1
|
Immortalized cells as experimental models to study cancer. Cytotechnology 2011; 45:47-59. [PMID: 19003243 DOI: 10.1007/s10616-004-5125-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 09/21/2004] [Indexed: 12/23/2022] Open
Abstract
The development of cancer is a multi-step process in which normal cells sustain a series of genetic alterations that together program the malignant phenotype. Much of our knowledge of cancer biology results from the detailed study of specimens and cell lines derived from patient tumors. While these approaches continue to yield critical information regarding the identity, number, and types of alterations found in human tumors, further progress in understanding the molecular basis of malignant transformation depends upon the generation and use of increasingly sophisticated experimental models of cancer. Over the past several years, the recognition that telomeres and telomerase play essential roles in regulating cell lifespan now permits the development of new models of human cancer. Here we review recent progress in the use of immortalized human cells as a foundation for understanding the molecular basis of cancer.
Collapse
|
2
|
Abstract
Over 50 years of polyomavirus research has produced a wealth of insights into not only general biologic processes in mammalian cells, but also, how conditions can be altered and signaling systems tweaked to produce transformation phenotypes. In the past few years three new members (KIV, WUV, and MCV) have joined two previously known (JCV and BKV) human polyomaviruses. In this review, we present updated information on general virologic features of these polyomaviruses in their natural host, concentrating on the association of MCV with human Merkel cell carcinoma. We further present a discussion on advances made in SV40 as the prototypic model, which has and will continue to inform our understanding about viruses and cancer.
Collapse
Affiliation(s)
- Ole Gjoerup
- Cancer Virology Program, Hillman Cancer Research Pavilion, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | |
Collapse
|
3
|
Abstract
Although the small DNA tumor virus SV40 (simian virus 40) fails to replicate in human cells, understanding how SV40 transforms human and murine cells has and continues to provide important insights into cancer initiation and maintenance. The early region of SV40 encodes two oncoproteins: the large T (LT) and small t (ST) antigens. SV40 LT contributes to murine and human cell transformation in part by inactivating the p53 and retinoblastoma protein tumor suppressor proteins. SV40 ST inhibits the activity of the protein phosphatase 2A (PP2A) family of serine-threonine phosphatases, and this interaction is required for SV40-mediated transformation of human cells. PP2A regulates multiple signaling pathways, suggesting many possible targets important for viral replication and cell transformation. Genetic manipulation of particular PP2A subunits has confirmed a role for specific complexes in transformation, and recent work implicates the perturbation of the phosphatidylinositol 3-kinase/Akt pathway and c-Myc stability in transformation by ST and PP2A. Mutations in PP2A subunits occur at low frequency in human tumors, suggesting that alterations of PP2A signaling play a role in both experimentally induced and spontaneously arising cancers. Unraveling the complexity of PP2A signaling will not only provide further insights into cancer development but may identify novel targets with promise for therapeutic manipulation.
Collapse
Affiliation(s)
- Jason D Arroyo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
4
|
Skoczylas C, Henglein B, Rundell K. PP2A-dependent transactivation of the cyclin A promoter by SV40 ST is mediated by a cell cycle-regulated E2F site. Virology 2005; 332:596-601. [PMID: 15680424 DOI: 10.1016/j.virol.2004.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 09/10/2004] [Accepted: 12/16/2004] [Indexed: 11/17/2022]
Abstract
The Simian Virus 40 (SV40) small-t antigen (ST) plays an important role in driving cell proliferation, enhancing transformation by the large-T (LT) antigen. Potential targets of ST are the cyclin kinase inhibitor p27 and the cyclin A gene itself. Transactivation of the cyclin A promoter by ST depends on the interaction of ST with protein phosphatase 2A (PP2A) and occurs through a cell cycle-regulated E2F site near the transcription start site of the promoter. A third SV40 early protein, 17KT, also transactivates the cyclin A promoter but, in this case, transactivation depends on the dnaJ domain of the protein.
Collapse
Affiliation(s)
- Christine Skoczylas
- Department of Microbiology-Immunology, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | |
Collapse
|
5
|
Zhang YH, Kooistra K, Pietersen A, Rohn JL, Noteborn MHM. Activation of the tumor-specific death effector apoptin and its kinase by an N-terminal determinant of simian virus 40 large T antigen. J Virol 2004; 78:9965-76. [PMID: 15331730 PMCID: PMC515021 DOI: 10.1128/jvi.78.18.9965-9976.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Apoptin, a viral death protein derived from chicken anemia virus, displays a number of tumor-specific behaviors. In particular, apoptin is phosphorylated, translocates to the nucleus, and induces apoptosis specifically in tumor or transformed cells, whereas it is nonphosphorylated and remains primarily inactive in the cytoplasm of nontransformed normal cells. Here, we show that in normal cells apoptin can also be activated by the transient transforming signals conferred by ectopically expressed simian virus 40 (SV40) large T antigen (LT), which rapidly induces apoptin's phosphorylation, nuclear accumulation, and the ability to induce apoptosis. Further analyses with mutants of LT showed that the minimum domain capable of inducing all three of apoptin's tumor-specific properties resided in the N-terminal J domain, a sequence which is largely shared by SV40 small t antigen (st). Interestingly, the J domain in st, which lacks its own nuclear localization signal (NLS), required nuclear localization to activate apoptin. These results reveal the existence of a cellular pathway shared by conditions of transient transformation and the stable cancerous or precancerous state, and they support a model whereby a transient transforming signal confers on apoptin both the upstream activity of phosphorylation and the downstream activity of nuclear accumulation and apoptosis induction. Such a pathway may reflect a general lesion contributing to human cancers.
Collapse
|
6
|
Chen W, Possemato R, Campbell KT, Plattner CA, Pallas DC, Hahn WC. Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 2004; 5:127-36. [PMID: 14998489 DOI: 10.1016/s1535-6108(04)00026-1] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Revised: 12/03/2003] [Accepted: 12/23/2003] [Indexed: 12/30/2022]
Abstract
The SV40 small t antigen (ST) interacts with the serine-threonine protein phosphatase 2A (PP2A). To investigate the role of this interaction in transformation, we suppressed the expression of the PP2A B56gamma subunit in human embryonic kidney (HEK) epithelial cells expressing SV40 large T antigen, hTERT, and H-RAS. Suppression of PP2A B56gamma expression inhibited PP2A-specific phosphatase activity similar to that achieved by ST and conferred the ability to grow in an anchorage-independent fashion and to form tumors. Overexpression of PP2A B56gamma3 in tumorigenic HEK cells expressing ST or human lung cancer cell lines partially reversed the tumorigenicity of these cells. These observations identify specific PP2A complexes involved in human cell transformation.
Collapse
Affiliation(s)
- Wen Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
7
|
Boyapati A, Wilson M, Yu J, Rundell K. SV40 17KT antigen complements dnaj mutations in large T antigen to restore transformation of primary human fibroblasts. Virology 2003; 315:148-58. [PMID: 14592767 DOI: 10.1016/s0042-6822(03)00524-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transformation of human cells requires both SV40 large T and small t antigens. Plasmids that contained mutations in the amino-terminal dnaJ domain of the early region fail to transform human diploid fibroblasts. However, large T dnaJ mutants can be rescued by plasmids that express early region products other than large T antigen. The protein found to be responsible for such complementation was the third early region product, 17KT. Similar to large T, this protein reduces levels of the retinoblastoma-related protein, p130, and stimulates cell-cycle progression of quiescent fibroblasts, two activities of large T that are disrupted by dnaJ mutations.
Collapse
Affiliation(s)
- Anita Boyapati
- Department of Microbiology-Immunology and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
8
|
Zhao JJ, Gjoerup OV, Subramanian RR, Cheng Y, Chen W, Roberts TM, Hahn WC. Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cell 2003; 3:483-95. [PMID: 12781366 DOI: 10.1016/s1535-6108(03)00088-6] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have demonstrated that introduction of hTERT in combination with SV40 large T antigen (LT), small t antigen (st), and H-rasV12 suffices to transform many primary human cells. In human mammary epithelial cells (HMECs) expressing elevated c-Myc, activated H-Ras is dispensable for anchorage-independent growth. Using this system, we show that st activates the PI3K pathway and that constitutive PI3K signaling substitutes for st in transformation. Moreover, using constitutively active versions of Akt1 and Rac1, we show that these downstream pathways of PI3K synergize to achieve anchorage-independent growth. At lower levels of c-myc expression, activated PI3K also replaces st to complement H-rasV12 and LT and confers both soft agar growth and tumorigenicity. However, elevated c-myc expression cannot replace H-rasV12 for tumorigenesis. These observations begin to define the pathways perturbed during the transformation of HMECs.
Collapse
Affiliation(s)
- Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Cancer arises from a stepwise accumulation of genetic changes that liberates neoplastic cells from the homeostatic mechanisms that govern normal cell proliferation. In humans, at least four to six mutations are required to reach this state, but fewer seem to be required in mice. By rationalizing the shared and unique elements of human and mouse models of cancer, we should be able to identify the molecular circuits that function differently in humans and mice, and use this knowledge to improve existing models of cancer.
Collapse
Affiliation(s)
- William C Hahn
- Whitehead Institute for Biomedical Research, Massachusetts 02142, USA.
| | | |
Collapse
|
10
|
Hahn WC, Dessain SK, Brooks MW, King JE, Elenbaas B, Sabatini DM, DeCaprio JA, Weinberg RA. Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol 2002; 22:2111-23. [PMID: 11884599 PMCID: PMC133688 DOI: 10.1128/mcb.22.7.2111-2123.2002] [Citation(s) in RCA: 467] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2001] [Revised: 11/29/2001] [Accepted: 01/07/2002] [Indexed: 11/20/2022] Open
Abstract
While it is clear that cancer arises from the accumulation of genetic mutations that endow the malignant cell with the properties of uncontrolled growth and proliferation, the precise combinations of mutations that program human tumor cell growth remain unknown. The study of the transforming proteins derived from DNA tumor viruses in experimental models of transformation has provided fundamental insights into the process of cell transformation. We recently reported that coexpression of the simian virus 40 (SV40) early region (ER), the gene encoding the telomerase catalytic subunit (hTERT), and an oncogenic allele of the H-ras gene in normal human fibroblast, kidney epithelial, and mammary epithelial cells converted these cells to a tumorigenic state. Here we show that the SV40 ER contributes to tumorigenic transformation in the presence of hTERT and oncogenic H-ras by perturbing three intracellular pathways through the actions of the SV40 large T antigen (LT) and the SV40 small t antigen (ST). LT simultaneously disables the retinoblastoma (pRB) and p53 tumor suppressor pathways; however, complete transformation of human cells requires the additional perturbation of protein phosphatase 2A by ST. Expression of ST in this setting stimulates cell proliferation, permits anchorage-independent growth, and confers increased resistance to nutrient deprivation. Taken together, these observations define the elements of the SV40 ER required for the transformation of human cells and begin to delineate a set of intracellular pathways whose disruption, in aggregate, appears to be necessary to generate tumorigenic human cells.
Collapse
Affiliation(s)
- William C Hahn
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Gaillard S, Fahrbach KM, Parkati R, Rundell K. Overexpression of simian virus 40 small-T antigen blocks centrosome function and mitotic progression in human fibroblasts. J Virol 2001; 75:9799-807. [PMID: 11559813 PMCID: PMC114552 DOI: 10.1128/jvi.75.20.9799-9807.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recombinant adenoviruses that express high levels of the simian virus 40 (SV40) small-t (ST) antigen have been used to study the requirement for ST to drive cell cycle proliferation of confluent human diploid fibroblasts. This occurs when either large-T (LT) antigen or serum is added to provide a second signal. While cells readily completed S phase in these experiments, they were found to accumulate with 4N DNA content. Cellular and nuclear morphology, as well as the biochemical status of cyclin B complexes, showed that these cells entered mitosis but were blocked prior to mitotic metaphase. The defect appears to reflect an inability of cells overexpressing ST to form organized centrosomes that duplicate and separate normally during the cell cycle and, therefore, the absence of a mitotic spindle. The ability of ST to bind protein phosphatase 2A was required for this pattern, suggesting that altered phosphorylation of key centrosomal components may occur when ST is overexpressed. Although the possible significance of ST effects on the centrosome cycle is not fully understood, these findings suggest that ST could influence chromosomal instability patterns that are a hallmark of SV40-transformed cells and LT expression.
Collapse
Affiliation(s)
- S Gaillard
- Department of Microbiology-Immunology and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611-3010, USA
| | | | | | | |
Collapse
|
12
|
Affiliation(s)
- H L Ozer
- Department of Microbiology and Molecular Genetics UMD-New Jersey Medical School 07103-2714, USA
| |
Collapse
|
13
|
Gallimore PH, Lecane PS, Roberts S, Rookes SM, Grand RJ, Parkhill J. Adenovirus type 12 early region 1B 54K protein significantly extends the life span of normal mammalian cells in culture. J Virol 1997; 71:6629-40. [PMID: 9261385 PMCID: PMC191941 DOI: 10.1128/jvi.71.9.6629-6640.1997] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The life span of normal human cells in culture is extended by two to four total life spans following retrovirus-mediated transfer of the adenovirus type 12 E1B 54,000-molecular-weight protein (54K protein). This extension of the in vitro growth potential was accomplished without any of the obvious changes in morphology or growth properties that are usually associated with viral transformation. These 54K+ cells escape the normal senescence checkpoint (M1) and show a very extended secondary growth phase. The 54K+ human cells eventually enter crisis (M2), which does not appear to be due to either telomere attrition or the activation of the senescence-associated proteins p21SdilCipIWaf1 and p16INK4A. Even in the absence of telomerase activity, high-molecular-weight heterogeneous telomeres are produced and maintained in both 54K+ adult dermal fibroblasts and embryo kidney cells, indicating that the 54K protein may interfere with the normal metabolism of telomeric structures during cell division. These findings are discussed with reference to the known ability of the 54K protein to influence p53 function.
Collapse
Affiliation(s)
- P H Gallimore
- CRC Institute for Cancer Studies, Medical School, University of Birmingham, Edgbaston, United Kingdom.
| | | | | | | | | | | |
Collapse
|
14
|
Watanabe G, Howe A, Lee RJ, Albanese C, Shu IW, Karnezis AN, Zon L, Kyriakis J, Rundell K, Pestell RG. Induction of cyclin D1 by simian virus 40 small tumor antigen. Proc Natl Acad Sci U S A 1996; 93:12861-6. [PMID: 8917510 PMCID: PMC24011 DOI: 10.1073/pnas.93.23.12861] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cell-cycle progression is mediated by a co-ordinated interaction between cyclin-dependent kinases and their target proteins including the pRB and E2F/DP-1 complexes. Immunoneutralization and antisense experiments have established that the abundance of cyclin D1, a regulatory subunit of the cyclin-dependent kinases, may be rate-limiting for G1 phase progression of the cell cycle. Simian virus 40 (SV40) small tumor (t) antigen is capable of promoting G1 phase progression and augments substantially the efficiency of SV40 transformation through several distinct domains. In these studies, small t antigen stimulated cyclin D1 promoter activity 7-fold, primarily through an AP-1 binding site at -954 with additional contributions from a CRE site at -57. The cyclin D1 AP-1 and CRE sites were sufficient for activation by small t antigen when linked to an heterologous promoter. Point mutations of small t antigen between residues 97-103 that reduced PP2A binding were partially defective in the induction of the cyclin D1 promoter. These mutations also reduced activation of MEK1 and two distinct members of the mitogen-activated protein kinase family, the ERKs (extracellular signal regulated kinases) and the SAPKs (stress-activated protein kinases), in transfected cells. Dominant negative mutants of either MEK1, ERK or SEK1, reduced small t-dependent induction of the cyclin D1 promoter. SV40 small t induction of the cyclin D1 promoter involves both the ERK and SAPK pathways that together may contribute to the proliferative and transformation enhancing activity of small t antigen.
Collapse
Affiliation(s)
- G Watanabe
- Department of Medicine, Lurie Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Porrás A, Bennett J, Howe A, Tokos K, Bouck N, Henglein B, Sathyamangalam S, Thimmapaya B, Rundell K. A novel simian virus 40 early-region domain mediates transactivation of the cyclin A promoter by small-t antigen and is required for transformation in small-t antigen-dependent assays. J Virol 1996; 70:6902-8. [PMID: 8794333 PMCID: PMC190739 DOI: 10.1128/jvi.70.10.6902-6908.1996] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
At least three regions of the simian virus 40 small-t antigen (small-t) contribute to the protein's ability to enhance cellular transformation. As we showed previously for rat F111 cells, one region includes sequences from residues 97 to 103 that are involved in the binding and inhibition of protein phosphatase 2A. In the present study, the role of the protein phosphatase 2A binding region was confirmed in two additional small-t-dependent transformation systems. Second, small-t was found to provide a function previously identified as a large-T transformation domain. Mutations in residues 19 to 28 of large-T affected its transforming ability, but these mutations were complemented by a wild-type small-t. A third region of small-t was also required for efficient transformation. This region, the 42-47 region, is shared by large-T and small-t and contains a conserved HPDKGG hexapeptide. The 42-47 region function could be provided by either small-t or large-T in small-t-dependent systems. Mutations in the 42-47 region reduced the ability of small-t to transactivate the cyclin A promoter, of interest because small-t increased endogenous cyclin A mRNA levels in both human and monkey cells, as well as transactivating the promoter in transient assays.
Collapse
Affiliation(s)
- A Porrás
- Department of Microbiology-Immunology, Northwestern University Medical Center, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang JL, Nistér M, Bongcam-Rudloff E, Pontén J, Westermark B. Suppression of platelet-derived growth factor alpha- and beta-receptor mRNA levels in human fibroblasts by SV40 T/t antigen. J Cell Physiol 1996; 166:12-21. [PMID: 8557760 DOI: 10.1002/(sici)1097-4652(199601)166:1<12::aid-jcp2>3.0.co;2-j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It is known that down-regulation of cell surface platelet-derived growth factor (PDGF) receptors accompanies transformation by SV40. In this work human embryonic lung fibroblasts were used as a model system to study the effects of SV 40 on PDGF receptor expression. It is shown that transformation by SV 40 early region leads to a total loss of PDGF alpha-receptor and partial loss of beta-receptor mRNA. Microinjection experiments revealed that receptor down-regulation was a primary effect, and not only secondary to transformation and clonal selection. Total loss of PDGF alpha-receptor expression requires both large T and small t, and down-regulation of the PDGF alpha-receptor occurs independently of p53 and Rb binding to large T.
Collapse
Affiliation(s)
- J L Wang
- Department of Pathology, University Hospital, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
17
|
Simian Virus 40 Large T Antigen Induces Chromosome Damage that Precedes and Coincides with Complete Neoplastic Transformation. ACTA ACUST UNITED AC 1995. [DOI: 10.1007/978-1-4899-1100-1_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Wang WB, Bikel I, Marsilio E, Newsome D, Livingston DM. Transrepression of RNA polymerase II promoters by the simian virus 40 small t antigen. J Virol 1994; 68:6180-7. [PMID: 8083958 PMCID: PMC237037 DOI: 10.1128/jvi.68.10.6180-6187.1994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Simian virus 40 (SV40) small t antigen (t) can activate transcription from certain RNA polymerase II and III promoters (M. Loeken, I. Bikel, D. M. Livingston, and J. Brady, Cell 55:1171-1177, 1988). Here we report a new function of t, its ability to repress human c-fos promoter and AP-1 transcriptional activity in CV-1P cells. This function is the product of a discrete N-terminal domain of t, because the large T antigen (T)/t-common polypeptide, which contains only the first 82 amino acids common to both T and t of SV40, was, like the intact protein, an active repressor. The data further suggest that the t- and T/t-common-mediated repression of c-fos expression was most likely manifest at the level of transcription. In keeping with the possibility that t affects the expression of the genomic c-fos promoter, it also led to repression of AP-1 formation. Thus, SV40 is both an activator and a repressor of transcription. Its ability to inhibit c-fos expression should be considered in light of the natural history of SV40 in its natural host.
Collapse
Affiliation(s)
- W B Wang
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
19
|
Ogryzko VV, Hirai TH, Shih CE, Howard BH. Dissociation of retinoblastoma gene protein hyperphosphorylation and commitment to enter S phase. J Virol 1994; 68:3724-32. [PMID: 8189510 PMCID: PMC236877 DOI: 10.1128/jvi.68.6.3724-3732.1994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mitogenic activities of simian virus 40 large T and small t antigens were studied in serum-deprived human diploid fibroblasts. Wild-type large T and small t cooperated in stimulating DNA synthesis and in inducing hyperphosphorylation of the Rb gene product (pRb). In contrast, a T antigen mutant defective for pRb binding (Rb- T) possessed no detectable mitogenic activity alone and failed to complement small t in stimulating DNA synthesis. Surprisingly, Rb- T and small t cooperated as strongly as wild-type T and small t with respect to pRb hyperphosphorylation. As a consequence, in two closely related conditions (i.e., stimulation by small t plus wild-type T versus small t plus Rb- T), the fraction of pRb in hyperphosphorylated forms dissociated from the fraction of cells in the S phase. These results indicate that pRb hyperphosphorylation is not always tightly coupled with a commitment to initiate DNA replication.
Collapse
Affiliation(s)
- V V Ogryzko
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
20
|
ter Schegget J, van der Noordaa J. Protein phosphatase 2A and the regulation of human papillomavirus gene activity. Curr Top Microbiol Immunol 1994; 186:121-9. [PMID: 8205837 DOI: 10.1007/978-3-642-78487-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J ter Schegget
- University of Amsterdam, Faculty of Medicine, Department of Virology, The Netherlands
| | | |
Collapse
|
21
|
Smits PH, de Ronde A, Smits HL, Minnaar RP, van der Noordaa J, ter Schegget J. Modulation of the human papillomavirus type 16 induced transformation and transcription by deletion of loci on the short arm of human chromosome 11 can be mimicked by SV40 small t. Virology 1992; 190:40-4. [PMID: 1326811 DOI: 10.1016/0042-6822(92)91190-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The human papillomavirus (HPV) type 16 enhancer-promoter has been shown to be active in human fibroblasts with a deletion on the short arm of one chromosome 11 (karyotype 46,del(11)(p11.11p15.1)) but is virtually inactive in diploid human fibroblasts (Smits, Smits, Jebbink, and ter Schegget, 1990b, Virology, 176, 158-165). In diploid human embryonic fibroblasts, activation of the HPV16 enhancer-promoter could be achieved by expression of the SV40 small t. By cotransfecting SV40 small t cDNA together with HPV16 DNA into diploid cells, it was possible to increase the transforming activity of HPV16 by 10- 15-fold. Furthermore, SV40 small t was essential for the SV40 large T-induced morphological transformation of human diploid fibroblasts, whereas SV40 small t was dispensable for transformation of del-11 cells. We propose that, as a result of the deletion of loci on the short arm of chromosome 11 in del-11 cells, functions are expressed that mimic those of SV40 small t in transformation and trans-activation.
Collapse
Affiliation(s)
- P H Smits
- Department of Medical Microbiology, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Fickling SA, Tooze JA, Whitley GS. Characterization of human umbilical vein endothelial cell lines produced by transfection with the early region of SV40. Exp Cell Res 1992; 201:517-21. [PMID: 1379194 DOI: 10.1016/0014-4827(92)90303-p] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human umbilical vein endothelial cells were transfected by electroporation with the plasmid pSV3neo, containing the early region of simian virus 40. The resultant "cell lines" divide rapidly (population doubling time of 33 h) for up to 24 passages in medium supplemented with 5% (v/v) serum and 2.5 micrograms/ml endothelial cell growth supplement. Several of these lines express basal levels of ICAM-1 and MHC class I but not MHC class II. One cell line, designated SGHEC-7, retained a number of differentiated endothelial cell functions throughout its lifespan. These functions include increased production of tissue plasminogen activator in response to histamine, thrombin, and PMA. Stability of function and rapid growth over 24 passages endow these cells with a number of advantages over primary cultures. The homogeneous cell population and consistency of response make them ideal for biochemical and immunological studies hereto impractical with primary human endothelial cells. The success of this approach may allow the production of functional cell lines from other vascular beds.
Collapse
Affiliation(s)
- S A Fickling
- Department of Cellular and Molecular Sciences, St. Georges Hospital Medical School, London, United Kingdom
| | | | | |
Collapse
|
23
|
Page SR, Taylor AH, Whitley GS, Johnstone AP, Nussey SS. Effects of ageing on the growth and differentiated function of transfected human thyrocytes. Mol Cell Endocrinol 1991; 82:143-50. [PMID: 1794605 DOI: 10.1016/0303-7207(91)90025-n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Senescence in primary cultures of mammalian cells is characterised by cessation of growth after a number of cell divisions; this may be associated with loss of some differentiated functions. Recent studies on bovine adrenocortical cells have suggested that expression of simian virus-40 (SV40) early region in these cells may prevent phenotypic losses due to senescence. We report here data on growth and differentiated function of two human thyrocyte cell lines (SGHTL-34 and -45) generated by the transfection of primary thyrocytes with the plasmid pSV3neo which contains the SV40 early region. Growth was assessed by fluorometric DNA estimations and calculation of cell population doubling time; function was assessed by binding studies using 125I-bovine thyrotrophin (TSH) and measurement of cyclic adenosine 3',5'-monophosphate (cAMP) response to stimulation with TSH, forskolin and cholera toxin. After 3-12 months in stable culture there was a gradual increase in the doubling time of both cell lines over a 3-month period (SGHTL-34 cells, early 34.5 +/- 4.5 h, late 301 +/- 111.6 h; SGHTL-45 cells, early 53.4 +/- 4.4 h, late 148.3 +/- 26.3 h; mean +/- SEM). Scatchard analysis demonstrated a loss of the high affinity TSH receptor over the same time period. The increase in cAMP in response to 1000 microU/ml TSH declined until the cells became unresponsive (SGHTL-34 early, cAMP 10.3 +/- 0.7 pmol/well; late, cAMP -0.4 +/- 0.3 pmol/well; SGHTL-45 early, cAMP 11.3 +/- 1.1 pmol/well, late, cAMP 0.3 +/- 0.1 pmol/well). The cAMP responses to forskolin and cholera toxin were unaffected.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S R Page
- Department of Cellular and Molecular Sciences, St. George's Hospital Medical School, London, U.K
| | | | | | | | | |
Collapse
|
24
|
Simian virus 40 large-T antigen expresses a biological activity complementary to the p300-associated transforming function of the adenovirus E1A gene products. Mol Cell Biol 1991. [PMID: 1848672 DOI: 10.1128/mcb.11.4.2116] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report we present evidence that simian virus 40 T antigen encodes a biological activity that is functionally equivalent to the transforming activity lost by deletion of the E1A p300-binding region. T-antigen constructs from which the pRb-binding region has been deleted are virtually unable to induce foci of transformed cells in a ras cooperation assay in primary baby rat kidney cells. Nevertheless, such a construct can cooperate with an E1A N-terminal deletion mutant, itself devoid of transforming activity, to induce foci in this assay. The heterologous trans-cooperating activity observed between E1A and T-antigen deletion products is as efficient as trans cooperation between mutants expressing individual E1A domains. The cooperating function can be impaired by a deletion near the N terminus of T antigen. Such a deletion impairs neither the p53-binding function nor the activity of the pRb-binding region.
Collapse
|
25
|
Yaciuk P, Carter MC, Pipas JM, Moran E. Simian virus 40 large-T antigen expresses a biological activity complementary to the p300-associated transforming function of the adenovirus E1A gene products. Mol Cell Biol 1991; 11:2116-24. [PMID: 1848672 PMCID: PMC359899 DOI: 10.1128/mcb.11.4.2116-2124.1991] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this report we present evidence that simian virus 40 T antigen encodes a biological activity that is functionally equivalent to the transforming activity lost by deletion of the E1A p300-binding region. T-antigen constructs from which the pRb-binding region has been deleted are virtually unable to induce foci of transformed cells in a ras cooperation assay in primary baby rat kidney cells. Nevertheless, such a construct can cooperate with an E1A N-terminal deletion mutant, itself devoid of transforming activity, to induce foci in this assay. The heterologous trans-cooperating activity observed between E1A and T-antigen deletion products is as efficient as trans cooperation between mutants expressing individual E1A domains. The cooperating function can be impaired by a deletion near the N terminus of T antigen. Such a deletion impairs neither the p53-binding function nor the activity of the pRb-binding region.
Collapse
Affiliation(s)
- P Yaciuk
- Cold Spring Harbor Laboratory, New York 11724
| | | | | | | |
Collapse
|
26
|
Stewart N, Bacchetti S. Expression of SV40 large T antigen, but not small t antigen, is required for the induction of chromosomal aberrations in transformed human cells. Virology 1991; 180:49-57. [PMID: 1845837 DOI: 10.1016/0042-6822(91)90008-y] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Expression of the Simian virus 40 (SV40) early region in human cells results in the induction of chromosomal aberrations and polyploidy, and in transformation. To understand how genetic damage occurs and what role it plays in transformation, human diploid fibroblasts and embryonic kidney cells were transfected with plasmids encoding wild type or mutant forms of the viral early region, and the neo gene. Clones selected for G418 resistance and expressing viral genes were initially analyzed within 20 cell divisions. Our results demonstrate that expression of the SV40 large T antigen is sufficient for the induction of chromosomal damage and ploidy changes, and that small t does not contribute to these processes. Mutant plasmids lacking the SV40 origin of DNA replication were as proficient as wild type plasmids, indicating that viral DNA replication is not required for cytogenetic damage. We have also shown that chromosome aberrations, but not necessarily polyploidy, increase in frequency and complexity upon subculturing of the clones regardless of whether such populations arrest at crisis or yield immortal lines. Our results are compatible with the hypothesis that large T antigen destabilizes the cellular genome, and that specific mutations arising from this process may contribute to cell immortalization.
Collapse
Affiliation(s)
- N Stewart
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
27
|
Choi CS, Murtaugh MP, Molitor TW. Establishment of transformed swine fibroblast cell lines using SV40 large T antigen. Arch Virol 1990; 115:227-37. [PMID: 2175590 DOI: 10.1007/bf01310532] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Swine testicle cell lines were established by transformation of primary swine testicle (PST) cells with an SV40 plasmid (pSV3-neo), which contains genes conferring resistance to neomycin and expressing SV40 large T antigen. Plasmid DNA was transfected into PST cells using a lipofection system. Two related plasmids, pSV2-neo and pSV5-neo, failed to induce transformed cells. Cells transformed with pSV3-neo formed single colonies that were resistant to the antibiotic, G418, and expressed large T antigen. Upon two cycles of cloning by endpoint dilution method, three transformed clones, designated transformed swine testicle (tST)-3, tST-14 and tST-18, were selected and characterized in regards to cell replication and susceptibility to swine viruses. The resultant clones were compared with a counterpart non-transformed ST cell line (ATCC-ST). The three tST cell lines showed longer or the same doubling times and higher saturation densities compared to ATCC-ST cells. These cells were free from a range of adventitious agents and supported the replication of porcine parvovirus (PPV), pseudorabies virus (PRV) and transmissible gastroenteritis virus (TGEV), comparable to ATCC-ST cells. All three cell lines have been maintained in continuous cultures for over 60 passages with no changes in growth characteristics. These findings indicate that lipofection with pSV3-neo is an efficient means for the introduction of exogenous DNA into porcine cells and for establishment of transformed immortalized cell lines.
Collapse
Affiliation(s)
- C S Choi
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul
| | | | | |
Collapse
|
28
|
Srinivasan A, Peden KW, Pipas JM. The large tumor antigen of simian virus 40 encodes at least two distinct transforming functions. J Virol 1989; 63:5459-63. [PMID: 2555566 PMCID: PMC251216 DOI: 10.1128/jvi.63.12.5459-5463.1989] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The large tumor antigen (T antigen) of simian virus 40 is necessary and sufficient for the neoplastic transformation of a number of established cell lines. Mutational analysis has revealed that a biochemical activity residing within the amino-terminal 121 amino acids of T antigen is sufficient to induce the transformation of some cell lines, such as C3H10T1/2. The same domain of the molecule also encodes the transactivation function of T antigen and the ability to complex with the retinoblastoma susceptibility gene product. However, the transformation of other lines, such as REF52, requires an additional activity that is affected by mutations in other portions of the molecule.
Collapse
Affiliation(s)
- A Srinivasan
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | | | | |
Collapse
|