1
|
Boi S, Rosenke K, Hansen E, Hendrick D, Malik F, Evans LH. Endogenous retroviruses mobilized during friend murine leukemia virus infection. Virology 2016; 499:136-143. [PMID: 27657834 DOI: 10.1016/j.virol.2016.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
We have demonstrated in a mouse model that infection with a retrovirus can lead not only to the generation of recombinants between exogenous and endogenous gammaretrovirus, but also to the mobilization of endogenous proviruses by pseudotyping entire polytropic proviral transcripts and facilitating their infectious spread to new cells. However, the frequency of this occurrence, the kinetics, and the identity of mobilized endogenous proviruses was unclear. Here we find that these mobilized transcripts are detected after only one day of infection. They predominate over recombinant polytropic viruses early in infection, persist throughout the course of disease and are comprised of multiple different polytropic proviruses. Other endogenous retroviral elements such as intracisternal A particles (IAPs) were not detected. The integration of the endogenous transcripts into new cells could result in loss of transcriptional control and elevated expression which may facilitate pathogenesis, perhaps by contributing to the generation of polytropic recombinant viruses.
Collapse
Affiliation(s)
- Stefano Boi
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | - Kyle Rosenke
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | - Ethan Hansen
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | - Duncan Hendrick
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | - Frank Malik
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | - Leonard H Evans
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| |
Collapse
|
2
|
Profound amplification of pathogenic murine polytropic retrovirus release from coinfected cells. J Virol 2012; 86:7241-8. [PMID: 22514353 DOI: 10.1128/jvi.00225-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies indicate that mice infected with mixtures of mouse retroviruses (murine leukemia viruses [MuLVs]) exhibit dramatically altered pathology compared to mice infected with individual viruses of the mixture. Coinoculation of the ecotropic virus Friend MuLV (F-MuLV) with Fr98, a polytropic MuLV, induced a rapidly fatal neurological disease that was not observed in infections with either virus alone. The polytropic virus load in coinoculated mice was markedly enhanced, while the ecotropic F-MuLV load was unchanged. Furthermore, pseudotyping of the polytropic MuLV genome within ecotropic virions was nearly complete in coinoculated mice. In an effort to better understand these phenomena, we examined mixed retrovirus infections by utilizing in vitro cell lines. Similar to in vivo mixed infections, the polytropic MuLV genome was extensively pseudotyped within ecotropic virions; polytropic virus release was profoundly elevated in coinfected cells, and the ecotropic virus release was unchanged. A reduced level of polytropic SU protein on the surfaces of coinfected cells was observed and correlated with a reduced level of nonpseudotyped polytropic virion release. Marked amplification and pseudotyping of the polytropic MuLV were also observed in mixed Fr98-F-MuLV infections of cell lines derived from the central nervous system (CNS), the target for Fr98 pathogenesis. Additional experiments indicated that pseudotyping contributed to the elevated polytropic virus titer by increasing the efficiency of packaging and release of the polytropic genomes within ecotropic virions. Mixed infections are the rule rather than the exception in retroviral infection, and the ability to examine them in vitro should facilitate a more thorough understanding of retroviral interactions in general.
Collapse
|
3
|
Mouse retroviruses and chronic fatigue syndrome: Does X (or P) mark the spot? Proc Natl Acad Sci U S A 2010; 107:15666-7. [PMID: 20798036 DOI: 10.1073/pnas.1007944107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
4
|
Mobilization of endogenous retroviruses in mice after infection with an exogenous retrovirus. J Virol 2008; 83:2429-35. [PMID: 19116259 DOI: 10.1128/jvi.01926-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mammalian genomes harbor a large number of retroviral elements acquired as germ line insertions during evolution. Although many of the endogenous retroviruses are defective, several contain one or more intact viral genes that are expressed under certain physiological or pathological conditions. This is true of the endogenous polytropic retroviruses that generate recombinant polytropic murine leukemia viruses (MuLVs). In these recombinants the env gene sequences of exogenous ecotropic MuLVs are replaced with env gene sequences from an endogenous polytropic retrovirus. Although replication-competent endogenous polytropic retroviruses have not been observed, the recombinant polytropic viruses are capable of replicating in numerous species. Recombination occurs during reverse transcription of a virion RNA heterodimer comprised of an RNA transcript from an endogenous polytropic virus and an RNA transcript from an exogenous ecotropic MuLV RNA. It is possible that homodimers corresponding to two full-length endogenous RNA genomes are also packaged. Thus, infection by an exogenous virus may result not only in recombination with endogenous sequences, but also in the mobilization of complete endogenous retrovirus genomes via pseudotyping within exogenous retroviral virions. We report that the infection of mice with an ecotropic virus results in pseudotyping of intact endogenous viruses that have not undergone recombination. The endogenous retroviruses infect and are integrated into target cell genomes and subsequently replicate and spread as pseudotyped viruses. The mobilization of endogenous retroviruses upon infection with an exogenous retrovirus may represent a major interaction of exogenous retroviruses with endogenous retroviruses and may have profound effects on the pathogenicity of retroviral infections.
Collapse
|
5
|
Evans LH, Lavignon M, Peterson K, Hasenkrug K, Robertson S, Malik F, Virtaneva K. In vivo interactions of ecotropic and polytropic murine leukemia viruses in mixed retrovirus infections. J Virol 2006; 80:4748-57. [PMID: 16641268 PMCID: PMC1472087 DOI: 10.1128/jvi.80.10.4748-4757.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mixed retrovirus infections are the rule rather than the exception in mice and other species, including humans. Interactions of retroviruses in mixed infections and their effects on disease induction are poorly understood. Upon infection of mice, ecotropic retroviruses recombine with endogenous proviruses to generate polytropic viruses that utilize different cellular receptors. Interactions among the retroviruses of this mixed infection facilitate disease induction. Using mice infected with defined mixtures of the ecotropic Friend murine leukemia virus (F-MuLV) and different polytropic viruses, we demonstrate several dramatic effects of mixed infections. Remarkably, inoculation of F-MuLV with polytropic MuLVs completely suppressed the generation of new recombinant viruses and dramatically altered disease induction. Co-inoculation of F-MuLV with one polytropic virus significantly lengthened survival times, while inoculation with another polytropic MuLV induced a rapid and severe neurological disease. In both instances, the level of the polytropic MuLV was increased 100- to 1,000-fold, whereas the ecotropic MuLV level remained unchanged. Surprisingly, nearly all of the polytropic MuLV genomes were packaged within F-MuLV virions (pseudotyped) very soon after infection. At this time, only a fractional percentage of cells in the mouse were infected by either virus, indicating that the co-inoculated viruses had infected the same small subpopulation of susceptible cells. The profound amplification of polytropic MuLVs in coinfected mice may be facilitated by pseudotyping or, alternatively, by transactivation of the polytropic virus in the coinfected cells. This study illustrates the complexity of the interactions between components of mixed retrovirus infections and the dramatic effects of these interactions on disease processes.
Collapse
Affiliation(s)
- Leonard H Evans
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Retroelement transposition is a major source of diversity in genome evolution. Among the retrotransposable elements, the retroviruses are distinct in that their "transposition" extends from their initial host cells to neighboring cells and organisms. A determining step in the conversion of a retrotransposable element into an infectious retrovirus is the acquisition of an envelope glycoprotein, designated Env. Here, we review some examples of envelope "capture" by mammal retroviruses and provide evidence for such a mechanism by HTLV. This phenomenon may explain the notable conservation of env genes observed between phylogenetically distant retroviruses. Elucidation of these recombination processes should help to clarify retroviral phylogeny, better understand retroviral pathogenesis, and may lead to the identification of new retroelements.
Collapse
Affiliation(s)
- Felix J Kim
- Institut de Génétique moléculaire de Montpellier (IGMM), CNRS-UMR5535, IFR122 et Université de Montpellier II, 1919, route de Mende, 34293 Montpellier 05, France.
| | | | | | | |
Collapse
|
7
|
Kim FJ, Battini JL, Manel N, Sitbon M. Emergence of vertebrate retroviruses and envelope capture. Virology 2004; 318:183-91. [PMID: 14972546 DOI: 10.1016/j.virol.2003.09.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 09/10/2003] [Accepted: 09/14/2003] [Indexed: 11/28/2022]
Abstract
Retroviruses are members of the superfamily of retroelements, mobile genetic elements that transpose via an RNA intermediate. However, retroviruses are distinct from other retroelements in that their "transposition" is not confined to single cells but extends to neighboring cells and organisms. As such, the "transposition" of these elements is defined as infection. It appears that a key step in the conversion of a retrotransposon into a retrovirus is the modular acquisition or capture of an envelope glycoprotein (Env) which facilitates dissemination from its initial host cell. Here we present several examples of retroviruses for which envelope capture has been identified. Indeed, capture may explain the notable conservation of env sequences among otherwise phylogenetically distant retroviruses. In a recent example, sequence homologies reported between the env of the phylogenetically distant murine leukemia viruses (MLV) and human T cell leukemia viruses (HTLV) argue in favor of an env capture by the latter. Env acquisition can provide new adaptive properties to replication-competent viruses in addition to altering their host range. Also, the captured env can alter the spectrum of physiological affects of infection in new host cells and organisms. The elucidation of such envelope exchanges and properties thereof should contribute significantly to the clarification of retroviral phylogeny, insight into retroviral pathogenesis, and to the discovery of new retroviruses.
Collapse
Affiliation(s)
- Felix J Kim
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR5535, IFR122, F-34293 Montpellier, cedex 5, France
| | | | | | | |
Collapse
|
8
|
Seifarth W, Spiess B, Zeilfelder U, Speth C, Hehlmann R, Leib-Mösch C. Assessment of retroviral activity using a universal retrovirus chip. J Virol Methods 2003; 112:79-91. [PMID: 12951215 DOI: 10.1016/s0166-0934(03)00194-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A DNA chip-based assay is described for parallel detection and identification of a wide variety of human and mammalian exogenous and endogenous retroviruses. The assay combines multiplex polymerase chain reaction (PCR) using fluorochrome-modified primer mixtures and chip hybridization. The microarray is composed of retrovirus-specific synthetic oligonucleotides as capture probes deposited on glass slides. The retrovirus chip can be used to assess the occurrence of reverse transcriptase (RT)-related transcripts in biological samples of human and mammalian origin. For example, distinct expression profiles of human endogenous retroviruses (HERV) were established reproducibly in human white blood cells, mammary gland and other human tissues. In particles released by human cells, packaging of specific HERV transcripts could be observed. Monitoring of human exogenous retroviruses (HIV, HTLV) and detection of putative cross-species transmissions (MLV, PERV) in human samples was efficient and reliable. The DNA chip should be an excellent tool for the detection of most relevant retroviruses and offers insights into differential retroviral activities and replication strategies. Furthermore, it could improve significantly the safety of gene therapy, tissue engineering, xenotransplantation and production of therapeutic polypeptides in cell culture.
Collapse
Affiliation(s)
- Wolfgang Seifarth
- Medical Clinic III, Faculty of Clinical Medicine Mannheim, University of Heidelberg, D-68305, Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Audit M, Déjardin J, Hohl B, Sidobre C, Hope TJ, Mougel M, Sitbon M. Introduction of a cis-acting mutation in the capsid-coding gene of moloney murine leukemia virus extends its leukemogenic properties. J Virol 1999; 73:10472-9. [PMID: 10559365 PMCID: PMC113102 DOI: 10.1128/jvi.73.12.10472-10479.1999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inoculation of newborn mice with the retrovirus Moloney murine leukemia virus (MuLV) results in the exclusive development of T lymphomas with gross thymic enlargement. The T-cell leukemogenic property of Moloney MuLV has been mapped to the U3 enhancer region of the viral promoter. However, we now describe a mutant Moloney MuLV which can induce the rapid development of a uniquely broad panel of leukemic cell types. This mutant Moloney MuLV with synonymous differences (MSD1) was obtained by introduction of nucleotide substitutions at positions 1598, 1599, and 1601 in the capsid gene which maintained the wild-type (WT) coding potential. Leukemias were observed in all MSD1-inoculated animals after a latency period that was shorter than or similar to that of WT Moloney MuLV. Importantly, though, only 56% of MSD1-induced leukemias demonstrated the characteristic thymoma phenotype observed in all WT Moloney MuLV leukemias. The remainder of MSD1-inoculated animals presented either with bona fide clonal erythroid or myelomonocytic leukemias or, alternatively, with other severe erythroid and unidentified disorders. Amplification and sequencing of U3 and capsid-coding regions showed that the inoculated parental MSD1 sequences were conserved in the leukemic spleens. This is the first report of a replication-competent MuLV lacking oncogenes which can rapidly lead to the development of such a broad range of leukemic cell types. Moreover, the ability of MSD1 to transform erythroid and myelomonocytic lineages is not due to changes in the U3 viral enhancer region but rather is the result of a cis-acting effect of the capsid-coding gag sequence.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Capsid/genetics
- Capsid/physiology
- Cell Line
- Cell Transformation, Neoplastic
- Cell Transformation, Viral
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/physiology
- Gene Products, gag/genetics
- Gene Products, gag/physiology
- Genes, Viral
- Leukemia, Erythroblastic, Acute/classification
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Erythroblastic, Acute/virology
- Leukemia, Myelomonocytic, Acute/classification
- Leukemia, Myelomonocytic, Acute/pathology
- Leukemia, Myelomonocytic, Acute/virology
- Mice
- Moloney murine leukemia virus/genetics
- Moloney murine leukemia virus/physiology
- Mutagenesis
- Retroviridae Infections/pathology
- Retroviridae Infections/virology
- Terminal Repeat Sequences
- Tumor Virus Infections/pathology
- Tumor Virus Infections/virology
Collapse
Affiliation(s)
- M Audit
- Institut de Génétique Moléculaire de Montpellier (IGMM), IFR24, CNRS-UMR5535, and Université Montpellier II, F-34293 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Lavignon M, Evans L. A multistep process of leukemogenesis in Moloney murine leukemia virus-infected mice that is modulated by retroviral pseudotyping and interference. J Virol 1996; 70:3852-62. [PMID: 8648721 PMCID: PMC190262 DOI: 10.1128/jvi.70.6.3852-3862.1996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mixed retroviral infections frequently exhibit pseudotyping, in which the genome of one virus is packaged in a virion containing SU proteins encoded by another virus. Infection of mice by Moloney murine leukemia virus (M-MuLV), which induces lymphocytic leukemia, results in a mixed viral infection composed of the inoculated ecotropic M-MuLV and polytropic MuLVs generated by recombination of M-MuLV with endogenous retroviral sequences. In this report, we describe pseudotyping which occurred among the polytropic and ecotropic MuLVs in M-MuLV-infected mice. Infectious center assays of polytropic MuLVs released from splenocytes or thymocytes of infected mice revealed that polytropic MuLVs were extensively pseudotyped within ecotropic virions. Late in the preleukemic stage, a dramatic change in the extent of pseudotyping occurred in thymuses. Starting at about 5 weeks, there was an abrupt increase in the number of thymocytes that released nonpseudotyped polytropic viruses. A parallel increase in thymocytes that released ecotropic M-MuLV packaged within polytropic virions was also observed. Analyses of the clonality of preleukemic thymuses and thymomas suggested that the change in pseudotyping characteristics was not the result of the emergence of tumor cells. Examination of mice infected with M-MuLV, Friend erythroleukemia virus, and a Friend erythroleukemia virus-M-MuLV chimeric virus suggested that the appearance of polytropic virions late in the preleukemic stage correlated with the induction of lymphocytic leukemia. We discuss different ways in which pseudotypic mixing may facilitate leukemogenesis, including a model in which the kinetics of thymic infection, modulated by pseudotyping and viral interference, facilitates a stepwise mechanism of leukemogenesis.
Collapse
Affiliation(s)
- M Lavignon
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| | | |
Collapse
|
11
|
Corbin A, Sitbon M. Protection against retroviral diseases after vaccination is conferred by interference to superinfection with attenuated murine leukemia viruses. J Virol 1993; 67:5146-52. [PMID: 8394442 PMCID: PMC237912 DOI: 10.1128/jvi.67.9.5146-5152.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cell cultures expressing a retroviral envelope are relatively resistant to superinfection by retroviruses which bear envelopes using the same receptor. We tested whether this phenomenon, known as interference to superinfection, might confer protection against retroviral diseases. Newborn mice first inoculated with the attenuated strain B3 of Friend murine leukemia virus (F-MuLV) were protected against severe early hemolytic anemia and nonacute anemiant erythroleukemia induced by the virulent strain 57 of F-MuLV. Vaccinated animals were also protected as adults against acute polycythemic erythroleukemia induced upon inoculation with the viral complex containing the defective spleen focus-forming virus and F-MuLV 57 as helper virus. Animals were inoculated as newborns, which is known to induce immune tolerance in mice, and the rapid kinetics of protection, incompatible with the delay necessary for the immune response to develop, indicated that protection was not due to an immune mechanism but rather was due to the rapid and long-lasting phenomenon of interference. This result was confirmed by combining parental and envelope chimeric MuLV from different interference groups as vaccinal and challenge viruses. Although efficient protection could be provided by vaccination by interference, we observed that attenuated replication-competent retroviruses from heterologous interference groups might exert deleterious synergistic effects.
Collapse
MESH Headings
- Aging/immunology
- Animals
- Animals, Newborn
- Cell Line
- Friend murine leukemia virus/immunology
- Immune Tolerance
- Leukemia Virus, Murine/immunology
- Leukemia Virus, Murine/pathogenicity
- Leukemia, Erythroblastic, Acute/immunology
- Leukemia, Erythroblastic, Acute/prevention & control
- Leukemia, Experimental/immunology
- Leukemia, Experimental/prevention & control
- Mice
- Mice, Inbred Strains
- Retroviridae/immunology
- Tumor Virus Infections/immunology
- Tumor Virus Infections/prevention & control
- Vaccines, Attenuated/therapeutic use
- Viral Vaccines/therapeutic use
Collapse
Affiliation(s)
- A Corbin
- Laboratoire d'Oncologie Cellulaire et Moléculaire, Unité INSERM 363, Institut Cochin de Génétique Moléculaire, Université Paris V, France
| | | |
Collapse
|
12
|
Chesebro B, Wehrly K, Maury W. Differential expression in human and mouse cells of human immunodeficiency virus pseudotyped by murine retroviruses. J Virol 1990; 64:4553-7. [PMID: 2166831 PMCID: PMC247927 DOI: 10.1128/jvi.64.9.4553-4557.1990] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Expression of cell surface CD4 influences susceptibility of cells to human immunodeficiency virus (HIV) infection; however, some CD4-positive human and mouse cells are still resistant to HIV infection. To search for mechanisms of resistance to HIV independent of CD4 expression, HIV expression was studied in human and mouse cells normally resistant to HIV infection by introducing infectious virus by transfection of HIV DNA or infection with HIV pseudotyped with amphotropic or polytropic murine leukemia viruses. The results indicated that even when barriers to viral entry were bypassed, mouse NIH 3T3 cells and Dunni cells still showed a marked reduction in number of cells expressing HIV compared with the human cells studied, although the intensity of immunostaining of individual positive mouse cells was indistinguishable from that seen on permissive human cell lines. CD4 expression in mouse cells or human brain or skin cells did not influence the number of HIV foci observed after transfection with HIV DNA or infection with pseudotyped HIV. These results suggested that in addition to a block in the usual HIV fusion and entry process, CD4-positive mouse cells differed from human cells in exhibiting partial resistance to HIV infection which acted at a postpenetration step in the infection cycle. This resistance was partially overcome when mouse cells were infected by direct exposure to human lymphocytes producing HIV pseudotyped by amphotropic murine leukemia virus.
Collapse
Affiliation(s)
- B Chesebro
- Laboratory of Persistent Viral Disease, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | | | | |
Collapse
|
13
|
Kozak SL, Kabat D. Ping-pong amplification of a retroviral vector achieves high-level gene expression: human growth hormone production. J Virol 1990; 64:3500-8. [PMID: 2352330 PMCID: PMC249616 DOI: 10.1128/jvi.64.7.3500-3508.1990] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Retroviral vectors offer major advantages for gene transfer studies but have not been useful for producing proteins in large quantities. This deficiency has resulted in part from interference to superinfection, which limits the numbers of active proviruses in cells. Recently, we found that these vectors amplify when they are added as calcium phosphate precipitates to cocultures of cells that package retroviruses into ecotropic and amphotropic host range envelopes. Helper-free virions from either cell type can infect the other without interference, resulting in theoretically limitless back-and-forth (ping-pong) vector replication. In initial studies, however, amplifications of a vector that contained the human growth hormone gene ceased when the hormone produced was 0.3% or less of cellular protein synthesis. This limit was caused by two factors. First, recombinant shutoff viruses that are replication defective and encode envelope glycoproteins form at a low probability during any round of the vector replication cycle and these spread in cocultures, thereby establishing interference. Single cells in shutoff cocultures therefore synthesize both ecotropic and amphotropic envelope glycoproteins, and they release promiscuous (presumably hybrid) virions. The probability of forming shutoff viruses before the vector had amplified to a high multiplicity was reduced by using small cocultures. Second, cells with large numbers of proviruses are unhealthy and their proviral expression can be unstable. Stable expresser cell clones were obtained by selection. Thereby, cell lines were readily obtained that stably produce human growth hormone as 4 to 6% of the total protein synthesis. A ping-pong retroviral vector can be used for high-level protein production in vertebrate cells.
Collapse
Affiliation(s)
- S L Kozak
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health Sciences University, Portland 97201-3098
| | | |
Collapse
|
14
|
Sitbon M, Ellerbrok H, Pozo F, Nishio J, Hayes SF, Evans LH, Chesebro B. Sequences in the U5-gag-pol region influence early and late pathogenic effects of Friend and Moloney murine leukemia viruses. J Virol 1990; 64:2135-40. [PMID: 2182908 PMCID: PMC249371 DOI: 10.1128/jvi.64.5.2135-2140.1990] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Friend replication-competent murine leukemia virus (F-MuLV), clone 57, induces a severe early hemolytic anemia and a later erythroleukemia after inoculation of newborn IRW or ICFW mice, whereas Moloney MuLV (M-MuLV) induces only lymphoid leukemia. We have shown previously that the attenuated hemolytic and erythroleukemogenic abilities of an F-MuLV variant, clone B3, were due mostly to changes in the env gene and long terminal repeat, respectively. For the present study, we derived two constructs exchanging env fragments of F-MuLV 57 and M-MuLV and compared them with two constructs described by Chatis et al. (J. Virol. 52:248-254, 1984) exchanging the U3 region of the long terminal repeat of the same parental viruses. When comparing the hemolytic effect of these constructs with those of the parent, we found that the U5-gag-pol region of F-MuLV was required for development of severe early hemolytic anemia and that, unlike the env of F-MuLV B3, the env of M-MuLV was fully competent in inducing severe early hemolytic anemia when associated with the F-MuLV U5-gag-pol and U3 regions. As expected, induction of erythroleukemia depended on the presence of the F-MuLV U3 region; however, the presence of both the U3 and U5-gag-pol regions of F-MuLV appeared to be synergistic and was associated with a more rapid appearance of erythroleukemia.
Collapse
Affiliation(s)
- M Sitbon
- Laboratoire d'Immunologie et Oncologie des Maladies Rétrovirales, Hôpital Cochin, Institut National de la Santé et de la Recherche Médicale U152, Paris, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Chesebro B, Buller R, Portis J, Wehrly K. Failure of human immunodeficiency virus entry and infection in CD4-positive human brain and skin cells. J Virol 1990; 64:215-21. [PMID: 2293663 PMCID: PMC249089 DOI: 10.1128/jvi.64.1.215-221.1990] [Citation(s) in RCA: 157] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CD4 molecules on human cells function as a major receptor for human immunodeficiency virus (HIV); however, certain CD4-negative cell types may also be susceptible to infection. Therefore, we attempted to quantitate the relationship between HIV infection and CD4 expression on human cell lines before and after introduction of the CD4 gene by using a retrovirus vector. Prior to introduction of the CD4 expression vector, low levels of HIV infection were detected by a sensitive focal immunoassay on all three cell types studied. With several HIV strains in clones of human cervical carcinoma (HeLa) cells expressing different levels of CD4, HIV titer increased with increasing CD4 expression. In contrast, in squamous cell carcinoma cells (SCL1) and astroglial cells (U87MG), even high levels of CD4 expression failed to augment HIV infection. The CD4 protein expressed in these two cell lines had the expected molecular weight and was capable of binding HIV virions. However, in contrast to CD4-positive HeLa cells, CD4-positive U87MG and SCL1 cells were unable to form syncytia when cultured with cells expressing HIV envelope protein. Thus, the inability of HIV to infect these cells appeared to be due to lack of fusion between HIV virion envelope proteins and CD4-positive cell membranes. This block is infectivity was overcome when cells were infected with HIV which was pseudotyped with the envelope protein of amphotropic murine leukemia virus. Thus, in addition to CD4, other cell surface molecules appear to be required for successful HIV entry into and infection of these two human cell lines.
Collapse
Affiliation(s)
- B Chesebro
- National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, Montana 59840
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- E Hunter
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | |
Collapse
|
17
|
Carpenter S, Chesebro B. Change in host cell tropism associated with in vitro replication of equine infectious anemia virus. J Virol 1989; 63:2492-6. [PMID: 2470916 PMCID: PMC250709 DOI: 10.1128/jvi.63.6.2492-2496.1989] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Similar to other human and animal lentiviruses, equine infectious anemia virus (EIAV) is detectable in vivo in cells of the monocyte-macrophage lineage. Owing to their short-lived nature, horse peripheral blood macrophage cultures (HMC) are rarely used for in vitro propagation of EIAV, and equine dermal (ED) or kidney cell cultures, which can be repeatedly passed in vitro, are used in most studies. However, wild-type isolates of EIAV will not grow in these cell types without extensive adaptation, a process which may attenuate viral virulence. To better define the effect of host cell tropism on the virulence and pathogenesis of EIAV, we studied a field isolate of EIAV during in vitro adaptation to growth in an ED cell line. Interestingly, as the virus adapted to growth in ED cells, there was a corresponding decrease in infectivity for HMC, and the final ED-adapted isolate was more than 100-fold more infectious for ED cells than for HMC. In vivo studies indicated that the ED-adapted isolate was able to replicate in experimentally infected horses, although no clinical signs of EIA were observed. Thus, selection for in vitro replication on ED cells correlated with a loss of EIAV tropism for HMC in vitro and was associated with avirulence in vivo.
Collapse
Affiliation(s)
- S Carpenter
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | | |
Collapse
|
18
|
Buller RS, Sitbon M, Portis JL. The endogenous mink cell focus-forming (MCF) gp70 linked to the Rmcf gene restricts MCF virus replication in vivo and provides partial resistance to erythroleukemia induced by Friend murine leukemia virus. J Exp Med 1988; 167:1535-46. [PMID: 2835418 PMCID: PMC2188947 DOI: 10.1084/jem.167.5.1535] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Rmcf locus restricts the in vitro replication of mink cell focus-forming (MCF) viruses in cell cultures derived from mice carrying the resistance allele. Previously we reported that in cell cultures from first backcross progeny, this Rmcf-linked restriction segregates with the expression of an endogenous retroviral gp70 serologically related to that of MCF viruses. The current report details the results of genetic studies designed to examine the possible association of this endogenous gp70 with resistance of mice to Friend murine leukemia virus (F-MuLV)-induced erythroleukemia. This env gene segregates as a single dominant trait in (DBA/2 X IRW) X IRW progeny, in which the expression of the gene can be detected by serological techniques. Results indicated that the gp70- progeny developed leukemia at the same rate as the susceptible IRW parent, whereas the tempo of disease among the gp70+ progeny was significantly slower. However, the resistance mediated by this gene was only partial, since most of the gp70+ offspring eventually developed erythroleukemia when followed for 6 mo. This endogenous gp70 also segregated with a restriction to the expression of recombinant MCF viruses after infection with F-MuLV. Since in this study all unlinked genes segregated independently, this is direct evidence that MCF viruses participate in the induction of erythroleukemia.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Crosses, Genetic
- Fibroblasts/microbiology
- Friend murine leukemia virus/physiology
- Genes, Dominant
- Genes, Viral
- Immunity, Innate
- Leukemia Virus, Murine/physiology
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/microbiology
- Leukemia, Experimental/genetics
- Leukemia, Experimental/microbiology
- Mice
- Mice, Inbred DBA/genetics
- Mice, Inbred DBA/microbiology
- Mice, Inbred Strains/genetics
- Mice, Inbred Strains/microbiology
- Mink Cell Focus-Inducing Viruses/genetics
- Mink Cell Focus-Inducing Viruses/isolation & purification
- Mink Cell Focus-Inducing Viruses/physiology
- Retroviridae Proteins/genetics
- Retroviridae Proteins/physiology
- Retroviridae Proteins, Oncogenic
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/physiology
- Viral Interference
- Virus Replication
Collapse
Affiliation(s)
- R S Buller
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, Montana 59840
| | | | | |
Collapse
|
19
|
Evans LH, Malik FG. Class II polytropic murine leukemia viruses (MuLVs) of AKR/J mice: possible role in the generation of class I oncogenic polytropic MuLVs. J Virol 1987; 61:1882-92. [PMID: 3033319 PMCID: PMC254194 DOI: 10.1128/jvi.61.6.1882-1892.1987] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We examined the frequency of occurrence of polytropic murine leukemia viruses (MuLVs) in the spleens and thymuses of preleukemic AKR/J mice from 1 week to 6 months of age and analyzed the genomic RNAs of several polytropic isolates by RNase T1 oligonucleotide fingerprinting. Polytropic MuLVs were first detected in the spleens of 3-week-old mice and preceded the appearance of polytropic MuLVs in the thymus by over 1 month. At 4 months of age and older, nearly all mice expressed polytropic MuLVs in both organs. In contrast to previous studies which have identified class I polytropic MuLVs in AKR/J mice, fingerprint analysis of polytropic MuLVs from both young (3- to 4-week-old) and older (5- to 6-month-old) preleukemic mice indicated that a large proportion of viruses at both ages were class II polytropic MuLVs. All polytropic viruses (five isolates) analyzed from 3- to 4-week-old mice were recovered from spleen cells and were class II polytropic MuLVs. In older preleukemic mice, five of seven isolates were class II polytropic MuLVs and two were class I polytropic viruses. Class I and class II polytropic MuLVs were recovered from both the spleens and thymuses of older preleukemic mice. A detailed comparison of the class I and class II polytropic MuLVs from 5- to 6-month-old mice revealed that the nonecotropic gp70 sequences of most of the class I and class II MuLVs were identical, consistent with a common origin for these sequences. In contrast, the nonecotropic p15E sequences of class I MuLVs were clearly derived from different endogenous sequences than the nonecotropic p15E sequences of the class II MuLVs. The in vitro host ranges of class I and class II polytropic viruses were clearly distinguishable. Examination of the in vitro host range of several isolates suggested that the predominant polytropic viruses initially identified in the thymus (2 to 3 months of age) were class II polytropic viruses. The order of appearance of the class I and class II polytropic MuLVs and the identity of the gp70 oligonucleotides of these MuLVs suggested a model for the stepwise generation of class I polytropic MuLVs involving a class II polytropic MuLV intermediate.
Collapse
|
20
|
Evans LH, Morrey JD. Tissue-specific replication of Friend and Moloney murine leukemia viruses in infected mice. J Virol 1987; 61:1350-7. [PMID: 3033265 PMCID: PMC254109 DOI: 10.1128/jvi.61.5.1350-1357.1987] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have studied the replication of ecotropic murine leukemia viruses (MuLV) in the spleens and thymuses of mice infected with the lymphocytic leukemia-inducing virus Moloney MuLV (M-MuLV), with the erythroleukemia-inducing virus Friend MuLV (F-MuLV), or with in vitro-constructed recombinants between these viruses in which the long terminal repeat (LTR) sequences have been exchanged. At 1 week after infection both the parents and the LTR recombinants replicated predominantly in the spleens with only low levels of replication in the thymus. At 2 weeks after infection, the patterns of replication in the spleens and thymuses were strongly influenced by the type of LTR. Viruses containing the M-MuLV LTR exhibited a remarkable elevation in thymus titers which frequently exceeded the spleen titers, whereas viruses containing the F-MuLV LTR replicated predominantly in the spleen. In older preleukemic mice (5 to 8 weeks of age) the structural genes of M-MuLV or F-MuLV predominantly influenced the patterns of replication. Viruses containing the structural genes of M-MuLV replicated efficiently in both the spleen and thymus, whereas viruses containing the structural genes of F-MuLV replicated predominantly in the spleen. In leukemic mice infected with the recombinant containing F-MuLV structural genes and the M-MuLV LTR, high levels of virus replication were observed in splenic tumors but not in thymic tumors. This phenotypic difference suggested that tumors of the spleen and thymus may have originated by the independent transformation of different cell types. Quantification of polytropic MulVs in late-preleukemic mice infected with each of the ecotropic MuLVs indicated that the level of polytropic MuLV replication closely paralleled the level of replication of the ecotropic MuLVs in all instances. These studies indicated that determinants of tissue tropism are contained in both the LTR and structural gene sequences of F-MuLV and M-MuLV and that high levels of ecotropic or polytropic MuLV replication, per se, are not sufficient for leukemia induction. Our results further suggested that leukemia induction requires a high level of virus replication in the target organ only transiently during an early preleukemic stage of disease.
Collapse
|
21
|
Ostertag W, Stocking C, Johnson GR, Kluge N, Kollek R, Franz T, Hess N. Transforming genes and target cells of murine spleen focus-forming viruses. Adv Cancer Res 1987; 48:193-355. [PMID: 3039810 DOI: 10.1016/s0065-230x(08)60693-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Earl PL, Moss B, Morrison RP, Wehrly K, Nishio J, Chesebro B. T-lymphocyte priming and protection against Friend leukemia by vaccinia-retrovirus env gene recombinant. Science 1986; 234:728-31. [PMID: 3490689 DOI: 10.1126/science.3490689] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The current prevalence of the acquired immune deficiency syndrome in humans has provoked renewed interest in methods of protective immunization against retrovirus-induced diseases. In this study, a vaccinia-retrovirus recombinant vector was constructed to study mechanisms of immune protection against Friend virus leukemia in mice. The envelope (env) gene from Friend murine leukemia virus (F-MuLV) was inserted into the genome of a vaccinia virus expression vector. Infected cells synthesized gp85, the glycosylated primary product of the env gene. Processing to gp70 and p15E, and cell surface localization, were similar to that occurring in cells infected with F-MuLV. Mice inoculated with live recombinant vaccinia virus had an envelope-specific T-cell proliferative response and, after challenge with Friend virus complex, developed neutralizing antibody and cytotoxic T cells (CTL) and were protected against leukemia. In contrast, unimmunized and control groups developed a delayed neutralizing antibody response, but no detectable CTL, and succumbed to leukemia. Genes of the major histocompatibility complex influenced protection induced by the vaccinia recombinant but not that induced by attenuated N-tropic Friend virus.
Collapse
|
23
|
Abstract
An immunological focus assay using monoclonal antibodies on live adherent in vitro cell lines was employed to detect and isolate different types of murine leukemia viruses (MuLVs) from spleen and thymus cells of young (less than 1 month of age) AKR/J mice. In agreement with earlier studies, ecotropic viruses were detected from cells of both tissues in all mice tested, although only trace levels of ecotropic MuLV infectious centers were found with thymus cells from mice of this age. Polytropic MuLVs were not detected in mice less than 3 weeks of age; however, between the ages of 3 and 4 weeks, polytropic viruses were detectable in assays of spleen cells from 50% of the mice. No polytropic MuLVs were detected in assays of thymocytes from any mice of this age. Several polytropic MuLVs obtained from spleens of young mice were further characterized. All of the isolates were infectious for both mink and SC-1 (feral mouse) cells, and exhibited interference properties typical of polytropic MuLVs. However, none of the viruses induced obvious cytopathic effects (CPE) on mink cells. All of the viruses appeared antigenically similar with regard to their reactivities to a panel of 12 monoclonal antibodies directed at envelope antigens of polytropic MuLVs. RNase T1-resistant oligonucleotide analysis of a polytropic MuLV from a 26-day-old mouse indicated that its entire env gene was derived from nonecotropic sequences while the remainder of its genome was indistinguishable from the ecotropic parent. The isolate thus exhibited a genome structure typical of Class II polytropic MuLVs and is the first example of this type of MuLV isolated from AKR/J mice. Examination of polytropic MuLVs derived from the spleens and thymuses of 5- to 6-month-old mice indicated that only 2 of 10 isolates examined induced CPE on mink cells. Furthermore, most of the CPE-negative viruses isolated from spleen and thymus cells of these mice exhibited in vitro host ranges and antigenic reactivities similar to isolates from young mice, suggesting that this type of polytropic MuLV may originate in the spleen, subsequently spread to other tissues, and persist throughout the preleukemic period. The detection of polytropic viruses in a large proportion of very young mice is in contrast to previous studies which have not detected polytropic virus production in AKR mice less than 5 to 6 months of age.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
24
|
Sitbon M, Evans L, Nishio J, Wehrly K, Chesebro B. Analysis of two strains of Friend murine leukemia viruses differing in ability to induce early splenomegaly: lack of relationship with generation of recombinant mink cell focus-forming viruses. J Virol 1986; 57:389-93. [PMID: 3001361 PMCID: PMC252743 DOI: 10.1128/jvi.57.1.389-393.1986] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Friend murine leukemia helper viruses (F-MuLV) 57 and B3 were indistinguishable by genomic structural analyses with RNase T1-resistant oligonucleotide fingerprinting and by antigenic reactivity with a panel of 31 monoclonal antibodies directed against murine leukemia viruses. Nevertheless, F-MuLV 57 and B3 had strikingly different virulences. Approximately 2 months after inoculation, IRW and NFS/N mice inoculated as newborns with F-MuLV 57 had gross splenomegaly caused by erythroid proliferation. In contrast, an equivalent dose of F-MuLV B3 induced spleen or lymph node enlargement 4 to 13 months after inoculation. Although most cases of spleen enlargement in F-MuLV B3-inoculated mice were due to erythroid proliferation, lymphoid or myeloid proliferation was also frequently observed. The replication of both F-MuLV 57 and B3 was equally efficient, and both viruses generated recombinant dual-tropic mink cell focus-forming (MCF) viruses with the same kinetics and efficiency. Moreover, MCF viruses induced by F-MuLV 57 and B3 had the same antigenic patterns. Therefore, the ability of F-MuLV to induce early splenomegaly did not correlate with the generation of recombinant MCF viruses.
Collapse
|
25
|
Sitbon M, Nishio J, Wehrly K, Lodmell D, Chesebro B. Use of a focal immunofluorescence assay on live cells for quantitation of retroviruses: distinction of host range classes in virus mixtures and biological cloning of dual-tropic murine leukemia viruses. Virology 1985; 141:110-8. [PMID: 2983493 DOI: 10.1016/0042-6822(85)90187-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A rapid and sensitive focal immunofluorescence assay (FIA) using monoclonal antibodies or heterologous antisera was employed for detection and biological cloning of viruses capable of inducing viral antigens on cell surfaces. The FIA was performed directly on a variety of live cells in tissue culture dishes and was used successfully with C-type murine leukemia viruses (MuLV) of different tropism including ecotropic, xenotropic, amphotropic, and dual-tropic recombinant mink cell focus-inducing (MCF) viruses. With the FIA, we were able to titrate and distinguish ecotropic Friend-MuLV and Friend-MCF viruses present in mixtures. Dual-tropic MCF viruses could be specifically detected directly in mouse cells by using MCF-specific monoclonal antibodies. These antibodies replaced the requirement for production of typical MCF cytopathic effect in mink cells for MCF virus detection, and also allowed efficient titration in mouse cells of MCF virions pseudotyped with ecotropic envelope proteins. Furthermore, by picking foci of fluorescent cells and using their cell-free viral progeny, MCF viruses were cloned from complex pseudotypic mixtures. This allowed the cloning of viruses present at low frequency in heterogeneous mixtures obtained from leukemic tissues.
Collapse
|