (TEM) at 7 days. When compared to noninfected controls, SEM showed that at 2 days the density of microvilli and cilia was decreased in influenza A virus-infected explants. At 7 days, the ependymal cells were nearly denuded of cilia and microvilli, and macrophage like cells were frequently resting upon the ependymal surface. TEM showed numerous viral particles, both budding from the cells surface and located extracellularly near the cell surface.
Collapse
|
42
|
Herrler G, Nagele A, Meier-Ewert H, Bhown AS, Compans RW. Isolation and structural analysis of influenza C virion glycoproteins. Virology 1981; 113:439-51. [PMID: 7269251 DOI: 10.1016/0042-6822(81)90173-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
Yoshida T, Shaw MW, Young JF, Compans RW. Characterization of the RNA associated with influenza A cytoplasmic inclusions and the interaction of NS1 protein with RNA. Virology 1981; 110:87-97. [PMID: 6163252 DOI: 10.1016/0042-6822(81)90010-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Bucher DJ, Kharitonenkov IG, Zakomirdin JA, Grigoriev VB, Klimenko SM, Davis JF. Incorporation of influenza virus M-protein into liposomes. J Virol 1980; 36:586-90. [PMID: 7431489 PMCID: PMC353677 DOI: 10.1128/jvi.36.2.586-590.1980] [Citation(s) in RCA: 76] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
M-protein from influenza virus vaccine was purified by sodium dodecyl sulfate-gel chromatography and incorporated into liposomes by solubilization with octylglucoside and subsequent dialysis. Liposomes containing M-protein formed a distinct population with a density of 1.22 g/ml on sucrose-gradient centrifugation, regardless of the net charge on the liposomes. Treatment of the liposomes by freeze-fracture followed by electron microscopic examination showed multilamellar structures in those liposomes without M-protein; liposomes containing M-protein were mulberry-like structures which appeared unilamellar. These studies show incorporation of M-protein into the lipid bilayer.
Collapse
|
45
|
Rodriguez Boulan E, Pendergast M. Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells. Cell 1980; 20:45-54. [PMID: 6248236 DOI: 10.1016/0092-8674(80)90233-0] [Citation(s) in RCA: 233] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The surface distribution of the envelope glycoproteins of influenza, Sendai and Vesicular Stomatitis viruses was studied by immunofluorescence and immunoelectromicroscopy in infected epithelial cell monolayers, from which these viruses bud in a polarized fashion. It was found that before the onset of viral budding, the envelope proteins are exclusively localized into the same plasma membrane domains of the epithelial cells from which the virions ultimately bud: the glycoproteins of influenza and Sendai were detected at the apical surface, while the G protein of Vesicular Stomatitis virus was concentrated at the basolateral region. On the other hand, Sendai virus nucleocapsids, which can be easily identified in the cytoplasm before viral assembly, could be observed throughout the cell, not showing any preferential localization near the surface that the virions utilize for budding. These results are consistent with a model in which the asymmetric distribution of viral envelope proteins, rather than a polarized delivery of nucleocapsids, directs the polarity of viral budding. Furthermore, the asymmetric surface localization of viral glycoproteins suggests that these proteins share with intrinsic surface proteins of epithelial cells common biogenetic mechanisms and informational features or "sorting out" signals that determine their compartmentalization in the plasma membrane.
Collapse
|
46
|
Morré DJ, Kartenbeck J, Franke WW. Membrane flow and intercoversions among endomembranes. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 559:71-52. [PMID: 375982 DOI: 10.1016/0304-4157(79)90008-x] [Citation(s) in RCA: 227] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Lunger PD, Clark HF. Morphogenesis of Fer-de-Lance virus (FDLV) cultured at sub- (23 degrees C) and supra- (36 degrees C) optimal cell growth temperatures. J Comp Pathol 1979; 89:281-91. [PMID: 457946 DOI: 10.1016/0021-9975(79)90066-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Lunger PD, Clark HF. Morphogenesis of Fer-de-Lance virus (FDLV) cultured at optimal (30 degrees C) cell growth temperature. J Comp Pathol 1979; 89:265-79. [PMID: 457945 DOI: 10.1016/0021-9975(79)90065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
|
50
|
Patzer EJ, Wagner RR, Dubovi EJ. Viral membranes: model systems for studying biological membranes. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1979; 6:165-217. [PMID: 378533 DOI: 10.3109/10409237909102563] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|