1
|
Transcriptome analysis reveals key defense-related genes upon SA induction in Cocos nucifera L. Genes Genomics 2021; 44:197-210. [PMID: 34216358 DOI: 10.1007/s13258-021-01068-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/17/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Salicylic acid (SA) is an important regulator of genes involved in plant defense and pathogen-triggered systemic acquired resistance (SAR). Coconut is an important crop affected by several pathogens. Reported evidence suggests SA involvement in defense responses, including SAR in coconut. OBJECTIVE To identified differentially expressed genes in leaf and root tissues of coconut plantlets, as a result of SA, that might be involved in coconut defense responses. METHODS Comparative transcriptomic analysis by RNA-Seq of leaf and root tissues from in vitro coconut plantlets unexposed and exposed to SA 2.5 mM for 48 h. And in silico validation of gene expression by qRT-PCR. RESULTS We identified 4615 and 3940 differentially expressed unigenes (DEUs) in leaf and root tissues respectively. Our GO analysis showed functional categories related to the induction of defense responses, such as "systemic acquired resistance" and highly enriched hormone categories, such as abscisic acid. The most abundant KEGG pathway in our results was "Biosynthesis of antibiotics". Our findings support that exogenous application of SA to plantlets induced the activation of PRs, RGAs, ICS2, NLTP2, PER4, TRXM and some WRKYs mediated by NPR1-dependent pathways. Also, we found DEUs, such as BZR1, HSL1, and WHY2 that support that SA could regulate defense-related genes through NPR1-independent pathways. CONCLUSION The present study of massive data analysis carried out on coconut plantlets exposed to SA, generates valuable information that increases our understanding of defense molecular mechanisms in coconut and open new venues for research for the improvement of management of coconut diseases.
Collapse
|
2
|
Lantican DV, Strickler SR, Canama AO, Gardoce RR, Mueller LA, Galvez HF. De Novo Genome Sequence Assembly of Dwarf Coconut ( Cocos nucifera L. 'Catigan Green Dwarf') Provides Insights into Genomic Variation Between Coconut Types and Related Palm Species. G3 (BETHESDA, MD.) 2019; 9:2377-2393. [PMID: 31167834 PMCID: PMC6686914 DOI: 10.1534/g3.119.400215] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/31/2019] [Indexed: 11/23/2022]
Abstract
We report the first whole genome sequence (WGS) assembly and annotation of a dwarf coconut variety, 'Catigan Green Dwarf' (CATD). The genome sequence was generated using the PacBio SMRT sequencing platform at 15X coverage of the expected genome size of 2.15 Gbp, which was corrected with assembled 50X Illumina paired-end MiSeq reads of the same genome. The draft genome was improved through Chicago sequencing to generate a scaffold assembly that results in a total genome size of 2.1 Gbp consisting of 7,998 scaffolds with N50 of 570,487 bp. The final assembly covers around 97.6% of the estimated genome size of coconut 'CATD' based on homozygous k-mer peak analysis. A total of 34,958 high-confidence gene models were predicted and functionally associated to various economically important traits, such as pest/disease resistance, drought tolerance, coconut oil biosynthesis, and putative transcription factors. The assembled genome was used to infer the evolutionary relationship within the palm family based on genomic variations and synteny of coding gene sequences. Data show that at least three (3) rounds of whole genome duplication occurred and are commonly shared by these members of the Arecaceae family. A total of 7,139 unique SSR markers were designed to be used as a resource in marker-based breeding. In addition, we discovered 58,503 variants in coconut by aligning the Hainan Tall (HAT) WGS reads to the non-repetitive regions of the assembled CATD genome. The gene markers and genome-wide SSR markers established here will facilitate the development of varieties with resilience to climate change, resistance to pests and diseases, and improved oil yield and quality.
Collapse
Affiliation(s)
- Darlon V Lantican
- Genetics Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
- Philippine Genome Center, University of the Philippines System, Diliman, Quezon City, Philippines
| | | | - Alma O Canama
- Genetics Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
| | - Roanne R Gardoce
- Genetics Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
| | | | - Hayde F Galvez
- Genetics Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
| |
Collapse
|
3
|
Alphasatellitidae: a new family with two subfamilies for the classification of geminivirus- and nanovirus-associated alphasatellites. Arch Virol 2018; 163:2587-2600. [PMID: 29740680 DOI: 10.1007/s00705-018-3854-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/25/2018] [Indexed: 10/16/2022]
Abstract
Nanoviruses and geminiviruses are circular, single stranded DNA viruses that infect many plant species around the world. Nanoviruses and certain geminiviruses that belong to the Begomovirus and Mastrevirus genera are associated with additional circular, single stranded DNA molecules (~ 1-1.4 kb) that encode a replication-associated protein (Rep). These Rep-encoding satellite molecules are commonly referred to as alphasatellites and here we communicate the establishment of the family Alphasatellitidae to which these have been assigned. Within the Alphasatellitidae family two subfamilies, Geminialphasatellitinae and Nanoalphasatellitinae, have been established to respectively accommodate the geminivirus- and nanovirus-associated alphasatellites. Whereas the pairwise nucleotide sequence identity distribution of all the known geminialphasatellites (n = 628) displayed a troughs at ~ 70% and 88% pairwise identity, that of the known nanoalphasatellites (n = 54) had a troughs at ~ 67% and ~ 80% pairwise identity. We use these pairwise identity values as thresholds together with phylogenetic analyses to establish four genera and 43 species of geminialphasatellites and seven genera and 19 species of nanoalphasatellites. Furthermore, a divergent alphasatellite associated with coconut foliar decay disease is assigned to a species but not a subfamily as it likely represents a new alphasatellite subfamily that could be established once other closely related molecules are discovered.
Collapse
|
4
|
Analysis of DNAs associated with coconut foliar decay disease implicates a unique single-stranded DNA virus representing a new taxon. Sci Rep 2018; 8:5698. [PMID: 29632309 PMCID: PMC5890292 DOI: 10.1038/s41598-018-23739-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
The unique ecology, pathology and undefined taxonomy of coconut foliar decay virus (CFDV), found associated with coconut foliar decay disease (CFD) in 1986, prompted analyses of old virus samples by modern methods. Rolling circle amplification and deep sequencing applied to nucleic acid extracts from virion preparations and CFD-affected palms identified twelve distinct circular DNAs, eleven of which had a size of about 1.3 kb and one of 641 nt. Mass spectrometry-based protein identification proved that a 24 kDa protein encoded by two 1.3 kb DNAs is the virus capsid protein with highest sequence similarity to that of grabloviruses (family Geminiviridae), even though CFDV particles are not geminate. The nine other 1.3 kb DNAs represent alphasatellites coding for replication initiator proteins that differ clearly from those encoded by nanovirid DNA-R. The 641 nt DNA-gamma is unique and may encode a movement protein. Three DNAs, alphasatellite CFDAR, capsid protein encoding CFDV DNA-S.1 and DNA-gamma share sequence motifs near their replication origins and were consistently present in all samples analysed. These DNAs appear to be integral components of a possibly tripartite CFDV genome, different from those of any Geminiviridae or Nanoviridae family member, implicating CFDV as representative of a new genus and family.
Collapse
|
5
|
Nic-Matos G, Narváez M, Peraza-Echeverría S, Sáenz L, Oropeza C. Molecular cloning of two novel NPR1 homologue genes in coconut palm and analysis of their expression in response to the plant defense hormone salicylic acid. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0566-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Puch-Hau C, Oropeza C, Góngora-Paredes M, Córdova I, Tun-Suárez J, Sáenz L. New insights into the evolutionary history of resistance gene candidates in coconut palms and their expression profiles in palms affected by lethal yellowing disease. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0422-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Steel O, Kraberger S, Sikorski A, Young LM, Catchpole RJ, Stevens AJ, Ladley JJ, Coray DS, Stainton D, Dayaram A, Julian L, van Bysterveldt K, Varsani A. Circular replication-associated protein encoding DNA viruses identified in the faecal matter of various animals in New Zealand. INFECTION GENETICS AND EVOLUTION 2016; 43:151-64. [PMID: 27211884 DOI: 10.1016/j.meegid.2016.05.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022]
Abstract
In recent years, innovations in molecular techniques and sequencing technologies have resulted in a rapid expansion in the number of known viral sequences, in particular those with circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA genomes. CRESS DNA viruses are present in the virome of many ecosystems and are known to infect a wide range of organisms. A large number of the recently identified CRESS DNA viruses cannot be classified into any known viral families, indicating that the current view of CRESS DNA viral sequence space is greatly underestimated. Animal faecal matter has proven to be a particularly useful source for sampling CRESS DNA viruses in an ecosystem, as it is cost-effective and non-invasive. In this study a viral metagenomic approach was used to explore the diversity of CRESS DNA viruses present in the faeces of domesticated and wild animals in New Zealand. Thirty-eight complete CRESS DNA viral genomes and two circular molecules (that may be defective molecules or single components of multicomponent genomes) were identified from forty-nine individual animal faecal samples. Based on shared genome organisations and sequence similarities, eighteen of the isolates were classified as gemycircularviruses and twelve isolates were classified as smacoviruses. The remaining eight isolates lack significant sequence similarity with any members of known CRESS DNA virus groups. This research adds significantly to our knowledge of CRESS DNA viral diversity in New Zealand, emphasising the prevalence of CRESS DNA viruses in nature, and reinforcing the suggestion that a large proportion of CRESS DNA viruses are yet to be identified.
Collapse
Affiliation(s)
- Olivia Steel
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Simona Kraberger
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Alyssa Sikorski
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Laura M Young
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Ryan J Catchpole
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Aaron J Stevens
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Jenny J Ladley
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Dorien S Coray
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Daisy Stainton
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Anisha Dayaram
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Laurel Julian
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Katherine van Bysterveldt
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Arvind Varsani
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Structural Biology Research Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory 7700, South Africa; Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, USA.
| |
Collapse
|
8
|
Stainton D, Kraberger S, Walters M, Wiltshire EJ, Rosario K, Halafihi M, Lolohea S, Katoa I, Faitua TH, Aholelei W, Taufa L, Thomas JE, Collings DA, Martin DP, Varsani A. Evidence of inter-component recombination, intra-component recombination and reassortment in banana bunchy top virus. J Gen Virol 2012; 93:1103-1119. [PMID: 22278830 DOI: 10.1099/vir.0.040337-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Banana bunchy top virus (BBTV; family Nanoviridae, genus Babuvirus) is a multi-component, ssDNA virus, which causes widespread banana crop losses throughout tropical Africa and Australasia. We determined the full genome sequences of 12 BBTV isolates from the Kingdom of Tonga and analysed these together with previously determined BBTV sequences to show that reassortment and both inter- and intra-component recombination have all been relatively frequent occurrences during BBTV evolution. We found that whereas DNA-U3 components display evidence of complex inter- and intra-component recombination, all of the South Pacific DNA-R components have a common intra-component recombinant origin spanning the replication-associated protein gene. Altogether, the DNA-U3 and DNA-M components display a greater degree of inter-component recombination than the DNA-R, -S, -C and -M components. The breakpoint distribution of the inter-component recombination events reveals a primary recombination hotspot around the 5' side of the common region major and, in accordance with recombination hotspots detectable in related ssDNA viruses, a secondary recombination hotspot near the origin of virion-strand replication.
Collapse
Affiliation(s)
- Daisy Stainton
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Simona Kraberger
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Matthew Walters
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Elizabeth J Wiltshire
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Karyna Rosario
- College of Marine Science, University of South Florida, St Petersburg, FL 33701, USA
| | - Mana'ia Halafihi
- Ministry of Agriculture and Food, Forests and Fisheries, Nuku'alofa, Tongatapu, Kingdom of Tonga
| | | | - Ika Katoa
- Ministry of Agriculture and Food, Forests and Fisheries, Nuku'alofa, Tongatapu, Kingdom of Tonga
| | | | - Waikato Aholelei
- Ministry of Agriculture and Food, Forests and Fisheries, Nuku'alofa, Tongatapu, Kingdom of Tonga
| | - Luseane Taufa
- Ministry of Agriculture and Food, Forests and Fisheries, Nuku'alofa, Tongatapu, Kingdom of Tonga
| | - John E Thomas
- The University of Queensland, Centre for Plant Science, Queensland Alliance for Agriculture and Food Innovation, Ecosciences Precinct, PO Box 46, Brisbane QLD 4001, Australia
| | - David A Collings
- Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand.,School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Darren P Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Arvind Varsani
- Electron Microscope Unit, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.,Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand.,School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| |
Collapse
|
9
|
Amin I, Ilyas M, Qazi J, Bashir R, Yadav JS, Mansoor S, Fauquet CM, Briddon RW. Identification of a major pathogenicity determinant and suppressors of RNA silencing encoded by a South Pacific isolate of Banana bunchy top virus originating from Pakistan. Virus Genes 2011; 42:272-81. [PMID: 21161359 DOI: 10.1007/s11262-010-0559-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/26/2010] [Indexed: 12/11/2022]
Abstract
Five genes encoded by Banana bunchy top virus (BBTV) originating from Pakistan were expressed in Nicotiana benthamiana using a Potato virus X (PVX) vector. Expression of the master replication-associated protein (mRep) and movement protein (MP) resulted in necrotic cell death of inoculated tissues, as well as leaf curling and necrosis along the veins in newly emerging leaves. The systemic necrosis induced by the expression of MP was discolored (dark) in comparison to that induced by mRep. Expression of the cell-cycle link protein (Clink), the coat protein (CP), and the nuclear shuttle protein from the PVX vector induced somewhat milder symptoms, consisting of mild leaf curling and mosaic, although expression of the CP caused a necrotic response in inoculated leaf. The accumulation of viral RNA was enhanced by MP, Clink, and CP. Of the five BBTV-encoded gene products two, the MP and Clink, stabilized GFP-specific mRNA and reduced GFP-specific small interfering RNA in N. benthamiana line 16c when expressed under the control of the 35S promoter and co-inoculated with a construct for the expression of GFP hairpin RNA construct. These results identified MP and Clink as suppressors of RNA silencing. Taken together the ability of MP to induce severe symptoms in plants and suppress RNA silencing implicates this product as a major pathogenicity determinant of BBTV.
Collapse
Affiliation(s)
- Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, P.O. Box 577, Jhang Road, Faisalabad, Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Association of an atypical alphasatellite with a bipartite New World begomovirus. Arch Virol 2010; 155:1843-7. [DOI: 10.1007/s00705-010-0760-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 07/14/2010] [Indexed: 10/19/2022]
|
11
|
Mandal B. Advances in Small Isometric Multicomponent ssDNA Viruses Infecting Plants. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2010; 21:18-30. [PMID: 23637475 PMCID: PMC3550773 DOI: 10.1007/s13337-010-0010-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 05/14/2010] [Indexed: 11/26/2022]
Abstract
Multicomponent ssDNA plant viruses were discovered during 1990s. They are associated with bunchy top, yellowing and dwarfing diseases of several economic plants under family Musaceae, Leguminosae and Zingiberaceae. In the current plant virus taxonomy, these viruses are classified under the family Nanoviridae containing two genera, Nanovirus and Babuvirus. The family Nanoviridae was created with five members in 2005 and by 2010, it has expanded with four additional members. The viruses are distributed in the tropical and subtropical regions of Asia, Australia, Europe and Africa. The viruses are not sap or seed transmissible and are naturally transmitted by aphid vector in a persistent manner. The genome is consisted of several circular ssDNAs of about 1 kb each. Up to 12 DNA components have been isolated from the diseased plant. The major viral proteins encoded by these components are replication initiator protein (Rep), coat protein, cell-cycle link protein, movement protein and a nuclear shuttle protein. Each ssDNA contains a single gene and a noncoding region with a stable stem and loop structure. Several Rep encoding components have been reported from each virus, only one of them designated as master Rep has ability to control replication of the other genomic components. Infectivity of the genomic DNAs was demonstrated only for two nanoviruses, Faba bean necrotic yellows virus and Faba bean necrotic stunt virus (FBNSV). A group of eight ssDNA components of FBNSV were necessary for producing disease and biologically active progeny viruses. So far, infectivity of genomic components of Babuvirus has not been demonstrated.
Collapse
Affiliation(s)
- Bikash Mandal
- Plant Virology Unit, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
12
|
Blinkova O, Victoria J, Li Y, Keele BF, Sanz C, Ndjango JBN, Peeters M, Travis D, Lonsdorf EV, Wilson ML, Pusey AE, Hahn BH, Delwart EL. Novel circular DNA viruses in stool samples of wild-living chimpanzees. J Gen Virol 2009; 91:74-86. [PMID: 19759238 DOI: 10.1099/vir.0.015446-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Viral particles in stool samples from wild-living chimpanzees were analysed using random PCR amplification and sequencing. Sequences encoding proteins distantly related to the replicase protein of single-stranded circular DNA viruses were identified. Inverse PCR was used to amplify and sequence multiple small circular DNA viral genomes. The viral genomes were related in size and genome organization to vertebrate circoviruses and plant geminiviruses but with a different location for the stem-loop structure involved in rolling circle DNA replication. The replicase genes of these viruses were most closely related to those of the much smaller (approximately 1 kb) plant nanovirus circular DNA chromosomes. Because the viruses have characteristics of both animal and plant viruses, we named them chimpanzee stool-associated circular viruses (ChiSCV). Further metagenomic studies of animal samples will greatly increase our knowledge of viral diversity and evolution.
Collapse
Affiliation(s)
- Olga Blinkova
- Blood Systems Research Institute, San Francisco and the Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Amin I, Qazi J, Mansoor S, Ilyas M, Briddon RW. Molecular characterisation of banana bunchy top virus (BBTV) from Pakistan. Virus Genes 2007. [PMID: 17990091 DOI: 10.1007/s11262‐007‐0168‐y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Banana bunchy top disease is caused by a single-stranded circular DNA virus, banana bunchy top virus (BBTV), which is a member of the genus Babuvirus (family Nanoviridae). We have cloned and sequenced five components (DNA-R, DNA-S, DNA-N, DNA-M and DNA-C) of a BBTV isolate originating from Pakistan. In addition, the DNA-R and several other components of five further isolates, originating from geographically distinct sites across the banana-growing area of Sindh province, Pakistan, were cloned and sequenced. Analysis of the sequences indicates that BBTV present in Pakistan belongs to the "South Pacific" group of isolates and that the genetic diversity of the virus in the country is very low. The virus shows the highest levels of sequence identity to BBTV isolates originating from Egypt, India and Australia. The significance of these results with respect to the possible origin of the virus in Pakistan and the prospects for obtaining genetically engineered resistance to the virus are discussed.
Collapse
Affiliation(s)
- Imran Amin
- Plant Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, PO Box 577, Faisalabad, Pakistan.
| | | | | | | | | |
Collapse
|
14
|
Amin I, Qazi J, Mansoor S, Ilyas M, Briddon RW. Molecular characterisation of banana bunchy top virus (BBTV) from Pakistan. Virus Genes 2007; 36:191-8. [PMID: 17990091 DOI: 10.1007/s11262-007-0168-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 09/28/2007] [Indexed: 11/29/2022]
Abstract
Banana bunchy top disease is caused by a single-stranded circular DNA virus, banana bunchy top virus (BBTV), which is a member of the genus Babuvirus (family Nanoviridae). We have cloned and sequenced five components (DNA-R, DNA-S, DNA-N, DNA-M and DNA-C) of a BBTV isolate originating from Pakistan. In addition, the DNA-R and several other components of five further isolates, originating from geographically distinct sites across the banana-growing area of Sindh province, Pakistan, were cloned and sequenced. Analysis of the sequences indicates that BBTV present in Pakistan belongs to the "South Pacific" group of isolates and that the genetic diversity of the virus in the country is very low. The virus shows the highest levels of sequence identity to BBTV isolates originating from Egypt, India and Australia. The significance of these results with respect to the possible origin of the virus in Pakistan and the prospects for obtaining genetically engineered resistance to the virus are discussed.
Collapse
Affiliation(s)
- Imran Amin
- Plant Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, PO Box 577, Faisalabad, Pakistan.
| | | | | | | | | |
Collapse
|
15
|
Steinfeldt T, Finsterbusch T, Mankertz A. Demonstration of nicking/joining activity at the origin of DNA replication associated with the rep and rep' proteins of porcine circovirus type 1. J Virol 2006; 80:6225-34. [PMID: 16775310 PMCID: PMC1488954 DOI: 10.1128/jvi.02506-05] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The replication of porcine circovirus type 1 (PCV1) is thought to occur by rolling-circle replication (RCR), whereby the introduction of a single-strand break generates a free 3'-hydroxyl group serving as a primer for subsequent DNA synthesis. The covalently closed, single-stranded genome of PCV1 replicates via a double-stranded replicative intermediate, and the two virus-encoded replication-associated proteins Rep and Rep' have been demonstrated to be necessary for virus replication. However, although postulated to be involved in RCR-based virus replication, the mechanism of action of Rep and Rep' is as yet unknown. In this study, the ability of PCV1 Rep and Rep' to "nick" and "join" strand discontinuities within synthetic oligonucleotides corresponding to the origin of replication of PCV1 was investigated in vitro. Both proteins were demonstrated to be able to cleave the viral strand between nucleotides 7 and 8 within the conserved nonanucleotide motif (5'-TAGTATTAC-3') located at the apex of a putative stem-loop structure. In addition, the Rep and Rep' proteins of PCV1 were demonstrated to be capable of joining viral single-stranded DNA fragments, suggesting that these proteins also play roles in the termination of virus DNA replication. This joining activity was demonstrated to be strictly dependent on preceding substrate cleavage and the close proximity of origin fragments accomplished by base pairing in the stem-loop structure. The dual "nicking/joining" activities associated with PCV1 Rep and Rep' are pivotal events underlying the RCR-based replication of porcine circoviruses in mammalian cells.
Collapse
Affiliation(s)
- Tobias Steinfeldt
- Division of Viral Infections (FG12), Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | | | | |
Collapse
|
16
|
Briddon RW, Stanley J. Subviral agents associated with plant single-stranded DNA viruses. Virology 2006; 344:198-210. [PMID: 16364750 DOI: 10.1016/j.virol.2005.09.042] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 09/16/2005] [Indexed: 11/18/2022]
Abstract
Begomoviruses (family Geminiviridae) are responsible for many economically important crop diseases worldwide. The majority of these diseases are caused by bipartite begomovirus infections, although a rapidly growing number of diseases of the Old World are associated with monopartite begomoviruses. With the exception of several diseases of tomato, most of these are caused by a monopartite begomovirus in association with a recently discovered essential satellite component (DNA-beta). These begomovirus/satellite disease complexes are widespread and diverse and collectively infect a wide variety of crops, weeds and ornamental plants. Non-essential subviral components (DNA-1) originating from nanoviruses are frequently associated with these disease complexes, and there are tantalizing hints that further novel satellites may also be associated with some begomovirus diseases. DNA-beta components can be maintained in permissive plants by more than one distinct begomovirus, reflecting less stringent requirements for trans-replication that will undoubtedly encourage diversification and adaptation as a consequence of component exchange and recombination. In view of their impact on agriculture, there is a pressing need to develop a more comprehensive picture of the diversity and distribution of the disease complexes. A greater understanding of how they elicit the host response may provide useful information for their control as well as an insight into plant developmental processes.
Collapse
Affiliation(s)
- R W Briddon
- Plant Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | | |
Collapse
|
17
|
Abstract
Nanoviruses, single-stranded DNA (ssDNA) plant viruses with a multipartite genome, share similarities with members of the Circoviridae family that infect mammals or birds as well as with the Geminiviridae, the only other plant virus family with circular ssDNA genomes. Although the virions of the latter are unique and different from that of the circoviruses, the mode of replication of viruses with monopartite or multipartite circular ssDNA genomes is strikingly similar. They multiply by rolling circle replication using virus-encoded multifunctional replication initiator proteins (Rep proteins) that catalyse initiation of ssDNA replication and resolution of replicative ssDNA into circular single-stranded virion DNA. All these ssDNA viruses exploit host polymerases for DNA synthesis and code for proteins that modulate the host's cell cycle favourably for virus multiplication. Recent three-dimensional structure analyses of a geminivirus and a parvovirus Rep protein have revealed an intriguing similarity between the catalytic domains of their respective Rep proteins. Furthermore, these structural data revealed that ssDNA virus replication initiator proteins might represent evolutionary intermediates between certain RNA-binding proteins and some multifunctional origin-binding proteins of papovaviruses.
Collapse
Affiliation(s)
- Bruno Gronenborn
- Institut des Sciences Végétales, CNRS, 91198, Gif sur Yvette, France.
| |
Collapse
|
18
|
Abstract
Ageratum conyzoides (ageratum) is a common and widespread weed species that may act as a reservoir host for geminivirus diseases. Ageratum plants growing in Singapore and exhibiting yellow vein disease are infected with a complex mixture of viral, subviral and recombinant DNA components. This whitefly-transmitted disease is caused by the monopartite begomovirus ageratum yellow vein virus (AYVV) in association with a recently discovered satellite component referred to as DNA beta. Diseased plants also contain a subviral component, referred to as DNA 1, that has probably become associated with the begomovirus and adapted to whitefly transmission during mixed infection with an aphid-transmitted nanovirus. Unlike DNA beta, the nanovirus-like component is not essential for the disease. Recombination between the viral and subviral DNAs occurs frequently and may play an important evolutionary role by generating component diversity. The identification of a similar complex associated with cotton leaf curl disease (CLCuD), a serious constraint to cotton growing in Pakistan, and the isolation of DNA beta homologues from diverse plant species growing in widespread geographical locations suggests that such disease complexes are common and may have a significant impact on agriculture in the eastern hemisphere.
Collapse
Affiliation(s)
- John Stanley
- Department of Disease and Stress Biology, John Innes Centre, Colney, Norwich NR4 7UH, UK.
| |
Collapse
|
19
|
Abstract
Porcine circovirus type 2 (PCV2) is the causative agent of an emerging swine disease, postweaning multisystemic wasting syndrome. In this work, the RNAs of PCV2 synthesized during productive infection in porcine kidney cells were characterized. A total of nine RNAs were detected. They include the viral capsid protein RNA (CR), a cluster of five Rep-associated RNAs (designated Rep, Rep', Rep3a, Rep3b, and Rep3c), and three NS-associated RNA (designated NS515, NS672, and NS0). Members of the Rep-associated RNA cluster all share common 5' and 3' nucleotide sequences and they also share 200 common 3' nucleotides with the NS-associated RNAs. Rep, capable of coding for the replication-associated-protein (RepP), appears to be the primary transcript that gives rise to Rep', Rep3a, Rep3b, and Rep3c by alternate splicing. Protein sequence alignment showed that RepP and the Rep' protein of PCV2 are equivalent to those described for PCV type 1 (PCV1) (a nonpathogenic virus), which had been shown to be essential for viral DNA replication. The results also suggest that NS515, NS672, and NS0 are transcribed from three different promoters inside ORF1 downstream of the Rep promoter. To date, only three RNAs (CR, Rep, and Rep') have been reported for PCV1-infected porcine kidney cells. Therefore, it is important to apply similar strategies from this study to reexamine the transcription pattern of PCV1.
Collapse
Affiliation(s)
- Andrew K Cheung
- Virus and Prion Diseases of Livestock Research Unit, National Animal Desease Center, USDA, Agrucultural research Service, Iowa 500010, USA
| |
Collapse
|
20
|
Kim J, Chae C. Double in situ hybridization for simultaneous detection and differentiation of porcine circovirus 1 and 2 in pigs with postweaning multisystemic wasting syndrome. Vet J 2002; 164:247-53. [PMID: 12505399 DOI: 10.1053/tvjl.2001.0697] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Double in situ hybridization using a digoxigenin-labelled porcine circovirus 1 (PCV1) and biotinylated PCV2 probe, was developed for the simultaneous detection and differentiation of PCV1 and PCV2 in formalin-fixed, paraffin-embedded tissues from pigs with postweaning multisystemic wasting syndrome. The combination of an alkaline phosphatase conjugated antidigoxigenin system with alkaline phosphatase conjugated streptavidin-biotin system allowed identification of PCV1 and/or PCV2. No evidence of cross-reaction was observed. Positive cells exhibited a red or dark brown reaction product for PCV1 and PCV2, respectively. Both PCV DNAs were observed mainly in the cytoplasm but occasionally in the nucleus. Co-localization of hybridization signal for both PCV1 and PCV2 was present in macrophages and multinucleated giant cells of the lymph node and spleen. This double-labelling technique for the differentiation between PCV1 and PCV2 is suitable for pathogenesis studies and diagnostic applications.
Collapse
Affiliation(s)
- J Kim
- Department of Veterinary Pathology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University, Suwon 441-744, Kyounggi-Do, Republic of Korea
| | | |
Collapse
|
21
|
Saunders K, Bedford ID, Stanley J. Adaptation from whitefly to leafhopper transmission of an autonomously replicating nanovirus-like DNA component associated with ageratum yellow vein disease. J Gen Virol 2002; 83:907-913. [PMID: 11907341 DOI: 10.1099/0022-1317-83-4-907] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ageratum yellow vein disease is caused by the whitefly-transmitted monopartite begomovirus Ageratum yellow vein virus and a DNA beta satellite component. Naturally occurring symptomatic plants also contain an autonomously replicating nanovirus-like DNA 1 component that relies on the begomovirus and DNA beta for systemic spread and whitefly transmission but is not required for maintenance of the disease. Here, we show that systemic movement of DNA 1 occurs in Nicotiana benthamiana when co-inoculated with the bipartite begomovirus Tomato golden mosaic virus and the curtovirus Beet curly top virus (BCTV), but not with the mastrevirus Bean yellow dwarf virus. BCTV also mediates the systemic movement of DNA 1 in sugar beet, and the nanovirus-like component is transmitted between plants by the BCTV leafhopper vector Circulifer tenellus. We also describe a second nanovirus-like component, referred to as DNA 2, that has only 47% nucleotide sequence identity with DNA 1. The diversity and adaptation of nanovirus components are discussed.
Collapse
Affiliation(s)
- Keith Saunders
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK1
| | - Ian D Bedford
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK1
| | - John Stanley
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK1
| |
Collapse
|
22
|
Kim J, Chung HK, Jung T, Cho WS, Choi C, Chae C. Postweaning multisystemic wasting syndrome of pigs in Korea: prevalence, microscopic lesions and coexisting microorganisms. J Vet Med Sci 2002; 64:57-62. [PMID: 11853147 DOI: 10.1292/jvms.64.57] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A retrospective study was performed on natural cases of postweaning multisystemic wasting syndrome (PMWS), recorded from January 1999 to December 2000, to determine the prevalence, microscopic lesions, and other coexisting pathogens associated with PMWS. PMWS is diagnosed based on three criteria: the presence of clinical signs (retardation of growth), characteristic microscopic lesions (granulomatous inflammation and inclusion body), and the presence of porcine circovirus (PCV)-2 within these lesions. One hundred and thirty three (8.1%) of the 1634 pigs submitted from 1243 pig farms were diagnosed for PMWS. The affected pigs were from 25 to 120 days old, the majority (78 cases, 58.6%) being 60 to 80 days old. PMWS occurred each month during the two-year study period, but the incidence peaked in May (38 cases, 28.6%), followed by April (18 cases, 13.5%) and June (13 cases, 9.8%). The most consistent and characteristic lesions were multifocal, granulomatous inflammation in lymph nodes, liver and spleen, characterized by infiltration of epithelioid macrophages and multinucleated giant cells. The majority of cases (113 cases, 85.0%) was dual infection with other pathogens. The combination of PCV-2 and Hemophilus parasuis (43 cases, 32.3%) was shown to be the most prevalent followed by PCV-2 and porcine reproductive and respiratory syndrome virus (39 cases, 29.3%). The consistent presence of PCV-2, but lower prevalence of other viral and bacterial pathogens in all pigs examined with PMWS, has led to the speculation that PCV-2 is the etiological agent causing PMWS.
Collapse
Affiliation(s)
- Junghyun Kim
- Department of Veterinary Pathology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University, Kyouggi-Do, Republic of Korea
| | | | | | | | | | | |
Collapse
|
23
|
Kim J, Han DU, Choi C, Chae C. Differentiation of porcine circovirus (PCV)-1 and PCV-2 in boar semen using a multiplex nested polymerase chain reaction. J Virol Methods 2001; 98:25-31. [PMID: 11543881 DOI: 10.1016/s0166-0934(01)00348-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A multiplex nested polymerase chain reaction (PCR) was developed for the detection of and differentiation between porcine circovirus (PCV)-1 and PCV-2 in boar semen. Eighteen (30%) and 30 (50%) out of 60 whole semen samples were found to be positive for PCV using multiplex conventional PCR and multiplex nested PCR, respectively. Of the 30 positive samples obtained using multiplex nested PCR, two were found to be positive for PCV-1 only, eight for PCV-2 only, and 20 for PCV-1 and PCV-2. When the separated fractions of PCV-contaminated semen were analyzed using multiplex nested PCR, PCV DNA was found to be present mainly in the seminal fluid and nonsperm cell fractions. When compared with the virus isolation method commonly used to detect viruses, this PCR assay was found to be more sensitive and rapid and, as such, may prove to be a good alternative method for the detection of and differentiation between PCV-1 and PCV-2 in boar semen.
Collapse
Affiliation(s)
- J Kim
- Department of Veterinary Pathology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University, Kyounggi-Do, 441-744, Suwon, South Korea
| | | | | | | |
Collapse
|
24
|
Frischmuth T, Ringel M, Kocher C. The size of encapsidated single-stranded DNA determines the multiplicity of African cassava mosaic virus particles. J Gen Virol 2001; 82:673-676. [PMID: 11172110 DOI: 10.1099/0022-1317-82-3-673] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transgenic Nicotiana benthamiana plants harbouring a defective interfering (DI) DNA of African cassava mosaic virus (ACMV) and control plants were inoculated with ACMV. Virus particles were purified from infected plants, separated in sucrose gradients and fractions were analysed by Southern blotting. Transgenic plant-derived virus particles taken from the top fractions of sucrose gradients contained DI DNA, middle fractions contained a mixture of genomic and DI DNA and bottom fractions contained a mixture of multimeric, genomic and DI DNA. Virus particles from selected top, middle and bottom fractions were analysed by electron microscopy. In fractions containing only DI DNA, isometric particles of 18-20 nm were detected. In fractions containing DI DNA as well as genomic size DNA, isometric and geminate particles were found. Fractions containing multimeric size DNA were found to comprise particles consisting of three subunits adjacent to geminate particles. From these data, it is concluded that the size of encapsidated DNA determines the multiplicity of ACMV particles.
Collapse
Affiliation(s)
- Thomas Frischmuth
- Biologisches Institut, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany1
| | - Margit Ringel
- Biologisches Institut, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany1
| | - Cornelia Kocher
- Biologisches Institut, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany1
| |
Collapse
|
25
|
Merits A, Fedorkin ON, Guo D, Kalinina NO, Morozov SY. Activities associated with the putative replication initiation protein of coconut foliar decay virus, a tentative member of the genus Nanovirus. J Gen Virol 2000; 81:3099-3106. [PMID: 11086141 DOI: 10.1099/0022-1317-81-12-3099] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The putative replication initiation protein (Rep) of Coconut foliar decay virus (CFDV) was expressed as a 6x His recombinant protein in E. coli and in recombinant baculovirus. Purified 6x His-Rep protein was demonstrated to possess sequence non-specific RNA- and ssDNA-binding activities as well as magnesium-dependent ATPase/GTPase activity. The yeast two-hybrid system revealed that CFDV Rep could interact with itself. Subcellular distribution of the CFDV Rep was studied by fractionation of insect cells infected with recombinant baculovirus expressing the 6x His-Rep protein and by laser scanning confocal microscopy of Nicotiana benthamiana epidermal cells bombarded with a construct encoding CFDV Rep fused to GFP. It was shown that CFDV Rep associated predominantly with nuclei and membranes of infected/transfected cells. These activities of CFDV-encoded Rep are very similar to those reported for Reps of geminiviruses.
Collapse
Affiliation(s)
- Andres Merits
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 56, FIN-00014 Helsinki, Finland2
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE12618 Tallinn, Estonia1
| | - Oleg N Fedorkin
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 56, FIN-00014 Helsinki, Finland2
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia3
| | - Deyin Guo
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 56, FIN-00014 Helsinki, Finland2
| | - Natalia O Kalinina
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia3
| | - Sergey Yu Morozov
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia3
| |
Collapse
|
26
|
Ouardani M, Wilson L, Jetté R, Montpetit C, Dea S. Multiplex PCR for detection and typing of porcine circoviruses. J Clin Microbiol 2000; 37:3917-24. [PMID: 10565907 PMCID: PMC85845 DOI: 10.1128/jcm.37.12.3917-3924.1999] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sets of oligonucleotide primers were designed according to the sequences of the open reading frames (ORFs) ORF1 and ORF2 of the prototype nonpathogenic PK-15 strain of porcine circovirus (PCV) type 1 (PCV-1). By the PCR performed with the various primer sets, genomic DNA or RNA from other bacterial or viral pathogens of the respiratory tracts of pigs could not be amplified. A positive amplification reaction could be visualized with DNA extracted from a viral suspension containing as few as 10 viral particles per ml. No DNA fragment could be amplified from lysates of continuous porcine cell lines (PT, ST, and PFT cells) known to be negative for PCV. When tested with clinical samples from pigs, the results of the single PCR method showed nearly 93% (13 of 14 samples) correlation with histopathological and immunohistochemical findings. Interestingly, subclinical PCV infections could be detected by single PCR with clinical samples that have been submitted from animals with irrelevant cases of respiratory and/or enteric problems. On the basis of the nucleotide sequences of PCV strains (PCV-2) recently associated with outbreaks of postweaning multisystemic wasting syndrome (PWMS) in Quebec, Canada, pig farms, other primers were designed from the PCV-1 genome, and these primers failed to amplify genomic fragments specific to the ORF1 or ORF2 genes of clinical isolates associated with PWMS but amplified DNA from the PCV-1 strain. Two rapid multiplex PCR (mPCR) methods have been developed to distinguish between both genotypes of PCV. By those two mPCR methods, (i) species-specific primer pairs were used to amplify a DNA fragment of 488 bp specific for the ORF2 genes of both genotypes, whereas a 375-bp fragment was amplified from the ORF1 gene of the PCV-1 strain only, or (ii) species-specific primer pairs were used to amplify a DNA fragment of 646 bp specific for the ORF1 genes of both genotypes, whereas a 425-bp fragment was amplified from the ORF2 gene of the PCV-1 strain only. By both mPCR methods, a PCV-2 infection was demonstrated in tissues of 94.2% (33 of 35) of the sick pigs tested, in agreement with previous findings showing the close association of this new genotype of PCV with outbreaks of PMWS in Europe and North America. On the other hand, a PCV-1 infection was confirmed in only 5.7% (2 of 35) of the pigs, and confirmation of a mixed infection with PCV-2 was obtained by a single PCR with PCV-2-specific primers.
Collapse
Affiliation(s)
- M Ouardani
- Centre de Microbiologie et Biotechnologie, INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada, H7N 4Z3
| | | | | | | | | |
Collapse
|
27
|
Mankertz A, Domingo M, Folch JM, LeCann P, Jestin A, Segalés J, Chmielewicz B, Plana-Durán J, Soike D. Characterisation of PCV-2 isolates from Spain, Germany and France. Virus Res 2000; 66:65-77. [PMID: 10653918 DOI: 10.1016/s0168-1702(99)00122-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The new isolated circovirus variant PCV-2 is discussed to be the etiological agent of a new emerging swine disease with a variable morbidity and high lethality, postweaning multisystemic wasting syndrome (PMWS). PMWS has been diagnosed in North America and West Europe. Clinical signs include dyspnea, loss of weight, lymph node enlargement and lymphocyte depletion in lymphoid tissues. This report describes the characterisation of PCV-2 isolates from animals affected with PMWS from Germany, Spain and France. We could demonstrate the presence of circovirus by electron microscope, in situ hybridisation and PCR. PCR revealed incidence of PCV-2 in many tissues of one infected animal with the exception of heart and nervous system. The phylogenetic analysis of all PCV-2 isolates yet published in the database, showed relationship of isolates from Spain, Germany and France, with three sequences from Canada determined recently and two isolates from Taiwan, while other North American sequences display a separate cluster. PCR screening of randomly collected organ samples from German pigs not affected with PMWS, revealed a rate of infection with PCV-1 of 5% and with PCV-2 of 26.8%, while blood samples showed a lower incidence.
Collapse
Affiliation(s)
- A Mankertz
- Robert Koch Institut, P24 (Xenotransplantation), Nordufer 20, 13353, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wanitchakorn R, Hafner GJ, Harding RM, Dale JL. Functional analysis of proteins encoded by banana bunchy top virus DNA-4 to -6. J Gen Virol 2000; 81:299-306. [PMID: 10640570 DOI: 10.1099/0022-1317-81-1-299] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Green fluorescent protein (GFP)-tagging was used to determine the intracellular localization pattern of the proteins encoded by banana bunchy top virus (BBTV) DNA-3, -4 and -6. The protein encoded by BBTV DNA-4, which possesses a hydrophobic N terminus, was found to localize exclusively to the cell periphery while the proteins encoded by BBTV DNA-3 and -6 were found in both the nucleus and the cytoplasm. Co-expression of the DNA-4 protein and the proteins encoded by BBTV DNA-3 and -6 revealed that the DNA-4 protein was able to re-locate the DNA-6 protein, but not the DNA-3 protein, to the cell periphery. The 29 amino acid N-terminal hydrophobic region of the DNA-4 gene product appeared to be essential for specific localization of this protein since deletion of this region abolished its ability to localize to the cell periphery. These results indicate that BBTV may utilize a system analogous to that of the begomoviruses with the BBTV DNA-6 protein acting as a nuclear shuttle protein (NSP) while the DNA-4 protein transports the NSP-DNA complexes to the cell periphery for intercellular transport. The protein encoded by BBTV DNA-5 was found to contain an LXCXE motif and yeast two-hybrid analysis revealed that the DNA-5 protein has retinoblastoma (Rb)-binding activity. This activity was dependent on an intact LXCXE motif since specific mutations to either the C or E residue completely abolished Rb-binding activity. These results indicate that the gene product of BBTV DNA-5 is an Rb-binding-like protein and may play an important role in host-cell cycle manipulation.
Collapse
Affiliation(s)
- R Wanitchakorn
- Centre for Molecular Biotechnology, School of Life Sciences, Queensland University of Technology, George Street, Brisbane 4001, Australia
| | | | | | | |
Collapse
|
29
|
Saunders K, Stanley J. A nanovirus-like DNA component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology 1999; 264:142-52. [PMID: 10544139 DOI: 10.1006/viro.1999.9948] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Yellow vein disease of Ageratum conyzoides, a weed species that is widely distributed throughout Asia, has been attributed to infection by the geminivirus Ageratum yellow vein virus (AYVV). In addition to a single AYVV genomic component (DNA A), we have previously demonstrated that infected plants contain chimeric defective viral components, comprising DNA A and nongeminiviral sequences, that act as defective interfering DNAs. A database search has revealed that the nongeminiviral sequences of one such defective component (def19) show significant homology with sequences of nanovirus components that encode replication-associated proteins (Reps). Primers designed to hybridise to the nongeminiviral DNA were used to PCR-amplify a full-length nanovirus-like component, referred to as DNA 1, from an extract of infected A. conyzoides. DNA 1 is unrelated to AYVV DNA A but resembles nanovirus components that encode Reps and is most closely related (73% identity) to a nanovirus-like DNA recently isolated from geminivirus-infected cotton. DNA 1 is dependent on AYVV DNA A for systemic infection of A. conyzoides and Nicotiana benthamiana and can systemically infect N. benthamiana in the presence of the bipartite geminivirus African cassava mosaic virus. A. conyzoides plants coinfected with AYVV DNA A and DNA 1 remain asymptomatic, indicating that additional factors are required to elicit yellow vein disease. Our results provide direct evidence for recombination between distinct families of plant single-stranded DNA viruses and suggest that coinfection by geminivirus and nanovirus-like pathogens may be a widespread phenomenon. The ability of plant DNA viruses to recombine in this way may greatly increase their scope for diversification.
Collapse
Affiliation(s)
- K Saunders
- Department of Virus Research, John Innes Centre, Norwich Research Park, Colney, NR4 7UH, United Kingdom
| | | |
Collapse
|
30
|
Gibbs MJ, Weiller GF. Evidence that a plant virus switched hosts to infect a vertebrate and then recombined with a vertebrate-infecting virus. Proc Natl Acad Sci U S A 1999; 96:8022-7. [PMID: 10393941 PMCID: PMC22181 DOI: 10.1073/pnas.96.14.8022] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There are several similarities between the small, circular, single-stranded-DNA genomes of circoviruses that infect vertebrates and the nanoviruses that infect plants. We analyzed circovirus and nanovirus replication initiator protein (Rep) sequences and confirmed that an N-terminal region in circovirus Reps is similar to an equivalent region in nanovirus Reps. However, we found that the remaining C-terminal region is related to an RNA-binding protein (protein 2C), encoded by picorna-like viruses, and we concluded that the sequence encoding this region of Rep was acquired from one of these single-stranded RNA viruses, probably a calicivirus, by recombination. This is clear evidence that a DNA virus has incorporated a gene from an RNA virus, and the fact that none of these viruses code for a reverse transcriptase suggests that another agent with this capacity was involved. Circoviruses were thought to be a sister-group of nanoviruses, but our phylogenetic analyses, which take account of the recombination, indicate that circoviruses evolved from a nanovirus. A nanovirus DNA was transferred from a plant to a vertebrate. This transferred DNA included the viral origin of replication; the sequence conservation clearly indicates that it maintained the ability to replicate. In view of these properties, we conclude that the transferred DNA was a kind of virus and the transfer was a host-switch. We speculate that this host-switch occurred when a vertebrate was exposed to sap from an infected plant. All characterized caliciviruses infect vertebrates, suggesting that the host-switch happened first and that the recombination took place in a vertebrate.
Collapse
Affiliation(s)
- M J Gibbs
- Bioinformatics, Research School of Biological Sciences, The Australian National University, G.P.O. Box 475, Canberra 2601, Australia.
| | | |
Collapse
|
31
|
Mansoor S, Khan SH, Bashir A, Saeed M, Zafar Y, Malik KA, Briddon R, Stanley J, Markham PG. Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virology 1999; 259:190-9. [PMID: 10364503 DOI: 10.1006/viro.1999.9766] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent reports have suggested that cotton leaf curl virus (CLCuV), a geminivirus of the genus Begomovirus, may be responsible for cotton leaf curl disease in Pakistan. However, the causal agent of the disease remains unclear as CLCuV genomic components resembling begomovirus DNA A are unable to induce typical disease symptoms when reintroduced into plants. All attempts to isolate a genomic component equivalent to begomovirus DNA B have been unsuccessful. Here, we describe the isolation and characterisation of a novel circular single-stranded (ss) DNA associated with naturally infected cotton plants. In addition to a component resembling DNA A, purified geminate particles contain a smaller unrelated ssDNA that we refer to as DNA 1. DNA 1 was cloned from double-stranded replicative form of the viral DNA isolated from infected cotton plants. Blot hybridisation using probes specific for either CLCuV DNA or DNA 1 was used to demonstrate that both DNAs co-infect naturally infected cotton plants from different geographical locations. DNA 1 was detected in viruliferous Bemisia tabaci and in tobacco plants infected under laboratory conditions using B. tabaci, indicating that it is transmitted by whiteflies. Sequence analysis showed that DNA 1 is approximately half the size of CLCuV DNA but shares no homology, indicating that it is not a defective geminivirus component. DNA 1 has some homology to a genomic component of members of Nanoviridae, a family of DNA viruses that are normally transmitted by aphids or planthoppers. DNA 1 encodes a homologue of the nanovirus replication-associated protein (Rep) and has the capacity to autonomously replicate in tobacco. The data suggest that a nanovirus-like DNA has become whitefly-transmissible as a result of its association with a geminivirus and that cotton leaf curl disease may result from a mutually dependent relationship that has developed between members of two distinct DNA virus families that share a similar replication strategy.
Collapse
Affiliation(s)
- S Mansoor
- National Institute of Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Pakistan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bassami MR, Berryman D, Wilcox GE, Raidal SR. Psittacine beak and feather disease virus nucleotide sequence analysis and its relationship to porcine circovirus, plant circoviruses, and chicken anaemia virus. Virology 1998; 249:453-9. [PMID: 9791035 DOI: 10.1006/viro.1998.9324] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cloning and sequencing of the circular, single-stranded DNA of one isolate of psittacine beak and feather disease virus (BFDV) demonstrate a genome composed of a circular molecule of 1993 nucleotide bases. An analysis of the assembled replicative form demonstrated seven open reading frames (ORFs) (three in the virion strand and four in the complementary strand), potentially encoding seven viral proteins of >8.7 kDa. High amino acid sequence similarity was demonstrated between a potential 33.3-kDa protein product of ORF1 of BFDV and the replicase-associated protein of porcine circovirus (PCV), subterranean clover stunt virus, and faba bean necrotic yellows virus. However, significant similarity in nucleotide or amino acid sequences was not present between BFDV and chicken anaemia virus. A potential stem-loop structure similar to that found in PCV and plant circoviruses was present in the putative encapsidated strand of the BFDV genome. At the top of this structure, a nonanucleotide motif (TAGTATTAC) similar to that of PCV, plant circoviruses, and geminiviruses also was recognised. Comparison of the deduced amino acid sequences of ORF2 of BFDV and PCV demonstrated 29.1% identity, and in both viruses, ORF2 is located on the complementary strand, beginning close to or within the hairpin stem. Our findings provide further evidence of a close relationship among BFDV, PCV, and plant circoviruses but not chicken anaemia virus.
Collapse
Affiliation(s)
- M R Bassami
- Division of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, 6150, Western Australia
| | | | | | | |
Collapse
|
33
|
Morozov I, Sirinarumitr T, Sorden SD, Halbur PG, Morgan MK, Yoon KJ, Paul PS. Detection of a novel strain of porcine circovirus in pigs with postweaning multisystemic wasting syndrome. J Clin Microbiol 1998; 36:2535-41. [PMID: 9705388 PMCID: PMC105158 DOI: 10.1128/jcm.36.9.2535-2541.1998] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Swine infectious agents, especially viruses, are potential public health risks associated with the use of pig organs for xenotransplantation in humans. Therefore, there is a need for better characterization of swine viruses and for the development of diagnostic tests for their detection. We report here isolation of a novel strain of porcine circovirus (PCV) from pigs with postweaning multisystemic wasting syndrome (PMWS). Affected pigs exhibited severe interstitial pneumonia and lymphoid depletion. The complete nucleotide sequence (1,768 nucleotides) of the genome of the PCV isolate was determined and compared with the sequence of the PCV strain isolated from PK-15 cells. Sequence comparison revealed significant differences between the two PCV strains, with an overall DNA homology of 76%. Two major open reading frames (ORFs) were identified. ORF1 was more conserved between the two strains, with 83% nucleotide homology and 86% amino acid homology. ORF2 was more variable, with nucleotide homology of 67% and amino acid homology of 65%. PCR and in situ hybridization demonstrated abundant viral DNA in various organs of pigs with PMWS. In situ hybridization demonstrated that this strain of PCV targets multiple organs and infects macrophages, lymphocytes, endothelial cells, and epithelial cells.
Collapse
Affiliation(s)
- I Morozov
- Veterinary Medical Research Institute, Immunology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
This study focuses on gene expression of porcine circovirus (PCV) in order to identify viral genes and their corresponding mRNA transcripts. By northern blot analysis, the existence of three mRNAs could be demonstrated. Two mRNAs are encoded by the viral (-)-strand and one is encoded by the viral (+)-strand. The (+)-strand encoded mRNA transcript is 990 nucleotides (nt) long and corresponds to the open reading frame (ORF) 1, as shown by S1 mapping. The start point of this transcript is located at pos. 1238, as determined by primer extension analysis and rapid amplification of cDNA ends (RACE). The transcript is spliced as shown by direct reverse sequencing and RACE. It contains an untranslated "leader"-sequence 119 nt in size (pos. 1238 to 1120) which is joined to exon 2 of the ORF 1 transcript at pos. 737. The transcriptional regulatory elements have been identified functionally by CAT assays. They are located within a 258 base points (bp) fragment (pos. 1168 to 1425).
Collapse
Affiliation(s)
- J Mankertz
- Fachbereich Gentechnik und Genetik, Robert Koch-Institut, Berlin, Germany.
| | | | | | | |
Collapse
|
35
|
Hamel AL, Lin LL, Nayar GP. Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. J Virol 1998; 72:5262-7. [PMID: 9573301 PMCID: PMC110114 DOI: 10.1128/jvi.72.6.5262-5267.1998] [Citation(s) in RCA: 332] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This article describes the nucleotide sequence of a porcine circovirus (PCV) which possesses a high degree of association with postweaning multisystemic wasting syndrome (PMWS), a newly described disease of young pigs. The DNA sequence of this PMWS-associated PCV (pmws PCV) has 68% homology with that of a previously published nonpathogenic strain of PCV. The strains appear to be closely related yet distinct from one another.
Collapse
Affiliation(s)
- A L Hamel
- Virology Laboratory, Manitoba Agriculture, Veterinary Services, Winnipeg, Manitoba R3T 5S6, Canada
| | | | | |
Collapse
|
36
|
Mankertz A, Persson F, Mankertz J, Blaess G, Buhk HJ. Mapping and characterization of the origin of DNA replication of porcine circovirus. J Virol 1997; 71:2562-6. [PMID: 9032401 PMCID: PMC191374 DOI: 10.1128/jvi.71.3.2562-2566.1997] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The origin of DNA replication of porcine circovirus (PCV) was mapped to a 111-bp fragment. On top of a hairpin, a nonanucleotide (TAGTATTAC) homologous to nonanucleotides of other viruses was identified. Mutation of this element abolishes replication. PCV may be related to a virus family characterized by single-stranded circular DNA genomes, rolling-circle replication, and homology of their rep proteins.
Collapse
Affiliation(s)
- A Mankertz
- Fachbereich Gentechnik und Genetik, Robert Koch-Institut, Berlin, Germany
| | | | | | | | | |
Collapse
|
37
|
Todd D, Creelan JL, Meehan BM, McNulty MS. Investigation of the transfection capability of cloned tandemly-repeated chicken anaemia virus DNA fragments. Arch Virol 1996; 141:1523-34. [PMID: 8856031 DOI: 10.1007/bf01718252] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chicken anaemia virus (CAV) is an icosahedral virus, 25 nm in diameter, which, on the basis of its circular single-stranded DNA genome, has recently been classified in the family, Circoviridae. We have investigated whether infectious, monomeric CAV DNA from recombinant plasmids containing tandemly-repeated CAV replicative form (RF) DNAs, following transfection, was generated by homologous recombination or a replicational release mechanism involving rolling circle replication (RCR) of DNA. Experiments designed to locate the virus strand origin of RCR and/or sites of recombination were performed by sequence analyses of hybrid viruses generated after transfection with cloned tandemly-repeated RFs specified by the sequence-distinct Cux-1 and 26P4 isolates. Positive transfection results obtained from 2 recombinant plasmid constructs were shown to have resulted from homologous recombination occurring at different sites within the RF sequence. Three of 5 hybrid viruses analysed were "circularised" within the same 105 bp sequence, that contains four 19bp repeats and with which promoter/enhancer activity has been associated. This region may represent a novel origin or recombination hot-spot within the CAV genome. A distinctive cruciform-loop structure within the non-coding region was shown to contain an S1 nuclease-sensitive site, detected in CAV RF and in recombinant plasmids containing RF inserts.
Collapse
Affiliation(s)
- D Todd
- Department of Agriculture for Northern Ireland
| | | | | | | |
Collapse
|
38
|
Abstract
Viruses have developed successful strategies for propagation at the expense of their host cells. Efficient gene expression, genome multiplication, and invasion of the host are enabled by virus-encoded genetic elements, many of which are well characterized. Sequences derived from plant DNA and RNA viruses can be used to control expression of other genes in vivo. The main groups of plant virus genetic elements useful in genetic engineering are reviewed, including the signals for DNA-dependent and RNA-dependent RNA synthesis, sequences on the virus mRNAs that enable translational control, and sequences that control processing and intracellular sorting of virus proteins. Use of plant viruses as extrachromosomal expression vectors is also discussed, along with the issue of their stability.
Collapse
Affiliation(s)
- A R Mushegian
- Department of Plant Pathology, University of Kentucky, Lexington 40546-0091, USA
| | | |
Collapse
|
39
|
Rohde W, Becker D, Randles JW. The promoter of coconut foliar decay-associated circular single-stranded DNA directs phloem-specific reporter gene expression in transgenic tobacco. PLANT MOLECULAR BIOLOGY 1995; 27:623-8. [PMID: 7894025 DOI: 10.1007/bf00019328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A full-length double-stranded DNA copy of the single-stranded circular DNA associated with coconut foliar decay virus (CFDV) was constructed. Full-length CFDV DNA and smaller fragments were transcriptionally fused to the beta-glucuronidase reporter gene and examined for promoter activity in vivo. In stably transformed tobacco plants, the CFDV DNA promoter confered a tissue-specific expression pattern in that the reporter gene was specifically expressed in the phloem tissue of the vascular system in stem, leaves and flower. These results are in agreement with the previously reported association of CFDV DNA with the phloem of its coconut host plant.
Collapse
MESH Headings
- Base Sequence
- Cocos/virology
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Geminiviridae/genetics
- Gene Expression Regulation, Plant/genetics
- Genes, Reporter/genetics
- Glucuronidase/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plant Leaves/genetics
- Plant Stems/genetics
- Plants, Genetically Modified
- Plants, Toxic
- Promoter Regions, Genetic/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Homology, Nucleic Acid
- Nicotiana/genetics
Collapse
Affiliation(s)
- W Rohde
- MPI für Züchtungsforschung, Köln, Germany
| | | | | |
Collapse
|
40
|
Chernov BK, Merits A, Blinov VM. Computer-assisted predictions of the secondary structure in the plant virus single-stranded DNA genome. J Biomol Struct Dyn 1994; 11:837-47. [PMID: 8204218 DOI: 10.1080/07391102.1994.10508036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Coconut foliar decay virus (CFDV) contains the single-stranded circular DNA molecules of 1291 nucleotides which were found to replicate autonomously in the cells of the diseased palms. The special features of the CFDV DNA sequence, including putative secondary structure and the distribution of the inverted repeat motifs, are investigated with computer-assisted prediction methods. It is evident that the structural principle of the branched series of long and short double helixes interspersed by short non-helical regions is existed for CFDV virion DNA. The total degree of base pairing is near 62%. We have also predicted the presence of several sequence elements formed by inverted repeat motifs which are potentially capable of binding the eukaryotic transcriptional regulatory factors.
Collapse
|
41
|
Merits A, Chernov BK. Computer search of transcription control sequences in small plant virus DNA reveals a sequence highly homologous to the enhancer element of histone promoters. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1994; 4:395-7. [PMID: 7841461 DOI: 10.3109/10425179409010187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The positions of nucleotide sequences which can act as binding sites for plant transcriptional trans-acting protein factors have been mapped in DNA of plant circovirus--coconut foliar decay virus (CFDV). It was found that CFDV promoter region contains sequence motif homologous to the regulatory type I element of plant histone genes. We have also found the presence of the element I motifs in DNAs of other small plant viruses. Taking into account the mechanism of regulation of histone gene expression it appears that these sequences may play a role in a cell cycle-dependent regulation of plant virus DNA transcription and replication.
Collapse
|
42
|
Koonin EV. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res 1993; 21:2541-7. [PMID: 8332451 PMCID: PMC309579 DOI: 10.1093/nar/21.11.2541] [Citation(s) in RCA: 310] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A new superfamily of (putative) DNA-dependent ATPases is described that includes the ATPase domains of prokaryotic NtrC-related transcription regulators, MCM proteins involved in the initiation of eukaryotic DNA replication, and a group of uncharacterized bacterial and chloroplast proteins. MCM proteins are shown to contain a modified form of the ATP-binding motif and are predicted to mediate ATP-dependent opening of double-stranded DNA in the replication origins. In a second line of investigation, it is demonstrated that the products of unidentified open reading frames from Marchantia mitochondria and from yeast, and a domain of a baculovirus protein involved in viral DNA replication are related to the superfamily III of DNA and RNA helicases that previously has been known to include only proteins of small viruses. Comparison of the multiple alignments showed that the proteins of the NtrC superfamily and the helicases of superfamily III share three related sequence motifs tightly packed in the ATPase domain that consists of 100-150 amino acid residues. A similar array of conserved motifs is found in the family of DnaA-related ATPases. It is hypothesized that the three large groups of nucleic acid-dependent ATPases have similar structure of the core ATPase domain and have evolved from a common ancestor.
Collapse
Affiliation(s)
- E V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| |
Collapse
|
43
|
Carruthers VB, van der Ploeg LH, Cross GA. DNA-mediated transformation of bloodstream-form Trypanosoma brucei. Nucleic Acids Res 1993; 21:2537-8. [PMID: 8506158 PMCID: PMC309574 DOI: 10.1093/nar/21.10.2537] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- V B Carruthers
- Laboratory of Molecular Parasitology, Rockefeller University, New York, NY 10021
| | | | | |
Collapse
|
44
|
Chu PW, Keese P, Qiu BS, Waterhouse PM, Gerlach WL. Putative full-length clones of the genomic DNA segments of subterranean clover stunt virus and identification of the segment coding for the viral coat protein. Virus Res 1993; 27:161-71. [PMID: 8460528 DOI: 10.1016/0168-1702(93)90079-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Subterranean clover stunt disease is an economically important aphid-borne virus disease affecting certain pasture and grain legumes in Australia. The virus associated with the disease, subterranean clover stunt virus (SCSV), was previously found to be representative of a new type of single-stranded DNA virus. Analysis of the virion DNA and restriction mapping of double-stranded cDNA synthesized from virion DNA suggested that SCSV has a segmented genome composed of 3 or 4 different species of circular ssDNA each of about 850-880 nucleotides. To further investigate the complexity of the SCSV genome, we have isolated the replicative form DNA from infected pea and from it prepared putative full-length clones representing the SCSV genome segments. Analysis of these clones by restriction mapping indicated that clones representing at least 4 distinct genomic segments were obtained. This method is thus suitable for generating an extensive genomic library of novel ssDNA viruses containing multiple genome segments such as SCSV and banana bunchy top virus. The N-terminal amino acid sequence and amino acid composition of the coat protein of SCSV were determined. Comparison of the amino acid sequence with partial DNA sequence data, and the distinctly different restriction maps obtained for the full-length clones suggested that only one of these clones contained the coat protein gene. The results confirmed that SCSV has a functionally divided genome composed of several distinct ssDNA circles each of about 1 kb.
Collapse
Affiliation(s)
- P W Chu
- CSIRO Division of Plant Industry, Canberra, Australia
| | | | | | | | | |
Collapse
|
45
|
Chu PW, Bing-sheng Q, Zhong-yi L, Larkin P. Replication of subterranean clover stunt virus in pea and subterranean clover protoplasts. Virus Res 1993. [DOI: 10.1016/0168-1702(93)90080-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Abstract
A comparative analysis of the proteins involved in initiation and termination of rolling circle replication (RCR) was performed using computer-assisted methods of data based screening, motif search and multiple amino acid sequence alignment. Two vast classes of such proteins were delineated, one of these being associated with RCR proper, and the other with mobilization (conjugal transfer) of plasmid DNA. The common denominator of the two classes was found to be a conserved amino acid motif that consists of the sequence HisUHisUUU (U--bulky hydrophobic residue; hereafter HUH motif). Based on analogies with metalloenzymes, it is hypothesized that the two conserved His residues this motif may be involved in metal ion coordination required for the activity of the RCR and mobilization proteins. The proteins of the replication (Rep) class contained two additional conserved motifs, with the motif around the Tyr residue(s) forming the covalent link with nicked DNA being located C-proximally of the HUH motif. This class further split into two large superfamilies and several smaller families, with the proteins belonging to a single but not to different (super)families demonstrating statistically significant similarity to each other. Superfamily I, prototyped by the gene A proteins of small isometric single-stranded (ss) DNA bacteriophages, included also Rep proteins of P2-related double-stranded (ds) DNA bacteriophages, the small phage-plasmid hybrid phasyl, and several cyanobacterial and archaebacterial plasmids. These proteins contained two invariant Tyr residues separated by three partially conserved amino acids, suggesting that they all may share the cleavage-ligation mechanism proposed for phi X174 A protein and involving alternate covalent binding of both tyrosines to DNA (Van Mansfeld, A.D., Van Teeffelen, H.A., Baas, P.D., Jansz, H.S., 1986. Nucl. Acids Res. 14, 4229-4238). Superfamily II included Rep proteins of a number of ssDNA plasmids replicating mainly in gram-positive bacteria that unexpectedly were shown to be related to the Rep proteins of plant geminiviruses. Conservation of the "HUH" motif and a motif around the putative DNA-linking Tyr residue was observed also in the Rep proteins of animal parvoviruses containing linear ssDNA with a terminal hairpin and replicating via the rolling hairpin mechanism. The class of plasmid mobilization (Mob) proteins was characterized by the opposite orientation of the conserved motifs, with the (putative) DNA-linking Tyr being located N-proximally of the "HUH" motif.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E V Koonin
- Institute of Microbiology, Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
47
|
Ilyina TV, Koonin EV. Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res 1992; 20:3279-85. [PMID: 1630899 PMCID: PMC312478 DOI: 10.1093/nar/20.13.3279] [Citation(s) in RCA: 470] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An amino acid motif was identified that consists of the sequence HisHydrHisHydrHydrHydr (Hydr--bulky hydrophobic residue) and is conserved in two vast classes of proteins, one of which is involved in initiation and termination of rolling circle DNA replication, or RCR (Rep proteins), and the other in mobilization (conjugal transfer) of plasmid DNA (Mob proteins). Based on analogies with metalloenzymes, it is hypothesized that the two conserved His residues in this motif may be involved in metal ion coordination required for the activity of the Rep and Mob proteins. Rep proteins contained two additional conserved motifs, one of which was located upstream, and the other downstream from the 'two His' motif. The C-terminal motif encompassed the Tyr residue(s) forming the covalent link with nicked DNA. Mob proteins were characterized by the opposite orientation of the conserved motifs, with the (putative) DNA-linking Tyr being located near their N-termini. Both Rep and Mob protein classes further split into several distinct families. Although it was not possible to find a motif or pattern that would be unique for the entire Rep or Mob class, unique patterns were derived for large subsets of the proteins of each class. These observations allowed the prediction of the amino acid residues involved in DNA nicking, which is required for the initiation of RCR or conjugal transfer of single-stranded (ss) DNA, in Rep and Mob proteins encoded by a number of replicons of highly diverse size, structure and origin. It is conjectured that recombination has played a major part in the dissemination of genes encoding related Rep or Mob proteins among the replicons exploiting RCR. It is speculated that the eucaryotic small ssDNA replicons encoding proteins with the conserved RCR motifs and replicating via RCR-related mechanisms, such as geminiviruses and parvoviruses, may have evolved from eubacterial replicons.
Collapse
Affiliation(s)
- T V Ilyina
- Institute of Microbiology, Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
48
|
Kammann M, Schalk HJ, Matzeit V, Schaefer S, Schell J, Gronenborn B. DNA replication of wheat dwarf virus, a geminivirus, requires two cis-acting signals. Virology 1991; 184:786-90. [PMID: 1887595 DOI: 10.1016/0042-6822(91)90453-i] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Replication of the single-stranded DNA genome of wheat dwarf virus (WDV) leads to the accumulation of covalently closed double-stranded DNA of genome length in infected cells. By studying the replication properties of a naturally occurring deletion mutant of WDV isolated from infected plants and of deletion mutants constructed in vitro, we have defined cis-acting regions required for viral DNA replication. The results show that two distinct regions are required in cis to yield the normal replicative forms of WDV-DNA.
Collapse
Affiliation(s)
- M Kammann
- Max-Planck-Institut für Züchtungsforschung, Köln, FRG
| | | | | | | | | | | |
Collapse
|