1
|
Passchier TC, White JBR, Maskell DP, Byrne MJ, Ranson NA, Edwards TA, Barr JN. The cryoEM structure of the Hendra henipavirus nucleoprotein reveals insights into paramyxoviral nucleocapsid architectures. Sci Rep 2024; 14:14099. [PMID: 38890308 PMCID: PMC11189427 DOI: 10.1038/s41598-024-58243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/27/2024] [Indexed: 06/20/2024] Open
Abstract
We report the first cryoEM structure of the Hendra henipavirus nucleoprotein in complex with RNA, at 3.5 Å resolution, derived from single particle analysis of a double homotetradecameric RNA-bound N protein ring assembly exhibiting D14 symmetry. The structure of the HeV N protein adopts the common bi-lobed paramyxoviral N protein fold; the N-terminal and C-terminal globular domains are bisected by an RNA binding cleft containing six RNA nucleotides and are flanked by the N-terminal and C-terminal arms, respectively. In common with other paramyxoviral nucleocapsids, the lateral interface between adjacent Ni and Ni+1 protomers involves electrostatic and hydrophobic interactions mediated primarily through the N-terminal arm and globular domains with minor contribution from the C-terminal arm. However, the HeV N multimeric assembly uniquely identifies an additional protomer-protomer contact between the Ni+1 N-terminus and Ni-1 C-terminal arm linker. The model presented here broadens the understanding of RNA-bound paramyxoviral nucleocapsid architectures and provides a platform for further insight into the molecular biology of HeV, as well as the development of antiviral interventions.
Collapse
Affiliation(s)
- Tim C Passchier
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- Department of Biology, University of York, York, YO10 5DD, UK.
| | - Joshua B R White
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniel P Maskell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew J Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Exscientia, The Schrödinger Building Oxford Science Park, Oxford, OX4 4GE, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- College of Biomedical Sciences, Larkin University, 18301 N Miami Avenue, Miami, FL, 33169, USA.
| | - John N Barr
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
2
|
Sun BW, Zhang PP, Wang ZH, Yao X, He ML, Bai RT, Che H, Lin J, Xie T, Hui Z, Ye XY, Wang LW. Prevention and Potential Treatment Strategies for Respiratory Syncytial Virus. Molecules 2024; 29:598. [PMID: 38338343 PMCID: PMC10856762 DOI: 10.3390/molecules29030598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a significant viral pathogen that causes respiratory infections in infants, the elderly, and immunocompromised individuals. RSV-related illnesses impose a substantial economic burden worldwide annually. The molecular structure, function, and in vivo interaction mechanisms of RSV have received more comprehensive attention in recent times, and significant progress has been made in developing inhibitors targeting various stages of the RSV replication cycle. These include fusion inhibitors, RSV polymerase inhibitors, and nucleoprotein inhibitors, as well as FDA-approved RSV prophylactic drugs palivizumab and nirsevimab. The research community is hopeful that these developments might provide easier access to knowledge and might spark new ideas for research programs.
Collapse
Affiliation(s)
- Bo-Wen Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Peng-Peng Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zong-Hao Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xia Yao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Meng-Lan He
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui-Ting Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Che
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing Lin
- Drug Discovery, Hangzhou Haolu Pharma Co., Hangzhou 311121, China;
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
3
|
Kariithi HM, Volkening JD, Chiwanga GH, Goraichuk IV, Olivier TL, Msoffe PLM, Suarez DL. Virulent Newcastle disease virus genotypes V.3, VII.2, and XIII.1.1 and their coinfections with infectious bronchitis viruses and other avian pathogens in backyard chickens in Tanzania. Front Vet Sci 2023; 10:1272402. [PMID: 37929287 PMCID: PMC10625407 DOI: 10.3389/fvets.2023.1272402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Oropharyngeal (OP) and cloacal (CL) swabs from 2049 adult backyard chickens collected at 12 live bird markets, two each in Arusha, Dar es Salaam, Iringa, Mbeya, Morogoro and Tanga regions of Tanzania were screened for Newcastle disease virus (NDV) using reverse transcription real-time PCR (rRT-PCR). The virus was confirmed in 25.23% of the birds (n = 517; rRT-PCR CT ≤ 30), with the highest positivity rates observed in birds from Dar es Salaam region with higher prevalence during the dry season (September-November 2018) compared to the rainy season (January and April-May 2019). Next-generation sequencing of OP/CL samples of 20 out of 32 birds that had high amounts of viral RNAs (CT ≤ 25) resulted in the assembly of 18 complete and two partial genome sequences (15,192 bp and 15,045-15,190 bp in length, respectively) of NDV sub-genotypes V.3, VII.2 and XIII.1.1 (n = 1, 13 and 4 strains, respectively). Two birds had mixed NDV infections (V.3/VII.2 and VII.2/XIII.1.1), and nine were coinfected with viruses of families Astroviridae, Coronaviridae, Orthomyxoviridae, Picornaviridae, Pneumoviridae, and Reoviridae. Of the coinfecting viruses, complete genome sequences of two avastroviruses (a recombinant chicken astrovirus antigenic group-Aii and avian nephritis virus genogroup-5) and two infectious bronchitis viruses (a turkey coronavirus-like recombinant and a GI-19 virus) were determined. The fusion (F) protein F1/F2 cleavage sites of the Tanzanian NDVs have the consensus motifs 112 RRRKR↓F 117 (VII.2 strains) and 112 RRQKR↓F 117 (V.3 and XIII.1.1 strains) consistent with virulent virus; virulence was confirmed by intracerebral pathogenicity index scores of 1.66-1.88 in 1-day-old chicks using nine of the 20 isolates. Phylogenetically, the complete F-gene and full genome sequences regionally cluster the Tanzanian NDVs with, but distinctly from, other strains previously reported in eastern and southern African countries. These data contribute to the understanding of NDV epidemiology in Tanzania and the region.
Collapse
Affiliation(s)
- Henry M. Kariithi
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA, United States
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | | | | | - Iryna V. Goraichuk
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA, United States
- National Scientific Center Institute of Experimental and Veterinary Medicine, Kharkiv, Ukraine
| | - Tim L. Olivier
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA, United States
| | - Peter L. M. Msoffe
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
- National Ranching Company Ltd., Dodoma, Tanzania
| | - David L. Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA, United States
| |
Collapse
|
4
|
Nayak BN, Rajagopal K, Shunmugasundaram R, Rao PL, Vaidyanathan S, Subbiah M. Molecular characterization suggests kinetic modulation of expression of accessory viral protein, W, in Newcastle disease virus infected DF1 cells. Virusdisease 2023; 34:236-247. [PMID: 37408548 PMCID: PMC10317930 DOI: 10.1007/s13337-023-00813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/01/2023] [Indexed: 07/07/2023] Open
Abstract
Viruses adopt strategies to efficiently utilize their compact genome. Members of the family Paramyxoviridae, exhibit a cotranscriptional RNA editing mechanism wherein polymerase stuttering generates accessory proteins from Phosphoprotein (P) gene. Newcastle disease virus (NDV), an avian paramyxovirus, expresses two accessory proteins, V and W, by RNA editing. While P and V proteins are well studied, very little is known about W protein. Recent studies confirmed W protein expression in NDV and the unique subcellular localization of W proteins of virulent and avirulent NDV. We characterized the W protein of NDV strain Komarov, a moderately virulent vaccine strain. W mRNA expression ranged between 7 and 9% of total P gene transcripts similar to virulent NDV. However, W protein expression, detectable by 6 h, peaked at 24 h and dropped by 48 h post infection in DF1 cells indicating a kinetically regulated expression by the virus. The W protein localized in the nucleus and by mutations, a strong nuclear localization signal was identified in the C-terminal region of W protein. The viral growth kinetics study suggested neither supplementation of W protein nor subcellular localization pattern of the supplemented W protein influenced viral replication in vitro similar to that noticed in avirulent NDV. A cytoplasmic mutant of W protein localized in cytoplasm unlike specific mitochondrial colocalization as recorded in velogenic NDV strain SG10 indicating a possible role of W protein in determining the viral pathogenicity. This study describes for the first time, the distinct features of W protein of moderately virulent NDV. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-023-00813-2.
Collapse
Affiliation(s)
- B. Nagaraj Nayak
- National Institute of Animal Biotechnology, Hyderabad, Telangana India
- Regional Centre for Biotechnology, New Delhi, India
| | | | | | | | | | - Madhuri Subbiah
- National Institute of Animal Biotechnology, Hyderabad, Telangana India
- Regional Centre for Biotechnology, New Delhi, India
| |
Collapse
|
5
|
The Nucleocapsid of Paramyxoviruses: Structure and Function of an Encapsidated Template. Viruses 2021; 13:v13122465. [PMID: 34960734 PMCID: PMC8708338 DOI: 10.3390/v13122465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/28/2023] Open
Abstract
Viruses of the Paramyxoviridae family share a common and complex molecular machinery for transcribing and replicating their genomes. Their non-segmented, negative-strand RNA genome is encased in a tight homopolymer of viral nucleoproteins (N). This ribonucleoprotein complex, termed a nucleocapsid, is the template of the viral polymerase complex made of the large protein (L) and its co-factor, the phosphoprotein (P). This review summarizes the current knowledge on several aspects of paramyxovirus transcription and replication, including structural and functional data on (1) the architecture of the nucleocapsid (structure of the nucleoprotein, interprotomer contacts, interaction with RNA, and organization of the disordered C-terminal tail of N), (2) the encapsidation of the genomic RNAs (structure of the nucleoprotein in complex with its chaperon P and kinetics of RNA encapsidation in vitro), and (3) the use of the nucleocapsid as a template for the polymerase complex (release of the encased RNA and interaction network allowing the progress of the polymerase complex). Finally, this review presents models of paramyxovirus transcription and replication.
Collapse
|
6
|
Patterns of RNA Editing in Newcastle Disease Virus Infections. Viruses 2020; 12:v12111249. [PMID: 33147786 PMCID: PMC7693698 DOI: 10.3390/v12111249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
The expression of accessory non-structural proteins V and W in Newcastle disease virus (NDV) infections depends on RNA editing. These proteins are derived from frameshifts of the sequence coding for the P protein via co-transcriptional insertion of one or two guanines in the mRNA. However, a larger number of guanines can be inserted with lower frequencies. We analysed data from deep RNA sequencing of samples from in vitro and in vivo NDV infections to uncover the patterns of mRNA editing in NDV. The distribution of insertions is well described by a simple Markov model of polymerase stuttering, providing strong quantitative confirmation of the molecular process hypothesised by Kolakofsky and collaborators three decades ago. Our results suggest that the probability that the NDV polymerase would stutter is about 0.45 initially, and 0.3 for further subsequent insertions. The latter probability is approximately independent of the number of previous insertions, the host cell, and viral strain. However, in LaSota infections, we also observe deviations from the predicted V/W ratio of about 3:1 according to this model, which could be attributed to deviations from this stuttering model or to further mechanisms downregulating the abundance of W protein.
Collapse
|
7
|
The Connector Domain of Vesicular Stomatitis Virus Large Protein Interacts with the Viral Phosphoprotein. J Virol 2020; 94:JVI.01729-19. [PMID: 31896592 DOI: 10.1128/jvi.01729-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/16/2019] [Indexed: 11/20/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is an archetypical member of Mononegavirales, viruses with a genome of negative-sense single-stranded RNA (-ssRNA). Like other viruses of this order, VSV encodes a unique polymerase, a complex of viral L (large, the enzymatic component) protein and P (phosphoprotein, a cofactor component). The L protein has a modular layout consisting of a ring-shaped core trailed by three accessory domains and requires an N-terminal segment of P (P N-terminal disordered [PNTD]) to perform polymerase activity. To date, a binding site for P on L had not been described. In this report, we show that the connector domain of the L protein, which previously had no assigned function, binds a component of PNTD We further show that this interaction is a positive regulator of viral RNA synthesis, and that the interfaces mediating it are conserved in other members of Mononegavirales Finally, we show that the connector-P interaction fits well into the existing structural information of VSV L.IMPORTANCE This study represents the first functional assignment of the connector domain of a Mononegavirales L protein. Furthermore, this study localizes P polymerase cofactor activity to specific amino acids. The functional necessity of this interaction, combined with the uniqueness of L and P proteins to the order Mononegavirales, makes disruption of the P-connector site a potential target for developing antivirals against other negative-strand RNA viruses. Furthermore, the connector domain as an acceptor site for the P protein represents a new understanding of Mononegavirales L protein biology.
Collapse
|
8
|
Phylogenetic analysis of near full-length sequences of the Desmodus rotundus genetic lineage of rabies virus. INFECTION GENETICS AND EVOLUTION 2020; 80:104179. [PMID: 31917361 DOI: 10.1016/j.meegid.2020.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/21/2019] [Accepted: 01/05/2020] [Indexed: 11/23/2022]
Abstract
The World Health Organization (WHO), reports that rabies causes tens of thousands of deaths every year killing humans, non-human primates and other animals. Rabies continues to be a public health issue, despite the existence of effective vaccines. The dogs remain the primary reservoir and transmitter of rabies to humans globally. In the Americas, bats are regarded as the second most common source of rabies virus to humans. The vampire bat Desmodus rotundus has been identified as a natural reservoir of rabies virus (RABV) in this region. The complete genome of the RABV variant maintained by populations of vampire bats D. rotundus has rarely been reported. In this study, we sequenced and analyzed the genome of a RABV variant detected in D. rotundus. The sample, collected from an endemic area in São Paulo State, was phylogenetically compared with the genome of the standard sample for species Rabies virus as well as other samples belonging to terrestrial and bat-associated cycles of rabies transmission, available in GenBank. Distinct patterns linked to the genetic lineage were identified. These data can aid in the understanding of the molecular epidemiology of this virus and the epidemiological importance of this species in the transmission of the RABV.
Collapse
|
9
|
Yang Y, Bu Y, Zhao J, Xue J, Xu G, Song Y, Zhao Y, Yang H, Zhang G. Appropriate amount of W protein of avian avulavirus 1 benefits viral replication and W shows strain-dependent subcellular localization. Virology 2019; 538:71-85. [PMID: 31580973 DOI: 10.1016/j.virol.2019.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 11/28/2022]
Abstract
In order to confirm the existence of W protein in Avian avulavirus 1 (AAvV-1) infected cells, two monoclonal antibodies were prepared. The presence of W protein in cells infected with lentogenic genotype II strain La Sota or velogenic genotype VII strain SG10 was confirmed with immunofluorescence and western blotting assays. WSG10 localized to the cytoplasm, whereas WLa Sota localized to the nucleus. The influence of W protein was investigated in vitro and in vivo with two AAvV-1 strains defective in the W C-terminus. The growth kinetic curves and pathogenicity tests in 3-week-old SPF chickens both showed that the replication abilities of strains with C-terminally deleted W proteins were lower than that of the parental strain. Restoring the appropriate dose of W protein increased the viral titers of these strains. The expression validation and functional exploration of W protein will facilitate our understanding of pathogenic mechanism of AAvV-1.
Collapse
Affiliation(s)
- Yanling Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yawen Bu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jing Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jia Xue
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Gang Xu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yang Song
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ye Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Huiming Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Økland AL, Nylund A, Øvergård AC, Skoge RH, Kongshaug H. Genomic characterization, phylogenetic position and in situ localization of a novel putative mononegavirus in Lepeophtheirus salmonis. Arch Virol 2019; 164:675-689. [PMID: 30535526 PMCID: PMC6394706 DOI: 10.1007/s00705-018-04119-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/15/2018] [Indexed: 11/28/2022]
Abstract
The complete genome sequence of a novel mononegavirus, Lepeophtheirus salmonis negative-stranded RNA virus 1 (LsNSRV-1), obtained from a salmonid ectoparasite, Lepeophtheirus salmonis was determined. The viral genome contains five open reading frames encoding three unknown proteins (ORF I, II and III), a putative glycoprotein (G), and a large (L) protein. Phylogenetic analysis placed LsNSRV-1 in the recently established mononegaviral family Artoviridae. LsNSRV-1 showed a prevalence of around 97% and was detected in all L. salmonis developmental stages. Viral genomic and antigenomic RNA was localized to nerve tissue, connective tissue, epithelial cells of the gut, subepidermal tissue, exocrine and cement glands, as well as the testis, vas deferens and spermatophore sac of male L. salmonis and the ovaries and oocytes of females. Viral RNA was detected in both the cytoplasm and the nucleoli of infected cells, and putative nuclear export and localization signals were found within the ORF I, III and L proteins, suggesting nuclear replication of LsNSRV-1. RNA interference (RNAi) was induced twice during development by the introduction of a double-stranded RNA fragment of ORF I, resulting in a transient knockdown of viral RNA. A large variation in the knockdown level was seen in adult males and off springs of knockdown animals, whereas the RNA level was more stable in adult females. Together with the localization of viral RNA within the male spermatophore and female oocytes and the amplification of viral RNA in developing embryos, this suggests that LsNSRV-1 is transmitted both maternally and paternally. Small amounts of viral RNA were detected at the site where chalimi were attached to the skin of Atlantic salmon (Salmo salar). However, as the RNAi-mediated treatment did not result in LsNSRV-1-negative offspring and the virus failed to replicate in the tested fish cell cultures, it is difficult to investigate the influence of secreted LsNSRV-1 on the salmon immune response.
Collapse
Affiliation(s)
- Arnfinn Lodden Økland
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway.
| | - Are Nylund
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Aina-Cathrine Øvergård
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Renate Hvidsten Skoge
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Heidi Kongshaug
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| |
Collapse
|
11
|
Genome-wide analysis reveals class and gene specific codon usage adaptation in avian paramyxoviruses 1. INFECTION GENETICS AND EVOLUTION 2017; 50:28-37. [PMID: 28189889 DOI: 10.1016/j.meegid.2017.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 12/22/2022]
Abstract
In order to characterize the evolutionary adaptations of avian paramyxovirus 1 (APMV-1) genomes, we have compared codon usage and codon adaptation indexes among groups of Newcastle disease viruses that differ in biological, ecological, and genetic characteristics. We have used available GenBank complete genome sequences, and compared codon usage of class I (CI-29 sequences containing 132,675 codons) and class II (CII-259 sequences containing 1,184,925 codons) APMV-1 genomes. We also compared available complete fusion protein gene sequences (CI-175 sequences containing 96,775 codons; CII-1166 sequences containing 644,798 codons). Adaptation to Gallus gallus was compared among the different classes of viruses, among different genomic regions based on transcriptional levels, or among the fusion gene. Interestingly, distinctive codon usage determined by differences in relative synonymous codon usage and by codon adaptation indexes was observed for the two APMV-1 classes and for different transcriptional regions within classes. Furthermore, differential use of the third codon position and preferential use of codon pairs were seen for the two different classes and for selected genotypes of class II despite the fact that there were no large differences in nucleotide composition. The data suggest that codon usage has changed significantly since the two APMV-1 classes diverged, however, these changes are not significantly pronounced among viruses of the same genotype, suggesting that codon adaptation in APMV-1 occurs through a slow evolutionary process.
Collapse
|
12
|
Organization, Function, and Therapeutic Targeting of the Morbillivirus RNA-Dependent RNA Polymerase Complex. Viruses 2016; 8:v8090251. [PMID: 27626440 PMCID: PMC5035965 DOI: 10.3390/v8090251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 12/16/2022] Open
Abstract
The morbillivirus genus comprises major human and animal pathogens, including the highly contagious measles virus. Morbilliviruses feature single stranded negative sense RNA genomes that are wrapped by a plasma membrane-derived lipid envelope. Genomes are encapsidated by the viral nucleocapsid protein forming ribonucleoprotein complexes, and only the encapsidated RNA is transcribed and replicated by the viral RNA-dependent RNA polymerase (RdRp). In this review, we discuss recent breakthroughs towards the structural and functional understanding of the morbillivirus polymerase complex. Considering the clinical burden imposed by members of the morbillivirus genus, the development of novel antiviral therapeutics is urgently needed. The viral polymerase complex presents unique structural and enzymatic properties that can serve as attractive candidates for druggable targets. We evaluate distinct strategies for therapeutic intervention and examine how high-resolution insight into the organization of the polymerase complex may pave the path towards the structure-based design and optimization of next-generation RdRp inhibitors.
Collapse
|
13
|
Bloyet LM, Welsch J, Enchery F, Mathieu C, de Breyne S, Horvat B, Grigorov B, Gerlier D. HSP90 Chaperoning in Addition to Phosphoprotein Required for Folding but Not for Supporting Enzymatic Activities of Measles and Nipah Virus L Polymerases. J Virol 2016; 90:6642-6656. [PMID: 27170753 PMCID: PMC4944277 DOI: 10.1128/jvi.00602-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/03/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Nonsegmented negative-stranded RNA viruses, or members of the order Mononegavirales, share a conserved gene order and the use of elaborate transcription and replication machinery made up of at least four molecular partners. These partners have coevolved with the acquisition of the permanent encapsidation of the entire genome by the nucleoprotein (N) and the use of this N-RNA complex as a template for the viral polymerase composed of the phosphoprotein (P) and the large enzymatic protein (L). Not only is P required for polymerase function, but it also stabilizes the L protein through an unknown underlying molecular mechanism. By using NVP-AUY922 and/or 17-dimethylaminoethylamino-17-demethoxygeldanamycin as specific inhibitors of cellular heat shock protein 90 (HSP90), we found that efficient chaperoning of L by HSP90 requires P in the measles, Nipah, and vesicular stomatitis viruses. While the production of P remains unchanged in the presence of HSP90 inhibitors, the production of soluble and functional L requires both P and HSP90 activity. Measles virus P can bind the N terminus of L in the absence of HSP90 activity. Both HSP90 and P are required for the folding of L, as evidenced by a luciferase reporter insert fused within measles virus L. HSP90 acts as a true chaperon; its activity is transient and dispensable for the activity of measles and Nipah virus polymerases of virion origin. That the cellular chaperoning of a viral polymerase into a soluble functional enzyme requires the assistance of another viral protein constitutes a new paradigm that seems to be conserved within the Mononegavirales order. IMPORTANCE Viruses are obligate intracellular parasites that require a cellular environment for their replication. Some viruses particularly depend on the cellular chaperoning apparatus. We report here that for measles virus, successful chaperoning of the viral L polymerase mediated by heat shock protein 90 (HSP90) requires the presence of the viral phosphoprotein (P). Indeed, while P protein binds to the N terminus of L independently of HSP90 activity, both HSP90 and P are required to produce stable, soluble, folded, and functional L proteins. Once formed, the mature P+L complex no longer requires HSP90 to exert its polymerase functions. Such a new paradigm for the maturation of a viral polymerase appears to be conserved in several members of the Mononegavirales order, including the Nipah and vesicular stomatitis viruses.
Collapse
Affiliation(s)
- Louis-Marie Bloyet
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
| | - Jérémy Welsch
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
- Laboratoire d'Excellence Ecofect, Lyon, France
| | - François Enchery
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
| | - Cyrille Mathieu
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
- Laboratoire d'Excellence Ecofect, Lyon, France
| | - Sylvain de Breyne
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
| | - Branka Horvat
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
- Laboratoire d'Excellence Ecofect, Lyon, France
| | - Boyan Grigorov
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
- Cancer Research Center of Lyon (CRCL), INSERM, U1052, Université Claude Bernard Lyon 1, Lyon, France
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
- Laboratoire d'Excellence Ecofect, Lyon, France
| |
Collapse
|
14
|
Cox R, Plemper RK. Structure-guided design of small-molecule therapeutics against RSV disease. Expert Opin Drug Discov 2016; 11:543-556. [PMID: 27046051 PMCID: PMC5074927 DOI: 10.1517/17460441.2016.1174212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION In the United States, respiratory syncytial virus (RSV) is responsible for the majority of infant hospitalizations resulting from viral infections, as well as a leading source of pneumonia and bronchiolitis in young children and the elderly. In the absence of vaccine prophylaxis or an effective antiviral for improved disease management, the development of novel anti-RSV therapeutics is critical. Several advanced drug development campaigns of the past decade have focused on blocking viral infection. These efforts have returned a chemically distinct panel of small-molecule RSV entry inhibitors, but binding sites and molecular mechanism of action appeared to share a common mechanism, resulting in comprehensive cross-resistance and calling for alternative druggable targets such as viral RNA-dependent RNA-polymerase complex. Areas Covered: In this review, the authors discuss the current status of the mechanism of action of RSV entry inhibitors. They also provide the recent structural insight into the organization of the polymerase complex that have revealed novel drug targets sites, and outline a path towards the discovery of next-generation RSV therapeutics. Expert opinion: Considering the tremendous progress experienced in our structural understanding of RSV biology in recent years and encouraging early results of a nucleoside analog inhibitor in clinical trials, there is high prospect that new generations of much needed effective anti-RSV therapeutics will become available for clinical use in the foreseeable future.
Collapse
Affiliation(s)
- Robert Cox
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Av, Atlanta, Georgia 30303-3222 USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Av, Atlanta, Georgia 30303-3222 USA
| |
Collapse
|
15
|
Qiu X, Fu Q, Meng C, Yu S, Zhan Y, Dong L, Song C, Sun Y, Tan L, Hu S, Wang X, Liu X, Peng D, Liu X, Ding C. Newcastle Disease Virus V Protein Targets Phosphorylated STAT1 to Block IFN-I Signaling. PLoS One 2016; 11:e0148560. [PMID: 26859759 PMCID: PMC4747598 DOI: 10.1371/journal.pone.0148560] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 01/19/2016] [Indexed: 11/29/2022] Open
Abstract
Newcastle disease virus (NDV) V protein is considered as an effector for IFN antagonism, however, the mechanism remains unknown. In this study, the expression of STAT1 and phospho-STAT1 in cells infected with NDV or transfected with V protein-expressing plasmids were analyzed. Our results showed that NDV V protein targets phospho-STAT1 reduction in the cells depends on the stimulation of IFN-α. In addition, a V-deficient genotype VII recombinant NDV strain rZJ1-VS was constructed using reverse genetic technique to confirm the results. The rZJ1-VS lost the ability to reduce phospho-STAT1 and induced higher expression of IFN-responsive genes in infected cells. Furthermore, treatment with an ubiquitin E1 inhibitor PYR-41 demonstrated that phospho-STAT1 reduction was caused by degradation, but not de-phosphorylation. We conclude that NDV V protein targets phospho-STAT1 degradation to block IFN-α signaling, which adds novel knowledge to the strategies used by paramyxoviruses to evade IFN.
Collapse
Affiliation(s)
- Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Qiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Yuan Zhan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Luna Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Shunlin Hu
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daxin Peng
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiufan Liu
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (XFL); (CD)
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (XFL); (CD)
| |
Collapse
|
16
|
Byszewska M, Śmietański M, Purta E, Bujnicki JM. RNA methyltransferases involved in 5' cap biosynthesis. RNA Biol 2015; 11:1597-607. [PMID: 25626080 PMCID: PMC4615557 DOI: 10.1080/15476286.2015.1004955] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In eukaryotes and viruses that infect them, the 5′ end of mRNA molecules, and also many other functionally important RNAs, are modified to form a so-called cap structure that is important for interactions of these RNAs with many nuclear and cytoplasmic proteins. The RNA cap has multiple roles in gene expression, including enhancement of RNA stability, splicing, nucleocytoplasmic transport, and translation initiation. Apart from guanosine addition to the 5′ end in the most typical cap structure common to transcripts produced by RNA polymerase II (in particular mRNA), essentially all cap modifications are due to methylation. The complexity of the cap structure and its formation can range from just a single methylation of the unprocessed 5′ end of the primary transcript, as in mammalian U6 and 7SK, mouse B2, and plant U3 RNAs, to an elaborate m7Gpppm6,6AmpAmpCmpm3Um structure at the 5′ end of processed RNA in trypanosomes, which are formed by as many as 8 methylation reactions. While all enzymes responsible for methylation of the cap structure characterized to date were found to belong to the same evolutionarily related and structurally similar Rossmann Fold Methyltransferase superfamily, that uses the same methyl group donor, S-adenosylmethionine; the enzymes also exhibit interesting differences that are responsible for their distinct functions. This review focuses on the evolutionary classification of enzymes responsible for cap methylation in RNA, with a focus on the sequence relationships and structural similarities and dissimilarities that provide the basis for understanding the mechanism of biosynthesis of different caps in cellular and viral RNAs. Particular attention is paid to the similarities and differences between methyltransferases from human cells and from human pathogens that may be helpful in the development of antiviral and antiparasitic drugs.
Collapse
|
17
|
Duan Z, Xu H, Ji X, Zhao J. Recombinant Newcastle disease virus-vectored vaccines against human and animal infectious diseases. Future Microbiol 2015; 10:1307-23. [PMID: 26234909 DOI: 10.2217/fmb.15.59] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent advances in recombinant genetic engineering techniques have brought forward a leap in designing new vaccines in modern medicine. One attractive strategy is the application of reverse genetics technology to make recombinant Newcastle disease virus (rNDV) deliver protective antigens of pathogens. In recent years, numerous studies have demonstrated that rNDV-vectored vaccines can induce quicker and better humoral and mucosal immune responses than conventional vaccines and are protective against pathogen challenges. With deeper understanding of NDV molecular biology, it is feasible to develop gene-modified rNDV vaccines accompanied by good safety, high efficacy, low toxicity and better immunogenicity. This review summarizes the development of reverse genetics technology in using NDV as a promising vaccine vector to design new vaccines for human and animal use.
Collapse
Affiliation(s)
- Zhiqiang Duan
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Houqiang Xu
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xinqin Ji
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jiafu Zhao
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
18
|
Cox R, Plemper RK. The paramyxovirus polymerase complex as a target for next-generation anti-paramyxovirus therapeutics. Front Microbiol 2015; 6:459. [PMID: 26029193 PMCID: PMC4428208 DOI: 10.3389/fmicb.2015.00459] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/27/2015] [Indexed: 12/04/2022] Open
Abstract
The paramyxovirus family includes major human and animal pathogens, including measles virus, mumps virus, and human respiratory syncytial virus (RSV), as well as the emerging zoonotic Hendra and Nipah viruses. In the U.S., RSV is the leading cause of infant hospitalizations due to viral infectious disease. Despite their clinical significance, effective drugs for the improved management of paramyxovirus disease are lacking. The development of novel anti-paramyxovirus therapeutics is therefore urgently needed. Paramyxoviruses contain RNA genomes of negative polarity, necessitating a virus-encoded RNA-dependent RNA polymerase (RdRp) complex for replication and transcription. Since an equivalent enzymatic activity is absent in host cells, the RdRp complex represents an attractive druggable target, although structure-guided drug development campaigns are hampered by the lack of high-resolution RdRp crystal structures. Here, we review the current structural and functional insight into the paramyxovirus polymerase complex in conjunction with an evaluation of the mechanism of activity and developmental status of available experimental RdRp inhibitors. Our assessment spotlights the importance of the RdRp complex as a premier target for therapeutic intervention and examines how high-resolution insight into the organization of the complex will pave the path toward the structure-guided design and optimization of much-needed next-generation paramyxovirus RdRp blockers.
Collapse
Affiliation(s)
- Robert Cox
- Institute for Biomedical Sciences, Petit Science Center, Georgia State University, Atlanta, GA USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Petit Science Center, Georgia State University, Atlanta, GA USA
| |
Collapse
|
19
|
Ren JL, Zhu YM, Zhou YH, Lv C, Yan H, Ma L, Shi HF, Xue F. Identification of three antigen epitopes on the nucleocapsid protein of the genotype C of bovine parainfluenza virus type 3. Vet Microbiol 2015; 178:61-9. [PMID: 25960335 DOI: 10.1016/j.vetmic.2015.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 11/18/2022]
Abstract
Bovine parainfluenza virus type 3 (BPIV3) is an important respiratory tract pathogen for both young and adult cattle. So far, three genotypes A, B and C of BPIV3 have been described on the basis of genetic and phylogenetic analysis. But fine mapping of epitopes of BPIV3 is scant and the antigenic variations among the three genotypes of BPIV3 have not been reported. Nucleocapsid protein (NP) is the most abundant protein in the virion and highly conserved in BPIV3, which is crucial for the induction of protective immunity in host. To identify antigenic determinants of BPIV3 NP, a panel of monoclonal antibodies (mAbs) was tested against a series of overlapping recombinant NP fragments expressed in Escherichia coli. Firstly, six monoclonal antibodies (mAbs) against NP of the genotype C of BPIV3 (BPIV3c) were generated by using the purified BPIV3c strain SD0835 as immunogen and the recombinant NP of SD0835 as screening antigen. Then three antigen epitopes were identified with the six mAbs. One epitope (91)GNNADVKYVIYM(102) was recognized by mAb 5E5. The mAbs 7G5, 7G8, 7G9, and 7H5 were reactive with another epitope (407)FYKPTGG(413). The third epitope (428)ESRGDQDQ(435) was reactive with mAb 6F8. Further analysis showed that the epitope (91-102 amino acids [aa]) was the most conserved and reactive with mAb 5E5 for all three genotypes of BPIV3 and HPIV3. The epitope (407-413 aa) was relatively conserved and reactive with mAbs 7G5, 7G8, 7G9, and 7H5 for BPIV3a, BPIV3c and HPIV3, but not reactive with BPIV3b. The epitope (428-435 aa) was less conserved and was reactive only with mAb 6F8 for BPIV3a and BPIV3c. These results suggested that there were evident antigenic variations among the three genotypes of BPIV3 and HPIV3. The mAb 6F8 could be used to detect BPIV3a and BPIV3c. The mAbs 7G5, 7G8, 7G9, and 7H5 might be used for differentiate BPIV3a, BPIV3c and HPIV3 from BPIV3b. The mAb 5E5 might be used for detecting all three types of BPIV3 and HPIV3. The results in this study would have potential applications in the development of suitable diagnostic techniques for BPIV3, which was prevalent in China.
Collapse
Affiliation(s)
- Jian-Le Ren
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Yuan-Mao Zhu
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Yue-Hui Zhou
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Chuang Lv
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Hao Yan
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Lei Ma
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Hong-Fei Shi
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Fei Xue
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China.
| |
Collapse
|
20
|
Development of strand-specific real-time RT-PCR to distinguish viral RNAs during Newcastle disease virus infection. ScientificWorldJournal 2014; 2014:934851. [PMID: 25379553 PMCID: PMC4212552 DOI: 10.1155/2014/934851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 12/12/2022] Open
Abstract
Newcastle disease virus (NDV) causes large losses in the global fowl industry. To better understand NDV replication and transcription cycle, quantitative detection methods for distinguishing NDV genomic RNA (gRNA), antigenomic RNA (cRNA), and messenger RNA (mRNA) in NDV-infected cells are indispensible. Three reverse transcription primers were designed to specifically target the nucleoprotein (NP) region of gRNA, cRNA, and NP mRNA, and a corresponding real-time RT-PCR assay was developed to simultaneously quantify the three types of RNAs in NDV-infected cells. This method showed very good specificity, sensitivity, and reproducibility. The detection range of the assay was between 5.5 × 102 and 1.1 × 109 copies/μL of the target gene. These methods were applied to investigate the dynamics of the gRNA, cRNA, and mRNA synthesis in NDV La Sota infected DF-1 cells. The results showed that the copy numbers of viral gRNA, cRNA, and NP mRNA all exponentially increased in the beginning. The viral RNA copy number then plateaued at 10'h postinfection and gradually decreased from 16 h postinfection. No synthesis priority was observed between replication (gRNA and cRNA amounts) and transcription (mRNA amounts) during NDV infection. However, the cRNA accumulated more rapidly than gRNA, as the cRNA copy number was three- to tenfold higher than gRNA starting from 2 h postinfection. Conclusion. A real-time RT-PCR for absolute quantitation of specific viral RNA fragments in NDV-infected cells was developed for the first time. The development of this assay will be helpful for further studies on the pathogenesis and control strategies of NDV.
Collapse
|
21
|
Paramyxovirus glycoprotein incorporation, assembly and budding: a three way dance for infectious particle production. Viruses 2014; 6:3019-54. [PMID: 25105277 PMCID: PMC4147685 DOI: 10.3390/v6083019] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022] Open
Abstract
Paramyxoviruses are a family of negative sense RNA viruses whose members cause serious diseases in humans, such as measles virus, mumps virus and respiratory syncytial virus; and in animals, such as Newcastle disease virus and rinderpest virus. Paramyxovirus particles form by assembly of the viral matrix protein, the ribonucleoprotein complex and the surface glycoproteins at the plasma membrane of infected cells and subsequent viral budding. Two major glycoproteins expressed on the viral envelope, the attachment protein and the fusion protein, promote attachment of the virus to host cells and subsequent virus-cell membrane fusion. Incorporation of the surface glycoproteins into infectious progeny particles requires coordinated interplay between the three viral structural components, driven primarily by the matrix protein. In this review, we discuss recent progress in understanding the contributions of the matrix protein and glycoproteins in driving paramyxovirus assembly and budding while focusing on the viral protein interactions underlying this process and the intracellular trafficking pathways for targeting viral components to assembly sites. Differences in the mechanisms of particle production among the different family members will be highlighted throughout.
Collapse
|
22
|
Characterization of Malaysian velogenic NDV strain AF2240-I genomic sequence: a comparative study. Virus Genes 2013; 46:431-40. [DOI: 10.1007/s11262-012-0874-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022]
|
23
|
Phylogenetic analysis and comparison of eight strains of pigeon paramyxovirus type 1 (PPMV-1) isolated in China between 2010 and 2012. Arch Virol 2013; 158:1121-31. [PMID: 23292066 DOI: 10.1007/s00705-012-1572-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 11/05/2012] [Indexed: 12/29/2022]
Abstract
Eight strains of pigeon paramyxovirus type 1 (PPMV-1) were isolated and identified in this study, from diseased pigeon flocks suspected to be infected with PPMV-1 in China between 2010 and 2012. These PPMV-1 isolates were purified using specific-pathogen-free (SPF) chicken embryo cells before full-length genomic sequencing. The complete genome of these isolates contained 15,192 nucleotides, similar to those of Newcastle disease virus (NDV) strains in genotypes V-XI, with the gene order 3'-NP-P-M-F-HN-L-5'. A six-nucleotide insertion was found to be located in the 5' non-coding region of the nucleoprotein gene in our eight PPMV-1 strains when compared with those of genotypes I, II, III, IV and V. The cleavage site of the fusion protein was (112)RRQKRF(117), a feature generally associated with virulent NDV strains. The structural proteins were in accordance with those of other PPMV-1 strains, with the exception of the W protein of pigeon/CHINA/LJL/100605. The length of the W protein was 227 amino acids, in common with PPMV-1 strains, whereas that of pigeon/CHINA/LJL/100605 was only 181 amino acids. Phylogenetic analysis, based on the genomic sequences and sequences of the fusion gene, revealed that our eight isolates should be classified as class II genotype VIb NDVs. To our knowledge, this is the first report to show that the strain pigeon/CHINA/LLN/110713 is similar to strains isolated abroad, but it was isolated in China, which implies that it may have been introduced to China from overseas. Differences between the Chinese and foreign strains were identified in three regions (nucleotide positions 1632-2229, 3023-3310 and 6103-6439). In addition, the values of ICPI and MDT demonstrated that PPMV-1 isolates were mesogenic or lentogenic, and virulence studies showed that these PPMV-1 strains were non-pathogenic in chickens, but they induced the generation of antibodies in vivo.
Collapse
|
24
|
Abstract
Over the past two decades, enormous advances have occurred in the structural and biological characterization of Newcastle disease virus (NDV). As a result, not only the complete sequence of the viral genome has been fully determined, but also a clearer understanding of the viral proteins and their respective roles in the life cycle has been achieved. This article reviews the progress in the molecular biology of NDV with emphasis on the new technologies. It also identifies the fundamental problems that need to be addressed and attempts to predict some research opportunities in NDV that can be realized in the near future for the diagnosis, prevention and treatment of disease(s).
Collapse
|
25
|
Ren X, Xue C, Kong Q, Zhang C, Bi Y, Cao Y. Proteomic analysis of purified Newcastle disease virus particles. Proteome Sci 2012; 10:32. [PMID: 22571704 PMCID: PMC3413529 DOI: 10.1186/1477-5956-10-32] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/09/2012] [Indexed: 12/20/2022] Open
Abstract
Background Newcastle disease virus (NDV) is an enveloped RNA virus, bearing severe economic losses to the poultry industry worldwide. Previous virion proteomic studies have shown that enveloped viruses carry multiple host cellular proteins both internally and externally during their life cycle. To address whether it also occurred during NDV infection, we performed a comprehensive proteomic analysis of highly purified NDV La Sota strain particles. Results In addition to five viral structural proteins, we detected thirty cellular proteins associated with purified NDV La Sota particles. The identified cellular proteins comprised several functional categories, including cytoskeleton proteins, annexins, molecular chaperones, chromatin modifying proteins, enzymes-binding proteins, calcium-binding proteins and signal transduction-associated proteins. Among these, three host proteins have not been previously reported in virions of other virus families, including two signal transduction-associated proteins (syntenin and Ras small GTPase) and one tumor-associated protein (tumor protein D52). The presence of five selected cellular proteins (i.e., β-actin, tubulin, annexin A2, heat shock protein Hsp90 and ezrin) associated with the purified NDV particles was validated by Western blot or immunogold labeling assays. Conclusions The current study presented the first standard proteomic profile of NDV. The results demonstrated the incorporation of cellular proteins in NDV particles, which provides valuable information for elucidating viral infection and pathogenesis.
Collapse
Affiliation(s)
- Xiangpeng Ren
- School of Environmental Science and Public Health, Wenzhou Medical College, Wenzhou, 325035, Peoples Republic of China.,State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Qingming Kong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Chengwen Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Peoples Republic of China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| |
Collapse
|
26
|
Dortmans JCFM, Rottier PJM, Koch G, Peeters BPH. Passaging of a Newcastle disease virus pigeon variant in chickens results in selection of viruses with mutations in the polymerase complex enhancing virus replication and virulence. J Gen Virol 2010; 92:336-45. [PMID: 20965986 DOI: 10.1099/vir.0.026344-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Some Newcastle disease virus (NDV) variants isolated from pigeons (pigeon paramyxovirus type 1; PPMV-1) do not show their full virulence potential for domestic chickens but may become virulent upon spread in these animals. In this study we examined the molecular changes responsible for this gain of virulence by passaging a low-pathogenic PPMV-1 isolate in chickens. Complete genome sequencing of virus obtained after 1, 3 and 5 passages showed the increase in virulence was not accompanied by changes in the fusion protein--a well known virulence determinant of NDV--but by mutations in the L and P replication proteins. The effect of these mutations on virulence was confirmed by means of reverse genetics using an infectious cDNA clone. Acquisition of three amino acid mutations, two in the L protein and one in the P protein, significantly increased virulence as determined by intracerebral pathogenicity index tests in day-old chickens. The mutations enhanced virus replication in vitro and in vivo and increased the plaque size in infected cell culture monolayers. Furthermore, they increased the activity of the viral replication complex as determined by an in vitro minigenome replication assay. Our data demonstrate that PPMV-1 replication in chickens results in mutations in the polymerase complex rather than the viral fusion protein, and that the virulence level of pigeon paramyxoviruses is directly related to the activity of the viral replication complex.
Collapse
Affiliation(s)
- J C F M Dortmans
- Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | | | | | | |
Collapse
|
27
|
The viral replication complex is associated with the virulence of Newcastle disease virus. J Virol 2010; 84:10113-20. [PMID: 20660202 DOI: 10.1128/jvi.00097-10] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Virulent strains of Newcastle disease virus ([NDV] also known as avian paramyxovirus type 1) can be discriminated from low-virulence strains by the presence of multiple basic amino acid residues at the proteolytic cleavage site of the fusion (F) protein. However, some NDV variants isolated from pigeons (pigeon paramyxovirus type 1 [PPMV-1]) have low levels of virulence, despite the fact that their F protein cleavage sites contain a multibasic amino acid sequence and have the same functionality as that of virulent strains. To determine the molecular basis of this discrepancy, we examined the role of the internal proteins in NDV virulence. Using reverse genetics, the genes encoding the nucleoprotein (NP), phosphoprotein (P), matrix protein (M), and large polymerase protein (L) were exchanged between the nonvirulent PPMV-1 strain AV324 and the highly virulent NDV strain Herts. Recombinant viruses were evaluated for their pathogenicities and replication levels in day-old chickens, and viral genome replication and plaque sizes were examined in cell culture monolayers. We also tested the contributions of the individual NP, P, and L proteins to the activity of the viral replication complex in an in vitro replication assay. The results showed that the replication proteins of Herts are more active than those of AV324 and that the activity of the viral replication complex is directly related to virulence. Although the M protein affected viral replication in vitro, it had only a minor effect on virulence.
Collapse
|
28
|
Paldurai A, Subbiah M, Kumar S, Collins PL, Samal SK. Complete genome sequences of avian paramyxovirus type 8 strains goose/Delaware/1053/76 and pintail/Wakuya/20/78. Virus Res 2009; 142:144-53. [PMID: 19341613 DOI: 10.1016/j.virusres.2009.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/03/2009] [Accepted: 02/05/2009] [Indexed: 11/24/2022]
Abstract
Complete consensus genome sequences were determined for avian paramyxovirus type 8 (APMV-8) strains goose/Delaware/1053/76 (prototype strain) and pintail/Wakuya/20/78. The genome of each strain is 15,342 nucleotides (nt) long, which follows the "rule of six". The genome consists of six genes in the order of 3'-N-P/V/W-M-F-HN-L-5'. The genes are flanked on either side by conserved transcription start and stop signals, and have intergenic regions ranging from 1 to 30nt. The genome contains a 55nt leader region at the 3'-end and a 171nt trailer region at the 5'-end. Comparison of sequences of strains Delaware and Wakuya showed nucleotide identity of 96.8% at the genome level and amino acid identities of 99.3%, 96.5%, 98.6%, 99.4%, 98.6% and 99.1% for the predicted N, P, M, F, HN and L proteins, respectively. Both strains grew in embryonated chicken eggs and in primary chicken embryo kidney cells, and 293T cells. Both strains contained only a single basic residue at the cleavage activation site of the F protein and their efficiency of replication in vitro depended on and was augmented by, the presence of exogenous protease in most cell lines. Sequence alignment and phylogenic analysis of the predicted amino acid sequence of APMV-8 strain Delaware proteins with the cognate proteins of other available APMV serotypes showed that APMV-8 is more closely related to APMV-2 and -6 than to APMV-1, -3 and -4.
Collapse
Affiliation(s)
- Anandan Paldurai
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
29
|
Localization of the antigenic sites of newcastle disease virus nucleocapsid using a panel of monoclonal antibodies. Res Vet Sci 2008; 86:174-82. [PMID: 18599098 DOI: 10.1016/j.rvsc.2008.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Revised: 03/25/2008] [Accepted: 05/01/2008] [Indexed: 11/20/2022]
Abstract
A panel of six monoclonal antibodies (mAbs) against the nucleocapsid (NP) protein of Newcastle disease virus (NDV) was produced by immunization of Balb/c mice with purified recombinant NP protein. Western Blot analysis showed that all the mAbs recognized linearized NP epitopes. Three different NP antigenic sites were identified using deleted truncated NP mutants purified from Escherichia coli. One of the antigenic sites was located at the C-terminal end (residues 441 to 489) of the NP protein. Two other antigenic sites were located within the N-terminal end (residues 26-121 and 122-375). This study demonstrates that the N- and C-terminal ends of the NP proteins are responsible in eliciting immune response, thus it is most likely that these ends are exposed on the NP.
Collapse
|
30
|
Kato A, Kiyotani K, Kubota T, Yoshida T, Tashiro M, Nagai Y. Importance of the anti-interferon capacity of Sendai virus C protein for pathogenicity in mice. J Virol 2007; 81:3264-71. [PMID: 17215288 PMCID: PMC1866026 DOI: 10.1128/jvi.02590-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Sendai virus (SeV) C protein blocks signal transduction of interferon (IFN), thereby counteracting the antiviral actions of IFN. Using HeLa cell lines expressing truncated or mutated SeV C proteins, we found that the C-terminal half has anti-IFN capacity, and that K(151)A, E(153)A, and R(154)A substitutions in the C protein eliminated this capacity. Here, we further created the mutant virus SeV Cm*, in which K(151)A, E(153)K, and R(157)L substitutions in the C protein were introduced without changing the amino acid sequence of overlapped P, V, and W proteins. SeV Cm* was found to lack anti-IFN capacity, as expected. While the growth rate and final yield of SeV Cm* were inferior to those of the wild-type SeV in IFN-responsive, STAT1-positive 2fTGH cells, SeV Cm* grew equivalently to the wild-type SeV in IFN-nonresponsive, STAT1-deficient U3A cells. SeV Cm* was thus shown to maintain multiplication capacity, except that it lacked anti-IFN capacity. Intranasally inoculated SeV Cm* could propagate in the lungs of STAT1(-/-) mice but was cleared from those of STAT1(+/+) mice without propagation. It was found that the anti-IFN capacity of the SeV C protein was indispensable for pathogenicity in mice. Conversely, the results show that the innate immunity contributed to elimination of SeV in early stages of infection in the absence of anti-IFN capacity.
Collapse
Affiliation(s)
- Atsushi Kato
- Department of Virology 3, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-Murayama, Tokyo 208-0011, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Yoshizaki M, Hironaka T, Iwasaki H, Ban H, Tokusumi Y, Iida A, Nagai Y, Hasegawa M, Inoue M. Naked Sendai virus vector lacking all of the envelope-related genes: reduced cytopathogenicity and immunogenicity. J Gene Med 2006; 8:1151-9. [PMID: 16841365 DOI: 10.1002/jgm.938] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sendai virus (SeV) is a new class of cytoplasmic RNA vector that is free from genotoxicity that infects and multiplies in most mammalian cells, and directs high-level transgene expression. We improved the vector by deleting all of the envelope-related genes from the SeV genome and thus reducing its immunogenicity. METHODS The matrix (M), fusion (F) and hemagglutinin-neuraminidase (HN) genes-deleted SeV vector (SeV/DeltaMDeltaFDeltaHN) was recovered in a newly established packaging cell line. Then, the generated SeV/DeltaMDeltaFDeltaHN vector was characterised by comparing with single gene-deleted type SeV vectors. RESULTS This SeV/DeltaMDeltaFDeltaHN vector carrying the green fluorescent protein gene in place of the envelope-related genes could be propagated to a titer of more than 10(8) cell infectious units/ml. This vector showed an efficient transduction capability in vitro and in vivo, and the cytopathic effect and induction of neutralizing antibody in vivo were greatly reduced compared with those of single gene-deleted type SeV vectors. No activity of neutralizing antibody or anti-HN antibody was seen when SeV/DeltaMDeltaFDeltaHN was transduced ex vivo. Additional introduction of amino acid mutations that had been identified from SeV strains causing persistent infections was also effective for the reduction of cytopathic effects. CONCLUSIONS The deletion of genes from the SeV genome and the additional mutation are very effective for reducing both the immunogenic and cytopathic reactions to the SeV vector. These modifications are expected to improve the safety and broaden the range of clinical applications of this new class of cytoplasmic RNA vector.
Collapse
Affiliation(s)
- Mariko Yoshizaki
- DNAVEC Corporation, 1-25-11 Kannondai, Tsukuba-shi, Ibaraki 305-0856, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
McDonald TP, Pitt AR, Brown G, Rixon HWM, Sugrue RJ. Evidence that the respiratory syncytial virus polymerase complex associates with lipid rafts in virus-infected cells: a proteomic analysis. Virology 2005; 330:147-57. [PMID: 15527841 DOI: 10.1016/j.virol.2004.09.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 08/31/2004] [Accepted: 09/28/2004] [Indexed: 10/26/2022]
Abstract
The interaction between the respiratory syncytial virus (RSV) polymerase complex and lipid rafts was examined in HEp2 cells. Lipid-raft membranes were prepared from virus-infected cells and their protein content was analysed by Western blotting and mass spectrometry. This analysis revealed the presence of the N, P, L, M2-1 and M proteins. However, these proteins appeared to differ from one another in their association with these structures, with the M2-1 protein showing a greater partitioning into raft membranes compared to that of the N, P or M proteins. Determination of the polymerase activity profile of the gradient fractions revealed that 95% of the detectable viral enzyme activity was associated with lipid-raft membranes. Furthermore, analysis of virus-infected cells by confocal microscopy suggested an association between these proteins and the raft-lipid, GM1. Together, these results provide evidence that the RSV polymerase complex is able to associate with lipid rafts in virus-infected cells.
Collapse
|
33
|
Inoue M, Tokusumi Y, Ban H, Shirakura M, Kanaya T, Yoshizaki M, Hironaka T, Nagai Y, Iida A, Hasegawa M. Recombinant Sendai virus vectors deleted in both the matrix and the fusion genes: efficient gene transfer with preferable properties. J Gene Med 2005; 6:1069-81. [PMID: 15386740 DOI: 10.1002/jgm.597] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Sendai virus (SeV) is a new type of cytoplasmic RNA vector, which infects and replicates in most mammalian cells, directs high-level expression of the genes on its genome and is free from genotoxicity. In order to improve this vector, both the matrix (M) and fusion (F) genes were deleted from its genome. METHODS For the recovery of the M and F genes-deleted SeV (SeV/DeltaMDeltaF), the packaging cell line was established by using a Cre/loxP induction system. SeV/DeltaMDeltaF was characterized and compared with wild-type and F or M gene-deleted SeV vectors in terms of transduction ability, particle formation, transmissible property and cytotoxicity. RESULTS SeV/DeltaMDeltaF was propagated in high titers from the packaging cell line. When this vector was administered into the lateral ventricle and the respiratory tissue, many of the ependymal and epithelial cells were transduced, respectively, as in the case of wild-type SeV. F gene-deletion made the SeV vector non-transmissible, and M gene-deletion worked well to inhibit formation of the particles from infected cells. Simultaneous deletions of these two genes in the same genome resulted in combining both advantages. That is, both virus maturation into particles and transmissible property were almost completely abolished in cells infected with SeV/DeltaMDeltaF. Further, the cytopathic effect of SeV/DeltaMDeltaF was significantly attenuated rather than that of wild type in vitro and in vivo. CONCLUSIONS SeV/DeltaMDeltaF is an advanced type of cytoplasmic RNA vector, which retains efficient gene transfer, gains non-transmissible properties and loses particle formation with less cytopathic effect.
Collapse
Affiliation(s)
- Makoto Inoue
- DNAVEC Research Inc., 1-25-11 Kannondai, Tsukuba-shi, Ibaraki 305-0856, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sleeman K, Baron MD. The polymerase (L) protein of rinderpest virus interacts with the host cell protein striatin. Virology 2005; 332:225-34. [PMID: 15661155 DOI: 10.1016/j.virol.2004.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 10/22/2004] [Accepted: 11/12/2004] [Indexed: 11/19/2022]
Abstract
Rinderpest virus (RPV) is a morbillivirus that causes a highly contagious disease affecting members of the order Artiodactyla. The viral L protein is the catalytic subunit of the RNA-dependent RNA polymerase. To search for host cell proteins with which L interacts, a library screen was performed using the yeast two-hybrid system. Several host cell proteins were recovered from the library screen as putative L-interactors; one of these was identified as striatin. A direct interaction between RPV L and striatin was confirmed using both co-immunoprecipitation assays and co-localisation studies using confocal microscopy. Striatin was also shown to co-localise with the RPV L protein in infected cells. The L proteins of morbilliviruses consist of three long highly conserved domains separated by short unconserved stretches of amino acids. The L domain with which striatin interacts was investigated by co-immunoprecipitation and striatin was shown to interact primarily with the central conserved domain.
Collapse
Affiliation(s)
- Katrina Sleeman
- Molecular Virology and Parasitology, Institute for Animal Health, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | | |
Collapse
|
35
|
Ogino T, Kobayashi M, Iwama M, Mizumoto K. Sendai virus RNA-dependent RNA polymerase L protein catalyzes cap methylation of virus-specific mRNA. J Biol Chem 2004; 280:4429-35. [PMID: 15574411 DOI: 10.1074/jbc.m411167200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sendai virus (SeV) RNA-dependent RNA polymerase complex, which consists of L and P proteins, participates in the synthesis of viral mRNAs that possess a methylated cap structure. To identify the SeV protein(s) involved in mRNA cap methylation, we developed an in vitro assay system to detect mRNA (guanine-7-)methyltransferase (G-7-MTase) activity. Viral ribonucleoprotein complexes and purified recombinant L protein but not P protein exhibited G-7-MTase activity. On the other hand, mRNA synthesis in a reconstituted transcription system using purified N-RNA (N protein-genomic RNA) complex as a template required both the L and P proteins. The enzymatic properties of SeV G-7-MTase were different from those of cellular G-7-MTase. In particular, unlike cellular G-7-MTase, the SeV enzyme preferentially methylated capped RNA containing the viral mRNA 5'-end sequences (GpppApGpG-). The C-terminal part (amino acid residues 1,756-2,228) of the L protein catalyzed cap methylation, whereas the N-terminal half (residues 1-1,120) containing putative RNA polymerase subdomains did not. This is to our knowledge the first direct biochemical evidence that supports the idea that mononegavirus L protein catalyzes cap methylation as well as RNA synthesis.
Collapse
Affiliation(s)
- Tomoaki Ogino
- Department of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | | | | | | |
Collapse
|
36
|
Mavrakis M, McCarthy AA, Roche S, Blondel D, Ruigrok RWH. Structure and function of the C-terminal domain of the polymerase cofactor of rabies virus. J Mol Biol 2004; 343:819-31. [PMID: 15476803 PMCID: PMC7173060 DOI: 10.1016/j.jmb.2004.08.071] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 08/23/2004] [Accepted: 08/24/2004] [Indexed: 11/17/2022]
Abstract
The phosphoprotein (P) of rabies virus binds the viral polymerase to the nucleoprotein (N)-RNA template for transcription and replication. By limited protease digestion we defined a monomeric C-terminal domain of P that can bind to N-RNA. The atomic structure of this domain was determined and previously described mutations that interfere with binding of P to N-RNA could now be interpreted. There appears to be two features involved in this activity situated at opposite surfaces of the molecule: a positively charged patch and a hydrophobic pocket with an exposed tryptophan side-chain. Other previously published work suggests a conformational change in P when it binds to N-RNA, which may imply the repositioning of two helices that would expose a hydrophobic groove for interaction with N. This domain of rabies virus P is structurally unrelated to the N-RNA binding domains of the phosphoproteins of Sendai and measles virus that are members of the same order of viruses, the non-segmented negative strand RNA viruses. The implications of this finding for the evolution of this virus group are discussed.
Collapse
Affiliation(s)
- Manos Mavrakis
- EMBL Grenoble Outstation, BP181, 38042 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
37
|
Mason SW, Lawetz C, Gaudette Y, Dô F, Scouten E, Lagacé L, Simoneau B, Liuzzi M. Polyadenylation-dependent screening assay for respiratory syncytial virus RNA transcriptase activity and identification of an inhibitor. Nucleic Acids Res 2004; 32:4758-67. [PMID: 15356293 PMCID: PMC519107 DOI: 10.1093/nar/gkh809] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA-dependent RNA polymerase from respiratory syncytial virus (RSV) is a multi-subunit ribonucleoprotein (RNP) complex that, in addition to synthesizing the full 15 222 nt viral genomic RNA, is able to synthesize all 10 viral mRNAs. We have prepared crude RNP from RSV-infected HEp-2 cells, based on a method previously used for Newcastle disease virus, and established a novel polyadenylation-dependent capture [poly(A) capture] assay to screen for potential inhibitors of RSV transcriptase activity. In this homogeneous assay, radiolabeled full-length polyadenylated mRNAs produced by the viral RNP are detected through capture on immobilized biotinylated oligo(dT) in a 96-well streptavidin-coated FlashPlate. Possible inhibitors identified with this assay could interfere at any step required for the production of complete RSV mRNAs, including transcription, polyadenylation and, potentially, co-transcriptional guanylylation. A specific inhibitor of RSV transcriptase with antiviral activity was identified through screening of this assay.
Collapse
Affiliation(s)
- Stephen W Mason
- Department of Biological Sciences, Boehringer Ingelheim (Canada) Ltd, Laval, Québec H7S 2G5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wise MG, Sellers HS, Alvarez R, Seal BS. RNA-dependent RNA polymerase gene analysis of worldwide Newcastle disease virus isolates representing different virulence types and their phylogenetic relationship with other members of the paramyxoviridae. Virus Res 2004; 104:71-80. [PMID: 15177894 DOI: 10.1016/j.virusres.2004.01.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 01/28/2004] [Accepted: 01/28/2004] [Indexed: 11/16/2022]
Abstract
Nucleotide sequence was determined for the RNA-dependent RNA polymerase (L) gene of 16 Newcastle disease virus (NDV) isolates from diverse geographic and chronological origins. The observed consensus amino acid sequence conformed to the six domains previously identified among paramyxovirus L proteins, and the putative 749QGDNQ753 active site was strictly conserved among all isolates. Analysis of predicted amino acid sequences allowed us to identify a sequencing error in the previously reported L genes for NDV. The correct sequences reported herein provided a more accurate alignment with predicted l-amino acid sequences of other paramyxoviruses. Comparison of L gene coding sequences among isolates revealed that synonymous substitutions dominated non-synonymous substitutions, as observed previously with other NDV genes. However, the overall substitution rate was lower than other genes examined making the L gene the most conserved of the NDV genome. Phylogenetic analysis of L genes among NDV isolates was consistent with previous results that suggested the existence of two major lineages. One group contained strains isolated in North America prior to 1970 and included virulent and vaccine strains, while the second group included virulent viruses isolated worldwide. A comparison of the NDV L coding sequences to other Paramyxoviridae illustrated the unique clustering of the avian-specific paramyxoviruses, further justifying the newly created Avulavirus genus.
Collapse
Affiliation(s)
- Mark G Wise
- Southeast Poultry Research Laboratory, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA 30605, USA
| | | | | | | |
Collapse
|
39
|
Kato A, Cortese-Grogan C, Moyer SA, Sugahara F, Sakaguchi T, Kubota T, Otsuki N, Kohase M, Tashiro M, Nagai Y. Characterization of the amino acid residues of sendai virus C protein that are critically involved in its interferon antagonism and RNA synthesis down-regulation. J Virol 2004; 78:7443-54. [PMID: 15220418 PMCID: PMC434076 DOI: 10.1128/jvi.78.14.7443-7454.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sendai virus (SeV) encodes two accessory proteins, V and C, in the alternative reading frames in the P gene that are accessed transcriptionally (V) or translationally (C). The C protein is expressed as a nested set of four C-coterminal proteins, C', C, Y1, and Y2, that use different initiation codons. Using HeLa cell lines constitutively expressing the various C proteins, we previously found that the smallest (the 175-residue Y2) of the four C proteins was fully capable of counteracting the antiviral action of interferons (IFNs) and inhibiting viral RNA synthesis and that the C-terminal half of 106 residues was sufficient for both of these inhibitory functions (A. Kato et al., J. Virol. 75:3802-3810, 2001, and A. Kato et al., J. Virol. 76:7114-7124, 2002). Here, we further generated HeLa cell lines expressing the mutated C (Cm) proteins with charged amino acids substituted for alanine residues at either positions 77 and 80; 114 and 115; 139 and 142; 151, 153, and 154; 156; or 173, 175, and 176. We found that only the mutations at positions 151, 153, and 154 abolished IFN antagonism. All the Cm proteins lost the ability to bind with STAT1 under our assay conditions, regardless of their ability to inhibit IFN signaling. On the other hand, the Cm proteins that altered the tyrosine phosphorylation and dephosphorylation of STAT1 and STAT2 always retained IFN antagonism. Thus, the abnormality of phosphorylation or dephosphorylation appeared to be a cause of the IFN antagonism by SeV C. Regarding viral RNA synthesis inhibition, all mutants but the mutant with replacements at positions 114 and 115 greatly reduced the inhibitory activity, indicating that anti-RNA synthesis by the C protein is governed by amino acids scattered across its C-terminal half. Thus, amino acid sequence requirements differ greatly between IFN antagonism and RNA synthesis inhibition. In addition, we confirmed that another SeV accessory protein, V, does not antagonize IFN.
Collapse
Affiliation(s)
- Atsushi Kato
- Department of Virology 3, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Inoue M, Tokusumi Y, Ban H, Kanaya T, Shirakura M, Tokusumi T, Hirata T, Nagai Y, Iida A, Hasegawa M. A new Sendai virus vector deficient in the matrix gene does not form virus particles and shows extensive cell-to-cell spreading. J Virol 2003; 77:6419-29. [PMID: 12743299 PMCID: PMC155001 DOI: 10.1128/jvi.77.11.6419-6429.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new recombinant Sendai virus vector (SeV/DeltaM), in which the gene encoding matrix (M) protein was deleted, was recovered from cDNA and propagated in a packaging cell line expressing M protein by using a Cre/loxP induction system. The titer of SeV/DeltaM carrying the enhanced green fluorescent protein gene in place of the M gene was 7 x 10(7) cell infectious units/ml or more. The new vector showed high levels of infectivity and gene expression, similar to those of wild-type SeV vector, in vitro and in vivo. Virus maturation into a particle was almost completely abolished in cells infected with SeV/DeltaM. Instead, SeV/DeltaM infection brought about a significant increase of syncytium formation under conditions in which the fusion protein was proteolytically cleaved and activated by trypsin-like protease. This shows that SeV/DeltaM spreads markedly to neighboring cells in a cell-to-cell manner, because both hemagglutinin-neuraminidase and active fusion proteins are present at very high levels on the surface of cells infected with SeV/DeltaM. Thus, SeV/DeltaM is a novel type of vector with the characteristic features of loss of virus particle formation and gain of cell-to-cell spreading via a mechanism dependent on the activation of the fusion protein.
Collapse
Affiliation(s)
- Makoto Inoue
- DNAVEC Research Inc., Tsukuba-shi, Ibaraki 305-0856, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mavrakis M, Iseni F, Mazza C, Schoehn G, Ebel C, Gentzel M, Franz T, Ruigrok RWH. Isolation and characterisation of the rabies virus N degrees-P complex produced in insect cells. Virology 2003; 305:406-14. [PMID: 12573586 DOI: 10.1006/viro.2002.1748] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When the nucleoprotein (N) of nonsegmented negative-strand RNA viruses is expressed in insect cells, it binds to cellular RNA and forms N-RNA complexes just like viral nucleocapsids. However, in virus-infected cells, N is prevented from binding to cellular RNA because a soluble complex is formed between N and the viral phosphoprotein (P), the N degrees -P complex. N is only released from this complex for binding to newly made viral or complementary RNA. We coexpressed rabies virus N and P proteins in insect cells and purified the N degrees -P complex. Characterisation by gel filtration, polyacrylamide gel electrophoresis, analytical ultracentrifugation, native mass spectroscopy, and electron microscopy showed that the complex consists of one N protein plus two P proteins, i.e., an N degrees -P(2) complex.
Collapse
Affiliation(s)
- Manos Mavrakis
- EMBL Grenoble Outstation, B.P. 181, 38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
tenOever BR, Servant MJ, Grandvaux N, Lin R, Hiscott J. Recognition of the measles virus nucleocapsid as a mechanism of IRF-3 activation. J Virol 2002; 76:3659-69. [PMID: 11907205 PMCID: PMC136070 DOI: 10.1128/jvi.76.8.3659-3669.2002] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms of cellular recognition for virus infection remain poorly understood despite the wealth of information regarding the signaling events and transcriptional responses that ensue. Host cells respond to viral infection through the activation of multiple signaling cascades, including the activation of NF-kappaB, c-Jun/ATF-2 (AP-1), and the interferon regulatory factors (IRFs). Although viral products such as double-stranded RNA (dsRNA) and the processes of viral binding and fusion have been implicated in the activation of NF-kappaB and AP-1, the mechanism(s) of IRF-1, IRF-3, and IRF-7 activation has yet to be fully elucidated. Using recombinant measles virus (MeV) constructs, we now demonstrate that phosphorylation-dependent IRF-3 activation represents a novel cellular detection system that recognizes the MeV nucleocapsid structure. At low multiplicities of infection, IRF-3 activation is dependent on viral transcription, since UV cross-linking and a deficient MeV containing a truncated polymerase L gene failed to induce IRF-3 phosphorylation. Expression of the MeV nucleocapsid (N) protein, without the requirement for any additional viral proteins or the generation of dsRNA, was sufficient for IRF-3 activation. In addition, the nucleocapsid protein was found to associate with both IRF-3 and the IRF-3 virus-activated kinase, suggesting that it may aid in the colocalization of the kinase and the substrate. Altogether, this study suggests that IRF-3 recognizes nucleocapsid structures during the course of an MeV infection and triggers the induction of interferon production.
Collapse
Affiliation(s)
- Benjamin R tenOever
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | |
Collapse
|
43
|
Seal BS, Crawford JM, Sellers HS, Locke DP, King DJ. Nucleotide sequence analysis of the Newcastle disease virus nucleocapsid protein gene and phylogenetic relationships among the Paramyxoviridae. Virus Res 2002; 83:119-29. [PMID: 11864745 DOI: 10.1016/s0168-1702(01)00427-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleocapsid (N) protein genes from 24 Newcastle disease virus (NDV) isolates representing various pathotypes with different geographical and chronological origins were cloned and sequenced. The N-terminal region of the N protein to residue 401 was highly conserved among isolates with several conservative substitutions occurring that correlated with phylogenetic relationships. Variability of the N protein was detected in the C-terminal portion similar to what has been reported for other members of the Paramyxovirinae. Amino acids previously identified as invariant or highly conserved in N proteins of other paramyxoviruses were also present in the NDV protein. Phylogenetic analysis of N gene coding sequences among NDV isolates again demonstrated the existence of two major groups. One clade contained viruses that included vaccine and virulent strains isolated in the USA prior to 1970 while a second clade included vaccine and virulent viruses isolated worldwide. Comparison of N protein amino acid sequences among members of the Paramyxoviridae resulted in NDV and avian paramyxovirus 6 separating as a cluster distinct from the Rubulavirus genus. This provides further support for avian paramyxoviruses being considered for their own genus among the Paramyxovirinae.
Collapse
Affiliation(s)
- Bruce S Seal
- Southeast Poultry Research Laboratory, Agricultural Research Service, US Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | | | | | | | | |
Collapse
|
44
|
Hernández-Jáuregui P, Yacoub A, Kennedy S, Curran B, Téllez C, Svenda M, Ljung L, Moreno-López J. Uptake of porcine rubulavirus (LPMV) by PK-15 cells. Arch Med Res 2001; 32:400-9. [PMID: 11578755 DOI: 10.1016/s0188-4409(01)00314-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The porcine virus denominated La Piedad Michoacan Virus (LPMV) is a member of the family Paramyxoviridae and is the cause of a disease in pigs present only in Mexico. The disease is characterized by meningoencephalitis and respiratory distress in young pigs, epididymitis and orchitis in boars, and reproductive failure and abortion in sows. METHODS The cytopathology, morphology, and distribution of the hemagglutination neuraminidase (HN) and nucleoprotein (NP) proteins of LPMV were investigated following inoculation into PK-15 cells. The cytopathic effect was characterized by cytoplasmic vacuolation and the formation of syncytia and cytoplasmic inclusion bodies. RESULTS In immunofluorescence assays using a monoclonal antibody (MAb) against the HN protein at 5-60 min post-infection (early infection), a diffuse immunofluorescence was observed near the cell membrane and adjacent to the nuclear membrane. At 24 h post-infection (late infection), a dust-like immunofluorescence was observed throughout the cytoplasm. LPMV-infected cells incubated with the MAb against the NP protein showed punctate cytoplasmic fluorescence during the early stages of infection. At the late infection stage, these fluorescent particles became larger and were seen predominantly in the cytoplasm of syncytia. This pattern was also apparent by immunohistochemical labeling and immunogold electron microscopy. The latter technique revealed that HN protein was diffusely distributed throughout the cytoplasm. When using the MAb against the NP protein, nucleocapsid organization was the most prominent feature and resulted in the formation of cytoplasmic inclusion bodies visible by light and electron microscopy. Immunogold labeling of purified nucleocapsids was shown by electron microscopy. Virus particles and nucleocapsids were morphologically similar to members of the Paramyxoviridae family. CONCLUSIONS The morphologic characteristics of the virions and the distribution patterns of the HN and NP proteins in PK-15 infected cells indicate that the mechanisms of LPMV replication are generally similar to those of the members of the Paramyxoviridae family.
Collapse
Affiliation(s)
- P Hernández-Jáuregui
- Department of Veterinary Microbiology, Section of Virology, Swedish University of Agricultural Sciences, SLU, Biomedical Center, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bousse T, Takimoto T, Matrosovich T, Portner A. Two regions of the P protein are required to be active with the L protein for human parainfluenza virus type 1 RNA polymerase activity. Virology 2001; 283:306-14. [PMID: 11336555 DOI: 10.1006/viro.2001.0881] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The paramyxovirus P protein is an essential component of the viral RNA polymerase composed of P and L proteins. In this study, we characterized the physical and functional interactions between P and L proteins using human parainfluenza virus type 1 (hPIV1) and its counterpart Sendai virus (SV). The hPIV1 P and SV L proteins or the SV P and hPIV1 L proteins formed complexes detected by anti-P antibodies. Functional analysis using the minigenome SV RNA containing CAT gene indicated that the hPIV1 P--SV L complex, but not the SV P--hPIV1 L complex, was biologically active. Mutant SV P or hPIV1 P cDNAs, which do not express C proteins, showed the same phenotype with wild-type P cDNAs, indicating that C proteins are not responsible for the dysfunction of SV P--hPIV1 L polymerase complex. Using the chimeric hPIV1/SV P cDNAs, we identified two regions (residues 387--423 and 511--568) on P protein, which are required for the functional interaction with hPIV1 L. These regions overlap with a previously identified domain for oligomer formation and binding to nucleocapsids. Our results indicate that in addition to a P--L binding domain, hPIV1 L requires a specific region on P protein to be biologically functional as a polymerase.
Collapse
Affiliation(s)
- T Bousse
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, 332 N. Lauderdale St., Memphis, Tennessee 38105-2794, USA
| | | | | | | |
Collapse
|
46
|
Sweetman DA, Miskin J, Baron MD. Rinderpest virus C and V proteins interact with the major (L) component of the viral polymerase. Virology 2001; 281:193-204. [PMID: 11277692 DOI: 10.1006/viro.2000.0805] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rinderpest virus, like other Morbilliviruses, expresses three proteins from the single P gene. In addition to the P protein, which interacts both with the viral polymerase (L) and the nucleocapsid (N) protein, the virus expresses a C and a V protein from the same gene. The functions of these two proteins in the viral life cycle are not clear. Although both C and V proteins are dispensable, in that viable viruses can be made that express neither, each seems to play a role in optimum viral replication. We have used the yeast-two hybrid system, binding to coexpressed fusions of C and V to glutathione-S-transferase, and studies of the native size of these proteins to investigate interactions of the rinderpest virus C and V proteins with other virus-encoded proteins. The V protein was found to interact with both the N and L proteins, while the C protein was found to bind to the L protein, and to self-associate in high-molecular-weight aggregates.
Collapse
Affiliation(s)
- D A Sweetman
- Institute for Animal Health, Ash Road, Surrey, Pirbright, GU24 0NF, United Kingdom
| | | | | |
Collapse
|
47
|
Watanabe M, Zhong Q, Kobayashi T, Kamitani W, Tomonaga K, Ikuta K. Molecular ratio between borna disease viral-p40 and -p24 proteins in infected cells determined by quantitative antigen capture ELISA. Microbiol Immunol 2001; 44:765-72. [PMID: 11092240 DOI: 10.1111/j.1348-0421.2000.tb02561.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed the antigen capture enzyme-linked immunosorbent assay (ELISA) systems for quantification of Borna disease virus (BDV) major antigens, p40 and p24. Using these ELISAs, we quantified the two proteins in various BDV-infected materials, including the cell lysates and culture supernatants as well as the homogenates of experimental animal brains. The ELISAs were also applied to measure the infectious titer of BDV in persistently infected cell lines. Quantitative analysis with these ELISAs allowed us to measure the molecular ratio between the p40 and p24 in infected samples. Interestingly, the ratio of p24 to p40 in persistently infected cells was much higher than that observed in acutely infected cells although the ratios in the supernatants from both cell lines were quite similar. BDV-inoculated gerbil brain cells showed a relatively high ratio of p24 to p40 as compared with acutely infected cells. These observations suggested that the molecular ratio between the proteins strongly depended on the infectious status of BDV in the host cells. The ELISA system developed here could be a convenient method for the quantification of BDV infection and may also be beneficial for understanding viral replication and infectious status in the host cells.
Collapse
Affiliation(s)
- M Watanabe
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
RNA editing can be broadly defined as any site-specific alteration in an RNA sequence that could have been copied from the template, excluding changes due to processes such as RNA splicing and polyadenylation. Changes in gene expression attributed to editing have been described in organisms from unicellular protozoa to man, and can affect the mRNAs, tRNAs, and rRNAs present in all cellular compartments. These sequence revisions, which include both the insertion and deletion of nucleotides, and the conversion of one base to another, involve a wide range of largely unrelated mechanisms. Recent advances in the development of in vitro editing and transgenic systems for these varied modifications have provided a better understanding of similarities and differences between the biochemical strategies, regulatory sequences, and cellular factors responsible for such RNA processing events.
Collapse
Affiliation(s)
- J M Gott
- Center for RNA Molecular Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
49
|
Mebatsion T, Verstegen S, De Vaan LT, Römer-Oberdörfer A, Schrier CC. A recombinant newcastle disease virus with low-level V protein expression is immunogenic and lacks pathogenicity for chicken embryos. J Virol 2001; 75:420-8. [PMID: 11119610 PMCID: PMC113934 DOI: 10.1128/jvi.75.1.420-428.2001] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Newcastle disease virus (NDV) edits its P-gene mRNA by inserting a nontemplated G residue(s) at a conserved editing site (3'-UUUUUCCC-template strand). In the wild-type virus, three amino-coterminal P-gene-derived proteins, P, V, and W, are produced at frequencies of approximately 68, 29, and 2%, respectively. By applying the reverse genetics technique, editing-defective mutants were generated in cell culture. Compared to the wild-type virus, mutants lacking either six nucleotides of the conserved editing site or the unique C-terminal part of the V protein produced as much as 5, 000-fold fewer infectious progeny in vitro or 200,000-fold fewer in 6-day-old embryonated chicken eggs. In addition, both mutants were unable to propagate in 9- to 11-day-old embryonated specific-pathogen-free (SPF) chicken eggs. In contrast, a mutant (NDV-P1) with one nucleotide substitution (UUCUUCCC) grew in eggs, albeit with a 100-fold-lower infectious titer than the parent virus. The modification in the first two mutants described above led to complete abolition of V expression, whereas in NDV-P1 the editing frequency was reduced to less than 2%, and as a result, V was expressed at a 20-fold-lower level. NDV-P1 showed markedly attenuated pathogenicity for SPF chicken embryos, unlike currently available ND vaccine strains. These findings indicate that the V protein of NDV has a dual function, playing a direct role in virus replication as well as serving as a virulence factor. Administration of NDV-P1 to 18-day-old embryonated chicken eggs hardly affected hatchability. Hatched chickens developed high levels of NDV-specific antibodies and were fully protected against lethal challenge, demonstrating the potential use of editing-defective recombinant NDV as a safe embryo vaccine.
Collapse
Affiliation(s)
- T Mebatsion
- Department of Virology, Intervet International B.V., 5830 AA Boxmeer, The Netherlands.
| | | | | | | | | |
Collapse
|
50
|
Ali A, Nayak DP. Assembly of Sendai virus: M protein interacts with F and HN proteins and with the cytoplasmic tail and transmembrane domain of F protein. Virology 2000; 276:289-303. [PMID: 11040121 DOI: 10.1006/viro.2000.0556] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sendai virus matrix protein (M protein) is critically important for virus assembly and budding and is presumed to interact with viral glycoproteins on the outer side and viral nucleocapsid on the inner side. However, since M protein alone binds to lipid membranes, it has been difficult to demonstrate the specific interaction of M protein with HN or F protein, the Sendai viral glycoproteins. Using Triton X-100 (TX-100) detergent treatment of membrane fractions and flotation in sucrose gradients, we report that the membrane-bound M protein expressed alone or coexpressed with heterologous glycoprotein (influenza virus HA) was totally TX-100 soluble but the membrane-bound M protein coexpressed with HN or F protein either individually or together was predominantly detergent-resistant and floated to the top of the density gradient. Furthermore, both the cytoplasmic tail and the transmembrane domain of F protein facilitated binding of M protein to detergent-resistant membranes. Analysis of the membrane association of M protein in the early and late phases of the Sendai virus infectious cycle revealed that the interaction of M protein with mature glycoproteins that associated with the detergent-resistant lipid rafts was responsible for the detergent resistance of the membrane-bound M protein. Immunofluorescence analysis by confocal microscopy also demonstrated that in Sendai virus-infected cells, a fraction of M protein colocalized with F and HN proteins and that some M protein also became associated with the F and HN proteins while they were in transit to the plasma membrane via the exocytic pathway. These studies indicate that F and HN interact with M protein in the absence of any other viral proteins and that F associates with M protein via its cytoplasmic tail and transmembrane domain.
Collapse
Affiliation(s)
- A Ali
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Medicine, Los Angeles, California, 90095-1747, USA
| | | |
Collapse
|