1
|
Roy Chowdhury N, Gurevich V, Shamay M. KSHV genome harbors both constitutive and lytically induced enhancers. J Virol 2024; 98:e0017924. [PMID: 38695538 PMCID: PMC11237633 DOI: 10.1128/jvi.00179-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/03/2024] [Indexed: 06/14/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma-herpesvirus family and is a well-known human oncogenic virus. In infected cells, the viral genome of 165 kbp is circular DNA wrapped in chromatin. The tight control of gene expression is critical for latency, the transition into the lytic phase, and the development of viral-associated malignancies. Distal cis-regulatory elements, such as enhancers and silencers, can regulate gene expression in a position- and orientation-independent manner. Open chromatin is another characteristic feature of enhancers. To systematically search for enhancers, we cloned all the open chromatin regions in the KSHV genome downstream of the luciferase gene and tested their enhancer activity in infected and uninfected cells. A silencer was detected upstream of the latency-associated nuclear antigen promoter. Two constitutive enhancers were identified in the K12p-OriLyt-R and ORF29 Intron regions, where ORF29 Intron is a tissue-specific enhancer. The following promoters: OriLyt-L, PANp, ALTp, and the terminal repeats (TRs) acted as lytically induced enhancers. The expression of the replication and transcription activator (RTA), the master regulator of the lytic cycle, was sufficient to induce the activity of lytic enhancers in uninfected cells. We propose that the TRs that span about 24 kbp region serve as a "viral super-enhancer" that integrates the repressive effect of the latency-associated nuclear antigen (LANA) with the activating effect of RTA. Utilizing CRISPR activation and interference techniques, we determined the connections between these enhancers and their regulated genes. The silencer and enhancers described here provide an additional layer to the complex gene regulation of herpesviruses.IMPORTANCEIn this study, we performed a systematic functional assay to identify cis-regulatory elements within the genome of the oncogenic herpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV). Similar to other herpesviruses, KSHV presents both latent and lytic phases. Therefore, our assays were performed in uninfected cells, during latent infection, and under lytic conditions. We identified two constitutive enhancers, one of which seems to be a tissue-specific enhancer. In addition, four lytically induced enhancers, which are all responsive to the replication and transcription activator (RTA), were identified. Furthermore, a silencer was identified between the major latency promoter and the lytic gene locus. Utilizing CRISPR activation and interference techniques, we determined the connections between these enhancers and their regulated genes. The terminal repeats, spanning a region of about 24 kbp, seem like a "viral super-enhancer" that integrates the repressive effect of the latency-associated nuclear antigen (LANA) with the activating effect of RTA to regulate latency to lytic transition.
Collapse
Affiliation(s)
- Nilabja Roy Chowdhury
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Vyacheslav Gurevich
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Meir Shamay
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
2
|
Human cytomegalovirus pp71 stimulates major histocompatibility complex class i presentation of IE1-derived peptides at immediate early times of infection. J Virol 2013; 87:5229-38. [PMID: 23449799 DOI: 10.1128/jvi.03484-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Suppression of major histocompatibility complex (MHC) class I-mediated presentation of human cytomegalovirus (HCMV) peptides is an important mechanism to avoid CD8 T lymphocyte recognition and killing of infected cells. Of particular interest is how MHC class I presentation of essential regulatory immediate early (IE) proteins of HCMV can be effectively compromised at times when known viral immunoevasins are not abundantly expressed. The tegument protein pp71 had been suggested to be involved in MHC class I downregulation. Intriguingly, this polypeptide is also critically engaged in the initial derepression of the major IE gene locus, leading to enhanced expression of IE proteins IE1-pp72 and IE2-pp86. Using a set of viral mutants, we addressed the role of pp71 in MHC class I presentation of IE1-pp72-derived peptides. We show that the amount of "incoming" pp71 positively correlates with IE1-pp72 protein levels and with the presentation of IE1-derived peptides. This indicates that the amount of the IE1 protein, induced by pp71, rather than a putative immunoevasive function of the tegument protein, determines MHC class I antigen presentation of IE1-derived peptides. This process proved to be independent of the presence of pp65, which had been reported to interfere with IE1 presentation. It may thus be beneficial for the success of HCMV replication to limit the level of pp71 delivered from infecting particles in order to avoid critical levels of MHC class I presentation of IE protein-derived peptides.
Collapse
|
3
|
Hesse J, Ameres S, Besold K, Krauter S, Moosmann A, Plachter B. Suppression of CD8+ T-cell recognition in the immediate-early phase of human cytomegalovirus infection. J Gen Virol 2012; 94:376-386. [PMID: 23100361 DOI: 10.1099/vir.0.045682-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) interferes with MHC class I-restricted antigen presentation and thereby reduces recognition by CD8(+) T-cells. This interference is mediated primarily by endoplasmic reticulum-resident glycoproteins that are encoded in the US2-11 region of the viral genome. Such a suppression of recognition would be of particular importance immediately after infection, because several immunodominant viral antigens are already present in the cell in this phase. However, which of the evasion proteins gpUS2-11 interfere(s) with antigen presentation to CD8(+) T-cells at this time of infection is not known. Here we address this question, using recombinant viruses (RV) that express only one of the immunoevasins gpUS2, gpUS3 or gpUS11. Infection with RV-US3 had only a limited impact on the presentation of peptides from the CD8(+) T-cell antigens IE1 and pp65 under immediate-early (IE) conditions imposed by cycloheximide/actinomycin D blocking. Unexpectedly, both RV-US2 and RV-US11 considerably impaired the recognition of IE1 and pp65 by CD8(+) T-cells, and both US2 and, to a lesser extent, US11 were transcribed under IE conditions. Thus, gpUS2 and gpUS11 are key effectors of MHC class I immunoevasion immediately after HCMV infection.
Collapse
Affiliation(s)
- Julia Hesse
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stefanie Ameres
- Clinical Cooperation Group Immunooncology, Helmholtz Zentrum München and Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin Besold
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Steffi Krauter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Moosmann
- Clinical Cooperation Group Immunooncology, Helmholtz Zentrum München and Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
4
|
Ma Y, Wang N, Li M, Gao S, Wang L, Zheng B, Qi Y, Ruan Q. Human CMV transcripts: an overview. Future Microbiol 2012; 7:577-93. [PMID: 22568714 DOI: 10.2217/fmb.12.32] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human CMV (HCMV) genome consists of an approximately 230-kb dsDNA and is predicted to contain over 165 open reading frames. Although the entire sequence of the laboratory-adapted AD169 strain of HCMV was first available in 1991, the precise number and nature of viral genes and gene products are still unclear. Fewer than 100 predicted genes have been convincingly elucidated with respect to their expression patterns, transcript structure and transcription characteristics. The high gene number of HCMV creates a crowded genome with many overlapping transcriptional units. 3´- or 5´-coterminal overlapping polycistronic transcripts could use a common promoter element or a poly-A signal. 3´-coterminal monocistronic transcripts could encode 'nested' open reading frames, which possess different initiation but the same termination sites. As a virus with eukaryotic cells as the host, HCMV has the capacity to splice out introns during transcription. Major alternately spliced mRNA species of HCMV originate primarily, but not exclusively, from the immediate early gene regions. Alternate splicing patterns of the mRNAs could encode a number of gene products with different sizes. In recent years, some antisense and noncoding transcripts of HCMV have been reported. These RNAs probably have functions in genomic replication or the regulation of gene expression.
Collapse
Affiliation(s)
- Yanping Ma
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning of PR China, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Liu H, Duan Z, Zheng H, Hu D, Li M, Tao Y, Bode AM, Dong Z, Cao Y. EBV-encoded LMP1 upregulates Igκ 3'enhancer activity and Igκ expression in nasopharyngeal cancer cells by activating the Ets-1 through ERKs signaling. PLoS One 2012; 7:e32624. [PMID: 22396784 PMCID: PMC3291551 DOI: 10.1371/journal.pone.0032624] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 02/01/2012] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence indicates that epithelial cancer cells, including nasopharyngeal carcinoma (NPC) cells, express immunoglobulins (Igs). We previously found that the expression of the kappa light chain protein in NPC cells can be upregulated by the EBV-encoded latent membrane protein 1 (LMP1). In the present study, we used NPC cell lines as models and found that LMP1-augmented kappa production corresponds with elevations in ERKs phosphorylation. PD98059 attenuates LMP1-induced ERKs phosphorylation resulting in decreased expression of the kappa light chain. ERK-specific small interfering RNA blunts LMP1-induced kappa light chain gene expression. Luciferase reporter assays demonstrate that immunoglobulin κ 3′ enhancer (3′Eκ) is active in Igκ-expressing NPC cells and LMP1 upregulates the activity of 3′Eκ in NPC cells. Moreover, mutation analysis of the PU binding site in 3′Eκ and inhibition of the MEK/ERKs pathway by PD98059 indicate that the PU site is functional and LMP1-enhanced 3′Eκ activity is partly regulated by this site. PD98059 treatment also leads to a concentration-dependent inhibition of LMP1-induced Ets-1 expression and phosphorylation, which corresponds with a dose-dependent attenuation of LMP1-induced ERK phosphorylation and kappa light chain expression. Suppression of endogenous Ets-1 by small interfering RNA is accompanied by a decrease of Ig kappa light chain expression. Gel shift assays using nuclear extracts of NPC cells indicate that the transcription factor Ets-1 is recruited by LMP1 to the PU motif within 3′Eκin vitro. ChIP assays further demonstrate Ets-1 binding to the PU motif of 3′Eκ in cells. These results suggest that LMP1 upregulates 3′Eκ activity and kappa gene expression by activating the Ets-1 transcription factor through the ERKs signaling pathway. Our studies provide evidence for a novel regulatory mechanism of kappa expression, by which virus-encoded proteins activate the kappa 3′ enhancer through activating transcription factors in non-B epithelial cancer cells.
Collapse
Affiliation(s)
- Haidan Liu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
- State Key Laboratory of Medical Genetics, Clinical Center for Gene Diagnosis and Therapy, Central South University, The Second Xiangya Hospital, Changsha, China
- Department of Cardiothoracic Surgery, Central South University, The Second Xiangya Hospital, Changsha, China
| | - Zhi Duan
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui Zheng
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Duosha Hu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ming Li
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongguang Tao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
- * E-mail: (ZGD); (YC)
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
- * E-mail: (ZGD); (YC)
| |
Collapse
|
6
|
Gatherer D, Seirafian S, Cunningham C, Holton M, Dargan DJ, Baluchova K, Hector RD, Galbraith J, Herzyk P, Wilkinson GWG, Davison AJ. High-resolution human cytomegalovirus transcriptome. Proc Natl Acad Sci U S A 2011; 108:19755-60. [PMID: 22109557 PMCID: PMC3241806 DOI: 10.1073/pnas.1115861108] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deep sequencing was used to bring high resolution to the human cytomegalovirus (HCMV) transcriptome at the stage when infectious virion production is under way, and major findings were confirmed by extensive experimentation using conventional techniques. The majority (65.1%) of polyadenylated viral RNA transcription is committed to producing four noncoding transcripts (RNA2.7, RNA1.2, RNA4.9, and RNA5.0) that do not substantially overlap designated protein-coding regions. Additional noncoding RNAs that are transcribed antisense to protein-coding regions map throughout the genome and account for 8.7% of transcription from these regions. RNA splicing is more common than recognized previously, which was evidenced by the identification of 229 potential donor and 132 acceptor sites, and it affects 58 protein-coding genes. The great majority (94) of 96 splice junctions most abundantly represented in the deep-sequencing data was confirmed by RT-PCR or RACE or supported by involvement in alternative splicing. Alternative splicing is frequent and particularly evident in four genes (RL8A, UL74A, UL124, and UL150A) that are transcribed by splicing from any one of many upstream exons. The analysis also resulted in the annotation of four previously unrecognized protein-coding regions (RL8A, RL9A, UL150A, and US33A), and expression of the UL150A protein was shown in the context of HCMV infection. The overall conclusion, that HCMV transcription is complex and multifaceted, has implications for the potential sophistication of virus functionality during infection. The study also illustrates the key contribution that deep sequencing can make to the genomics of nuclear DNA viruses.
Collapse
Affiliation(s)
- Derek Gatherer
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G11 5JR, United Kingdom
| | - Sepehr Seirafian
- School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and
| | - Charles Cunningham
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G11 5JR, United Kingdom
| | - Mary Holton
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G11 5JR, United Kingdom
| | - Derrick J. Dargan
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G11 5JR, United Kingdom
| | - Katarina Baluchova
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G11 5JR, United Kingdom
| | - Ralph D. Hector
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G11 5JR, United Kingdom
| | - Julie Galbraith
- Sir Henry Wellcome Functional Genomics Facility, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Pawel Herzyk
- Sir Henry Wellcome Functional Genomics Facility, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | - Andrew J. Davison
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G11 5JR, United Kingdom
| |
Collapse
|
7
|
Mandic L, Miller MS, Coulter C, Munshaw B, Hertel L. Human cytomegalovirus US9 protein contains an N-terminal signal sequence and a C-terminal mitochondrial localization domain, and does not alter cellular sensitivity to apoptosis. J Gen Virol 2009; 90:1172-1182. [DOI: 10.1099/vir.0.008466-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The human cytomegalovirus (CMV) US2–US11 genomic region contains a cluster of genes whose products interfere with antigen presentation by the major histocompatibility complex (MHC) proteins. Although included in this cluster, the US9 gene encodes a glycoprotein that does not affect MHC activity and whose function is still largely uncharacterized. An in silico analysis of the US9 amino-acid sequence uncovered the presence of an N-terminal signal sequence (SS) and a C-terminal transmembrane domain containing the specific hallmarks of known mitochondrial localization sequences (MLS). Expression of full-length US9 and of US9 deletion mutants fused to GFP revealed that the N-terminal SS mediates US9 targeting to the endoplasmic reticulum (ER) and that the C-terminal MLS is both necessary and sufficient to direct US9 to mitochondria in the absence of a functional SS. This dual localization suggested a possible role for US9 in protection from apoptosis triggered by ER-to-mitochondria signalling. Fibroblasts infected with the US2–US11 deletion mutant virus RV798 or with the parental strain AD169varATCC were equally susceptible to death triggered by exposure to tumour necrosis factor (TNF)-α, tunicamycin, thapsigargin, brefeldin A, lonidamine and carbonyl cyanide m-chloro phenyl hydrazone, but were 1.6-fold more sensitive to apoptosis induced by hygromycin B. Expression of US9 in human embryonic kidney 293T cells or in fibroblasts, however, did not protect cells from hygromycin B-mediated death. Together, these results classify US9 as the first CMV-encoded protein to contain an N-terminal SS and a C-terminal MLS, and suggest a completely novel role for this protein during infection.
Collapse
Affiliation(s)
- Lana Mandic
- Department of Microbiology and Immunology, Health Sciences Addition HSA320, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Matthew S. Miller
- Department of Microbiology and Immunology, Health Sciences Addition HSA320, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Corinne Coulter
- Department of Microbiology and Immunology, Health Sciences Addition HSA320, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Brian Munshaw
- Department of Microbiology and Immunology, Health Sciences Addition HSA320, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Laura Hertel
- Department of Microbiology and Immunology, Health Sciences Addition HSA320, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
8
|
Liu Z, Winkler M, Biegalke B. Human cytomegalovirus: host immune modulation by the viral US3 gene. Int J Biochem Cell Biol 2008; 41:503-6. [PMID: 18992841 DOI: 10.1016/j.biocel.2008.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 09/24/2008] [Accepted: 10/10/2008] [Indexed: 11/16/2022]
Abstract
Human cytomegalovirus (HCMV) is a common infection, opportunistically causing disease in people with immune system deficits. HCMV expresses several proteins that contribute to avoidance of the host immune response. The US3 gene is one of the first immune evasion genes expressed following infection. Expression of the US3 gene is highly regulated, with the gene encoding autoregulatory proteins. The largest of the US3 proteins, a 22 kDa resident endoplasmic reticulum protein, binds to MHC class I heavy chain complexes and components of the peptide loading complex, delaying the maturation of the MHC class I complexes and presentation of viral antigen on the surface of infected cells. A smaller US3 protein, a 17 kDa US3 protein, competes with the 22 kDa for protein interactions, counteracting, in part, the effects of the larger protein. The US3 amino acid sequence is highly conserved among clinical isolates and laboratory strains, suggesting an important role for this gene in natural infections in the human host.
Collapse
Affiliation(s)
- Ziqi Liu
- Program in Molecular and Cellular Biology, Ohio University, 228 Irvine Hall, Athens, OH 45701, USA
| | | | | |
Collapse
|
9
|
Shin J, Park B, Lee S, Kim Y, Biegalke BJ, Kang S, Ahn K. A short isoform of human cytomegalovirus US3 functions as a dominant negative inhibitor of the full-length form. J Virol 2007; 80:5397-404. [PMID: 16699020 PMCID: PMC1472136 DOI: 10.1128/jvi.02397-05] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human cytomegalovirus encodes four unique short (US) region proteins, each of which is independently sufficient for causing the down-regulation of major histocompatibility complex (MHC) class I molecules on the cell surface. This down-regulation enables infected cells to evade recognition by cytotoxic T lymphocytes (CTLs) but makes them vulnerable to lysis by natural killer (NK) cells, which lyse those cells that lack MHC class I molecules. The 22-kDa US3 glycoprotein is able to down-regulate the surface expression of MHC class I molecules by dual mechanisms: direct endoplasmic reticulum retention by physical association and/or tapasin inhibition. The alternative splicing of the US3 gene generates two additional products, including 17-kDa and 3.5-kDa truncated isoforms; however, the functional significance of these isoforms during viral infection is unknown. Here, we describe a novel mode of self-regulation of US3 function that uses the endogenously produced truncated isoform. The truncated isoform itself neither binds to MHC class I molecules nor prevents the full-length US3 from interacting with MHC class I molecules. Instead, the truncated isoform associates with tapasin and competes with full-length US3 for binding to tapasin; thus, it suppresses the action of US3 that causes the disruption of the function of tapasin. Our results indicate that the truncated isoform of the US3 locus acts as a dominant negative regulator of full-length US3 activity. These data reflect the manner in which the virus has developed temporal survival strategies during viral infection against immune surveillance involving both CTLs and NK cells.
Collapse
Affiliation(s)
- Jinwook Shin
- Department of Biological Sciences, Seoul National University, San 56-1, Sillim-dong, Gwanak-Gu, Seoul 151-747, Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Palindromes are symmetrical words of DNA in the sense that they read exactly the same as their reverse complementary sequences. Representing the occurrences of palindromes in a DNA molecule as points on the unit interval, the scan statistics can be used to identify regions of unusually high concentration of palindromes. These regions have been associated with the replication origins on a few herpesviruses in previous studies. However, the use of scan statistics requires the assumption that the points representing the palindromes are independently and uniformly distributed on the unit interval. In this paper, we provide a mathematical basis for this assumption by showing that in randomly generated DNA sequences, the occurrences of palindromes can be approximated by a Poisson process. An easily computable upper bound on the Wasserstein distance between the palindrome process and the Poisson process is obtained. This bound is then used as a guide to choose an optimal palindrome length in the analysis of a collection of 16 herpesvirus genomes. Regions harboring significant palindrome clusters are identified and compared to known locations of replication origins. This analysis brings out a few interesting extensions of the scan statistics that can help formulate an algorithm for more accurate prediction of replication origins.
Collapse
Affiliation(s)
- Ming-Ying Leung
- Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968-0514, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
Human cytomegalovirus (HCMV) is an important opportunistic pathogen that infrequently causes disease in individuals with mature immune systems. The HCMV US3 gene encodes a 22-kDa protein that interferes with immune recognition of virally infected cells. The 22-kDa US3 protein binds to major histocompatibility complex (MHC) class I complexes, retaining them in the endoplasmic reticulum (ER), thereby decreasing the presentation of viral antigen to cytotoxic T cells. Our studies demonstrate that correct folding of the ER lumenal domain of the US3 protein is essential, but insufficient for interactions with MHC class I complexes. We demonstrate a requirement for the transmembrane domain of the 22-kDa US3 protein, confirming the results of others, and also show that the cytosolic carboxyl-terminal tail influences the function of the protein. Anchoring of the ER-lumenal immunoglobulin-like fold of the US3 protein to the membrane of the endoplasmic reticulum is critical for the binding and retention of MHC class I complexes.
Collapse
Affiliation(s)
- Yiqiang Zhao
- Graduate Program in Biological Sciences, Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH 45701, USA
| | | |
Collapse
|
12
|
Scott GM, Barrell BG, Oram J, Rawlinson WD. Characterisation of transcripts from the human cytomegalovirus genes TRL7, UL20a, UL36, UL65, UL94, US3 and US34. Virus Genes 2003; 24:39-48. [PMID: 11928987 DOI: 10.1023/a:1014033920070] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The genome of human cytomegalovirus (HCMV) has been studied extensively in some regions, but not others. In this study, transcripts of the genome were further characterised for open reading frames (ORFs) TRL7, UL36, UL65, UL94, US3 and US34, and for the previously unrecognised ORF, UL20a. Reverse transcription-PCR demonstrated the presence of spliced transcripts from the putative glycoprotein gene, UL20a, at early and late times post-infection. US3 full-length and spliced transcripts, including a previously unidentified transcript (US3ii), were described at immediate early times. Sequencing of the complete ORFs of UL20a and US3 from 21 clinical isolates showed that US3 is well conserved in all isolates (97-100% identity), whereas UL20a shows more variation at the nucleotide level, with 90-100% identity. The limits of transcription, and splice donor and acceptor sequences for UL20a and US3 were conserved in all isolates, indicating likely conservation of mRNA splicing patterns. Sequencing a late cDNA library identified the limits of transcription for ORFs TRL7, UL94 and US34 and transcription from the TRL7 ORF was confirmed by northern blotting. Transcripts were found that were congruent with UL36 and UL65, but these differed in the limits previously predicted for these ORFs. These findings show the variation between predicted and actual transcription and indicate the complex nature of transcription from HCMV ORFs.
Collapse
Affiliation(s)
- Gillian M Scott
- Virology Division, Department of Microbiology SEALS, Prince of Wales Hospital, Randwick NSW, Australia
| | | | | | | |
Collapse
|
13
|
Abstract
Similar to other herpesviruses, human cytomegalovirus remains in the infected host following resolution of the primary infection. The ability to persist in the host after primary infection is believed to be strongly influenced by the ability of HCMV to down-regulate immune recognition of infected cells. One of the genes contributing to immune evasion is the US3 gene. The US3 gene has been shown to retain major histocompatibility complex type I molecules in the endoplasmic reticulum. The US3 gene gives rise to three alternatively spliced RNAs which encode distinct but related proteins. Each of the alternatively spliced transcripts is present early in viral infection, suggesting that the encoded proteins play a role in the viral life cycle. We demonstrate that only the protein encoded by the unspliced US3 transcript is able to retain MHC class I heavy chains in the endoplasmic reticulum. The protein encoded by the singly spliced US3 transcript appears to be processed through the secretory pathway while the protein encoded by the doubly spliced transcript becomes localized to the Golgi apparatus. These experiments raise interesting questions about the functions of the smaller US3 proteins during viral infection in the host.
Collapse
Affiliation(s)
- Wenzhong Liu
- Graduate Program in Giological Sciences, Department of Biomedical Sciences, Ohio Unversity College of Osteopathic Medicine, Athens, Ohio 45701, USA
| | | | | |
Collapse
|
14
|
Hertel CB, Zhou XG, Hamilton-Dutoit SJ, Junker S. Loss of B cell identity correlates with loss of B cell-specific transcription factors in Hodgkin/Reed-Sternberg cells of classical Hodgkin lymphoma. Oncogene 2002; 21:4908-20. [PMID: 12118370 DOI: 10.1038/sj.onc.1205629] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Revised: 04/23/2002] [Accepted: 04/26/2002] [Indexed: 11/09/2022]
Abstract
In classical Hodgkin lymphoma the malignant Hodgkin/Reed-Sternberg (HRS) cells characteristically constitute only a small minority of the tumour load. Their origin has been debated for decades, but on the basis of rearrangement and somatic hypermutations of their immunoglubulin (Ig) genes, HRS cells are now ascribed to the B-cell lineage. Nevertheless, phenotypically HRS cells have lost their B cell identity: they usually lack common B cell-specific surface markers such as CD19 and CD79a as well as Ig gene transcripts. Here we demonstrate that Ig promoters as well as both intronic and 3' enhancer sequences are transcriptionally inactive in HRS cell lines. This inactivity correlates with either reduced levels or even a complete lack of several B cell-specific transcription factors required for their expression: Oct-2, OBF-1, PU.1, E47/E12, PAX-5 and EBF. Moreover, we demonstrate that PU.1 and PAX-5 are significantly down-regulated in HRS cells in pathological specimens from primary tumour tissues. However, forced expression of these transcription factors can activate regulatory sequences of silenced B cell marker genes, and in one instance also transcription from a silenced endogenous locus. Thus, HRS cells are dedifferentiated B cells with global down-regulation of B cell-specific genes.
Collapse
Affiliation(s)
- Christina B Hertel
- Institute of Human Genetics, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
15
|
Bullock GC, Thrower AR, Stinski MF. Cellular proteins bind to sequence motifs in the R1 element between the HCMV immune evasion genes. Exp Mol Pathol 2002; 72:196-206. [PMID: 12009783 DOI: 10.1006/exmp.2002.2428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The viral US3 and US6 gene products of human cytomegalovirus (CMV) are sequentially expressed at immediate-early and early times after infection, respectively. They downregulate the surface expression of HLA class I molecules. There are two repeat-containing regulatory regions between the US3 promoter and the US6 transcription unit designated R1 and R2. R2 contains repetitions of the NF-kappa B responsive element and enhances the immediate-early expression of the US3 gene. R1 contains 19 repetitions of a 5'-TRTCG-3' pentanucleotide arranged as everted repeats, inverted repeats, and variably spaced single pentanucleotides. In the context of the viral genome, R1 also enhances immediate-early US3 gene expression by an unknown mechanism (G. C. Bullock, et al., 2001, Virology 288, 164-174). We report a sequence motif within the R1 element that binds a human cell nuclear protein which is antigenically related to the Drosophila boundary element-associated factor (BEAF). The potential role of a 35-kDa cellular protein that binds to sequence motifs within the R1 element in regulating the expression of the CMV US3 immune evasion gene is discussed.
Collapse
Affiliation(s)
- Grant C Bullock
- Program in Molecular Biology, College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
16
|
Bullock GC, Lashmit PE, Stinski MF. Effect of the R1 element on expression of the US3 and US6 immune evasion genes of human cytomegalovirus. Virology 2001; 288:164-74. [PMID: 11543669 DOI: 10.1006/viro.2001.1084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human cytomegalovirus (HCMV) has several gene products that are important for escape from immune surveillance. These viral gene products downregulate the expression of HLA molecules on the cell surface. The viral US3 and US6 gene products are expressed at immediate-early and early times after infection, respectively. There are two regulatory regions between the US3 and the US6 transcription units. The first region is an NF-kappaB responsive enhancer that promotes the immediate-early expression of the US3 gene and is designated the R2 enhancer. Upstream of the R2 enhancer is a region designated the R1 element that in transient transfection assays behaves as a silencer by repressing the effect of the enhancer on downstream gene expression (A. R. Thrower et al., J. Virol. 1996, 70, 91; Y.-J. Chan et al., J. Virol. 1996, 70, 5312). We constructed recombinant viruses with wild-type or mutated R1 elements. The expression of the US3 gene at 6 h after infection and the US6 gene at 24 h was higher when the R1 element was present. The R1 element in the context of the viral genome is not a silencer of US3 or US6 gene expression. The R1 element has multiple effects on the US3 and US6 RNAs. It enhances the level of US3 and US6 mRNA; it determines the 3'-end cleavage and polyadenylation of US6 RNA, and it stabilizes read-through viral RNAs. The potential mechanisms of R1 enhancement of US3 and US6 gene expression are discussed.
Collapse
Affiliation(s)
- G C Bullock
- Program in Molecular Biology, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
17
|
Lauder A, Castellanos A, Weston K. c-Myb transcription is activated by protein kinase B (PKB) following interleukin 2 stimulation of Tcells and is required for PKB-mediated protection from apoptosis. Mol Cell Biol 2001; 21:5797-805. [PMID: 11486019 PMCID: PMC87299 DOI: 10.1128/mcb.21.17.5797-5805.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2000] [Accepted: 06/07/2001] [Indexed: 01/14/2023] Open
Abstract
During T-cell activation, c-Myb is induced upon interleukin 2 (IL-2) stimulation and is required for correct proliferation of cells. In this paper, we provide evidence that IL-2-mediated induction of the c-myb gene occurs via the phosphoinositide 3-kinase (PI3K) signaling pathway, that protein kinase B (PKB) is the principal transducer of this signal, and that activation of the c-myb promoter can be abolished by deletion of conserved E2F and NF-kappaB binding sites. We show that Myb is required to protect activated peripheral T cells from bcl-2-independent apoptosis and that overexpression of oncogenic v-Myb is antiapoptotic. Overexpression of a Myb dominant-negative transgene abrogates PKB-mediated protection from apoptosis. Taken together, these results suggest that induction of c-myb transcription is an important downstream event for PKB-mediated protection of T cells from programmed cell death.
Collapse
Affiliation(s)
- A Lauder
- CRC Centre for Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
| | | | | |
Collapse
|
18
|
LaPierre LA, Biegalke BJ. Identification of a novel transcriptional repressor encoded by human cytomegalovirus. J Virol 2001; 75:6062-9. [PMID: 11390608 PMCID: PMC114322 DOI: 10.1128/jvi.75.13.6062-6069.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The expression of human cytomegalovirus (HCMV) genes during viral replication is precisely regulated, with the interactions of both transcriptional activators and repressors determining the level of gene expression. One gene of HCMV, the US3 gene, is transcriptionally repressed early in infection. Repression of US3 expression requires viral infection and protein synthesis and is mediated through a DNA sequence, the transcriptional repressive element. In this report, we identify the protein that represses US3 transcription as the product of the HCMV UL34 open reading frame. The protein encoded by UL34 (pUL34) binds to the US3 transcriptional repressive element in yeast and in vitro. pUL34 localizes to the nucleus and alone is sufficient for repression of US3 expression. The data presented here, along with earlier data (B. J. Biegalke, J. Virol. 72:5457-5463, 1998), suggests that pUL34 binding of the transcriptional repressive element prevents transcription initiation complex formation.
Collapse
Affiliation(s)
- L A LaPierre
- Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | | |
Collapse
|
19
|
Linderson Y, French NS, Neurath MF, Pettersson S. Context-dependent Pax-5 repression of a PU.1/NF-kappaB regulated reporter gene in B lineage cells. Gene 2001; 262:107-14. [PMID: 11179673 DOI: 10.1016/s0378-1119(00)00546-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Enhancers located in the 3' end of the locus in part regulate immunoglobulin heavy chain (IgH) gene expression. One of these enhancers, HS 1,2, is developmentally regulated by DNA binding proteins like NF-kappaB, Pax-5 and the protein complex NF-alphaP in B lineage cells. Here we report that NF-alphaP is the ets protein PU.1. A glutathione-S-transferase (GST)-pulldown assay demonstrated that PU.1 can physically interact with NF-kappaB in solution. Experiments in COS cells showed that PU.1 and NF-kappaB (p50/c-Rel) can activate transcription of an enhancer linked reporter gene. The paired domain protein Pax-5 has previously been shown to repress enhancer-dependent transcription. Additional co-transfection experiments revealed that PU.1/NF-kappaB dependent transcription could be repressed in a context dependent manner by Pax-5, but not by the paired domain of Pax-5. When the PU.1 binding site was substituted with a binding site for the ets-protein Elf-1, Pax-5 could no longer repress reporter gene activity. Our data indicate a model where Pax-5 mediated repression of the HS 1,2 enhancer requires the recruitment of a co-factor which is dependent on Pax-5/PU.1 but which cannot be recruited by Pax-5/Elf-1.
Collapse
Affiliation(s)
- Y Linderson
- Center for Genomics Research, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | | | | | |
Collapse
|
20
|
Hyun JJ, Park HS, Kim KH, Kim HJ. Analysis of transcripts expressed from the UL47 gene of human cytomegalovirus. Arch Pharm Res 1999; 22:542-8. [PMID: 10615857 DOI: 10.1007/bf02975323] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The UL47 gene (b 60390-b 60338) located in the unique long region of the human cytomegalovirus (HCMV) AD169 strain genome was analyzed by RNA mapping. Northern blot analysis showed that the UL47 gene was expressed at late times after infection (72 h postinfection). The 9.7-kb transcript was expressed in the infected cells but not in phosphonoformate-treated cells at 72 hpi, indicating that the UL47 gene was only expressed at late times after infection. To map the 5'-end and 3'-end of UL47 transcripts, primer extension and RNase protection analysis were performed. Primer extension analysis revealed that the transcription initiation site of UL47 was located in 27 bp downstream (b 60323) of the TATA box motif. The sizes of UL47 ORF (approximately 2.9-kb) and UL48 ORF (approximately 6.7-kb) deduced from computer sequence analysis suggest that the expressed 9.7-kb transcript of UL47 uses the 3'-end polyadenylation signal of UL48. The result of RNase protection determined that the 3'-end of UL47 RNA utilized the 3'-end polyadenylation signal of UL48, which is located in HCMV genome b 70082.
Collapse
Affiliation(s)
- J J Hyun
- College of Pharmacy, Chung Ang University, Seoul, Korea
| | | | | | | |
Collapse
|
21
|
Affiliation(s)
- E A Fortunato
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0366, USA
| | | |
Collapse
|
22
|
Biegalke BJ. Human cytomegalovirus US3 gene expression is regulated by a complex network of positive and negative regulators. Virology 1999; 261:155-64. [PMID: 10497101 DOI: 10.1006/viro.1999.9881] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One immediate early gene of human cytomegalovirus, the US3 gene, causes retention of major histocompatibility locus class I heavy chain proteins in the endoplasmic reticulum and is postulated to have a role in viral pathogenicity. Expression of the US3 gene is regulated by a number of cis-acting elements. In addition, numerous viral proteins are involved in regulating US3 gene expression. US3 transcription was activated modestly by a virion protein, ppUL82. The immediate early proteins encoded by UL122-123 (IE1 and IE2) further activate US3 expression, with the activation enhanced by expression of pTRS1. Other proteins, the immediate early protein encoded by UL37ex1/UL38 and the early protein, pUL84, inhibited IE1 and IE2 activation of US3 expression. US3 transcription is regulated both positively and negatively by a complex network of viral proteins, the interaction of which contributes to precise regulation of US3 gene expression. The ability of pUL37ex1/UL38 to repress expression of the immediate early US3 gene while activating early gene expression suggests that pUL37ex1/UL38 may function to switch viral gene expression from immediate early to early genes.
Collapse
Affiliation(s)
- B J Biegalke
- College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA.
| |
Collapse
|
23
|
Lashmit PE, Stinski MF, Murphy EA, Bullock GC. A cis repression sequence adjacent to the transcription start site of the human cytomegalovirus US3 gene is required to down regulate gene expression at early and late times after infection. J Virol 1998; 72:9575-84. [PMID: 9811691 PMCID: PMC110467 DOI: 10.1128/jvi.72.12.9575-9584.1998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/1998] [Accepted: 08/25/1998] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus has two enhancer-containing immediate-early (IE) promoters with a cis repression sequence (CRS) positioned immediately upstream of the transcription start site, designated the major IE (MIE) promoter and the US3 promoter. The role of the CRS upstream of the US3 transcription start site in the context of the viral genome was determined by comparing the levels of transcription from these two enhancer-containing promoters in recombinant viruses with a wild-type or mutant CRS. Upstream of the CRS of the US3 promoter was either the endogenous enhancer (R2) or silencer (R1). The downstream US3 gene was replaced with the indicator gene chloramphenicol acetyltransferase (CAT). Infected permissive human fibroblast cells or nonpermissive, undifferentiated monocytic THP-1 cells were analyzed for expression from the US3 promoter containing either the wild-type or mutant CRS. With the wild-type CRS, the maximum level of transcription in permissive cells was detected within 4 to 6 h after infection and then declined. With the mutant CRS and the R2 enhancer upstream, expression from the US3 promoter continued to increase throughout the viral replication cycle to levels 20- to 40-fold higher than for the wild type. In nonpermissive or permissive monocytic THP-1 cells, expression from the US3 promoter was also significantly higher when the CRS was mutated. Less expression was obtained when only the R1 element was present, but expression was higher when the CRS was mutated. Thus, the CRS in the enhancer-containing US3 promoter appears to allow for a short burst of US3 gene expression followed by repression at early and late times after infection. Overexpression of US3 may be detrimental to viral replication, and its level of expression must be stringently controlled. The role of the CRS and the viral IE86 protein in controlling enhancer-containing promoters is discussed.
Collapse
Affiliation(s)
- P E Lashmit
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
24
|
Biegalke BJ. Characterization of the transcriptional repressive element of the human cytomegalovirus immediate-early US3 gene. J Virol 1998; 72:5457-63. [PMID: 9621001 PMCID: PMC110182 DOI: 10.1128/jvi.72.7.5457-5463.1998] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transcriptional repression is utilized by human cytomegalovirus to regulate expression of the immediate-early US3 gene. Sequences located 3' of the US3 TATA box are required for down regulation of expression. Mutagenesis of US3 sequences identified a 10-nucleotide region that is essential for transcriptional repression. In addition to the 10-nucleotide element, an additional region, which includes the US3 initiator element, was needed to confer repression on a heterologous promoter. Thus, a 19-nucleotide element (-18 to +1 relative to the transcription start site) functioned as a transcriptional repressive element (tre). The tre repressed transcription in a position-dependent but orientation-independent manner. In vivo footprinting experiments demonstrated that transcriptional repression is associated with a decrease in protein interactions with the US3 promoter and surrounding sequences. The data presented here suggest that the association of an as yet unidentified repressor protein with the tre represses transcription by inhibiting assembly of the transcription initiation complex on the US3 promoter.
Collapse
Affiliation(s)
- B J Biegalke
- Department of Biological Sciences, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA.
| |
Collapse
|
25
|
Wu J, O'Neill J, Barbosa MS. Transcription factor Sp1 mediates cell-specific trans-activation of the human cytomegalovirus DNA polymerase gene promoter by immediate-early protein IE86 in glioblastoma U373MG cells. J Virol 1998; 72:236-44. [PMID: 9420220 PMCID: PMC109369 DOI: 10.1128/jvi.72.1.236-244.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human cytomegalovirus (HCMV) gene expression is highly cell and tissue specific. Cell factor-mediated regulatory interactions are involved in regulating the restricted expression of the HCMV major immediate-early (IE) gene (J. F. Baskar, P. P. Smith, G. Nilaver, R. A. Jupp, S. Hoffmann, N. J. Peffer, D. J. Tenney, A. M. Colberg-Poley, P. Ghazal, and J. A. Nelson, 70:3207-3213, 1996). To gain an understanding of HCMV early gene activation, we studied the effect of each of the three major IE proteins, IE72, IE86, and IE55, on the HCMV DNA polymerase gene (pol; UL54) promoter. In transient-expression assays, the IE86 protein alone was able to transactivate the pol promoter, but IE72 and IE55 were not, in permissive U373MG cells. However, we were unable to detect IE86-mediated transactivation in nonpermissive HeLa or C33-A cells. Using electrophoretic mobility shift assays (EMSAs), we found that expression of the IE86 protein in U373MG cells resulted in specific binding of a DNA complex to an inverted-repeat element, IR1, of the pol promoter. Antibody supershifting and EMSA-Western blotting experiments further showed that IE86 and the cellular transcription factor Sp1 were components of the IR1 DNA-binding complex. Furthermore, we found that binding of DNA by Sp1 was dramatically increased in the presence of IE86. Interestingly, this IE86-induced DNA-binding activity of Sp1 was inhibited by a repressor activity presented in HeLa cells. In summary, our study suggests that a viral regulatory protein can modulate the DNA binding activity of a cellular transcription factor, resulting in cell-specific transactivation of viral genes.
Collapse
Affiliation(s)
- J Wu
- Signal Pharmaceuticals, Inc., San Diego, California 92121, USA.
| | | | | |
Collapse
|
26
|
Biegalke BJ. IE2 protein is insufficient for transcriptional repression of the human cytomegalovirus US3 promoter. J Virol 1997; 71:8056-60. [PMID: 9311904 PMCID: PMC192171 DOI: 10.1128/jvi.71.10.8056-8060.1997] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Expression of the human cytomegalovirus (HCMV) US3 gene is regulated in part by transcriptional repression mediated through a cis-repressive region located between the TATA box and the transcriptional start site. The US3 cis-repressive element has extensive sequence identity with a similar repressive element in UL122-123 (the major immediate-early gene complex). Repression of UL122-123 is mediated through the interaction of the IE2 protein with cis-repressive sequences. In spite of the similarity of the two repressive elements, IE2 activated rather than repressed transcription from the US3 promoter. Additionally, IE1 or IE1 and IE2 in combination also activated US3 expression. These data demonstrate that regulation of HCMV immediate-early genes is quite complex and involves a number of proteins.
Collapse
Affiliation(s)
- B J Biegalke
- Department of Biological Sciences, College of Osteopathic Medicine, Ohio University, Athens 45701, USA.
| |
Collapse
|
27
|
Jones TR, Sun L. Human cytomegalovirus US2 destabilizes major histocompatibility complex class I heavy chains. J Virol 1997; 71:2970-9. [PMID: 9060656 PMCID: PMC191425 DOI: 10.1128/jvi.71.4.2970-2979.1997] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection causes down-regulation of major histocompatibility complex class I heavy chains. We determined previously that there are two HCMV loci which encode functions responsible for that phenotype and that US11 is one of these loci (T. R. Jones, L. A. Hanson, L. Sun, J. S. Slater, R. M. Stenberg, and A. E. Campbell, J. Virol. 69:4830-4841, 1995). Through the construction and analysis of defined viral mutants and stably transfected cell lines, we identify US2 as the other locus. US2 is expressed from very early through late times postinfection, with its predominant product being a relatively unstable 24-kDa endoglycosidase H-resistant glycoprotein. In cell lines constitutively expressing US2, free class I heavy chains are proximal targets for US2-induced degradation, shortly after their synthesis. Both US2 and US11 can function in concert with US3 to down-regulate class I. Beta-2-microglobulin-associated heavy chains which are retained in the endoplasmic reticulum as a result of binding to the US3 glycoprotein are susceptible to destabilization caused by both US2 and US11 gene products. Thus, three HCMV genes which affect either the stability or the transport of class I heavy chains have been identified. The observation that each of these proteins is most abundant early in the replicative cycle suggests that they may play an important immunomodulatory role in vivo prior to productive infection, either during the latent or persistent phase or during reactivation.
Collapse
Affiliation(s)
- T R Jones
- Department of Molecular Biology, Wyeth-Ayerst Research, Pearl River, New York 10965, USA.
| | | |
Collapse
|
28
|
Furebring C, Ohlin M, Pettersson S, Borrebaeck CA. Evaluation of novel control elements by construction of eukaryotic expression vectors. Gene X 1997; 188:191-8. [PMID: 9133591 DOI: 10.1016/s0378-1119(96)00791-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A novel mammalian eukaryotic expression vector for the production of immunoglobulin heavy chain (IgH) genes has been designed. This expression vector contains the variable heavy chain (VH) promoter, the IgH intron enhancer (muE) and the IgH 3' enhancer (3'E). This construct, designated pTIF-1, was stably transfected into the myeloma cell line J558L. A fivefold increase in the expression level of a rearranged IgH gene was observed when using the pTIF-1 vector containing the 3'E compared to an expression vector lacking this enhancer. Interestingly, this positive effect on the expression level of the 3' enhancer appears to be position independent. The introduction of two recently identified Ig control elements, HS3 and HS4, to the vector cassette did not further elevate the expression level in the cell line tested. The pTIF-1 vector can be used for expression of any antibody specificity, using PCR amplification of the VDJ region of interest. Furthermore, the constant region can easily be exchanged, which further facilitates studies to dissect different effector functions of IgH constant genes.
Collapse
Affiliation(s)
- C Furebring
- Department of Immunotechnology, Lund University, Sweden
| | | | | | | |
Collapse
|
29
|
Linderson Y, Cross D, Neurath MF, Pettersson S. NFE, a new transcriptional activator that facilitates p50 and c-Rel-dependent IgH 3' enhancer activity. Eur J Immunol 1997; 27:468-75. [PMID: 9045919 DOI: 10.1002/eji.1830270218] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The induction of immunoglobulin heavy chain (IgH) 3' enhancer activity has been coupled to ligand/receptor-dependent activation of resting B cells. To search for transcriptional target sites that account for this induction, extracts from lipopolysaccharide (LPS)-stimulated B cells and cell lines were used. Here we describe, by gel-retardation analysis, the identification of an NF-kappaB site and an adjacent nuclear factor ets-like (NFE) site in the 3' enhancer. The NFE motif binds four protein complexes in resting B cell extracts, of which two are down-regulated upon LPS stimulation. Gel shift-shift experiments of the NF-kappaB complexes with specific antibodies identified p50 and c-Rel proteins to be the predominant factors in primary LPS-stimulated cell extracts. Site-directed mutagenesis of these motifs demonstrates that they contribute to part of the enhancer activity in plasma cells. One copy of the NFkappaB/NFE motifs, linked to a heterologous reporter construct, displays lymphoid-restricted reporter gene activity in transient transfection assays. Mutation of either site abrogates all promoter activity. Complementation experiments demonstrate that although p50 and c-Rel expression vectors reconstitute transcription of an intact NF-kappaB/NFE reporter construct in a dose-dependent manner, mutation of the NFE site or the NF-kappaB site abrogates essentially all transcriptional activity in both plasma cells and in COS cells. Taken together, we provide evidence for the existence of an activator, NFE, which in combination with the p50 and c-Rel proteins, are part of the transcription factor machinery that regulates 3' enhancer activity, and thus the control of the IgH locus in late B lymphocyte development.
Collapse
Affiliation(s)
- Y Linderson
- Center For Biotechnology, Karolinska Institute, Huddinge, Sweden
| | | | | | | |
Collapse
|
30
|
Thøger Andersen AS, Jensen AW, Grant P, Arulampalam V, Pettersson S, Junker S. Concomitant downregulation of IgH 3' enhancer activity and c-myc expression in a plasmacytoma x fibroblast environment: implications for dysregulation of translocated c-myc. Mol Immunol 1997; 34:97-107. [PMID: 9188842 DOI: 10.1016/s0161-5890(97)00017-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Regulation of immunoglobulin heavy chain (IgH) gene expression is controlled by a B cell-specific promoter, intronic enhancer and additional B cell-specific enhancer elements identified recently in the 3' end of the IgH locus. One of the latter elements, the IgH 3' enhancer, is of particular interest: (1) it is B cell-specific and active only in late B cell development; (2) in rodent plasmacytomas and in some human Burkitt's lymphomas it is part of a locus control region (LCR) that is involved in deregulation of the c-myc oncogene as a result of translocation into the IgH locus; and (3) it has been implicated in the mechanisms that control Ig gene class switch recombination. We have used a somatic cell hybridization approach to genetically analyse regulation of the activity of the IgH 3' enhancer. When mouse MPC11 plasmacytoma cells, in which the IgH 3' enhancer is active, are fused with fibroblasts, Ig expression is extinguished at the level of transcription. Here we show that in a MPC11 plasmacytoma x fibroblast environment, the IgH 3' enhancer is transcriptionally inactive. Furthermore, we demonstrate that binding of several B cell-specific transcription factors, essential for IgH 3' enhancer activity, is lacking, which may explain 3' enhancer inactivity, although the binding of repressors cannot be excluded. Moreover, the high expression level of c-myc, characteristic of the parental MPC11 cells carrying the t(12;15) translocation, is down-regulated in the hybrids to that in unfused fibroblasts. Therefore, inactivation of the IgH 3' enhancer is a multifactorial process affecting several transcription factors that control the cell-specific and developmental activity of the enhancer.
Collapse
|
31
|
Abstract
The complete DNA sequence of the Smith strain of murine cytomegalovirus (MCMV) was determined from virion DNA by using a whole-genome shotgun approach. The genome has an overall G+C content of 58.7%, consists of 230,278 bp, and is arranged as a single unique sequence with short (31-bp) terminal direct repeats and several short internal repeats. Significant similarity to the genome of the sequenced human cytomegalovirus (HCMV) strain AD169 is evident, particularly for 78 open reading frames encoded by the central part of the genome. There is a very similar distribution of G+C content across the two genomes. Sequences toward the ends of the MCMV genome encode tandem arrays of homologous glycoproteins (gps) arranged as two gene families. The left end encodes 15 gps that represent one family, and the right end encodes a different family of 11 gps. A homolog (m144) of cellular major histocompatibility complex (MHC) class I genes is located at the end of the genome opposite the HCMV MHC class I homolog (UL18). G protein-coupled receptor (GCR) homologs (M33 and M78) occur in positions congruent with two (UL33 and UL78) of the four putative HCMV GCR homologs. Counterparts of all of the known enzyme homologs in HCMV are present in the MCMV genome, including the phosphotransferase gene (M97), whose product phosphorylates ganciclovir in HCMV-infected cells, and the assembly protein (M80).
Collapse
Affiliation(s)
- W D Rawlinson
- Laboratory of Molecular Biology, Cambridge, United Kingdom.
| | | | | |
Collapse
|
32
|
Sarisky RT, Hayward GS. Evidence that the UL84 gene product of human cytomegalovirus is essential for promoting oriLyt-dependent DNA replication and formation of replication compartments in cotransfection assays. J Virol 1996; 70:7398-413. [PMID: 8892858 PMCID: PMC190807 DOI: 10.1128/jvi.70.11.7398-7413.1996] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The protein products of 11 viral genomic loci cooperate in a transient cotransfection assay to mediate lytic-phase DNA replication of oriLyt, the human cytomegalovirus (HCMV) origin of replication. Six of these genes have homology with the well-characterized herpes simplex virus replication genes and encode core replication machinery proteins that are typically essential for DNA synthesis. The remaining five HCMV gene loci, initially referred to as auxiliary components, include several known immediate-early (IE) transcriptional regulatory proteins as well as genes encoding functionally uncharacterized polypeptides. Some or all of the auxiliary components may be necessary in trans to replicate the HCMV oriLyt only because they are required for efficient expression or transactivation of the native early promoters and 3' processing elements included in the genomic clones. Therefore, we reassessed the requirements for the auxiliary components by adding constitutive heterologous promoters and control signals to the coding regions and carrying out transient DpnI replication assays in cotransfected Vero cells. The results revealed that in the presence of the UL69 posttranscriptional activator and the remaining auxiliary polypeptides, UL84 was the only auxiliary component that could not be omitted to obtain oriLyt-dependent DNA replication. Nevertheless, in human diploid fibroblasts, some additional auxiliary loci as well as UL84 were critical. There was also an obligatory requirement for UL84, in cooperation with two other auxiliary factors, UL112-113 and IE2, and the core machinery, to constitute the minimal HCMV proteins necessary to direct oriLyt-dependent DNA amplification. However, the Epstein-Barr virus core replication genes could substitute for the HCMV core genes, and in these circumstances, UL84 alone directed amplification of HCMV oriLyt. Moreover, there was also an absolute requirement for UL84 along with the core and other auxiliary factors for the formation of intranuclear replication compartments as assayed by immunofluorescence in transient DNA cotransfection assays. These compartments were typical of those associated with active viral DNA replication in HCMV-infected cells, they incorporated pulse-labeled bromodeoxyuridine, and their formation was both phosphonoacetic acid sensitive and oriLyt dependent. These results demonstrate that UL84 is obligatory for both intranuclear replication compartment formation and origin-dependent DNA amplification and suggest that it is a key viral component in promoting the initiation of HCMV oriLyt-directed DNA replication.
Collapse
Affiliation(s)
- R T Sarisky
- Molecular Virology Laboratories, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | |
Collapse
|
33
|
Jones TR, Wiertz EJ, Sun L, Fish KN, Nelson JA, Ploegh HL. Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc Natl Acad Sci U S A 1996; 93:11327-33. [PMID: 8876135 PMCID: PMC38057 DOI: 10.1073/pnas.93.21.11327] [Citation(s) in RCA: 305] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human cytomegalovirus (HCMV) early glycoprotein products of the US11 and US2 open reading frames cause increased turnover of major histocompatibility complex (MHC) class I heavy chains. Since US2 is homologous to another HCMV gene (US3), we hypothesized that the US3 gene product also may affect MHC class I expression. In cells constitutively expressing the HCMV US3 gene, MHC class I heavy chains formed a stable complex with beta 2-microglobulin. However, maturation of the N-linked glycan of MHC class I heavy chains was impaired in US3+ cells. The glycoprotein product of US3 (gpUS3) occurs mostly in a high-mannose form and coimmunoprecipitates with beta 2-microglobulin associated class I heavy chains. Mature class I molecules were detected at steady state on the surface of US3+ cells, as in control cells. Substantial perinuclear accumulation of heavy chains was observed in US3+ cells. The data suggest that gpUS3 impairs egress of MHC class I heavy chains from the endoplasmic reticulum.
Collapse
Affiliation(s)
- T R Jones
- Department of Molecular Biology, Wyeth-Ayerst Research, Pearl River, NY 10965, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Al-Barazi HO, Colberg-Poley AM. The human cytomegalovirus UL37 immediate-early regulatory protein is an integral membrane N-glycoprotein which traffics through the endoplasmic reticulum and Golgi apparatus. J Virol 1996; 70:7198-208. [PMID: 8794367 PMCID: PMC190773 DOI: 10.1128/jvi.70.10.7198-7208.1996] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human cytomegalovirus (HCMV) UL37 immediate-early gene is predicted to encode a type I membrane-bound glycoprotein, gpUL37. Following expression of the UL37 open reading frame in vitro, its signals for translocation and N-glycosylation were recognized by microsomal enzymes. Its orientation in the microsomes is that of a type I protein. gpUL37 produced in HCMV-infected human cells was selectively immunoprecipitated by rabbit polyvalent antiserum generated against the predicted unique domains of the UL37 open reading frame and migrated as an 83- to 85-kDa protein. Tunicamycin treatment, which inhibits N-glycosylation, increased the rate of migration of the UL37 protein to 68 kDa, verifying its modification by N-glycosylation in HCMV-infected cells. Consistent with this observation, gpUL37 was found to be resistant to digestion with either endoglycosidase F or H but sensitive to peptide N-glycosidase F digestion. These results suggested that gpUL37 is N-glycosylated and processed in both the endoplasmic reticulum (ER) and the Golgi apparatus. Direct demonstration of passage of gpUL37 through the ER and the Golgi was obtained by confocal microscopy. gpUL37 colocalized with protein disulfide isomerase, a protein resident in the ER, and with a Golgi protein. Subcellular fractionation of HCMV-infected cells demonstrated that gpUL37 is an integral membrane protein. Taken together, our results demonstrate that the HCMV gpUL37 immediate-early regulatory protein is a type I integral membrane N-glycoprotein which traffics through the ER and the Golgi network.
Collapse
Affiliation(s)
- H O Al-Barazi
- Center for Virology, Immunology and Infectious Disease Research, Children's National Medical Center, Washington, DC 20010, USA
| | | |
Collapse
|
35
|
Ahn K, Angulo A, Ghazal P, Peterson PA, Yang Y, Früh K. Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proc Natl Acad Sci U S A 1996; 93:10990-5. [PMID: 8855296 PMCID: PMC38271 DOI: 10.1073/pnas.93.20.10990] [Citation(s) in RCA: 284] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human cytomegalovirus (HCMV) genomic unique short (US) region encodes a family of homologous genes essential for the inhibition of major histocompatibility complex (MHC) class I-mediated antigen presentation during viral infection. Here we show that US3, the only immediate early (IE) gene within the US region, encodes an endoplasmic reticulum-resident glycoprotein that prevents intracellular transport of MHC class I molecules. In contrast to the rapid degradation of newly synthesized MHC class I heavy chains mediated by the early gene product US11, we found that US3 retains stable MHC class I heterodimers in the endoplasmic reticulum that are loaded with peptides while retained in the ER. Consistent with the expression pattern of US3 and US11, MHC class I molecules are retained but not degraded during the IE period of infection. Our data identify the first nonregulatory role of an IE protein of HCMV and suggest that HCMV uses different T-cell escape strategies at different times during the infectious cycle.
Collapse
Affiliation(s)
- K Ahn
- R. W. Johnson Pharmaceutical Research Institute, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Human herpesvirus 7 (HHV-7) is a recently isolated betaherpesvirus that is prevalent in the human population, with primary infection usually occurring in early childhood. HHV-7 is related to human herpesvirus 6 (HHV-6) in terms of both biological and, from limited prior DNA sequence analysis, genetic criteria. However, extensive analysis of the HHV-7 genome has not been reported, and the precise phylogenetic relationship of HHV-7 to the other human betaherpesviruses HHV-6 and human cytomegalovirus has not been determined. Here I report on the determination and analysis of the complete DNA sequence of HHV-7 strain JI. The data establish that the close biological relationship of HHV-6 and HHV-7 is reflected at the genetic level, where there is a very high degree of conservation of genetic content and encoded amino acid sequences. The data also delineate loci of divergence between the HHV-6 and HHV-7 genomes, which occur at the genome terminal in the region of the terminal direct-repeat elements and within limited regions of the unique component. Of potential significance with respect to biological and evolutionary divergence of HHV-6 and HHV-7 are notable structural differences in putative transcriptional regulatory genes specified by the direct-repeat and immediate-early region A loci of these viruses and the absence of an equivalent of the HHV-6 adeno-associated virus type 2 rep gene homolog in HHV-7.
Collapse
Affiliation(s)
- J Nicholas
- Johns Hopkins Oncology Center, Baltimore, Maryland 21231, USA
| |
Collapse
|
37
|
Chan YJ, Tseng WP, Hayward GS. Two distinct upstream regulatory domains containing multicopy cellular transcription factor binding sites provide basal repression and inducible enhancer characteristics to the immediate-early IES (US3) promoter from human cytomegalovirus. J Virol 1996; 70:5312-28. [PMID: 8764042 PMCID: PMC190489 DOI: 10.1128/jvi.70.8.5312-5328.1996] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The US3 gene of human cytomegalovirus (HCMV) is expressed at immediate-early (IE) times in permissive HF cells, but not in nonpermissive rodent cells, and encodes several proteins that have been reported to have regulatory characteristics, although they are dispensable for growth in cell culture. Both spliced and unspliced forms of US3 IE transcripts are associated with the second of only two known large and complex upstream enhancer domains within the 229-kb HCMV genome, which we refer to as the IES cis-acting control region. Only the 260-bp proximal segment (from -313 to -55) of the 600-bp IES control domain, which contains multicopy NF-kappaB binding sites, proved to be necessary to transfer both high basal expression plus phorbol ester- and okadaic acid-inducible characteristics to heterologous promoters in transient assays in U-937 and K-562 cells. However, the IES control region contains a distinctive 280-bp distal domain, characterized by the presence of seven interspersed repeats of a 10-bp TGTCGCGACA palindromic consensus motif that encompasses a NruI site. This far upstream Nru repeat region (from -596 to -314) imparted up to 20-fold down-regulation effects onto strong basal heterologous promoters as well as onto the IES enhancer plus minimal promoter region in both U-937 and K-562 cells. Functional Nru repressor elements (NREs) could not be generated by multimerizing either the palindromic (P) Nru motifs alone or adjacent degenerate interrupted (I Nru motifs alone. However, multimerized forms of the combined P plus I elements reconstituted the full 20-fold cis-acting down-regulation phenotype of the intact NRE domain. The P and I forms of the Nru elements each bound independently and specifically to related cellular DNA-binding factors to form differently migrating A or B complexes, respectively, whereas the combined P plus I elements bound cooperatively to both the A and B complexes with high affinity. Interestingly, nuclear extracts from U-937, K-562, HeLa, and Vero cells all formed both the A and B NRE binding factor complexes, whereas those from HF cells produced only A complexes, and Raji, HL60, and BALB/c 3T3 cells lacked both types of binding factor complexes. The core pentameric CGACA and CGATA half sites present in both the P and I Nru motifs are related to recently described Drosophila chromosomal insulator binding sites. Therefore, in addition to its cis-repression or silencer characteristics, the NRE domain appears likely to act to shield adjacent segments of the viral genome from the chromatin-reorganizing effects of the IES-inducible enhancer. We speculate that differential expression and regulation of the IES enhancer-controlled US3 protein, either in concert with or separately from the major IE (MIE) enhancer-controlled IE1 and IE2 transactivator proteins, may play a critical role in determining HCMV permissiveness in some cell types and perhaps also in the establishment of or reactivation from latency.
Collapse
Affiliation(s)
- Y J Chan
- The Molecular Virology Laboratories, Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
38
|
Thrower AR, Bullock GC, Bissell JE, Stinski MF. Regulation of a human cytomegalovirus immediate-early gene (US3) by a silencer-enhancer combination. J Virol 1996; 70:91-100. [PMID: 8523597 PMCID: PMC189792 DOI: 10.1128/jvi.70.1.91-100.1996] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The US3 open reading frame of human cytomegalovirus (HCMV) is transcribed at immediate-early (IE) times after infection. Upstream of the US3 promoter, between -84 and -259 bp relative to the transcription start site, there are five copies of an 18-bp repeat, referred to as 5R2. Between -340 and -560 bp there are seven copies of a 10-bp dyad repeat, referred to as 7R1. We investigated the roles of these repeats in transcription from the US3 promoter in human foreskin fibroblast or HeLa cells. In transient transfection assays, the region containing 5R2 up-regulated transcription and was responsive to the p65 subunit of NF-kappa B. The DNA region containing 7R1 down-regulated transcription from either the US3 promoter or a heterologous promoter in a position- and orientation-independent manner. Mutational analysis and transient transfections indicated that DNA containing the 10-bp dyad or one-half of the dyad was sufficient to cause repression of downstream gene expression. DNA probes containing one or more copies of the pentanucleotide sequence TGTCG specifically bound cellular proteins, as demonstrated by electrophoretic mobility shift assays and cold-competition electrophoretic mobility shift assays. Two different DNA-protein complexes were detected with DNA probes containing one or two copies of the pentanucleotide. In HCMV-infected cell nuclear extracts, one of the DNA-protein complexes was present in amounts inversely proportional to the amount of US3 transcription. Its formation was affected by dephosphorylation of the DNA-binding protein(s). Transient dephosphorylation of the cellular repressor protein may occur during HCMV infection. Repression of US3 transcription may relate to the number of pentanucleotides and the cellular proteins that bind to it. Twenty-one copies of a TRTCG motif (R = purine) were found clustered upstream of the US3 gene and also in the modulator upstream of the HCMV IE1 and IE2 genes.
Collapse
Affiliation(s)
- A R Thrower
- Program in Genetics, School of Medicine, University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|
39
|
Plachter B, Sinzger C, Jahn G. Cell types involved in replication and distribution of human cytomegalovirus. Adv Virus Res 1996; 46:195-261. [PMID: 8824701 DOI: 10.1016/s0065-3527(08)60073-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As the number of patients suffering from severe HCMV infections has steadily increased, there is a growing need to understand the molecular mechanisms by which the virus causes disease. The factors that control infection at one time and the events leading to virus multiplication at another time are only beginning to be understood. The interaction of HCMV with different host cells is one key for elucidating these processes. Through modern techniques, much has been learned about the biology of HCMV infections in culture systems. In addition to endothelial cells, epithelial cells, and smooth muscle cells, fibroblasts are one cell population preferentially infected in solid tissues in vivo. From these sites of multiplication, the virus may be carried by peripheral monocytes and circulating endothelial cells to reach distant sites of the body. This would explain the multiorgan involvement in acute HCMV infection and the modes of viral transmission. From what has been learned mainly from human fibroblast culture systems, future studies will focus on how HCMV regulates the expression of its putative 200 genes in different host cells at different stages of cell differentiation and activation to result in viral latency and pathogenesis.
Collapse
Affiliation(s)
- B Plachter
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
40
|
Arulampalam V, Grant P, Poellinger L, Pettersson S. Aberrant regulation of the IgH 3' enhancer by c-myc in plasmacytoma cells. Mol Immunol 1995; 32:1369-75. [PMID: 8643106 DOI: 10.1016/0161-5890(95)00102-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The identification of enhancers at the 3' end of the IgH locus has prompted a re-evaluation of the regulation of Ig gene expression. Moreover, these elements may provide a possible explanation as to how the c-myc oncogene becomes dysregulated upon translocation into the IgH locus with the IgH intragenic enhancer on the reciprocal chromosome. These 3' enhancers have also been shown to redirect promoter utilization on c-myc reporter gene constructs in transient transfection experiments. This region of the locus also contains the B cell specific IgH 3' enhancer. This temporally regulated enhancer has been implicated in the mechanisms that control class switch recombination. Here we demonstrate that overexpression of the c-myc protein in mouse plasmacytoma cells (MPC-11) and HeLa cells can transcriptionally upregulate a reporter gene construct driven by a subregion (domain C) of the IgH 3' enhancer. Domain C contains a functional dual symmetry E-box motif, CACGTG. The DNA binding experiments demonstrate that USF was the major factor interacting with this motif. Based on these observations, we speculate that the c-myc protein may upregulate expression of translocated c-myc in mouse plasmacytomas possibly via an USF-binding E-box motif in the IgH 3' enhancer.
Collapse
Affiliation(s)
- V Arulampalam
- Center for Biotechnology, Karolinska Institute, Huddinge, Sweden
| | | | | | | |
Collapse
|
41
|
Abstract
Regulation of immediate-early gene expression in human cytomegalovirus is subject to complex controls. The major immediate-early (mIE) gene is regulated by both positive and negative regulatory signals, including autoregulation mediated by a cis-repressive sequence. A second immediate-early gene, the US3 gene, is transcribed with kinetic similar to those of the mIE gene. I have identified an element present in the US3 gene located from -1 to -13 (relative to the start site of transcription) that mediates a decrease in US3 transcription. The US3 element resembles the cis-repressive element of the mIE gene in sequence, position, and function. The common theme of negative regulation of immediate-early genes shortly after infection suggests that a decrease in the level of immediate-early proteins may be critical for viral replication.
Collapse
Affiliation(s)
- B J Biegalke
- Department of Biological Sciences, College of Osteopathic Medicine, Ohio University, Athens 45701, USA
| |
Collapse
|
42
|
Jones TR, Hanson LK, Sun L, Slater JS, Stenberg RM, Campbell AE. Multiple independent loci within the human cytomegalovirus unique short region down-regulate expression of major histocompatibility complex class I heavy chains. J Virol 1995; 69:4830-41. [PMID: 7609050 PMCID: PMC189296 DOI: 10.1128/jvi.69.8.4830-4841.1995] [Citation(s) in RCA: 223] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Reduction of major histocompatibility complex class I cell surface expression occurs in adenovirus-, herpes simplex virus-, human cytomegalovirus (HCMV)-, and murine cytomegalovirus-infected cell systems. Recently, it was demonstrated that the down-regulation mediated by HCMV infection is posttranslational, as a result of increased turnover of class I heavy chains in the endoplasmic reticulum (M. F. C. Beersma, M. J. E. Bijlmakers, and H. L. Ploegh, J. Immunol. 151:4455-4464, 1993; Y. Yamashita, K. Shimokata, S. Saga, S. Mizuno, T. Tsurumi, and Y. Nishiyama, J. Virol. 68:7933-7943, 1994. To identify HCMV genes involved in class I regulation, we screened our bank of HCMV deletion mutants for this phenotype. A mutant with a 9-kb deletion in the S component of the HCMV genome (including open reading frames IRS1 to US9 and US11) failed to down-regulate class I heavy chains. By examining the effects of smaller deletions within this portion of the HCMV genome, a 7-kb region containing at least nine open reading frames was shown to contain the genes required for reduction in heavy-chain expression. Furthermore, it was determined that at least two independent loci within the 7-kb region were able to cause class I heavy-chain down-regulation. One of these, US11, encodes a 32-kDa glycoprotein which causes down-regulation of class I heavy chains in the absence of other viral gene products. Hence, a specific function associated with a phenotype of the HCMV replicative cycle has been mapped to a dispensable gene region. These loci may be important for evasion of the host's immune response and viral persistence.
Collapse
Affiliation(s)
- T R Jones
- Molecular Biology Section, American Cyanamid Co., Pearl River, New York 10965, USA
| | | | | | | | | | | |
Collapse
|
43
|
Antonsson C, Arulampalam V, Whitelaw ML, Pettersson S, Poellinger L. Constitutive function of the basic helix-loop-helix/PAS factor Arnt. Regulation of target promoters via the E box motif. J Biol Chem 1995; 270:13968-72. [PMID: 7775458 DOI: 10.1074/jbc.270.23.13968] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Arnt is a nuclear basic helix-loop-helix (bHLH) transcription factor that, contiguous with the bHLH motif, contains a region of homology (PAS) with the Drosophila factors Per and Sim. Arnt dimerizes in a ligand-dependent manner with the bHLH dioxin receptor, a process that enables the dioxin-(2,3,7,8-tetrachlorodibenzo-p-dioxin)-activated Arnt-dioxin receptor complex to recognize dioxin response elements of target promoters. In the absence of dioxin, Arnt does not bind to this target sequence motif. The constitutive function of Arnt is presently not understood. Here we demonstrate that Arnt constitutively bound the E box motif CACGTG that is also recognized by a number of distinct bHLH factors, including USF and Max. Importantly, amino acids that have been identified to be critical for E box recognition by Max and USF are conserved in Arnt. Consistent with these observations, full-length Arnt, but not an Arnt deletion mutant lacking its potent C-terminal transactivation domain, constitutively activated CACGTG E box-driven reporter genes in vivo. These results indicate a role of Arnt in regulation of a network of target genes that is distinct from that regulated by the Arnt-dioxin receptor complex in dioxin-stimulated cells.
Collapse
Affiliation(s)
- C Antonsson
- Department of Medical Nutrition, Karolinska Institute, Novum, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
44
|
Meyer KB, Skogberg M, Margenfeld C, Ireland J, Pettersson S. Repression of the immunoglobulin heavy chain 3' enhancer by helix-loop-helix protein Id3 via a functionally important E47/E12 binding site: implications for developmental control of enhancer function. Eur J Immunol 1995; 25:1770-7. [PMID: 7615006 DOI: 10.1002/eji.1830250643] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The activity of the immunoglobulin 3' enhancer is restricted to the late stages of B lymphoid development. Here we further examine the molecular basis for the temporally restricted activity of the B-lymphoid IgH 3' enhancer. We demonstrate that a binding site (E5 site) for the E47 and/or E12 proteins is functionally important for enhancer activity. The multimerized E5 site acts as a B cell-specific enhancer and, when assayed in COS cells, can be transactivated by E47/E12 proteins. This transactivation in COS cells, as well as the activity of the full length 3' enhancer in plasma cells, can be repressed by overexpression of the dominant negative nuclear regulator Id3. When examining the tissue distribution of Id3 in murine cell lines, we find that Id3 is expressed throughout the pre-B and B cell stages, but is down-regulated at the plasma cell stage. Thus, Id3 may contribute to the temporal regulation of the IgH 3' enhancer.
Collapse
Affiliation(s)
- K B Meyer
- Wellcome/CRC Institute of Cancer and Developmental Biology, University of Cambridge, GB
| | | | | | | | | |
Collapse
|
45
|
Wing BA, Huang ES. Analysis and mapping of a family of 3'-coterminal transcripts containing coding sequences for human cytomegalovirus open reading frames UL93 through UL99. J Virol 1995; 69:1521-31. [PMID: 7853485 PMCID: PMC188744 DOI: 10.1128/jvi.69.3.1521-1531.1995] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) open reading frames (ORFs) UL93 through UL99 are contained within a region of viral genome that is well conserved in all herpesviruses. Previous reports detailing the expression of ORF UL99 (also referred to as the 28-kDa virion phosphoprotein or pp28) indicated that the pattern of transcription proximal to pp28 is extremely complex and involves a number of large overlapping transcripts, none of which have been characterized. We have used an RNA-mapping approach consisting of Northern (RNA) hybridization, RNase protection, and primer extensions to determine the coding capacity of several large-molecular-weight transcripts which overlap the 1.3- and 1.6-kb UL99-specific transcripts. Our results suggest that six differentially regulated transcripts with sizes of 2.6, 4.7, 5.6, 7.3, 9.1, and 10.5 kb, and derived from the same strand of the viral genome overlap, are 3'-coterminal with the smaller UL99-specific transcripts. On the basis of 5'-end mapping via primer extension and RNase protection, we have determined that the 2.6- to 10.5-kb messages initiate upstream of each of the potential ORFs in this region, UL98, UL97, UL96, UL95, UL94, and UL93. By using cycloheximide and ganciclovir [9-(1,3-dihydroxy-2-propoxymethyl)guanine] to block de novo viral protein synthesis and viral DNA replication, respectively, we have determined that the 2.6-, 4.7-, 5.6-, and 7.3-kb messages have characteristics of early or early-late transcripts, whereas the 9.1- and 10.5-kb messages appear to be true late transcripts. The evolutionary conservation of ORFs UL93 through UL99 and their transcriptional regulation in other herpesviruses are discussed.
Collapse
Affiliation(s)
- B A Wing
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill 27599
| | | |
Collapse
|
46
|
Kohler CP, Kerry JA, Carter M, Muzithras VP, Jones TR, Stenberg RM. Use of recombinant virus to assess human cytomegalovirus early and late promoters in the context of the viral genome. J Virol 1994; 68:6589-97. [PMID: 8083994 PMCID: PMC237079 DOI: 10.1128/jvi.68.10.6589-6597.1994] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have developed a system to study human cytomegalovirus (HCMV) cis-acting promoter elements within the context of the viral genome. A recombinant HCMV (RV134) containing a marker gene (beta-glucuronidase) was used to insert HCMV promoter-chloramphenicol acetyltransferase gene constructs into the viral genome between open reading frames US9 and US10. Using this system, we have studied the promoters for the early DNA polymerase gene (UL54), the early-late lower matrix phosphoprotein gene (pp65, UL83), and the true late 28-kDa structural phosphoprotein gene (pp28, UL99). Transient-expression assays demonstrated that the pp65 and pp28 promoters are activated earlier and to higher levels than typically observed with the endogenous gene. In contrast, insertion of these promoters into the viral genome resulted in kinetics which mimicked that of the endogenous genes. In addition, we have also tested a variant of the pp28 promoter (d24/26CAT) which is deleted from -609 to -41. This promoter behaved similarly to the wild-type pp28 promoter, indicating that sequences from -40 to +106 are sufficient for conferring true late kinetics. Taken together, these data demonstrate that the viral genome affords a level of regulation on HCMV gene expression that has been previously unrealized. Therefore, these experiments provide a model system for the analysis of cis-acting promoter regulatory elements in the context of the viral genome.
Collapse
Affiliation(s)
- C P Kohler
- Department of Microbiology and Immunology, Eastern Virginia Medical School, Norfolk 23501
| | | | | | | | | | | |
Collapse
|
47
|
Kerry JA, Priddy MA, Stenberg RM. Identification of sequence elements in the human cytomegalovirus DNA polymerase gene promoter required for activation by viral gene products. J Virol 1994; 68:4167-76. [PMID: 8207792 PMCID: PMC236339 DOI: 10.1128/jvi.68.7.4167-4176.1994] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To determine the mechanisms involved in the regulation of human cytomegalovirus early gene expression, we have examined the gene that encodes the viral DNA polymerase (UL54, pol). Our previous studies demonstrated that sequences required for activation of the pol promoter by immediate-early proteins are contained within a region from -128 to +20 and that cellular proteins can bind to this activation domain. In this study, we demonstrate by competition analysis that binding of cellular proteins to pol is associated with an 18-bp region containing a single copy of a novel inverted repeat, IR1. Time course analysis indicated that viral infection increased the level of protein binding to IR1, concurrent with the activation of the pol promoter. Mutation of the IR1 element abrogated binding of cellular factors to the pol promoter and reduced by threefold the activation by immediate-early proteins. Similarly, mutation of IR1 rendered the promoter poorly responsive to activation by viral infection. Mutation of additional sequence elements in the pol promoter had little effect, indicating that IR1 plays the major role in pol promoter regulation. These studies demonstrate that the interaction between cellular factors and IR1 is important for the regulation of expression of the polymerase gene by viral proteins.
Collapse
Affiliation(s)
- J A Kerry
- Department of Microbiology and Immunology, Eastern Virginia Medical School, Norfolk 23501
| | | | | |
Collapse
|
48
|
Winkler M, Rice SA, Stamminger T. UL69 of human cytomegalovirus, an open reading frame with homology to ICP27 of herpes simplex virus, encodes a transactivator of gene expression. J Virol 1994; 68:3943-54. [PMID: 8189530 PMCID: PMC236900 DOI: 10.1128/jvi.68.6.3943-3954.1994] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The UL69 open reading frame of human cytomegalovirus (HCMV) is homologous to the immediate-early protein ICP27 of herpes simplex virus, an essential viral regulatory protein involved in the transition from early to late gene expression. Genes with homology to ICP27 have been detected in all subclasses of herpesviruses so far. While the respective proteins in alpha- and gammaherpesviruses have been defined as trans-regulatory molecules, nothing is known about these genes in betaherpesviruses. This study was therefore undertaken in order to investigate expression from the UL69 gene locus of HCMV. Northern (RNA) blot experiments revealed a complex pattern of transcripts that changed during the time course of the HCMV replicative cycle: two transcripts of 2.7 and 3.5 kb that were regulated differentially could be detected as early as 7 h after infection. However, these transcripts could not be detected in the presence of cycloheximide. Additional, larger transcripts were present exclusively at late times after infection. To analyze protein expression from the UL69 gene region, the UL69 open reading frame was expressed as a histidine-tagged protein in Escherichia coli. A specific antiserum was generated and used to detect the UL69 protein in HCMV-infected cells which revealed its localization within the intranuclear inclusions that are characteristic for HCMV infection. In cotransfection experiments, an HCMV true late promoter could not be activated by UL69, whereas an early promoter and several heterologous promoters were stimulated about 10-fold. Complementation studies showed that the UL69 protein cannot substitute for ICP27 in the context of the HSV infection, suggesting functional differences between these two proteins. In summary, these experiments define a novel regulatory protein encoded by HCMV that is expressed as an early-late gene and appears to exert a broad stimulatory effect on gene expression.
Collapse
Affiliation(s)
- M Winkler
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
49
|
Badiani P, Corbella P, Kioussis D, Marvel J, Weston K. Dominant interfering alleles define a role for c-Myb in T-cell development. Genes Dev 1994; 8:770-82. [PMID: 7926766 DOI: 10.1101/gad.8.7.770] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transcription activator c-Myb is expressed at high levels in immature thymocytes and during T-cell activation and may be a regulator of T-cell differentiation. To investigate the role of c-Myb in T-cell development, we generated transgenic mice in which two dominant interfering Myb alleles, one a competitive inhibitor of DNA binding, and the other, an active repressor comprising the Myb DNA-binding domain linked to the Drosophila Engrailed transcription repressor domain, were expressed from early times onward in T cells. Both alleles partially blocked thymopoiesis and inhibited proliferation of mature T cells. The Myb-En chimera was the more efficient repressor and might serve as an archetype for the manufacture of other dominant interfering transcription factor alleles.
Collapse
Affiliation(s)
- P Badiani
- Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | | | | | | | | |
Collapse
|
50
|
Samaniego LA, Tevethia MJ, Spector DJ. The human cytomegalovirus 86-kilodalton immediate-early 2 protein: synthesis as a precursor polypeptide and interaction with a 75-kilodalton protein of probable viral origin. J Virol 1994; 68:720-9. [PMID: 8289376 PMCID: PMC236508 DOI: 10.1128/jvi.68.2.720-729.1994] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The immediate-early 2 (IE2) 86-kDa polypeptide, a major immediate-early gene product of human cytomegalovirus, regulates transcription both positively and negatively. We report two new properties of the IE2 86-kDa polypeptide in infected cells. Immunoprecipitation of infected cell proteins from human embryonic lung cells by antipeptide or monoclonal antibodies specific for IE2 epitopes revealed three closely migrating polypeptide species. The slowest, p86, behaved as expected for the mature 86-kDa IE2 polypeptide. The middle species, p80, was immunoprecipitated from denatured as well as native samples and labeled to steady state rapidly. Pulse-chase analysis demonstrated directly that p80 was a metabolic precursor to p86. The fastest-migrating species, p75, was not detected by probing blots of the immunoprecipitated proteins with IE2-specific antisera; p75 was not precipitated from denatured protein samples; and the products of partial proteolysis of p75 were distinct from those of p86. These properties established p75 as an unrelated coprecipitated polypeptide complexed with p86. The p75 proteins coprecipitated from cells infected with two different strains of human cytomegalovirus, AD169 and Towne, had different mobilities. p75 was detected as early as 6 h and as late as 72 h after infection, but it was not synthesized in cells released from a cycloheximide block. Thus, it is likely that p75 is an early viral protein.
Collapse
Affiliation(s)
- L A Samaniego
- Department of Microbiology and Immunology, Pennsylvania State University, College of Medicine, Hershey 17033
| | | | | |
Collapse
|