1
|
Palukaitis P, Akbarimotlagh M, Astaraki S, Shams-Bakhsh M, Yoon JY. The Forgotten Tobamovirus Genes Encoding the 54 kDa Protein and the 4-6 kDa Proteins. Viruses 2024; 16:1680. [PMID: 39599795 PMCID: PMC11599109 DOI: 10.3390/v16111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
This article reviews the literature concerning the largely forgotten tobamovirus gene products for which no functions have been ascribed. One of these gene products is the 54 kDa protein, representing the RNA-dependent RNA polymerase segment of the 183 kDa protein translated from the I1-subgenomic mRNA, but which has been found only by in vitro translation and not in plants. The other is a collection of small proteins, expressed from alternative reading frames (likely from internal ribosome entry sites) in either or both the movement protein gene or the capsid protein gene. Previously, two small proteins were referred to as the 4-6 kDa proteins, since only single proteins of such size had been characterized from tobacco mosaic virus and tomato mosaic virus genomes. Such putative proteins will be referred to here as P6 proteins, since many new proposed P6 open reading frames could be discerned, from an analysis of 45 of 47 tobamovirus genomes, with a coding capacity of >15 amino acids up to 94 amino acids, whereas other peptides with ≤15 amino acids were not considered here. The distribution of the putative P6 proteins among these tobamoviruses is described, as well as the various classes they fall into, based on their distribution with regard to the organization of other genes in the viral genomes. Models also are presented for possible functions of the 54 kDa protein and the P6 proteins, based on data in the literature.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Masoud Akbarimotlagh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran; (M.A.); (S.A.); (M.S.-B.)
| | - Sajad Astaraki
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran; (M.A.); (S.A.); (M.S.-B.)
| | - Masoud Shams-Bakhsh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran; (M.A.); (S.A.); (M.S.-B.)
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Wendlandt T, Britz B, Kleinow T, Hipp K, Eber FJ, Wege C. Getting Hold of the Tobamovirus Particle-Why and How? Purification Routes over Time and a New Customizable Approach. Viruses 2024; 16:884. [PMID: 38932176 PMCID: PMC11209083 DOI: 10.3390/v16060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
This article develops a multi-perspective view on motivations and methods for tobamovirus purification through the ages and presents a novel, efficient, easy-to-use approach that can be well-adapted to different species of native and functionalized virions. We survey the various driving forces prompting researchers to enrich tobamoviruses, from the search for the causative agents of mosaic diseases in plants to their increasing recognition as versatile nanocarriers in biomedical and engineering applications. The best practices and rarely applied options for the serial processing steps required for successful isolation of tobamoviruses are then reviewed. Adaptations for distinct particle species, pitfalls, and 'forgotten' or underrepresented technologies are considered as well. The article is topped off with our own development of a method for virion preparation, rooted in historical protocols. It combines selective re-solubilization of polyethylene glycol (PEG) virion raw precipitates with density step gradient centrifugation in biocompatible iodixanol formulations, yielding ready-to-use particle suspensions. This newly established protocol and some considerations for perhaps worthwhile further developments could serve as putative stepping stones towards preparation procedures appropriate for routine practical uses of these multivalent soft-matter nanorods.
Collapse
Affiliation(s)
- Tim Wendlandt
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Beate Britz
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Tatjana Kleinow
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany;
| | - Fabian J. Eber
- Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, Badstr. 24, 77652 Offenburg, Germany;
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| |
Collapse
|
3
|
de Andrés-Torán R, Guidoum L, Zamfir AD, Mora MÁ, Moreno-Vázquez S, García-Arenal F. Tobacco Mild Green Mosaic Virus (TMGMV) Isolates from Different Plant Families Show No Evidence of Differential Adaptation to Their Host of Origin. Viruses 2023; 15:2384. [PMID: 38140625 PMCID: PMC10748040 DOI: 10.3390/v15122384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The relevance of tobamoviruses to crop production is increasing due to new emergences, which cannot be understood without knowledge of the tobamovirus host range and host specificity. Recent analyses of tobamovirus occurrence in different plant communities have shown unsuspectedly large host ranges. This was the case of the tobacco mild green mosaic virus (TMGMV), which previously was most associated with solanaceous hosts. We addressed two hypotheses concerning TMGMV host range evolution: (i) ecological fitting, rather than genome evolution, determines TMGMV host range, and (ii) isolates are adapted to the host of origin. We obtained TMGMV isolates from non-solanaceous hosts and we tested the capacity of genetically closely related TMGMV isolates from three host families to infect and multiply in 10 hosts of six families. All isolates systemically infected all hosts, with clear disease symptoms apparent only in solanaceous hosts. TMGMV multiplication depended on the assayed host but not on the isolate's host of origin, with all isolates accumulating to the highest levels in Nicotiana tabacum. Thus, results support that TMGMV isolates are adapted to hosts in the genus Nicotiana, consistent with a well-known old virus-host association. In addition, phenotypic plasticity allows Nicotiana-adapted TMGMV genotypes to infect a large range of hosts, as encountered according to plant community composition and transmission dynamics.
Collapse
Affiliation(s)
- Rafael de Andrés-Torán
- Centro de Biotecnología y Genómica de Plantas (CBGP UPM_INIA/CSIC), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.d.A.-T.); (L.G.); (A.D.Z.); (M.Á.M.)
| | - Laura Guidoum
- Centro de Biotecnología y Genómica de Plantas (CBGP UPM_INIA/CSIC), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.d.A.-T.); (L.G.); (A.D.Z.); (M.Á.M.)
| | - Adrian D. Zamfir
- Centro de Biotecnología y Genómica de Plantas (CBGP UPM_INIA/CSIC), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.d.A.-T.); (L.G.); (A.D.Z.); (M.Á.M.)
| | - Miguel Ángel Mora
- Centro de Biotecnología y Genómica de Plantas (CBGP UPM_INIA/CSIC), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.d.A.-T.); (L.G.); (A.D.Z.); (M.Á.M.)
| | - Santiago Moreno-Vázquez
- Departamento de Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro 2-4, 28040 Madrid, Spain;
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP UPM_INIA/CSIC), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.d.A.-T.); (L.G.); (A.D.Z.); (M.Á.M.)
- Departamento de Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro 2-4, 28040 Madrid, Spain;
| |
Collapse
|
4
|
Moreno‐Pérez MG, Bera S, McLeish M, Fraile A, García‐Arenal F. Reversion of a resistance-breaking mutation shows reversion costs and high virus diversity at necrotic local lesions. MOLECULAR PLANT PATHOLOGY 2023; 24:142-153. [PMID: 36435959 PMCID: PMC9831284 DOI: 10.1111/mpp.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/28/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
An instance of host range evolution relevant to plant virus disease control is resistance breaking. Resistance breaking can be hindered by across-host fitness trade-offs generated by negative effects of resistance-breaking mutations on the virus fitness in susceptible hosts. Different mutations in pepper mild mottle virus (PMMoV) coat protein result in the breaking in pepper plants of the resistance determined by the L3 resistance allele. Of these, mutation M138N is widespread in PMMoV populations, despite associated fitness penalties in within-host multiplication and survival. The stability of mutation M138N was analysed by serial passaging in L3 resistant plants. Appearance on passaging of necrotic local lesions (NLL), indicating an effective L3 resistance, showed reversion to nonresistance-breaking phenotypes was common. Most revertant genotypes had the mutation N138K, which affects the properties of the virus particle, introducing a penalty of reversion. Hence, the costs of reversion may determine the evolution of resistance-breaking in addition to resistance-breaking costs. The genetic diversity of the virus population in NLL was much higher than in systemically infected tissues, and included mutations reported to break L3 resistance other than M138N. Infectivity assays on pepper genotypes with different L alleles showed high phenotypic diversity in respect to L alleles in NLL, including phenotypes not reported in nature. Thus, high diversity at NLL may potentiate the appearance of genotypes that enable the colonization of new host genotypes or species. Collectively, the results of this study contribute to better understanding the evolutionary dynamics of resistance breaking and host-range expansions.
Collapse
Affiliation(s)
- Manuel G. Moreno‐Pérez
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Sayanta Bera
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Michael McLeish
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Fernando García‐Arenal
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| |
Collapse
|
5
|
One-Enzyme RTX-PCR for the Detection of RNA Viruses from Multiple Virus Genera and Crop Plants. Viruses 2022; 14:v14020298. [PMID: 35215892 PMCID: PMC8924886 DOI: 10.3390/v14020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022] Open
Abstract
Reverse transcription PCR (RT-PCR) is a popular method for detecting RNA viruses in plants. RT-PCR is usually performed in a classical two-step procedure: in the first step, cDNA is synthesized by reverse transcriptase (RT), followed by PCR amplification by a thermostable polymerase in a separate tube in the second step. However, one-step kits containing multiple enzymes optimized for RT and PCR amplification in a single tube can also be used. Here, we describe an RT-PCR single-enzyme assay based on an RTX DNA polymerase that has both RT and polymerase activities. The expression plasmid pET_RTX_(exo-) was transferred to various E. coli genotypes that either compensated for codon bias (Rosetta-gami 2) or contained additional chaperones to promote solubility (BL21 (DE3) with plasmids pKJE8 or pTf2). The RTX enzyme was then purified and used for the RT-PCR assay. Several purified plant viruses (TMV, PVX, and PVY) were used to determine the efficiency of the assay compared to a commercial one-step RT-PCR kit. The RT-PCR assay with the RTX enzyme was validated for the detection of viruses from different genera using both total RNA and crude sap from infected plants. The detection endpoint of RTX-PCR for purified TMV was estimated to be approximately 0.01 pg of the whole virus per 25 µL reaction, corresponding to 6 virus particles/µL. Interestingly, the endpoint for detection of TMV from crude sap was also 0.01 pg per reaction in simulated crude plant extracts. The longest RNA fragment that could be amplified in a one-tube arrangement was 2379 bp long. The longest DNA fragment that could be amplified during a 10s extension was 6899 bp long. In total, we were able to detect 13 viruses from 11 genera using RTX-PCR. For each virus, two to three specific fragments were amplified. The RT-PCR assay using the RTX enzyme described here is a very robust, inexpensive, rapid, easy to perform, and sensitive single-enzyme assay for the detection of plant viruses.
Collapse
|
6
|
Translation of Plant RNA Viruses. Viruses 2021; 13:v13122499. [PMID: 34960768 PMCID: PMC8708638 DOI: 10.3390/v13122499] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Plant RNA viruses encode essential viral proteins that depend on the host translation machinery for their expression. However, genomic RNAs of most plant RNA viruses lack the classical characteristics of eukaryotic cellular mRNAs, such as mono-cistron, 5′ cap structure, and 3′ polyadenylation. To adapt and utilize the eukaryotic translation machinery, plant RNA viruses have evolved a variety of translation strategies such as cap-independent translation, translation recoding on initiation and termination sites, and post-translation processes. This review focuses on advances in cap-independent translation and translation recoding in plant viruses.
Collapse
|
7
|
Sheshukova EV, Ershova NM, Kamarova KA, Dorokhov YL, Komarova TV. The Tobamoviral Movement Protein: A "Conditioner" to Create a Favorable Environment for Intercellular Spread of Infection. FRONTIERS IN PLANT SCIENCE 2020; 11:959. [PMID: 32670343 PMCID: PMC7328123 DOI: 10.3389/fpls.2020.00959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
During their evolution, viruses acquired genes encoding movement protein(s) (MPs) that mediate the intracellular transport of viral genetic material to plasmodesmata (Pd) and initiate the mechanisms leading to the increase in plasmodesmal permeability. Although the current view on the role of the viral MPs was primarily formed through studies on tobacco mosaic virus (TMV), the function of its MP has not been fully elucidated. Given the intercellular movement of MPs independent of genomic viral RNA (vRNA), this characteristic may induce favorable conditions ahead of the infection front for the accelerated movement of the vRNA (i.e. the MP plays a role as a "conditioner" of viral intercellular spread). This idea is supported by (a) the synthesis of MP from genomic vRNA early in infection, (b) the Pd opening and the MP transfer to neighboring cells without formation of the viral replication complex (VRC), and (c) the MP-mediated movement of VRCs beyond the primary infected cell. Here, we will consider findings that favor the TMV MP as a "conditioner" of enhanced intercellular virus movement. In addition, we will discuss the mechanism by which TMV MP opens Pd for extraordinary transport of macromolecules. Although there is no evidence showing direct effects of TMV MP on Pd leading to their dilatation, recent findings indicate that MPs exert their influence indirectly by modulating Pd external and structural macromolecules such as callose and Pd-associated proteins. In explaining this phenomenon, we will propose a mechanism for TMV MP functioning as a conditioner for virus movement.
Collapse
Affiliation(s)
| | - Natalia M. Ershova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kamila A. Kamarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri L. Dorokhov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana V. Komarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Bera S, Fraile A, García-Arenal F. Analysis of Fitness Trade-Offs in the Host Range Expansion of an RNA Virus, Tobacco Mild Green Mosaic Virus. J Virol 2018; 92:e01268-18. [PMID: 30257999 PMCID: PMC6258955 DOI: 10.1128/jvi.01268-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022] Open
Abstract
The acquisition of new hosts provides a virus with more opportunities for transmission and survival but may be limited by across-host fitness trade-offs. Major causes of across-host trade-offs are antagonistic pleiotropy, that is, host differential phenotypic effects of mutations, a Genotype x Environment interaction, and epistasis, a Genotype x Genotype interaction. Here, we analyze if there are trade-offs, and what are the causes, associated with the acquisition by tobacco mild green mosaic virus (TMGMV) of a new host. For this, the multiplication of sympatric field isolates of TMGMV from its wild reservoir host Nicotiana glauca and from pepper crops was quantified in the original and the heterologous hosts. TMGMV isolates from N. glauca were adapted to their host, but pepper isolates were not adapted to pepper, and the acquisition of this new host was associated with a fitness penalty in the original host. Analyses of the collection of field isolates and of mutant genotypes derived from biologically active cDNA clones showed a role of mutations in the coat protein and the 3' untranslated region in determining within-host virus fitness. Fitness depended on host-specific effects of these mutations, on the genetic background in which they occurred, and on higher-order interactions of the type Genotype x Genotype x Environment. These types of effects had been reported to generate across-host fitness trade-offs under experimental evolution. Our results show they may also operate in heterogeneous natural environments and could explain why pepper isolates were not adapted to pepper and their lower fitness in N. glaucaIMPORTANCE The acquisition of new hosts conditions virus epidemiology and emergence; hence it is important to understand the mechanisms behind host range expansion. Experimental evolution studies have identified antagonistic pleiotropy and epistasis as genetic mechanisms that limit host range expansion, but studies from virus field populations are few. Here, we compare the performance of isolates of tobacco mild green mosaic virus from its reservoir host, Nicotiana glauca, and its new host, pepper, showing that acquisition of a new host was not followed by adaptation to it but was associated with a fitness loss in the original host. Analysis of mutations determining host-specific virus multiplication identified antagonistic pleiotropy, epistasis, and host-specific epistasis as mechanisms generating across-host fitness trade-offs that may prevent adaptation to pepper and cause a loss of fitness in N. glauca Thus, mechanisms determining trade-offs, identified under experimental evolution, could also operate in the heterogeneous environment in which natural plant virus populations occur.
Collapse
Affiliation(s)
- Sayanta Bera
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
9
|
In Memoriam: The Career, Achievements, and Legacy of Milton Zaitlin. Adv Virus Res 2018. [DOI: 10.1016/bs.aivir.2018.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Bera S, Moreno-Pérez MG, García-Figuera S, Pagán I, Fraile A, Pacios LF, García-Arenal F. Pleiotropic Effects of Resistance-Breaking Mutations on Particle Stability Provide Insight into Life History Evolution of a Plant RNA Virus. J Virol 2017; 91:e00435-17. [PMID: 28679755 PMCID: PMC5571237 DOI: 10.1128/jvi.00435-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022] Open
Abstract
In gene-for-gene host-virus interactions, virus evolution to infect and multiply in previously resistant host genotypes, i.e., resistance breaking, is a case of host range expansion, which is predicted to be associated with fitness penalties. Negative effects of resistance-breaking mutations on within-host virus multiplication have been documented for several plant viruses. However, understanding virus evolution requires analyses of potential trade-offs between different fitness components. Here we analyzed whether coat protein (CP) mutations in Pepper mild mottle virus that break L-gene resistance in pepper affect particle stability and, thus, survival in the environment. For this purpose, CP mutations determining the overcoming of L 3 and L 4 resistance alleles were introduced in biologically active cDNA clones. The kinetics of the in vitro disassembly of parental and mutant particles were compared under different conditions. Resistance-breaking mutations variously affected particle stability. Structural analyses identified the number and type of axial and side interactions of adjacent CP subunits in virions, which explained differences in particle stability and contribute to understanding of tobamovirus disassembly. Resistance-breaking mutations also affected virus multiplication and virulence in the susceptible host, as well as infectivity. The sense and magnitude of the effects of resistance-breaking mutations on particle stability, multiplication, virulence, or infectivity depended on the specific mutation rather than on the ability to overcome the different resistance alleles, and effects on different traits were not correlated. Thus, the results do not provide evidence of links or trade-offs between particle stability, i.e., survival, and other components of virus fitness or virulence.IMPORTANCE The effect of survival on virus evolution remains underexplored, despite the fact that life history trade-offs may constrain virus evolution. We approached this topic by analyzing whether breaking of L-gene resistance in pepper by Pepper mild mottle virus, determined by coat protein (CP) mutations, is associated with reduced particle stability and survival. Resistance-breaking mutations affected particle stability by altering the interactions between CP subunits. However, the sense and magnitude of these effects were unrelated to the capacity to overcome different resistance alleles. Thus, resistance breaking was not traded with survival. Resistance-breaking mutations also affected virus fitness within the infected host, virulence, and infectivity in a mutation-specific manner. Comparison of the effects of CP mutations on these various traits indicates that there are neither trade-offs nor positive links between survival and other life history traits. These results demonstrate that trade-offs between life history traits may not be a general constraint in virus evolution.
Collapse
Affiliation(s)
- Sayanta Bera
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Manuel G Moreno-Pérez
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Sara García-Figuera
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingenieros de Montes, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
11
|
Moreno-Pérez MG, García-Luque I, Fraile A, García-Arenal F. Mutations That Determine Resistance Breaking in a Plant RNA Virus Have Pleiotropic Effects on Its Fitness That Depend on the Host Environment and on the Type, Single or Mixed, of Infection. J Virol 2016; 90:9128-37. [PMID: 27489266 PMCID: PMC5044817 DOI: 10.1128/jvi.00737-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Overcoming host resistance in gene-for-gene host-virus interactions is an important instance of host range expansion, which can be hindered by across-host fitness trade-offs. Trade-offs are generated by negative effects of host range mutations on the virus fitness in the original host, i.e., by antagonistic pleiotropy. It has been reported that different mutations in Pepper mild mottle virus (PMMoV) coat protein result in overcoming L-gene resistance in pepper. To analyze if resistance-breaking mutations in PMMoV result in antagonistic pleiotropy, all reported mutations determining the overcoming of L(3) and L(4) alleles were introduced in biologically active cDNA clones. Then, the parental and mutant virus genotypes were assayed in susceptible pepper genotypes with an L(+), L(1), or L(2) allele, in single and in mixed infections. Resistance-breaking mutations had pleiotropic effects on the virus fitness that, according to the specific mutation, the host genotype, and the type of infection, single or mixed with other virus genotypes, were antagonistic or positive. Thus, resistance-breaking mutations can generate fitness trade-offs both across hosts and across types of infection, and the frequency of host range mutants will depend on the genetic structure of the host population and on the frequency of mixed infections by different virus genotypes. Also, resistance-breaking mutations variously affected virulence, which may further influence the evolution of host range expansion. IMPORTANCE A major cause of virus emergence is host range expansion, which may be hindered by across-host fitness trade-offs caused by negative pleiotropy of host range mutations. An important instance of host range expansion is overcoming host resistance in gene-for-gene plant-virus interactions. We analyze here if mutations in the coat protein of Pepper mild mottle virus determining L-gene resistance-breaking in pepper have associated fitness penalties in susceptible host genotypes. Results show that pleiotropic effects of resistance-breaking mutations on virus fitness depend on the specific mutation, the susceptible host genotype, and the type of infection, single or mixed, with other virus genotypes. Accordingly, resistance-breaking mutations can have negative, positive, or no pleiotropic effects on virus fitness. These results underscore the complexity of host range expansion evolution and, specifically, the difficulty of predicting the overcoming of resistance factors in crops.
Collapse
Affiliation(s)
- Manuel G Moreno-Pérez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | | | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
12
|
Fraile A, Hily JM, Pagán I, Pacios LF, García-Arenal F. Host resistance selects for traits unrelated to resistance-breaking that affect fitness in a plant virus. Mol Biol Evol 2014; 31:928-39. [PMID: 24441034 DOI: 10.1093/molbev/msu045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The acquisition by parasites of the capacity to infect resistant host genotypes, that is, resistance-breaking, is predicted to be hindered by across-host fitness trade-offs. All analyses of costs of resistance-breaking in plant viruses have focused on within-host multiplication without considering other fitness components, which may limit understanding of virus evolution. We have reported that host range expansion of tobamoviruses on L-gene resistant pepper genotypes was associated with severe within-host multiplication penalties. Here, we analyze whether resistance-breaking costs might affect virus survival in the environment by comparing tobamovirus pathotypes differing in infectivity on L-gene resistance alleles. We predicted particle stability from structural models, analyzed particle stability in vitro, and quantified virus accumulation in different plant organs and virus survival in the soil. Survival in the soil differed among tobamovirus pathotypes and depended on differential stability of virus particles. Structure model analyses showed that amino acid changes in the virus coat protein (CP) responsible for resistance-breaking affected the strength of the axial interactions among CP subunits in the rod-shaped particle, thus determining its stability and survival. Pathotypes ranked differently for particle stability/survival and for within-host accumulation. Resistance-breaking costs in survival add to, or subtract from, costs in multiplication according to pathotype. Hence, differential pathotype survival should be considered along with differential multiplication to understand the evolution of the virus populations. Results also show that plant resistance, in addition to selecting for resistance-breaking and for decreased multiplication, also selects for changes in survival, a trait unrelated to the host-pathogen interaction that may condition host range expansion.
Collapse
Affiliation(s)
- Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | |
Collapse
|
13
|
Bhat S, Folimonova SY, Cole AB, Ballard KD, Lei Z, Watson BS, Sumner LW, Nelson RS. Influence of host chloroplast proteins on Tobacco mosaic virus accumulation and intercellular movement. PLANT PHYSIOLOGY 2013; 161:134-47. [PMID: 23096159 PMCID: PMC3532247 DOI: 10.1104/pp.112.207860] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 10/22/2012] [Indexed: 05/18/2023]
Abstract
Tobacco mosaic virus (TMV) forms dense cytoplasmic bodies containing replication-associated proteins (virus replication complexes [VRCs]) upon infection. To identify host proteins that interact with individual viral components of VRCs or VRCs in toto, we isolated viral replicase- and VRC-enriched fractions from TMV-infected Nicotiana tabacum plants. Two host proteins in enriched fractions, ATP-synthase γ-subunit (AtpC) and Rubisco activase (RCA) were identified by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry or liquid chromatography-tandem mass spectrometry. Through pull-down analysis, RCA bound predominantly to the region between the methyltransferase and helicase domains of the TMV replicase. Tobamovirus, but not Cucumber mosaic virus or Potato virus X, infection of N. tabacum plants resulted in 50% reductions in Rca and AtpC messenger RNA levels. To investigate the role of these host proteins in TMV accumulation and plant defense, we used a Tobacco rattle virus vector to silence these genes in Nicotiana benthamiana plants prior to challenge with TMV expressing green fluorescent protein. TMV-induced fluorescent lesions on Rca- or AtpC-silenced leaves were, respectively, similar or twice the size of those on leaves expressing these genes. Silencing Rca and AtpC did not influence the spread of Tomato bushy stunt virus and Potato virus X. In AtpC- and Rca-silenced leaves TMV accumulation and pathogenicity were greatly enhanced, suggesting a role of both host-encoded proteins in a defense response against TMV. In addition, silencing these host genes altered the phenotype of the TMV infection foci and VRCs, yielding foci with concentric fluorescent rings and dramatically more but smaller VRCs. The concentric rings occurred through renewed virus accumulation internal to the infection front.
Collapse
Affiliation(s)
- Sumana Bhat
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401
| | | | | | - Kimberly D. Ballard
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401
| | - Zhentian Lei
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401
| | - Bonnie S. Watson
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401
| | - Lloyd W. Sumner
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401
| | - Richard S. Nelson
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401
| |
Collapse
|
14
|
Sacristán S, Díaz M, Fraile A, García-Arenal F. Contact transmission of Tobacco mosaic virus: a quantitative analysis of parameters relevant for virus evolution. J Virol 2011; 85:4974-81. [PMID: 21367909 PMCID: PMC3126215 DOI: 10.1128/jvi.00057-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 02/21/2011] [Indexed: 11/20/2022] Open
Abstract
Transmission between hosts is required for the maintenance of parasites in the host population and determines their ultimate evolutionary success. The transmission ability of parasites conditions their evolution in two ways: on one side, it affects the genetic structure of founded populations in new hosts. On the other side, parasite traits that increase transmission efficiency will be selected for. Therefore, knowledge of the factors and parameters that determine transmission efficiency is critical to predict the evolution of parasites. For plant viruses, little is known about the parameters of contact transmission, a major way of transmission of important virus genera and species. Here, we analyze the factors determining the efficiency of contact transmission of Tobacco mosaic virus (TMV) that may affect virus evolution. As it has been reported for other modes of transmission, the rate of TMV transmission by contact depended on the contact opportunities between an infected and a noninfected host. However, TMV contact transmission differed from other modes of transmission, in that a positive correlation between the virus titer in the source leaf and the rate of transmission was not found within the range of our experimental conditions. Other factors associated with the nature of the source leaf, such as leaf age and the way in which it was infected, had an effect on the rate of transmission. Importantly, contact transmission resulted in severe bottlenecks, which did not depend on the host susceptibility to infection. Interestingly, the effective number of founders initiating the infection of a new host was highly similar to that reported for aphid-transmitted plant viruses, suggesting that this trait has evolved to an optimum value.
Collapse
Affiliation(s)
- Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain.
| | | | | | | |
Collapse
|
15
|
Fraile A, Pagán I, Anastasio G, Sáez E, García-Arenal F. Rapid genetic diversification and high fitness penalties associated with pathogenicity evolution in a plant virus. Mol Biol Evol 2010; 28:1425-37. [PMID: 21131559 DOI: 10.1093/molbev/msq327] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Under the gene-for-gene model of host-pathogen coevolution, recognition of pathogen avirulence factors by host resistance factors triggers host defenses and limits infection. Theory predicts that the evolution of higher levels of pathogenicity will be associated with fitness penalties and that the cost of higher pathogenicity must be much smaller than that of not infecting the host. The analysis of pathogenicity costs is of academic and applied relevance, as these are determinants for the success of resistance genes bred into crops for disease control. However, most previous attempts of addressing this issue in plant pathogens yielded conflicting and inconclusive results. We have analyzed the costs of pathogenicity in pepper-infecting tobamoviruses defined by their ability to infect pepper plants with different alleles at the resistance locus L. We provide conclusive evidence of pathogenicity-associated costs by comparison of pathotype frequency with the fraction of the crop carrying the various resistance alleles, by timescaled phylogenies, and by temporal analyses of population dynamics and selection pressures using nucleotide sequences. In addition, experimental estimates of relative fitness under controlled conditions also provided evidence of high pathogenicity costs. These high pathogenicity costs may reflect intrinsic properties of plant virus genomes and should be considered in future models of host-parasite coevolution.
Collapse
Affiliation(s)
- Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and ETSI Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | |
Collapse
|
16
|
Schoelz JE, Zaitlin M. Tobacco mosaic virus RNA enters chloroplasts in vivo. Proc Natl Acad Sci U S A 2010; 86:4496-500. [PMID: 16578844 PMCID: PMC287297 DOI: 10.1073/pnas.86.12.4496] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several lines of evidence are presented to allow us to conclude that tobacco mosaic virus (TMV) RNA enters the chloroplast in vivo. Chloroplasts were prepared from either directly inoculated or systemically infected leaves of tobacco plants inoculated with one of several strains of the virus and from uninfected control plants. Intact chloroplasts were isolated on Percoll gradients and treated with pancreatic RNase and thermolysin to destroy potential TMV virions and RNA on the outside or bound to their surfaces. Northern blot analysis of RNA extracted from these chloroplasts demonstrated that full-length TMV RNA was present within the chloroplasts prepared from both directly inoculated and systemically invaded leaves. Only genomic length, but not subgenomic length, RNA was found in the chloroplast extracts, indicating a selectivity of the transport of the viral RNA into the chloroplast. A temperature-sensitive TMV mutant (Ts 38), in which no virions are formed at 35 degrees C, was used to demonstrate that at that restrictive temperature viral RNA is detected in the chloroplast, indicating that free viral RNA can enter the chloroplast rather than intact virions. To our knowledge, the transport of a foreign RNA species into chloroplasts has not been reported previously.
Collapse
Affiliation(s)
- J E Schoelz
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853
| | | |
Collapse
|
17
|
Fukuda M, Meshi T, Okada Y, Otsuki Y, Takebe I. Correlation between particle multiplicity and location on virion RNA of the assembly initiation site for viruses of the tobacco mosaic virus group. Proc Natl Acad Sci U S A 2010; 78:4231-5. [PMID: 16593057 PMCID: PMC319763 DOI: 10.1073/pnas.78.7.4231] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The initiation site for reconstitution on genome RNA was determined by electron microscopic serology for a watermelon strain of cucumber green mottle mosaic virus (CGMMV-W), which is chemically and serologically related to tobacco mosaic virus (TMV). The initiation site was located at the same position as that of the cowpea strain, a virus that produces short rods of encapsidated subgenomic messenger RNA for the coat protein (a two-component TMV), being about 320 nucleotides away from the 3' terminus, and hence within the coat protein cistron. Although CGMMV-W was until now believed to be a single-component TMV, the location of the initiation site indicated the presence of short rods containing coat protein messenger RNA in CGMMV-W-infected tissue, as in the case for the cowpea strain. We found such short rods in CGMMV-W-infected tissue. The results confirmed our previous hypothesis that the site of the initiation region for reconstitution determines the rod multiplicity of TMV. The finding of the second two-component TMV, CGMMV, indicates that the cowpea strain of TMV is not unique in being a two-component virus and that the location of the assembly initiation site on the genome RNA can be a criterion for grouping of viruses.
Collapse
Affiliation(s)
- M Fukuda
- Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Tokyo 113, Japan
| | | | | | | | | |
Collapse
|
18
|
Rochon D, Siegel A. Chloroplast DNA transcripts are encapsidated by tobacco mosaic virus coat protein. Proc Natl Acad Sci U S A 2010; 81:1719-23. [PMID: 16593435 PMCID: PMC344990 DOI: 10.1073/pnas.81.6.1719] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Preparations of tobacco mosaic virus contain pseudovirions, particles resembling virions but containing host rather than viral RNA. The encapsidated host RNA was found to be composed of discrete-sized species derived from a large portion of the chloroplast genome except that very little, if any, ribosomal RNA is present. Pseudovirions contain the same chloroplast DNA transcripts as those detected in extracts from uninfected leaves, although not always in the same relative amounts. Several strains of tobacco mosaic virus were tested and all were found to contain pseudovirions, with the U2 strain containing more than the others.
Collapse
Affiliation(s)
- D Rochon
- Biology Department, Wayne State University, Detroit, MI 48202
| | | |
Collapse
|
19
|
Serrano C, González-Cruz J, Jauregui F, Medina C, Mancilla P, Matus JT, Arce-Johnson P. Genetic and histological studies on the delayed systemic movement of Tobacco Mosaic Virus in Arabidopsis thaliana. BMC Genet 2008; 9:59. [PMID: 18817581 PMCID: PMC2563018 DOI: 10.1186/1471-2156-9-59] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 09/26/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viral infections and their spread throughout a plant require numerous interactions between the host and the virus. While new functions of viral proteins involved in these processes have been revealed, current knowledge of host factors involved in the spread of a viral infection is still insufficient. In Arabidopsis thaliana, different ecotypes present varying susceptibilities to Tobacco mosaic virus strain U1 (TMV-U1). The rate of TMV-U1 systemic movement is delayed in ecotype Col-0 when compared with other 13 ecotypes.We followed viral movement through vascular tissue in Col-0 plants by electronic microscopy studies. In addition, the delay in systemic movement of TMV-U1 was genetically studied. RESULTS TMV-U1 reaches apical leaves only after 18 days post rosette inoculation (dpi) in Col-0, whereas it is detected at 9 dpi in the Uk-4 ecotype. Genetic crosses between Col-0 and Uk-4 ecotypes, followed by analysis of viral movement in F1 and F2 populations, revealed that this delayed movement correlates with a recessive, monogenic and nuclear locus. The use of selected polymorphic markers showed that this locus, denoted DSTM1 (Delayed Systemic Tobamovirus Movement 1), is positioned on the large arm of chromosome II. Electron microscopy studies following the virion's route in stems of Col-0 infected plants showed the presence of curved structures, instead of the typical rigid rods of TMV-U1. This was not observed in the case of TMV-U1 infection in Uk-4, where the observed virions have the typical rigid rod morphology. CONCLUSION The presence of defectively assembled virions observed by electron microscopy in vascular tissue of Col-0 infected plants correlates with a recessive delayed systemic movement trait of TMV-U1 in this ecotype.
Collapse
Affiliation(s)
- Carolina Serrano
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Casilla 114-D. Santiago, Chile
| | - Javiera González-Cruz
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Casilla 114-D. Santiago, Chile
| | - Francisca Jauregui
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Casilla 114-D. Santiago, Chile
| | - Consuelo Medina
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Casilla 114-D. Santiago, Chile
| | - Pablo Mancilla
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Casilla 114-D. Santiago, Chile
| | - José Tomás Matus
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Casilla 114-D. Santiago, Chile
| | - Patricio Arce-Johnson
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Casilla 114-D. Santiago, Chile
| |
Collapse
|
20
|
Tomenius K, Clapham D, Meshi T. Localization by immunogold cytochemistry of the virus-coded 30K protein in plasmodesmata of leaves infected with tobacco mosaic virus. Virology 2008; 160:363-71. [PMID: 18644574 DOI: 10.1016/0042-6822(87)90007-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/1987] [Accepted: 04/29/1987] [Indexed: 10/26/2022]
Abstract
The 30K protein of tobacco mosaic virus (TMV) was localized to the plasmodesmata of infected tobacco leaves by immunogold cytochemistry. This protein has been reported to be in the nuclear fraction of TMV-infected protoplasts, but as it has been proposed to function in cell-to-cell transport of virus, probably via the plasmodesmata, intact tissue was investigated with particular attention directed to plasmodesmata and nuclei. Thin sections were made from leaves mechanically inoculated with TMV at different times. Affinity-purified antibodies against a synthetic peptide corresponding to the C-terminal sequence of the 30K protein were used in the incubations, and parallel sections were incubated with antibodies against TMV. The 30K protein label accumulated inside the plasmodesmata, with a maximum 24 hr after inoculation. No specific label was found in the nuclei or at any other site in the cells.
Collapse
Affiliation(s)
- K Tomenius
- Swedish University of Agricultural Sciences, Department of Plant and Forest Protection, P.O. Box 7044, S-750 07 Uppsala, Sweden
| | | | | |
Collapse
|
21
|
Sulzinski MA, Gabard KA, Palukaitis P, Zaitlin M. Replication of tobacco mosaic virus. VIII. Characterization of a third subgenomic TMV RNA. Virology 2008; 145:132-40. [PMID: 18640547 DOI: 10.1016/0042-6822(85)90208-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/1985] [Accepted: 04/23/1985] [Indexed: 11/28/2022]
Abstract
In an earlier study we concluded that tobacco mosaic virus (TMV) infections engender a third subgenomic RNA in infected tissue (P. Palukaitis, F. Garcia-Arenal, M. A. Sulzinski, and M. Zaitlin (1983), Virology 131, 533-545). This RNA of approximate MW of 1.1 x 10(6), termed I1-RNA, was shown to be polyribosome-associated and thus was presumed to serve as a messenger RNA in vivo. Upon in vitro translation of I1-RNA in a rabbit reticulocyte lysate system, a major product of MW approximately 50K was generated. When RNA isolated from polyribosomes of infected tissues was analyzed with clones representing distinct regions of the TMV genome, the I1-RNA was shown to be a subset of the TMV genome, representing the 3'-half of the molecule. A TMV-specific DNA fragment (from a phage M13 clone) containing sequences overlapping the 5' end of I1-RNA was used in nuclease S1-mapping experiments with TMV-RNAs isolated from polyribosomes. I1-RNA was thus shown to be a distinct RNA species and not a class of heterogeneous molecules of approximately the same size. The I1-RNA 5' terminus is residue 3405 in the genome. Based on these findings and on consideration of the TMV-RNA sequence, we propose a model for the translation of I1-RNA: after an untranslated sequence of 90 bases, an AUG codon at residues 3495-3497 initiates a protein of MW 54K, terminating at residue 4915. Thus, the amino acid sequence of the 54K protein is coincident with those residues of the carboxy terminus of the well-known 183K TMV protein.
Collapse
Affiliation(s)
- M A Sulzinski
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
22
|
Ooshika I, Watanabe Y, Meshi T, Okada Y, Igano K, Inouye K, Yoshida N. Identification of the 30K protein of TMV by immunoprecipitation with antibodies directed against a synthetic peptide. Virology 2008; 132:71-8. [PMID: 18639799 DOI: 10.1016/0042-6822(84)90092-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/1983] [Accepted: 09/09/1983] [Indexed: 10/26/2022]
Abstract
A synthetic hexadecapeptide corresponding to the predicted C-terminal sequence of the 30K protein of TMV has been coupled to bovine serum albumin and used to raise antibodies in rabbits. The resulting antiserum reacted with the 30K protein translated in vitro. We report the use of this antiserum in the first detection of the 30K protein in vivo, in TMV-infected tobacco protoplasts. Several proteins, the so called family of 30K-related peptides, were immunoprecipitated among in vitro translation products, but only the 30K protein was immunoprecipitated from TMV-infected protoplasts.
Collapse
Affiliation(s)
- I Ooshika
- Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Tokyo 113, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Watanabe Y, Emori Y, Ooshika I, Meshi T, Ohno T, Okada Y. Synthesis of TMV-specific RNAs and proteins at the early stage of infection in tobacco protoplasts: transient expression of the 30K protein and its mRNA. Virology 2008; 133:18-24. [PMID: 18639805 DOI: 10.1016/0042-6822(84)90421-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/1983] [Accepted: 10/29/1983] [Indexed: 10/26/2022]
Abstract
All four TMV-coded proteins (180K, 130K, 30K, and coat) and corresponding mRNAs were detected in TMV-infected protoplasts. The 30K protein and its mRNA were synthesized between 2 and 9 hr postinoculation, while the other proteins and their mRNAs (the CP mRNA, the genomic RNA) were synthesized continuously. The results indicated that the synthesis of the two subgenomic RNAs (the CP mRNA, the 30K protein mRNA) is regulated by different mechanisms.
Collapse
Affiliation(s)
- Y Watanabe
- Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Tokyo 113, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Joshi S, Pleij CW, Haenni AL, Chapeville F, Bosch L. Properties of the tobacco mosaic virus intermediate length RNA-2 and its translation. Virology 2008; 127:100-11. [PMID: 18638998 DOI: 10.1016/0042-6822(83)90375-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/1982] [Accepted: 01/31/1983] [Indexed: 11/25/2022]
Abstract
The existence of subgenomic RNAs is well established in the case of plant viruses such as tobacco mosaic virus (TMV). However, except for the subgenomic coat protein mRNA, it is not known whether the other subgenomic RNAs have a function in the life cycle of the virus. In search of more information about one of the major subgenomic RNAs-intermediate length RNA-2 or I2 RNA-of TMV, in vitro and in vivo translational studies were performed. The I2 RNA, which codes in vitro for the synthesis of a 30K (K = kilodalton) protein, appears to be uncapped as judged by the need of different in vitro translation conditions for the synthesis of this protein, compared to the conditions required for the synthesis of the 126K and 183K proteins coded by the capped genomic RNA. In vivo a protein migrating in the same position as the 30K protein synthesized in vitro can be detected in infected tobacco leaves. Since this protein occurs transiently early upon infection, whether it is virus-coded or virus-induced, it could have an early function during infection.
Collapse
Affiliation(s)
- S Joshi
- Department of Biochemistry, State University of Leiden, Wassenaarseweg 64, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Stange C, Matus JT, Domínguez C, Perez-Acle T, Arce-Johnson P. The N-homologue LRR domain adopts a folding which explains the TMV-Cg-induced HR-like response in sensitive tobacco plants. J Mol Graph Model 2008; 26:850-60. [PMID: 17631403 DOI: 10.1016/j.jmgm.2007.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 05/29/2007] [Accepted: 05/29/2007] [Indexed: 11/16/2022]
Abstract
Following leaf infection with the tobacco mosaic virus (TMV), Nicotiana species that carry the disease resistance N gene develop a hypersensitive response (HR) that blocks the systemic movement of the virus. TMV-sensitive tobacco plants that lack the N gene develop classical disease symptoms following infection with most of the tobamoviruses. However, upon infection with TMV-Cg, these plants display a HR-like response that is unable to limit viral spread. We previously identified the NH gene in sensitive plants; this gene is homologous to the resistance N gene and both belong to the TIR/NBS/LRR family. Isolation and analysis of the NH transcript enabled the prediction of the amino acid sequence in which we detected a leucine-rich repeat domain, proposed to be involved in pathogen recognition. This domain is found in four of five classes of pathogen resistant proteins, in which sequence and structural changes may generate different specificities. In order to study the possible functional role of the LRR domain in the HR-like response, we developed a comparative three-dimensional model for the NH and N gene products, by means of functional and structural domains recognition, secondary structure prediction, domain assignment through profile Hidden Markov Models (HMM) and molecular dynamics (MD) simulations. Based on our results we postulate that the NH protein could adopt a LRR fold with a functional role in the HR-like response. Our two reliable LRR three-dimensional models (N-LRR, NH-LRR) can be used as structural frameworks for future experiments in which the structure-function relationships regarding the protein-protein interaction process may be revealed. Evolutionary aspects of the N and NH genes in Nicotiana species are also discussed.
Collapse
Affiliation(s)
- Claudia Stange
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago, Chile
| | | | | | | | | |
Collapse
|
26
|
Dorokhov YL, Ivanov PA, Komarova TV, Skulachev MV, Atabekov JG. An internal ribosome entry site located upstream of the crucifer-infecting tobamovirus coat protein (CP) gene can be used for CP synthesis in vivo. J Gen Virol 2006; 87:2693-2697. [PMID: 16894210 DOI: 10.1099/vir.0.82095-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It was previously shown that, unlike the type member of the genus Tobamovirus (TMV U1), a crucifer-infecting tobamovirus (crTMV) contains a 148 nt internal ribosome entry site (IRES)(CP,148)(CR) upstream of the coat protein (CP) gene. Here, viral vectors with substitutions in the stem-loop (SL) region of CP subgenomic promoters (TMV U1-CP-GFP/SL-mut and crTMV-CP-GFP/SL-mut) were constructed and the levels of CP synthesis in agroinoculation experiments were compared. No CP-GFP (green fluorescent protein) synthesis was detected in Nicotiana benthamiana leaves inoculated with TMV U1-CP-GFP/SL-mut, whereas a small amount of CP-GFP synthesis was obtained in crTMV-CP-GFP/SL-mut-injected leaves. Northern blots proved that both promoters were inactive. It could be hypothesized that IRES-mediated early production of the CP by crTMV is needed for realization of its crucifer-infecting capacity.
Collapse
Affiliation(s)
- Yu L Dorokhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninsky Gory 1, Laboratory Building A, Moscow 119992, Russia
| | - P A Ivanov
- Department of Virology, Moscow State University, Leninsky Gory 1, Laboratory Building A, Moscow 119992, Russia
| | - T V Komarova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninsky Gory 1, Laboratory Building A, Moscow 119992, Russia
| | - M V Skulachev
- Department of Virology, Moscow State University, Leninsky Gory 1, Laboratory Building A, Moscow 119992, Russia
| | - J G Atabekov
- Department of Virology, Moscow State University, Leninsky Gory 1, Laboratory Building A, Moscow 119992, Russia
| |
Collapse
|
27
|
Sacristán S, Malpica JM, Fraile A, García-Arenal F. Estimation of population bottlenecks during systemic movement of tobacco mosaic virus in tobacco plants. J Virol 2003; 77:9906-11. [PMID: 12941900 PMCID: PMC224588 DOI: 10.1128/jvi.77.18.9906-9911.2003] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2003] [Accepted: 06/20/2003] [Indexed: 11/20/2022] Open
Abstract
More often than not, analyses of virus evolution have considered that virus populations are so large that evolution can be explained by purely deterministic models. However, virus populations could have much smaller effective numbers than the huge reported census numbers, and random genetic drift could be important in virus evolution. A reason for this would be population bottlenecks during the virus life cycle. Here we report a quantitative estimate of population bottlenecks during the systemic colonization of tobacco leaves by Tobacco mosaic virus (TMV). Our analysis is based on the experimental estimation of the frequency of different genotypes of TMV in the inoculated leaf, and in systemically infected leaves, of tobacco plants coinoculated with two TMV genotypes. A simple model, based on the probability that a leaf in coinoculated plants is infected by just one genotype and on the frequency of each genotype in the source, was used to estimate the effective number of founders for the populations in each leaf. Results from the analysis of three leaves per plant in plants inoculated with different combinations of three TMV genotypes yielded highly consistent estimates. Founder numbers for each leaf were small, in the order of units. This would result in effective population numbers much smaller than the census numbers and indicates that random effects due to genetic drift should be considered for understanding virus evolution within an infected plant.
Collapse
Affiliation(s)
- Soledad Sacristán
- Departamento de Biotecnología, E.T.S. Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
28
|
Yang G, Qiu BS, Liu XG, Li Y, Wang XF. Nonsense mutations of replicase and movement protein genes contribute to the attenuation of an avirulent tomato mosaic virus. Virus Res 2002; 87:119-28. [PMID: 12191775 DOI: 10.1016/s0168-1702(02)00025-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Three recovery mutants of an avirulent Tomato mosaic virus genus: (Tobamovirus) (ToMV-K) with back mutations of the replicase and/or movement protein (MP) genes, have been constructed by site-directed mutagenesis, and infectious plasmids (pToMV-K) were obtained. The rescued phenotypes of the progeny viruses showed that the replicase and MP recovery mutant (ToMV-K(rase-mp)) induced severe symptoms on both systemic and necrotic plants similar to those induced by the virulent strain. The replicase back mutant (ToMV-K(rase)) produced chlorosis and mosaic symptoms on N. tabacum cv. Huangmiaoyu (systemic host), while the MP recovery mutant (ToMV-K(mp)) produced no systemic symptoms on Huangmiaoyu tobacco. Sequencing of the cDNA of progeny viruses revealed that the "back mutants" maintained these mutation sites during infection. Protein immunoblots indicated that the 98 and 126 kDa proteins were expressed in the plants systemically infected by ToMV-K and pToMV-K, whereas no 98 kDa protein was detected in the plants infected by ToMV. The MPs (27 kDa) of ToMV-K and pToMV-K in the plants were smaller in size than those (30 kDa) of ToMV and pToMVK(rase-mp). These data suggest that ToMV-K replicates and spreads by expressing the truncated 98 and 126 kDa replicases and 27 kDa MP in plants. The opal mutation at nucleotides (nt) 2670-2672 of the replicase gene mainly contributes to the attenuation of ToMV-K, whereas the mutations at nt 5632-5664 of the MP gene attenuate the induced symptoms.
Collapse
Affiliation(s)
- Gong Yang
- Department of Molecular Virology and Biotechnology, Institute of Microbiology, Chinese Academy of Sciences, PO Box 2714, Beijing 100080, People's Republic of China
| | | | | | | | | |
Collapse
|
29
|
Allan AC, Lapidot M, Culver JN, Fluhr R. An early tobacco mosaic virus-induced oxidative burst in tobacco indicates extracellular perception of the virus coat protein. PLANT PHYSIOLOGY 2001; 126:97-108. [PMID: 11351074 PMCID: PMC102285 DOI: 10.1104/pp.126.1.97] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2000] [Revised: 11/16/2000] [Accepted: 01/15/2001] [Indexed: 05/18/2023]
Abstract
Induction of reactive oxygen species (ROS) was observed within seconds of the addition of exogenous tobacco mosaic virus (TMV) to the outside of tobacco (Nicotiana tabacum cv Samsun NN, EN, or nn) epidermal cells. Cell death was correlated with ROS production. Infectivity of the TMV virus was not a prerequisite for this elicitation and isolated coat protein (CP) subunits could also elicit the fast oxidative burst. The rapid induction of ROS was prevented by both inhibitors of plant signal transduction and inhibitors of NAD(P)H oxidases, suggesting activation of a multi-step signal transduction pathway. Induction of intracellular ROS by TMV was detected in TMV-resistant and -susceptible tobacco cultivars isogenic for the N allele. The burst was also detected with strains of virus that either elicit (ToMV) or fail to elicit (TMV U1) N' gene-mediated responses. Hence, early ROS generation is independent or upstream of known genetic systems in tobacco that can mediate hypersensitive responses. Analysis of other viruses and TMV CP mutants showed marked differences in their ability to induce ROS showing specificity of the response. Thus, initial TMV-plant cell interactions that lead to early ROS induction occur outside the plasma membrane in an event requiring specific CP epitopes.
Collapse
Affiliation(s)
- A C Allan
- Department of Plant Sciences, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
30
|
Pereda S, Ehrenfeld N, Medina C, Delgado J, Arce-Johnson P. Comparative analysis of TMV-Cg and TMV-U1 detection methods in infected Arabidopsis thaliana. J Virol Methods 2000; 90:135-42. [PMID: 11064114 DOI: 10.1016/s0166-0934(00)00230-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The common strain of the tobacco mosaic virus (TMV-U1), and the crucifer-infecting tobacco mosaic virus (TMV-Cg), both members of Tobamovirus genus, infect efficiently the solanaceous plants such as tomato and tobacco. The crucifer-infecting tobacco mosaic virus (TMV-Cg) also infects Arabidopsis thaliana plant, spreading systemically without causing severe symptoms. In contrast, Arabidopsis is a poor host for TMV-U1 infection. Within the past 10 years, Arabidopsis has developed into a powerful model system for studying plant-pathogen interaction. However, a detailed analysis comparing the accuracy of various viral detection methods has not been reported previously. Four detection methods were evaluated in A. thaliana (ecotype Po-1), infected with TMV-U1 or TMV-Cg. Western blots, enzyme-linked immunosorbent assay (ELISA), reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ RNA hybridization methods were used to determine viral spread at various days post inoculation (dpi) in inoculated and apical non-inoculated leaves. The detection of viral spread of TMV-U1 and TMV-Cg in Arabidopsis, using these four detection methods, supports previous studies, which demonstrate that the systemic spreads of these two viruses differ in Arabidopsis. Western blotting and ELISA detected TMV-Cg at 5dpi, and TMV-U1 at 12 dpi in systemic tissues. Viral spread was detected earlier when using RNA detection methods. Reverse transcriptase-polymerase chain reaction (RT-PCR) was very sensitive for detecting TMV-Cg in A. thaliana, but less sensitive for TMV-U1 detection. In situ RNA hybridization showed differential distribution of TMV-Cg and TMV-U1 in the inoculated leaf and systemic tissues.
Collapse
Affiliation(s)
- S Pereda
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago, Chile
| | | | | | | | | |
Collapse
|
31
|
Skulachev MV, Ivanov PA, Karpova OV, Korpela T, Rodionova NP, Dorokhov YL, Atabekov JG. Internal initiation of translation directed by the 5'-untranslated region of the tobamovirus subgenomic RNA I(2). Virology 1999; 263:139-54. [PMID: 10544089 DOI: 10.1006/viro.1999.9928] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously we reported that, unlike RNA of typical tobamoviruses, the translation of the coat protein (CP) gene of a crucifer-infecting tobamovirus (crTMV) in vitro occurred by an internal ribosome entry mechanism mediated by the 148-nt region that contained an internal ribosome entry site (IRES(CP,148)(CR)). The equivalent 148-nt sequence from TMV U1 RNA (U1(CP,148)(SP)) was incapable of promoting internal initiation. In the present work, we have found that the 228-nt region upstream of the movement protein (MP) gene of crTMV RNA (IRES(MP,228)(CR)) contained an IRES element that directed in vitro translation of the 3'-proximal reporter genes from chimeric dicistronic transcripts. Surprisingly, the equivalent 228-nt sequence upstream from the MP gene of TMV U1 directed translation of the downstream gene of a dicistronic transcripts as well. Consequently this sequence was termed IRES(MP,228)(U1). It was shown that IRES(MP,228)(CR), IRES(MP,228)(U1), and IRES(CP,148)(CR) could mediate expression of the 3'-proximal GUS gene from dicistronic 35S promoter-based constructs in vivo in experiments on transfection of tobacco protoplasts and particle bombardment of Nicotiana benthamiana leaves. The results indicated that an IRES element was located within the 75-nt region upstream of MP gene (IRES(MP,75)), which corresponded closely to the length of the 5'UTR of TMV subgenomic RNA (sgRNA) I(2). The RNA transcripts structurally equivalent to I(2) sgRNAs of TMV U1 and crTMV, but containing a hairpin structure (H) immediately upstream of IRES(MP,75) (HIRES(MP), (75)(CR)-MP-CP-3'UTR; HIRES(MP,75)(U1)-MP-CP-3'UTR), were able to express the MP gene in vitro. The capacity of HIRES(MP,75)(CR) sequence for mediating internal translation of the 3'-proximal GUS gene in vivo, in tobacco protoplasts, was demonstrated. We suggested that expression of the MP gene from I(2) sgRNAs might proceed via internal ribosome entry pathway mediated by IRES(MP) element contained in the 75-nt 5'UTR. Our results admit that a ribosome scanning mechanism of the MP gene expression from I(2) sgRNA operates concurrently.
Collapse
Affiliation(s)
- M V Skulachev
- Department of Virology, Moscow State University, Moscow, 119899, Russia
| | | | | | | | | | | | | |
Collapse
|
32
|
Zaitlin M. Elucidation of the genome organization of tobacco mosaic virus. Philos Trans R Soc Lond B Biol Sci 1999; 354:587-91. [PMID: 10212938 PMCID: PMC1692530 DOI: 10.1098/rstb.1999.0410] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteins unique to tobacco mosaic virus (TMV)-infected plants were detected in the 1970s by electrophoretic analyses of extracts of virus-infected tissues, comparing their proteins to those generated in extracts of uninfected tissues. The genome organization of TMV was deduced principally from studies involving in vitro translation of proteins from the genomic and subgenomic messenger RNAs. The ultimate analysis of the TMV genome came in 1982 when P. Goelet and colleagues sequenced the entire genome. Studies leading to the elucidation of the TMV genome organization are described below.
Collapse
Affiliation(s)
- M Zaitlin
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
33
|
Okada Y. Historical overview of research on the tobacco mosaic virus genome: genome organization, infectivity and gene manipulation. Philos Trans R Soc Lond B Biol Sci 1999; 354:569-82. [PMID: 10212936 PMCID: PMC1692538 DOI: 10.1098/rstb.1999.0408] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Early in the development of molecular biology, TMV RNA was widely used as a mRNA [corrected] that could be purified easily, and it contributed much to research on protein synthesis. Also, in the early stages of elucidation of the genetic code, artificially produced TMV mutants were widely used and provided the first proof that the genetic code was non-overlapping. In 1982, Goelet et al. determined the complete TMV RNA base sequence of 6395 nucleotides. The four genes (130K, 180K, 30K and coat protein) could then be mapped at precise locations in the TMV genome. Furthermore it had become clear, a little earlier, that genes located internally in the genome were expressed via subgenomic mRNAs. The initiation site for assembly of TMV particles was also determined. However, although TMV contributed so much at the beginning of the development of molecular biology, its influence was replaced by that of Escherichia coli and its phages in the next phase. As recombinant DNA technology developed in the 1980s, RNA virus research became more detached from the frontier of molecular biology. To recover from this setback, a gene-manipulation system was needed for RNA viruses. In 1986, two such systems were developed for TMV, using full-length cDNA clones, by Dawson's group and by Okada's group. Thus, reverse genetics could be used to elucidate the basic functions of all proteins encoded by the TMV genome. Identification of the function of the 30K protein was especially important because it was the first evidence that a plant virus possesses a cell-to-cell movement function. Many other plant viruses have since been found to encode comparable 'movement proteins'. TMV thus became the first plant virus for which structures and functions were known for all its genes. At the birth of molecular plant pathology, TMV became a leader again. TMV has also played pioneering roles in many other fields. TMV was the first virus for which the amino acid sequence of the coat protein was determined and first virus for which cotranslational disassembly was demonstrated both in vivo and in vitro. It was the first virus for which activation of a resistance gene in a host plant was related to the molecular specificity of a product of a viral gene. Also, in the field of plant biotechnology, TMV vectors are among the most promising. Thus, for the 100 years since Beijerinck's work, TMV research has consistently played a leading role in opening up new areas of study, not only in plant pathology, but also in virology, biochemistry, molecular biology, RNA genetics and biotechnology.
Collapse
Affiliation(s)
- Y Okada
- Department of Bioscience, Teikyo University, Utsunomiya, Japan
| |
Collapse
|
34
|
Spitsin S, Steplewski K, Fleysh N, Belanger H, Mikheeva T, Shivprasad S, Dawson W, Koprowski H, Yusibov V. Expression of alfalfa mosaic virus coat protein in tobacco mosaic virus (TMV) deficient in the production of its native coat protein supports long-distance movement of a chimeric TMV. Proc Natl Acad Sci U S A 1999; 96:2549-53. [PMID: 10051680 PMCID: PMC26822 DOI: 10.1073/pnas.96.5.2549] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/1999] [Indexed: 11/18/2022] Open
Abstract
Alfalfa mosaic virus (AlMV) coat protein is involved in systemic infection of host plants, and a specific mutation in this gene prevents the virus from moving into the upper uninoculated leaves. The coat protein also is required for different viral functions during early and late infection. To study the role of the coat protein in long-distance movement of AlMV independent of other vital functions during virus infection, we cloned the gene encoding the coat protein of AlMV into a tobacco mosaic virus (TMV)-based vector Av. This vector is deficient in long-distance movement and is limited to locally inoculated leaves because of the lack of native TMV coat protein. Expression of AlMV coat protein, directed by the subgenomic promoter of TMV coat protein in Av, supported systemic infection with the chimeric virus in Nicotiana benthamiana, Nicotiana tabacum MD609, and Spinacia oleracea. The host range of TMV was extended to include spinach as a permissive host. Here we report the alteration of a host range by incorporating genetic determinants from another virus.
Collapse
Affiliation(s)
- S Spitsin
- Biotechnology Foundation Laboratories at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fraile A, Escriu F, Aranda MA, Malpica JM, Gibbs AJ, García-Arenal F. A century of tobamovirus evolution in an Australian population of Nicotiana glauca. J Virol 1997; 71:8316-20. [PMID: 9343184 PMCID: PMC192290 DOI: 10.1128/jvi.71.11.8316-8320.1997] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The evolution over the past century of two tobamoviruses infecting populations of the immigrant plant Nicotiana glauca in New South Wales (NSW), Australia, has been studied. This plant species probably entered Australia in the 1870s. Isolates of the viruses were obtained from N. glauca specimens deposited in the NSW Herbarium between 1899 and 1972, and others were obtained from living plants in 1985 and 1993. It was found that the NSW N. glauca population was infected with tobacco mosaic tobamovirus (TMV) and tobacco mild green mosaic tobamovirus (TMGMV) before 1950 but only with TMGMV after that date. Half the pre-1950 infections were mixtures of the two viruses, and one was a recombinant. Remarkably, sequence analyses showed no increase in the genetic diversity among the TMGMV isolates over the period. However, for TMV, the genetic diversity of synonymous (but not of nonsynonymous) differences between isolates varied and was correlated with their time of isolation. TMV accumulated to smaller concentrations than TMGMV in N. glauca plants, and in mixed experimental infections, the accumulation of TMV, but not of TMGMV, was around 1/10 that in single infections. However, no evidence was found of isolate-specific interaction between the viruses. We conclude that although TMV may have colonized N. glauca in NSW earlier or faster than TMGMV, the latter virus caused a decrease of the TMV population below a threshold at which deleterious mutations were eliminated. This phenomenon, called Muller's ratchet, or a "mutational meltdown," probably caused the disappearance of TMV from the niche.
Collapse
Affiliation(s)
- A Fraile
- Depto. de Biotecnología, E.T.S. Ingenieros Agrónomos, Universidad Politécnica, Ciudad Universitaria, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Bao Y, Carter SA, Nelson RS. The 126- and 183-kilodalton proteins of tobacco mosaic virus, and not their common nucleotide sequence, control mosaic symptom formation in tobacco. J Virol 1996; 70:6378-83. [PMID: 8709266 PMCID: PMC190664 DOI: 10.1128/jvi.70.9.6378-6383.1996] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nucleotide substitutions at two positions within the open reading frame encoding the 126-kDa protein in the attenuated masked (M) strain of tobacco mosaic tobamovirus (TMV) to those found in the virulent U1-TMV genome led to the induction of near U1-TMV-like symptoms on leaves of Nicotiana tabacum L. cv. Xanthi nn by progeny virus (M. H. Shintaku, S. A. Carter, Y. Bao, and R. S. Nelson, Virology 221:218-225, 1996). In this study, further site-directed mutations were made at these positions within the M strain cDNA to determine whether the protein or nucleotide sequence directly controlled the symptom phenotype. The protein and not the nucleotide sequence directly controlled the symptom phenotype when amino acid 360 within the 126-kDa protein sequence was altered and likely controlled the symptom phenotype when amino acid 601 was altered. The effects of the substitutions at amino acid position 360 on viral protein accumulation were studied by pulse-labeling proteins in infected protoplasts. Accumulation of the 126- and 183-kDa proteins was less for an attenuated mutant than for two virulent mutants, but the viral movement protein and coat protein accumulated to levels reported to be sufficient for normal systemic symptom development. The size of necrotic local lesions on N. tabacum L. cv. Xanthi NN was negatively correlated with symptom development and accumulation of the 126-kDa protein for these mutants. With reference to this last finding, an explanation of the cause of the differing symptoms induced by these viruses is presented.
Collapse
Affiliation(s)
- Y Bao
- Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73402, USA
| | | | | |
Collapse
|
37
|
Marcos JF, Beachy RN, Houghten RA, Blondelle SE, Pérez-Payá E. Inhibition of a plant virus infection by analogs of melittin. Proc Natl Acad Sci U S A 1995; 92:12466-9. [PMID: 8618922 PMCID: PMC40378 DOI: 10.1073/pnas.92.26.12466] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An approach that enables identification of specific synthetic peptide inhibitors of plant viral infection is reported. Synthetic analogs of melittin that have sequence and structural similarities to an essential domain of tobacco mosaic virus coat protein were found to possess highly specific antiviral activity. This approach involves modification of residues located at positions analogous to those that are critical for virus assembly. The degree of inhibition found correlates well with sequence similarities between the viral capsid protein and the melittin analogs studied as well as with the induced conformational changes that result upon interaction of the peptides and ribonucleic acid.
Collapse
Affiliation(s)
- J F Marcos
- Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
38
|
Chu M, Johnson M, Thornbury D, Black L, Pirone T. Nucleotide sequence of a strain of tobacco etch virus that does not cause Tabasco pepper wilt. Virus Genes 1995; 10:283-8. [PMID: 8560790 DOI: 10.1007/bf01701818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- M Chu
- Department of Plant Pathology, University of Kentucky, Lexington 40546, USA
| | | | | | | | | |
Collapse
|
39
|
Aranda MA, Fraile A, Garcia-Arenal F, Malpica JM. Experimental evaluation of the ribonuclease protection assay method for the assessment of genetic heterogeneity in populations of RNA viruses. Arch Virol 1995; 140:1373-83. [PMID: 7661691 DOI: 10.1007/bf01322664] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ribonuclease (RNase) protection assay (RPA) was evaluated as a method to estimate genetic distances among sequence variants of RNA viruses. The patterns of fragments generated, under different RPA conditions, by three sets of RNA sequence variants of known nucleotide sequence, were analyzed. Both the effectiveness of cleavage (i.e. the probability of cleavage in a certain heteroduplex) and its degree (i.e. in all the molecules in the assay or in a part of them) varied largely according to the nature of the mismatch. Probability and degree of cleavage were also dependent on distant sequence context effects. No correlation could be established between context and cleavage, so that the pattern of fragments in RPA cannot be unequivocally predicted from sequence information. Accordingly, nucleotide sequence differences between two sequence variants cannot be directly derived from RPA data. For all three sequence sets linear relationships were found between the number of non-shared fragments in the RPAs of two variants and their nucleotide sequence differences. Nevertheless, both linearity and the linear regression parameters varied largely according to the sequence set and according to RPA conditions, in a non-predictable way. Thus, under experimental conditions, RPA may not be as appropriate a method to estimate genetic distances between RNA sequences as simulation under an ideal model suggested. Possible ways to diminish the gap between the ideal model and the experimental procedure are proposed.
Collapse
Affiliation(s)
- M A Aranda
- Departmento de Patología Vegetal, E.T.S.I. Agrónomos, Ciudad Universitaria, Madrid, Spain
| | | | | | | |
Collapse
|
40
|
Ishikawa M, Naito S, Ohno T. Effects of the tom1 mutation of Arabidopsis thaliana on the multiplication of tobacco mosaic virus RNA in protoplasts. J Virol 1993; 67:5328-38. [PMID: 8350399 PMCID: PMC237932 DOI: 10.1128/jvi.67.9.5328-5338.1993] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
For the multiplication of RNA viruses, specific host factors are considered essential, but as of yet little is known about this aspect of virus multiplication. To identify such host factors, we previously isolated PD114, a mutant of Arabidopsis thaliana, in which the accumulation of the coat protein of tobacco mosaic virus (TMV) in uninoculated leaves of an infected plant was reduced to low levels. The causal mutation, designated tom1, was single, nuclear, and recessive. Here, we demonstrate that the tom1 mutation affects the amplification of TMV-related RNAs in a single cell. When protoplasts were inoculated with TMV RNA by electroporation, the percentage of TMV-positive protoplasts (detected by indirect immunofluorescence staining with anti-TMV antibodies) was lower (about 1/5 to 1/10) among PD114 protoplasts than among wild-type protoplasts. In TMV-positive PD114 protoplasts, the amounts of the positive-strand RNAs (the genomic RNA and subgenomic mRNAs) and coat protein reached levels similar to, or slightly lower than, those reached in TMV-positive wild-type protoplasts, but the accumulation of the positive-strand RNAs and coat protein occurred more slowly than with the wild-type protoplasts. The parallel decrease in the amounts of the coat protein and its mRNA suggests that the coat protein is translated from its mRNA with normal efficiency. These observations support the idea that the TOM1 gene encodes a host factor necessary for the efficient amplification of TMV RNA in an infected cell. Furthermore, we show that TMV multiplication in PD114 protoplasts is severely affected by the coinoculation of cucumber mosaic virus (CMV) RNA. When PD114 protoplasts were inoculated with a mixture of TMV and CMV RNAs by electroporation, the accumulation of TMV-related molecules was approximately one-fifth of that in PD114 protoplasts inoculated with TMV RNA alone. No such reduction in the accumulation of TMV-related molecules was observed when wild-type protoplasts were inoculated with a mixture of TMV and CMV RNAs or when wild-type and PD114 protoplasts were inoculated with a mixture of TMV and turnip crinkle virus RNAs. These observations are compatible with a hypothetical model in which a gene(s) that is distinct from the TOM1 gene is involved in both TMV and CMV multiplication.
Collapse
Affiliation(s)
- M Ishikawa
- Department of Applied Bioscience, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
41
|
Culver JN, Lehto K, Close SM, Hilf ME, Dawson WO. Genomic position affects the expression of tobacco mosaic virus movement and coat protein genes. Proc Natl Acad Sci U S A 1993; 90:2055-9. [PMID: 8446627 PMCID: PMC46019 DOI: 10.1073/pnas.90.5.2055] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Alterations in the genomic position of the tobacco mosaic virus (TMV) genes encoding the 30-kDa cell-to-cell movement protein or the coat protein greatly affected their expression. Higher production of 30-kDa protein was correlated with increased proximity of the gene to the viral 3' terminus. A mutant placing the 30-kDa open reading frame 207 nucleotides nearer the 3' terminus produced at least 4 times the wild-type TMV 30-kDa protein level, while a mutant placing the 30-kDa open reading frame 470 nucleotides closer to the 3' terminus produced at least 8 times the wild-type TMV 30-kDa protein level. Increases in 30-kDa protein production were not correlated with the subgenomic mRNA promoter (SGP) controlling the 30-kDa gene, since mutants with either the native 30-kDa SGP or the coat protein SGP in front of the 30-kDa gene produced similar levels of 30-kDa protein. Lack of coat protein did not affect 30-kDa protein expression, since a mutant with the coat protein start codon removed did not produce increased amounts of 30-kDa protein. Effects of gene positioning on coat protein expression were examined by using a mutant containing two different tandemly positioned tobamovirus (TMV and Odontoglossum ringspot virus) coat protein genes. Only coat protein expressed from the gene positioned nearest the 3' viral terminus was detected. Analysis of 30-kDa and coat protein subgenomic mRNAs revealed no proportional increase in the levels of mRNA relative to the observed levels of 30-kDa and coat proteins. This suggests that a translational mechanism is primarily responsible for the observed effect of genomic position on expression of 30-kDa movement and coat protein genes.
Collapse
Affiliation(s)
- J N Culver
- Department of Plant Pathology, University of California, Riverside 92521
| | | | | | | | | |
Collapse
|
42
|
Abstract
Potato virus X (PVX) was among the first viruses to be purified. Nonetheless, properties of the purified virus remain contentious. The literature has been heavily influenced by the concept of a virus as a monopartite entity. Despite the fact that electron micrographs invariably show large proportions of shorter virus particles, the latter are universally ignored. Seven distinct classes of particle lengths were detected. Seven RNA species of approximate sizes 6.4, 3.6, 3.0, 2.1, 1.8, 1.4, and 0.9 kb were extracted from these purified virus preparations. This study shows clearly that shorter PVX particles are not breakage products and indicates that they may reflect fundamental properties of the genome strategy. Furthermore, other potexviruses have been found to contain many shorter particles, and the level of these particles is stable during purification. PVX is generally believed to consist of particles of single length even though the literature does not confirm this conclusion. The notion of a single particle length appears to reflect historical concepts of what a virus should be rather than what PVX is. This report considers whether shorter rods present in virus preparations of PVX are distinctive products of infection. The problem addressed is significant because if affects conclusions concerning the mechanisms of PVX biosynthesis and replication.
Collapse
Affiliation(s)
- M Price
- Department of Biochemistry, Louisiana State University, Baton Rouge 70803
| |
Collapse
|
43
|
Zerfass K, Beier H. Pseudouridine in the anticodon G psi A of plant cytoplasmic tRNA(Tyr) is required for UAG and UAA suppression in the TMV-specific context. Nucleic Acids Res 1992; 20:5911-8. [PMID: 1461724 PMCID: PMC334454 DOI: 10.1093/nar/20.22.5911] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have previously isolated and sequenced Nicotiana cytoplasmic tRNA(Tyr) with G psi A anticodon which promotes readthrough over the leaky UAG termination codon at the end of the 126 K cistron of tobacco mosaic virus RNA and we have demonstrated that tRNA(Tyr) with Q psi A anticodon is no UAG suppressor. Here we show that the nucleotide in the middle of the anticodon (i.e., psi 35) also contributes to the suppressor efficiency displayed by cytoplasmic tRNA(Tyr). A tRNA(Tyr) with GUA anticodon was synthesized in vitro using T7 RNA polymerase transcription. This tRNA(Tyr) was unable to suppress the UAG codon, indicating that nucleotide modifications in the anticodon of tRNA(Tyr) have either stimulating (i.e., psi 35) or inhibitory (i.e., Q34) effects on suppressor activity. Furthermore, we have shown that the UAA but not the UGA stop codon is also efficiently recognized by tobacco tRNA(G psi ATyr), if placed in the TMV context. Hence this is the first naturally occurring tRNA for which UAA suppressor activity has been demonstrated. In order to study the influence of neighbouring nucleotides on the readthrough capacity of tRNA(Tyr), we have established a system, in which part of the sequence around the leaky UAG codon of TMV RNA was inserted into a zein pseudogene which naturally harbours an UAG codon in the middle of the gene. The construct was cloned into the vector pSP65 and in vitro transcripts, generated by SP6 RNA polymerase, were translated in a wheat germ extract depleted of endogenous mRNAs and tRNAs. A number of mutations in the codons flanking the UAG were introduced by site-directed mutagenesis. It was found that changes at specific positions of the two downstream codons completely abolished the readthrough over the UAG by Nicotiana tRNA(Tyr), indicating that this tRNA needs a very specific codon context for its suppressor activity.
Collapse
Affiliation(s)
- K Zerfass
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, Germany
| | | |
Collapse
|
44
|
Vance VB, Moore D, Turpen TH, Bracker A, Hollowell VC. The complete nucleotide sequence of pepper mottle virus genomic RNA: comparison of the encoded polyprotein with those of other sequenced potyviruses. Virology 1992; 191:19-30. [PMID: 1413501 DOI: 10.1016/0042-6822(92)90162-i] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The complete nucleotide sequence of a pepper mottle virus isolate from California (PepMoV C) has been determined from cloned viral cDNAs. The PepMoV C genomic RNA is 9640 nucleotides excluding the poly(A) tail and contains a long open reading frame starting at nucleotide 168 and potentially encoding a polyprotein of 3068 amino acids. Comparison of the PepMoV C presumptive polyprotein with those of other sequenced members of the potyvirus group, including tobacco etch virus (TEV), tobacco vein mottling virus (TVMV), plum pox virus (PPV), and potato virus Y (PVY), allowed localization of putative protein cleavage sites. A similar analysis was used to determine the position of conserved viral protein-coding regions along the viral genomic RNA. These analyses confirm previous work indicating that genome organization is conserved among members of the genus Potyvirus. The localization of one PepMoV C gene product, the nuclear inclusion body protein a (NIa protein), was analyzed by expressing PepMoV cDNA deletion clones in bacteria and assaying for appearance of mature-sized coat protein, a cleavage product of the NIa protease. Comparative sequence analyses of the putative PepMoV polyprotein with those of TEV, TVMV, PPV, and PVY served to identify regions of the potyviral polyproteins which have diverged within the genus, as well as highly conserved protein features which may play an important functional role in the potyviral life cycle.
Collapse
Affiliation(s)
- V B Vance
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| | | | | | | | | |
Collapse
|
45
|
Gafny R, Lapidot M, Berna A, Holt CA, Deom CM, Beachy RN. Effects of terminal deletion mutations on function of the movement protein of tobacco mosaic virus. Virology 1992; 187:499-507. [PMID: 1546450 DOI: 10.1016/0042-6822(92)90452-u] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A series of carboxy- and amino-terminal deletion mutations in the movement protein (MP) gene of tobacco mosaic virus (TMV) were ligated into a cloned TMV cDNA deleted for the endogenous MP gene. RNA transcripts were produced in vitro from clones carrying the various mutated MP genes. The effect of the deletion mutations on local and systemic movements of the infection was evaluated. Deletion of 9 or 33 amino acids from the carboxy terminus of the movement protein did not effect cell-to-cell movement as reflected by local lesion formation on Nicotiana tabacum cv. Xanthi NN plants. Deletion of 55 amino acids resulted in impaired MP that supported the formation of local lesions of 1 mm in diameter compared to lesions of 3-5 mm caused by the wild-type MP. Deletion of 74 amino acids (or more) from the carboxy terminus resulted in a protein that could not support virus movement. Modified viruses that contained repeated sequences in the 3' region of the MP gene lost the repeated sequences during replication and reverted to the wild type. This was evidenced by the size of the MP produced and by sequence analysis of reverse-transcribed PCR-amplified products, following infection by the modified virus. MP deleted for as few as 3 amino acids at the amino terminus could not support virus movement thus indicating that the amino-terminal domain is critical for MP activity.
Collapse
Affiliation(s)
- R Gafny
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | | | | | | | | |
Collapse
|
46
|
David C, Gargouri-Bouzid R, Haenni AL. RNA replication of plant viruses containing an RNA genome. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1992; 42:157-227. [PMID: 1574587 DOI: 10.1016/s0079-6603(08)60576-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- C David
- Institut Jacques Monod, Paris, France
| | | | | |
Collapse
|
47
|
Hu J, Roth D. Temporal regulation of tobacco mosaic virus-induced phosphorylation of a host encoded protein. Biochem Biophys Res Commun 1991; 179:229-35. [PMID: 1883353 DOI: 10.1016/0006-291x(91)91359-k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The in vitro and in vivo phosphorylation of a plant encoded protein (p68) associated with dsRNA-dependent protein kinase activity was stimulated at specific time intervals following infection by tobacco mosaic virus or electroporation with dsRNA. The level of p68 phosphorylation in infected and mock inoculated protoplasts did not differ significantly until 6 hr. post-infection, when the basal level of phosphorylation increased 2-3 fold in infected protoplasts. Maximum phosphorylation of p68 occurred between 8-12 hr post-infection and then declined but, at least until 72 hr. post-infection, it was significantly greater than in mock inoculated protoplasts.
Collapse
Affiliation(s)
- J Hu
- Department of Plant, Soil and Insect Sciences University of Wyoming, Laramie 82071
| | | |
Collapse
|
48
|
Abstract
Potato virus X (PVX) and potato virus Y (PVY) may coinfect tobacco to cause a classic synergistic disease. In the acute stage the disease is characterized by a dramatic increase in the accumulation of infectious PVX particles, with no corresponding increase or decrease in the accumulation of PVY. The accumulation of PVX genomic RNA and coat protein has been examined in doubly versus singly infected tobacco leaves. These experiments indicate that the levels of both viral components increase in doubly infected plants to about the same extent as the level of infectious PVX particles. The level of PVX subgenomic coat protein mRNA found associated with polyribosomes of synergistically infected plants is also increased to a similar extent. Pulse labelling experiments suggest that the increase in PVX coat protein is due to an increased rate of synthesis. The level of PVX (-) strand RNA template increases disproportionately in doubly infected tissue, to a level three times higher than that of the virion or its component parts. This result suggests that PVX/PVY synergism involves an alteration in the normal regulation of the relative levels of PVX (+) and (-) strand RNAs during viral replication.
Collapse
Affiliation(s)
- V B Vance
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| |
Collapse
|
49
|
Holt CA, Beachy RN. In vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNAs in transgenic plants. Virology 1991; 181:109-17. [PMID: 1994570 DOI: 10.1016/0042-6822(91)90475-q] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A full-length cDNA clone of the U1 (common) strain of tobacco mosaic virus (TMV) was constructed, and highly infectious transcripts were produced in vitro using bacteriophage T7 RNA polymerase. Frameshift mutations designed to cause premature termination of translation were introduced into either the 30-kDa movement protein (MP) gene or the coat protein (CP) gene. The MP-frameshift mutant was unable to locally or systemically infect inoculated tobacco plants. However, inoculation of transgenic tobacco plants that expressed a wild-type TMV MP gene resulted in both local and systemic viral infection. The CP-frameshift mutant, although unable to move systemically in nontransformed tobacco, exhibited systemic movement in transgenic plants that expressed a wild-type TMV CP gene. Transgenic tobacco plants that expressed the appropriate wild-type TMV gene were thus able to complement, in trans, mutant viruses lacking a functional MP or CP gene.
Collapse
Affiliation(s)
- C A Holt
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | |
Collapse
|
50
|
Deom CM, Wolf S, Holt CA, Lucas WJ, Beachy RN. Altered function of the tobacco mosaic virus movement protein in a hypersensitive host. Virology 1991; 180:251-6. [PMID: 1984651 DOI: 10.1016/0042-6822(91)90029-b] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The N gene in Nicotiana sp. confers hypersensitive resistance to all strains of tobacco mosaic virus (TMV) and limits the rate of virus spread in infected leaves. To examine the role of the movement protein (MP) of TMV in the hypersensitive reaction (HR), transgenic Nicotiana tabacum cv. Xanthi-nc (genotype NN) plants that express the MP gene were produced and the molecular size exclusion limit of plasmodesmata in leaf mesophyll cells was monitored. At the HR-permissive temperature (24 degrees) movement from cell to cell of fluorescein isothiocyanate-labeled dextran of molecular mass 3.9 kDa was detected while 9.4-kDa molecules failed to move. At the HR-nonpermissive temperature (33 degrees) the 9.4-kDa probe moved readily from cell to cell. In contrast, in transgenic Xanthi (genotype nn) which express the MP gene the 9.4-kDa probe moved from cell to cell at 24 and 33 degrees. These results suggest that the N gene may modify the ability of the MP to alter plasmodesmata molecular exclusion limits, although expression of the TMV-MP gene alone did not induce the HR. Furthermore, when MP(+) Xanthi-nc tobacco lines were inoculated with a TMV that lacked a MP gene the HR was induced, and the concentration of MP in the transgenic lines was correlated with the degree of the HR.
Collapse
Affiliation(s)
- C M Deom
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | | | | | | |
Collapse
|