1
|
Saha R, Kao WL, Malady B, Heng X, Chen IA. Effect of montmorillonite K10 clay on RNA structure and function. Biophys J 2024; 123:451-463. [PMID: 37924206 PMCID: PMC10912936 DOI: 10.1016/j.bpj.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 09/29/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
One of the earliest living systems was likely based on RNA ("the RNA world"). Mineral surfaces have been postulated to be an important environment for the prebiotic chemistry of RNA. In addition to adsorbing RNA and thus potentially reducing the chance of parasitic takeover through limited diffusion, minerals have been shown to promote a range of processes related to the emergence of life, including RNA polymerization, peptide bond formation, and self-assembly of vesicles. In addition, self-cleaving ribozymes have been shown to retain activity when adsorbed to the clay mineral montmorillonite. However, simulation studies suggest that adsorption to minerals is likely to interfere with RNA folding and, thus, function. To further evaluate the plausibility of a mineral-adsorbed RNA world, here we studied the effect of the synthetic clay montmorillonite K10 on the malachite green RNA aptamer, including binding of the clay to malachite green and RNA, as well as on the formation of secondary structures in model RNA and DNA oligonucleotides. We evaluated the fluorescence of the aptamer complex, adsorption to the mineral, melting curves, Förster resonance energy transfer interactions, and 1H-NMR signals to study the folding and functionality of these nucleic acids. Our results indicate that while some base pairings are unperturbed, the overall folding and binding of the malachite green aptamer are substantially disrupted by montmorillonite. These findings suggest that minerals would constrain the structures, and possibly the functions, available to an adsorbed RNA world.
Collapse
Affiliation(s)
- Ranajay Saha
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
| | - Wei-Ling Kao
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Brandon Malady
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Santa Barbara, California.
| |
Collapse
|
2
|
Crucilla SJ, Ding D, Lozano GG, Szostak JW, Sasselov DD, Kufner CL. UV-driven self-repair of cyclobutane pyrimidine dimers in RNA. Chem Commun (Camb) 2023; 59:13603-13606. [PMID: 37899697 DOI: 10.1039/d3cc04013e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Nucleic acids can be damaged by ultraviolet (UV) irradiation, forming structural photolesions such as cyclobutane-pyrimidine-dimers (CPD). In modern organisms, sophisticated enzymes repair CPD lesions in DNA, but to our knowledge, no RNA-specific enzymes exist for CPD repair. Here, we show for the first time that RNA can protect itself from photolesions by an intrinsic UV-induced self-repair mechanism. This mechanism, prior to this study, has exclusively been observed in DNA and is based on charge transfer from CPD-adjacent bases. In a comparative study, we determined the quantum yields of the self-repair of the CPD-containing RNA sequence, GAU = U to GAUU (0.23%), and DNA sequence, d(GAT = T) to d(GATT) (0.44%), upon 285 nm irradiation via UV/Vis spectroscopy and HPLC analysis. After several hours of irradiation, a maximum conversion yield of ∼16% for GAU = U and ∼33% for d(GAT = T) was reached. We examined the dynamics of the intermediate charge transfer (CT) state responsible for the self-repair with ultrafast UV pump - IR probe spectroscopy. In the dinucleotides GA and d(GA), we found comparable quantum yields of the CT state of ∼50% and lifetimes on the order of several hundred picoseconds. Charge transfer in RNA strands might lead to reactions currently not considered in RNA photochemistry and may help understanding RNA damage formation and repair in modern organisms and viruses. On the UV-rich surface of the early Earth, these self-stabilizing mechanisms likely affected the selection of the earliest nucleotide sequences from which the first organisms may have developed.
Collapse
Affiliation(s)
- Sarah J Crucilla
- Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA.
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Dian Ding
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Gabriella G Lozano
- Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA.
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Dimitar D Sasselov
- Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA.
| | - Corinna L Kufner
- Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA.
| |
Collapse
|
3
|
Hertler J, Slama K, Schober B, Özrendeci Z, Marchand V, Motorin Y, Helm M. Synthesis of point-modified mRNA. Nucleic Acids Res 2022; 50:e115. [PMID: 36062567 PMCID: PMC9723659 DOI: 10.1093/nar/gkac719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Synthetic mRNA has recently moved into the focus of therapeutic and vaccination efforts. Incorporation of modified nucleotides during in vitro transcription can improve translation and attenuate immunogenicity, but is limited to triphosphate nucleotides which are accepted by RNA polymerases, and their incorporation is either random or complete. In contrast, site-specific modification, herein termed 'point modification' in analogy to point mutations, holds significant technical challenge. We developed fundamental techniques for isolation of long, translatable and internally point-modified mRNAs. Enabling concepts include three-way-one-pot splint ligations, and isolation of mRNA by real-time elution from agarose gels. The use of blue light permitted visualization of mRNA in pre-stained gels without the photochemical damage associated with the use of hard UV-radiation. This allowed visualization of the mRNA through its migration in the agarose gel, which in turn, was a prerequisite for its recovery by electroelution into precast troughs. Co-eluting agarose particles were quantified and found to not be detrimental to mRNA translation in vitro. Translation of EGFP-coding mRNA into functional protein was quantified by incorporation of 35S-labelled methionine and by in-gel EGFP fluorescence. This enabled the functional analysis of point modifications, specifically of ribose methylations in the middle of a 1371 nt long mRNA.
Collapse
Affiliation(s)
- Jasmin Hertler
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Kaouthar Slama
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Benedikt Schober
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Zeynep Özrendeci
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Virginie Marchand
- IMoPA UMR7365 CNRS-UL, BioPole Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Yuri Motorin
- IMoPA UMR7365 CNRS-UL, BioPole Université de Lorraine, Vandœuvre-lès-Nancy, France
- Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, UMS2008 IBSLor (CNRS-UL)/US40 (INSERM), Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudinger Weg 5, D-55128 Mainz, Germany
| |
Collapse
|
4
|
Rockey N, Young S, Kohn T, Pecson B, Wobus CE, Raskin L, Wigginton KR. UV Disinfection of Human Norovirus: Evaluating Infectivity Using a Genome-Wide PCR-Based Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2851-2858. [PMID: 31976661 DOI: 10.1021/acs.est.9b05747] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The removal and inactivation of infectious human norovirus (HuNoV) is a major focus in water purification, but the effectiveness of disinfection processes on norovirus is largely unknown owing to the lack of a readily available infectivity assay. In particular, norovirus behavior through unit processes may be over- or underestimated using current approaches for assessing HuNoV infectivity (e.g., surrogates, molecular methods). Here, we fill a critical knowledge gap by estimating inactivation data for HuNoV after exposure to UV254, a commonly used disinfection process in the water industry. Specifically, we used a PCR-based approach that accurately tracks positive-sense single-stranded RNA virus inactivation without relying on culturing methods. We first confirmed that the approach is valid with a culturable positive-sense single-stranded RNA human virus, coxsackievirus B5, by applying both qPCR- and culture-based methods to measure inactivation kinetics with UV254 treatment. We then applied the qPCR-based method to establish a UV254 inactivation curve for HuNoV (inactivation rate constant = 0.27 cm2 mJ-1). Based on a comparison with previously published data, HuNoV exhibited similar UV254 susceptibility compared with other enteric single-stranded RNA viruses (e.g., Echovirus 12, feline calicivirus) but degraded much faster than MS2 (inactivation rate constant = 0.14 cm2 mJ-1). In addition to establishing a HuNoV inactivation rate constant, we developed an approach using a single qPCR assay that can be applied to estimate HuNoV inactivation in UV254 disinfection systems.
Collapse
Affiliation(s)
- Nicole Rockey
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - Suzanne Young
- Laboratory of Environmental Chemistry, School of Architecture, Civil & Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil & Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Brian Pecson
- Trussell Technologies, Inc., Oakland 94612, California, United States
| | - Christiane E Wobus
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - Lutgarde Raskin
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - Krista R Wigginton
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor 48109, Michigan, United States
| |
Collapse
|
5
|
Le Vay K, Salibi E, Song EY, Mutschler H. Nucleic Acid Catalysis under Potential Prebiotic Conditions. Chem Asian J 2020; 15:214-230. [PMID: 31714665 PMCID: PMC7003795 DOI: 10.1002/asia.201901205] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/05/2019] [Indexed: 01/25/2023]
Abstract
Catalysis by nucleic acids is indispensable for extant cellular life, and it is widely accepted that nucleic acid enzymes were crucial for the emergence of primitive life 3.5-4 billion years ago. However, geochemical conditions on early Earth must have differed greatly from the constant internal milieus of today's cells. In order to explore plausible scenarios for early molecular evolution, it is therefore essential to understand how different physicochemical parameters, such as temperature, pH, and ionic composition, influence nucleic acid catalysis and to explore to what extent nucleic acid enzymes can adapt to non-physiological conditions. In this article, we give an overview of the research on catalysis of nucleic acids, in particular catalytic RNAs (ribozymes) and DNAs (deoxyribozymes), under extreme and/or unusual conditions that may relate to prebiotic environments.
Collapse
Affiliation(s)
- Kristian Le Vay
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Elia Salibi
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Emilie Y. Song
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Hannes Mutschler
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| |
Collapse
|
6
|
Saha R, Chen IA. Effect of UV Radiation on Fluorescent RNA Aptamers' Functional and Templating Ability. Chembiochem 2019; 20:2609-2617. [PMID: 31125512 PMCID: PMC6899979 DOI: 10.1002/cbic.201900261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Indexed: 12/25/2022]
Abstract
Damage from ultraviolet (UV) radiation was likely to be an important selection pressure during the origin of life. RNA is believed to have been central to the origin of life and might form the basis for simple synthetic cells. Although photodamage of DNA has been extensively studied, photodamage is highly dependent on local molecular context, and damage to functional RNAs has been relatively under‐studied. We irradiated two fluorescent RNA aptamers and monitored the loss of activity, folding, and the kinetics of lesion accumulation. The loss of activity differed depending on the aptamer, with the Spinach2 aptamer retaining substantial activity after long exposure times. The binding pocket was particularly susceptible to damage, and melting of the duplex regions increased susceptibility; this is consistent with the view that duplex formation is protective. At the same time, susceptibility varied greatly depending on context, thus emphasizing the importance of studying many different RNAs to understand UV hardiness.
Collapse
Affiliation(s)
- Ranajay Saha
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Irene A Chen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.,Program in Biomolecular Sciences and Engineering, University of California, Santa Barbara, CA, 93106, USA.,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
7
|
Unger C, Kofanova O, Sokolowska K, Lehmann D, Betsou F. Ultraviolet C radiation influences the robustness of RNA integrity measurement. Electrophoresis 2015; 36:2072-81. [PMID: 25998866 DOI: 10.1002/elps.201500082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 01/01/2023]
Abstract
The analytical and clinical validity of analyses of RNA samples destined for clinical diagnosis and therapeutic management is directly impacted by RNA quality. RNA is affected by heat, enzymatic degradation, and Ultraviolet (UV) light. RNA from three eukaryotic cell lines was degraded by heat, RNase, or UV light. RNA integrity values obtained with the benchmark Agilent Bioanalyzer 2100 system were compared with those from the more recent QIAxcel Advanced system. The application of this novel method has allowed us to unravel differences between RNA biophysical and biochemical degradation modes. Agilent RNA integrity number (RIN) and QIAxcel RIS were comparable in heat-degraded and RNase III-degraded RNA. Agilent RIN and QIAxcel RIS were comparable at a RIN decision level of 7 in UV-degraded RNA but not overall. The QIAxcel RIS method was more precise than Agilent RIN for RIN<8, while the inverse was true for RIN≥8. Greater degradation of mRNA and rRNA in UV-damaged samples hampered the Agilent RIN calculation algorithm. Overall, RIS was more robust than RIN for assessing RNA integrity. The ΔΔCt-values for heat- and UV-degraded RNA samples showed slightly higher correlation with RIS than with RIN. RNA integrity can be used to categorize RNA samples for suitability for downstream gene expression analyses, independently of the RNA degradation mechanism. The new method QIAxcel is more robust and therefore allows more accurate categorization of compromised RNA samples.
Collapse
Affiliation(s)
| | | | | | | | - Fay Betsou
- Integrated Biobank of Luxembourg (IBBL), Luxembourg
| |
Collapse
|
8
|
Wigginton KR, Pecson BM, Sigstam T, Bosshard F, Kohn T. Virus inactivation mechanisms: impact of disinfectants on virus function and structural integrity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:12069-78. [PMID: 23098102 DOI: 10.1021/es3029473] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Oxidative processes are often harnessed as tools for pathogen disinfection. Although the pathways responsible for bacterial inactivation with various biocides are fairly well understood, virus inactivation mechanisms are often contradictory or equivocal. In this study, we provide a quantitative analysis of the total damage incurred by a model virus (bacteriophage MS2) upon inactivation induced by five common virucidal agents (heat, UV, hypochlorous acid, singlet oxygen, and chlorine dioxide). Each treatment targets one or more virus functions to achieve inactivation: UV, singlet oxygen, and hypochlorous acid treatments generally render the genome nonreplicable, whereas chlorine dioxide and heat inhibit host-cell recognition/binding. Using a combination of quantitative analytical tools, we identified unique patterns of molecular level modifications in the virus proteins or genome that lead to the inhibition of these functions and eventually inactivation. UV and chlorine treatments, for example, cause site-specific capsid protein backbone cleavage that inhibits viral genome injection into the host cell. Combined, these results will aid in developing better methods for combating waterborne and foodborne viral pathogens and further our understanding of the adaptive changes viruses undergo in response to natural and anthropogenic stressors.
Collapse
Affiliation(s)
- Krista Rule Wigginton
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
9
|
Abstract
Damage to RNA from ultraviolet light, oxidation, chlorination, nitration, and akylation can include chemical modifications to nucleobases as well as RNA-RNA and RNA-protein crosslinking. In vitro studies have described a range of possible damage products, some of which are supported as physiologically relevant by in vivo observations in normal growth, stress conditions, or disease states. Damage to both messenger RNA and noncoding RNA may have functional consequences, and work has begun to elucidate the role of RNA turnover pathways and specific damage recognition pathways in clearing cells of these damaged RNAs.
Collapse
|
10
|
Nonlinear laser photophysics, photochemistry and photobiology of nucleic acids. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/bf02740898] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Nikogosyan DN. Two-quantum UV photochemistry of nucleic acids: comparison with conventional low-intensity UV photochemistry and radiation chemistry. Int J Radiat Biol 1990; 57:233-99. [PMID: 1968495 DOI: 10.1080/09553009014552411] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The action of high-intensity laser u.v. radiation on nucleic acid molecules and their constituents in vitro and in vivo is compared with the results of low-intensity u.v. photolysis and gamma-radiolysis.
Collapse
Affiliation(s)
- D N Nikogosyan
- Institute of Spectroscopy, USSR Academy of Sciences, Moscow Region
| |
Collapse
|
12
|
Singer B, Pulkrabek P, Weinstein IB, Grunberger D. Infectivity and reconstitution of TMV RNA modified with N-acetoxy-2-acetylaminofluorene or benzol [a] pyrene 7,8-dihydrodiol 9,10 oxide. Nucleic Acids Res 1980; 8:2067-74. [PMID: 6776494 PMCID: PMC324058 DOI: 10.1093/nar/8.9.2067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
TMV RNA was modified by two bulky carcinogens, N-acetoxy-2-acetylamino-fluorene (AAAF) and (+/-)-7beta, 8alpha- dihydroxy-9alpha, 10alpha-epoxy-7,8,9,10-tetrahydrobenzo[alpha]pyrene (BPDE), and the effects of such substituents on biological and physical properties was studied. For both types of modification, the loss of infectivity was directly proportional to the number of chemical modifications indicating that all modifications are lethal. Neither AAAF nor BPDE produced measurable mutations. Reconstitution of modified RNA with TMV protein was partially inhibited, but such inhibition occurred to similar extents with either carcinogen and a varying levels of modification. The data suggest that both types of substitution of TMV RNA generally permit the TMV coat protein to aggregate normally around the RNA, but that AAAF and BPDE may induce some conformational change in the initiation region that inhibits the initiation step.
Collapse
|
13
|
Ryan FJ, O'Hara PJ, Gordon MP. Ultraviolet inactivation of the midi variant of Q beta RNA: characterization of template activity. Photochem Photobiol 1979; 29:289-97. [PMID: 482379 DOI: 10.1111/j.1751-1097.1979.tb07051.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Ryan FJ, Huang CW, Gordon MP. Ultraviolet inactivation of the midi variant of Qbeta-RNA. Determination of quantum yield and lesions produced. Photochem Photobiol 1977; 26:263-8. [PMID: 918151 DOI: 10.1111/j.1751-1097.1977.tb07483.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
|
16
|
Fraenkel-Conrat H, Singer B. The chemical basis for the mutagenicity of hydroxylamine and methoxyamine. BIOCHIMICA ET BIOPHYSICA ACTA 1972; 262:264-8. [PMID: 4338936 DOI: 10.1016/0005-2787(72)90262-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|