1
|
Abdulrahman DA, Meng X, Veit M. S-Acylation of Proteins of Coronavirus and Influenza Virus: Conservation of Acylation Sites in Animal Viruses and DHHC Acyltransferases in Their Animal Reservoirs. Pathogens 2021; 10:669. [PMID: 34072434 PMCID: PMC8227752 DOI: 10.3390/pathogens10060669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 01/21/2023] Open
Abstract
Recent pandemics of zoonotic origin were caused by members of coronavirus (CoV) and influenza A (Flu A) viruses. Their glycoproteins (S in CoV, HA in Flu A) and ion channels (E in CoV, M2 in Flu A) are S-acylated. We show that viruses of all genera and from all hosts contain clusters of acylated cysteines in HA, S and E, consistent with the essential function of the modification. In contrast, some Flu viruses lost the acylated cysteine in M2 during evolution, suggesting that it does not affect viral fitness. Members of the DHHC family catalyze palmitoylation. Twenty-three DHHCs exist in humans, but the number varies between vertebrates. SARS-CoV-2 and Flu A proteins are acylated by an overlapping set of DHHCs in human cells. We show that these DHHC genes also exist in other virus hosts. Localization of amino acid substitutions in the 3D structure of DHHCs provided no evidence that their activity or substrate specificity is disturbed. We speculate that newly emerged CoVs or Flu viruses also depend on S-acylation for replication and will use the human DHHCs for that purpose. This feature makes these DHHCs attractive targets for pan-antiviral drugs.
Collapse
Affiliation(s)
- Dina A. Abdulrahman
- Department of Virology, Animal Health Research Institute (AHRI), Giza 12618, Egypt;
| | - Xiaorong Meng
- Institute of Virology, Veterinary Faculty, Free University Berlin, 14163 Berlin, Germany;
| | - Michael Veit
- Institute of Virology, Veterinary Faculty, Free University Berlin, 14163 Berlin, Germany;
| |
Collapse
|
2
|
Gadalla MR, Morrison E, Serebryakova MV, Han X, Wolff T, Freund C, Kordyukova L, Veit M. NS1-mediated upregulation of ZDHHC22 acyltransferase in influenza a virus infected cells. Cell Microbiol 2021; 23:e13322. [PMID: 33629465 DOI: 10.1111/cmi.13322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
Influenza A viruses contain two S-acylated proteins, the ion channel M2 and the glycoprotein hemagglutinin (HA). Acylation of the latter is essential for virus replication. Here we analysed the expression of each of the 23 members of the family of ZDHHC acyltransferases in human airway cells, the site of virus replication. RT-PCR revealed that every ZDHHC acyltransferase (except ZDHHC19) is expressed in A549 and Calu cells. Interestingly, expression of one ZDHHC, ZDHHC22, is upregulated in virus-infected cells; this effect is more pronounced after infection with an avian compared to a human virus strain. The viral protein NS1 triggers ZDHHC22 expression in transfected cells, whereas recombinant viruses lacking a functional NS1 gene did not cause ZDHHC22 upregulation. CRISPR/Cas9 technology was then used to knock-out the ZDHHC22 gene in A549 cells. However, acylation of M2 and HA was not reduced, as analysed for intracellular HA and M2 and the stoichiometry of S-acylation of HA incorporated into virus particles did not change according to MALDI-TOF mass spectrometry analysis. Comparative mass spectrometry of palmitoylated proteins in wt and ΔZDHHC22 cells identified 25 potential substrates of ZDHHC22 which might be involved in virus replication.
Collapse
Affiliation(s)
- Mohamed Rasheed Gadalla
- Institute of Virology, Free University Berlin, Berlin, Germany.,Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eliot Morrison
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin, Germany
| | - Marina V Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Xueijiao Han
- Institute of Virology, Free University Berlin, Berlin, Germany
| | - Thorsten Wolff
- Unit 17: Influenza and Other Respiratory Viruses, Robert Koch Institute, Berlin, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin, Germany
| | - Larisa Kordyukova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Michael Veit
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
3
|
Zhang J, Peng Q, Zhao W, Sun W, Yang J, Liu N. Proteomics in Influenza Research: The Emerging Role of Posttranslational Modifications. J Proteome Res 2020; 20:110-121. [PMID: 33348980 DOI: 10.1021/acs.jproteome.0c00778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Influenza viruses continue evolving and have the ability to cause a global pandemic, so it is very important to elucidate its pathogenesis and find new treatment methods. In recent years, proteomics has made important contributions to describing the dynamic interaction between influenza viruses and their hosts, especially in posttranslational regulation of a variety of key biological processes. Protein posttranslational modifications (PTMs) increase the diversity of functionality of the organismal proteome and affect almost all aspects of pathogen biology, primarily by regulating the structure, function, and localization of the modified proteins. Considerable technical achievements in mass spectrometry-based proteomics have been made in a large number of proteome-wide surveys of PTMs in many different organisms. Herein we specifically focus on the proteomic studies regarding a variety of PTMs that occur in both the influenza viruses, mainly influenza A viruses (IAVs), and their hosts, including phosphorylation, ubiquitination and ubiquitin-like modification, glycosylation, methylation, acetylation, and some types of acylation. Integration of these data sets provides a unique scenery of the global regulation and interplay of different PTMs during the interaction between IAVs and their hosts. Various techniques used to globally profiling these PTMs, mostly MS-based approaches, are discussed regarding their increasing roles in mechanical regulation of interaction between influenza viruses and their hosts.
Collapse
Affiliation(s)
- Jinming Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| | - Qisheng Peng
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| | - Weizheng Zhao
- Clinical Medical College, Jilin University, Changchun 130021, PR China
| | - Wanchun Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| | - Jingbo Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| | - Ning Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| |
Collapse
|
4
|
Dawson AR, Wilson GM, Coon JJ, Mehle A. Post-Translation Regulation of Influenza Virus Replication. Annu Rev Virol 2020; 7:167-187. [DOI: 10.1146/annurev-virology-010320-070410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Influenza virus exploits cellular factors to complete each step of viral replication. Yet, multiple host proteins actively block replication. Consequently, infection success depends on the relative speed and efficacy at which both the virus and host use their respective effectors. Post-translational modifications (PTMs) afford both the virus and the host means to readily adapt protein function without the need for new protein production. Here we use influenza virus to address concepts common to all viruses, reviewing how PTMs facilitate and thwart each step of the replication cycle. We also discuss advancements in proteomic methods that better characterize PTMs. Although some effectors and PTMs have clear pro- or antiviral functions, PTMs generally play regulatory roles to tune protein functions, levels, and localization. Synthesis of our current understanding reveals complex regulatory schemes where the effects of PTMs are time and context dependent as the virus and host battle to control infection.
Collapse
Affiliation(s)
- Anthony R. Dawson
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Gary M. Wilson
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Andrew Mehle
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
5
|
Huang D, Montigny C, Zheng Y, Beswick V, Li Y, Cao X, Barbot T, Jaxel C, Liang J, Xue M, Tian C, Jamin N, Zheng J. Chemical Synthesis of Native S‐Palmitoylated Membrane Proteins through Removable‐Backbone‐Modification‐Assisted Ser/Thr Ligation. Angew Chem Int Ed Engl 2020; 59:5178-5184. [DOI: 10.1002/anie.201914836] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Dong‐Liang Huang
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Yong Zheng
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Veronica Beswick
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
- Department of PhysicsEvry-Val-d'Essonne University 91025 Evry France
| | - Ying Li
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Xiu‐Xiu Cao
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Thomas Barbot
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Christine Jaxel
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Jun Liang
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Min Xue
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Chang‐Lin Tian
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Nadège Jamin
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Ji‐Shen Zheng
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| |
Collapse
|
6
|
Huang D, Montigny C, Zheng Y, Beswick V, Li Y, Cao X, Barbot T, Jaxel C, Liang J, Xue M, Tian C, Jamin N, Zheng J. Chemical Synthesis of Native S‐Palmitoylated Membrane Proteins through Removable‐Backbone‐Modification‐Assisted Ser/Thr Ligation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Dong‐Liang Huang
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Yong Zheng
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Veronica Beswick
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
- Department of PhysicsEvry-Val-d'Essonne University 91025 Evry France
| | - Ying Li
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Xiu‐Xiu Cao
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Thomas Barbot
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Christine Jaxel
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Jun Liang
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Min Xue
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Chang‐Lin Tian
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Nadège Jamin
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Ji‐Shen Zheng
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| |
Collapse
|
7
|
Thomaston JL, Konstantinidi A, Liu L, Lambrinidis G, Tan J, Caffrey M, Wang J, DeGrado WF, Kolocouris A. X-ray Crystal Structures of the Influenza M2 Proton Channel Drug-Resistant V27A Mutant Bound to a Spiro-Adamantyl Amine Inhibitor Reveal the Mechanism of Adamantane Resistance. Biochemistry 2020; 59:627-634. [PMID: 31894969 PMCID: PMC7224692 DOI: 10.1021/acs.biochem.9b00971] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The V27A mutation confers adamantane resistance on the influenza A matrix 2 (M2) proton channel and is becoming more prevalent in circulating populations of influenza A virus. We have used X-ray crystallography to determine structures of a spiro-adamantyl amine inhibitor bound to M2(22-46) V27A and also to M2(21-61) V27A in the Inwardclosed conformation. The spiro-adamantyl amine binding site is nearly identical for the two crystal structures. Compared to the M2 "wild type" (WT) with valine at position 27, we observe that the channel pore is wider at its N-terminus as a result of the V27A mutation and that this removes V27 side chain hydrophobic interactions that are important for binding of amantadine and rimantadine. The spiro-adamantyl amine inhibitor blocks proton conductance in the WT and V27A mutant channels by shifting its binding site in the pore depending on which residue is present at position 27. Additionally, in the structure of the M2(21-61) V27A construct, the C-terminus of the channel is tightly packed relative to that of the M2(22-46) construct. We observe that residues Asp44, Arg45, and Phe48 face the center of the channel pore and would be well-positioned to interact with protons exiting the M2 channel after passing through the His37 gate. A 300 ns molecular dynamics simulation of the M2(22-46) V27A-spiro-adamantyl amine complex predicts with accuracy the position of the ligands and waters inside the pore in the X-ray crystal structure of the M2(22-46) V27A complex.
Collapse
Affiliation(s)
- Jessica L. Thomaston
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Athina Konstantinidi
- Department of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Lijun Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- DLX Scientific, Lawrence, KS 66049, USA
| | - George Lambrinidis
- Department of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Jingquan Tan
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Martin Caffrey
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Antonios Kolocouris
- Department of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
8
|
Gadalla MR, Abrami L, van der Goot FG, Veit M. Hemagglutinin of Influenza A, but not of Influenza B and C viruses is acylated by ZDHHC2, 8, 15 and 20. Biochem J 2020; 477:285-303. [PMID: 31872235 DOI: 10.1042/bcj20190752] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/15/2019] [Accepted: 12/23/2019] [Indexed: 02/05/2023]
Abstract
Hemagglutinin (HA), a glycoprotein of Influenza A viruses and its proton channel M2 are site-specifically modified with fatty acids. Whereas two cysteines in the short cytoplasmic tail of HA contain only palmitate, stearate is exclusively attached to one cysteine located at the cytoplasmic border of the transmembrane region (TMR). M2 is palmitoylated at a cysteine positioned in an amphiphilic helix near the TMR. The enzymes catalyzing acylation of HA and M2 have not been identified, but zinc finger DHHC domain-containing (ZDHHC) palmitoyltransferases are candidates. We used a siRNA library to knockdown expression of each of the 23 human ZDHHCs in HA-expressing HeLa cells. siRNAs against ZDHHC2 and 8 had the strongest effect on acylation of HA as demonstrated by Acyl-RAC and confirmed by 3H-palmitate labeling. CRISPR/Cas9 knockout of ZDHHC2 and 8 in HAP1 cells, but also of the phylogenetically related ZDHHCs 15 and 20 strongly reduced acylation of group 1 and group 2 HAs and of M2, but individual ZDHHCs exhibit slightly different substrate preferences. These ZDHHCs co-localize with HA at membranes of the exocytic pathway in a human lung cell line. ZDHHC2, 8, 15 and 20 are not required for acylation of the HA-esterase-fusion protein of Influenza C virus that contains only stearate at one transmembrane cysteine. Knockout of these ZDHHCs also did not compromise acylation of HA of Influenza B virus that contains two palmitoylated cysteines in its cytoplasmic tail. Results are discussed with respect to the acyl preferences and possible substrate recognition features of the identified ZDHHCs.
Collapse
Affiliation(s)
- Mohamed Rasheed Gadalla
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Laurence Abrami
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - F Gisou van der Goot
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michael Veit
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|
9
|
Amphipathic Helices of Cellular Proteins Can Replace the Helix in M2 of Influenza A Virus with Only Small Effects on Virus Replication. J Virol 2020; 94:JVI.01605-19. [PMID: 31694941 DOI: 10.1128/jvi.01605-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/04/2019] [Indexed: 11/20/2022] Open
Abstract
M2 of influenza virus functions as a proton channel during virus entry. In addition, an amphipathic helix in its cytoplasmic tail plays a role during budding. It targets M2 to the assembly site where it inserts into the inner membrane leaflet to induce curvature that causes virus scission. Since vesicularization of membranes can be performed by a variety of amphiphilic peptides, we used reverse genetics to investigate whether the peptides can substitute for M2's helix. Virus could not be generated if M2's helix was deleted or replaced by a peptide predicted not to form an amphiphilic helix. In contrast, viruses could be rescued if the M2 helix was exchanged by helices known to induce membrane curvature. Infectious virus titers were marginally reduced if M2 contains the helix of the amphipathic lipid packing sensor from the Epsin N-terminal homology domain or the nonnatural membrane inducer RW16. Transmission electron microscopy of infected cells did not reveal unequivocal evidence that virus budding or membrane scission was disturbed in any of the mutants. Instead, individual virus mutants exhibit other defects in M2, such as reduced surface expression, incorporation into virus particles, and ion channel activity. The protein composition and specific infectivity were also altered for mutant virions. We conclude that the presence of an amphiphilic helix in M2 is essential for virus replication but that other helices can replace its basic (curvature-inducing) function.IMPORTANCE Influenza virus is unique among enveloped viruses since it does not rely on the cellular ESCRT machinery for budding. Instead, viruses encode their own scission machine, the M2 protein. M2 is targeted to the edge of the viral assembly site, where it inserts an amphiphilic helix into the membrane to induce curvature. Cellular proteins utilize a similar mechanism for scission of vesicles. We show that the helix of M2 can be replaced by helices from cellular proteins with only small effects on virus replication. No evidence was obtained that budding is disturbed, but individual mutants exhibit other defects in M2 that explain the reduced virus titers. In contrast, no virus could be generated if the helix of M2 is deleted or replaced by irrelevant sequences. These experiments support the concept that M2 requires an amphiphilic helix to induce membrane curvature, but its biophysical properties are more important than the amino acid sequence.
Collapse
|
10
|
To J, Torres J. Viroporins in the Influenza Virus. Cells 2019; 8:cells8070654. [PMID: 31261944 PMCID: PMC6679168 DOI: 10.3390/cells8070654] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 12/28/2022] Open
Abstract
Influenza is a highly contagious virus that causes seasonal epidemics and unpredictable pandemics. Four influenza virus types have been identified to date: A, B, C and D, with only A–C known to infect humans. Influenza A and B viruses are responsible for seasonal influenza epidemics in humans and are responsible for up to a billion flu infections annually. The M2 protein is present in all influenza types and belongs to the class of viroporins, i.e., small proteins that form ion channels that increase membrane permeability in virus-infected cells. In influenza A and B, AM2 and BM2 are predominantly proton channels, although they also show some permeability to monovalent cations. By contrast, M2 proteins in influenza C and D, CM2 and DM2, appear to be especially selective for chloride ions, with possibly some permeability to protons. These differences point to different biological roles for M2 in types A and B versus C and D, which is also reflected in their sequences. AM2 is by far the best characterized viroporin, where mechanistic details and rationale of its acid activation, proton selectivity, unidirectionality, and relative low conductance are beginning to be understood. The present review summarizes the biochemical and structural aspects of influenza viroporins and discusses the most relevant aspects of function, inhibition, and interaction with the host.
Collapse
Affiliation(s)
- Janet To
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
11
|
Influenza A Virus M2 Protein: Roles from Ingress to Egress. Int J Mol Sci 2017; 18:ijms18122649. [PMID: 29215568 PMCID: PMC5751251 DOI: 10.3390/ijms18122649] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) matrix protein 2 (M2) is among the smallest bona fide, hence extensively studied, ion channel proteins. The M2 ion channel activity is not only essential for virus replication, but also involved in modulation of cellular homeostasis in a variety of ways. It is also the target for ion channel inhibitors, i.e., anti-influenza drugs. Thus far, several studies have been conducted to elucidate its biophysical characteristics, structure-function relationships of the ion channel, and the M2-host interactome. In this review, we discuss M2 protein synthesis and assembly into an ion channel, its roles in IAV replication, and the pathophysiological impact on the host cell.
Collapse
|
12
|
Ramsey J, Mukhopadhyay S. Disentangling the Frames, the State of Research on the Alphavirus 6K and TF Proteins. Viruses 2017; 9:v9080228. [PMID: 28820485 PMCID: PMC5580485 DOI: 10.3390/v9080228] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 01/04/2023] Open
Abstract
For 30 years it was thought the alphavirus 6K gene encoded a single 6 kDa protein. However, through a bioinformatics search 10 years ago, it was discovered that there is a frameshifting event and two proteins, 6K and transframe (TF), are translated from the 6K gene. Thus, many functions attributed to the 6K protein needed reevaluation to determine if they properly belong to 6K, TF, or both proteins. In this mini-review, we reevaluate the past research on 6K and put those results in context where there are two proteins, 6K and TF, instead of one. Additionally, we discuss the most cogent outstanding questions for 6K and TF research, including their collective importance in alphavirus budding and their potential importance in disease based on the latest virulence data.
Collapse
Affiliation(s)
- Jolene Ramsey
- Department of Biology at Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
13
|
Palmitoylation of Sindbis Virus TF Protein Regulates Its Plasma Membrane Localization and Subsequent Incorporation into Virions. J Virol 2017; 91:JVI.02000-16. [PMID: 27852864 DOI: 10.1128/jvi.02000-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/13/2016] [Indexed: 01/20/2023] Open
Abstract
Palmitoylation is a reversible, posttranslational modification that helps target proteins to cellular membranes. The alphavirus small membrane proteins 6K and TF have been reported to be palmitoylated and to positively regulate budding. 6K and TF are isoforms that are identical in their N termini but unique in their C termini due to a -1 ribosomal frameshift during translation. In this study, we used cysteine (Cys) mutants to test differential palmitoylation of the Sindbis virus 6K and TF proteins. We modularly mutated the five Cys residues in the identical N termini of 6K and TF, the four additional Cys residues in TF's unique C terminus, or all nine Cys residues in TF. Using these mutants, we determined that TF palmitoylation occurs primarily in the N terminus. In contrast, 6K is not palmitoylated, even on these shared residues. In the C-terminal Cys mutant, TF protein levels increase both in the cell and in the released virion compared to the wild type. In viruses with the N-terminal Cys residues mutated, TF is much less efficiently localized to the plasma membrane, and it is not incorporated into the virion. The three Cys mutants have minor defects in cell culture growth but a high incidence of abnormal particle morphologies compared to the wild-type virus as determined by transmission electron microscopy. We propose a model where the C terminus of TF modulates the palmitoylation of TF at the N terminus, and palmitoylated TF is preferentially trafficked to the plasma membrane for virus budding. IMPORTANCE Alphaviruses are a reemerging viral cause of arthritogenic disease. Recently, the small 6K and TF proteins of alphaviruses were shown to contribute to virulence in vivo Nevertheless, a clear understanding of the molecular mechanisms by which either protein acts to promote virus infection is missing. The TF protein is a component of budded virions, and optimal levels of TF correlate positively with wild-type-like particle morphology. In this study, we show that the palmitoylation of TF regulates its localization to the plasma membrane, which is the site of alphavirus budding. Mutants in which TF is not palmitoylated display drastically reduced plasma membrane localization, which effectively prevents TF from participating in budding or being incorporated into virus particles. Investigation of the regulation of TF will aid current efforts in the alphavirus field searching for approaches to mitigate alphaviral disease in humans.
Collapse
|
14
|
Chlanda P, Zimmerberg J. Protein-lipid interactions critical to replication of the influenza A virus. FEBS Lett 2016; 590:1940-54. [PMID: 26921878 DOI: 10.1002/1873-3468.12118] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/08/2016] [Accepted: 02/21/2016] [Indexed: 12/12/2022]
Abstract
Influenza A virus (IAV) assembles on the plasma membrane where viral proteins localize to form a bud encompassing the viral genome, which ultimately pinches off to give rise to newly formed infectious virions. Upon entry, the virus faces the opposite task-fusion with the endosomal membrane and disassembly to deliver the viral genome to the cytoplasm. There are at least four influenza proteins-hemagglutinin (HA), neuraminidase (NA), matrix 1 protein (M1), and the M2 ion channel-that are known to directly interact with the cellular membrane and modify membrane curvature in order to both assemble and disassemble membrane-enveloped virions. Here, we summarize and discuss current knowledge of the interactions of lipids and membrane proteins involved in the IAV replication cycle.
Collapse
Affiliation(s)
- Petr Chlanda
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
S-acylation of influenza virus proteins: Are enzymes for fatty acid attachment promising drug targets? Vaccine 2015; 33:7002-7. [DOI: 10.1016/j.vaccine.2015.08.095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/10/2015] [Accepted: 08/28/2015] [Indexed: 11/22/2022]
|
16
|
Abstract
Protein S-acylation, the only fully reversible posttranslational lipid modification of proteins, is emerging as a ubiquitous mechanism to control the properties and function of a diverse array of proteins and consequently physiological processes. S-acylation results from the enzymatic addition of long-chain lipids, most typically palmitate, onto intracellular cysteine residues of soluble and transmembrane proteins via a labile thioester linkage. Addition of lipid results in increases in protein hydrophobicity that can impact on protein structure, assembly, maturation, trafficking, and function. The recent explosion in global S-acylation (palmitoyl) proteomic profiling as a result of improved biochemical tools to assay S-acylation, in conjunction with the recent identification of enzymes that control protein S-acylation and de-acylation, has opened a new vista into the physiological function of S-acylation. This review introduces key features of S-acylation and tools to interrogate this process, and highlights the eclectic array of proteins regulated including membrane receptors, ion channels and transporters, enzymes and kinases, signaling adapters and chaperones, cell adhesion, and structural proteins. We highlight recent findings correlating disruption of S-acylation to pathophysiology and disease and discuss some of the major challenges and opportunities in this rapidly expanding field.
Collapse
Affiliation(s)
- Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, United Kingdom; and Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael J Shipston
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, United Kingdom; and Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Shipston MJ. Ion channel regulation by protein S-acylation. J Gen Physiol 2014; 143:659-78. [PMID: 24821965 PMCID: PMC4035745 DOI: 10.1085/jgp.201411176] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/18/2014] [Indexed: 01/09/2023] Open
Abstract
Protein S-acylation, the reversible covalent fatty-acid modification of cysteine residues, has emerged as a dynamic posttranslational modification (PTM) that controls the diversity, life cycle, and physiological function of numerous ligand- and voltage-gated ion channels. S-acylation is enzymatically mediated by a diverse family of acyltransferases (zDHHCs) and is reversed by acylthioesterases. However, for most ion channels, the dynamics and subcellular localization at which S-acylation and deacylation cycles occur are not known. S-acylation can control the two fundamental determinants of ion channel function: (1) the number of channels resident in a membrane and (2) the activity of the channel at the membrane. It controls the former by regulating channel trafficking and the latter by controlling channel kinetics and modulation by other PTMs. Ion channel function may be modulated by S-acylation of both pore-forming and regulatory subunits as well as through control of adapter, signaling, and scaffolding proteins in ion channel complexes. Importantly, cross-talk of S-acylation with other PTMs of both cysteine residues by themselves and neighboring sites of phosphorylation is an emerging concept in the control of ion channel physiology. In this review, I discuss the fundamentals of protein S-acylation and the tools available to investigate ion channel S-acylation. The mechanisms and role of S-acylation in controlling diverse stages of the ion channel life cycle and its effect on ion channel function are highlighted. Finally, I discuss future goals and challenges for the field to understand both the mechanistic basis for S-acylation control of ion channels and the functional consequence and implications for understanding the physiological function of ion channel S-acylation in health and disease.
Collapse
Affiliation(s)
- Michael J Shipston
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD Scotland, UK
| |
Collapse
|
18
|
Thaa B, Siche S, Herrmann A, Veit M. Acylation and cholesterol binding are not required for targeting of influenza A virus M2 protein to the hemagglutinin-defined budozone. FEBS Lett 2014; 588:1031-6. [PMID: 24561202 DOI: 10.1016/j.febslet.2014.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/30/2014] [Accepted: 02/04/2014] [Indexed: 12/20/2022]
Abstract
Influenza virus assembles in the budozone, a cholesterol-/sphingolipid-enriched ("raft") domain at the apical plasma membrane, organized by hemagglutinin (HA). The viral protein M2 localizes to the budozone edge for virus particle scission. This was proposed to depend on acylation and cholesterol binding. We show that M2-GFP without these motifs is still transported apically in polarized cells. Employing FRET, we determined that clustering between HA and M2 is reduced upon disruption of HA's raft-association features (acylation, transmembranous VIL motif), but remains unchanged with M2 lacking acylation and/or cholesterol-binding sites. The motifs are thus irrelevant for M2 targeting in cells.
Collapse
Affiliation(s)
- Bastian Thaa
- Freie Universität Berlin, Fachbereich Veterinärmedizin, Institut für Virologie, Zentrum für Infektionsmedizin - Robert-von-Ostertag-Haus, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Stefanie Siche
- Freie Universität Berlin, Fachbereich Veterinärmedizin, Institut für Virologie, Zentrum für Infektionsmedizin - Robert-von-Ostertag-Haus, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Andreas Herrmann
- Humboldt-Universität zu Berlin, Institute of Biology, Molecular Biophysics, Invalidenstraße 42, 10115 Berlin, Germany
| | - Michael Veit
- Freie Universität Berlin, Fachbereich Veterinärmedizin, Institut für Virologie, Zentrum für Infektionsmedizin - Robert-von-Ostertag-Haus, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany.
| |
Collapse
|
19
|
Abstract
Influenza viruses contain two palmitoylated (S-acylated) proteins: the major spike protein HA (haemagglutinin) and the proton-channel M2. The present review describes the fundamental biochemistry of palmitoylation of HA: the location of palmitoylation sites and the fatty acid species bound to HA. Finally, the functional consequences of palmitoylation of HA and M2 are discussed regarding association with membrane rafts, entry of viruses into target cells by HA-mediated membrane fusion as well as the release of newly assembled virus particles from infected cells.
Collapse
|
20
|
Veit M, Engel S, Thaa B, Scolari S, Herrmann A. Lipid domain association of influenza virus proteins detected by dynamic fluorescence microscopy techniques. Cell Microbiol 2012; 15:179-89. [PMID: 23057766 DOI: 10.1111/cmi.12045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/16/2012] [Accepted: 09/17/2012] [Indexed: 01/31/2023]
Abstract
Influenza virus is thought to assemble in raft domains of the plasma membrane, but many of the conclusions were based on (controversial) Triton extraction experiments. Here we review how sophisticated methods of fluorescence microscopy, such as FPALM, FRET and FRAP, contributed to our understanding of lipid domain association of the viral proteins HA and M2. The results are summarized in light of the current model for virus assembly and lipid domain organization. Finally, it is described how the signals that govern domain association in transfected cells affect replication of influenza virus.
Collapse
Affiliation(s)
- Michael Veit
- Institute of Immunology, Free University Berlin, Philippstr. 13, 10115 Berlin, Germany.
| | | | | | | | | |
Collapse
|
21
|
Thaa B, Tielesch C, Möller L, Schmitt AO, Wolff T, Bannert N, Herrmann A, Veit M. Growth of influenza A virus is not impeded by simultaneous removal of the cholesterol-binding and acylation sites in the M2 protein. J Gen Virol 2012; 93:282-292. [DOI: 10.1099/vir.0.038554-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Influenza virus assembly and budding occur in the ‘budozone’, a coalesced raft domain in the plasma membrane. The viral transmembrane protein M2 is implicated in virus particle scission, the ultimate step in virus budding, probably by wedge-like insertion of an amphiphilic helix into the membrane. In order to do this, M2 is hypothesized to be targeted to the edge of the budozone, mediated by acylation and cholesterol binding. It was recently shown that acylation and cholesterol binding affect the membrane association of the cytoplasmic tail of M2 and targeting of the protein to coalesced rafts. This study tested whether combined removal of the acylation site (C50) and the cholesterol recognition/interaction amino acid consensus motifs (key residues Y52 and Y57) in the amphiphilic helix of M2 influenced virus formation. Recombinant influenza viruses were generated in the influenza strain A/WSN/33 background with mutations in one or both of these features. In comparison with the wild-type, all mutant viruses showed very similar growth kinetics in various cell types. Wild-type and mutant viruses differed in their relative M2 content but not regarding the major structural proteins. The morphology of the viruses was not affected by mutating M2. Moreover, wild-type and mutant viruses showed comparable competitive fitness in infected cells. Lastly, a global comparison of M2 sequences revealed that there are natural virus strains with M2 devoid of both lipid-association motifs. Taken together, these results indicate that the acylation and cholesterol-binding motifs in M2 are not crucial for the replication of influenza virus in cell culture, indicating that other factors can target M2 to the budding site.
Collapse
Affiliation(s)
- Bastian Thaa
- Freie Universität Berlin, Faculty of Veterinary Medicine, Institute of Immunology and Molecular Biology, Philippstraße 13, 10115 Berlin, Germany
| | - Claudia Tielesch
- Freie Universität Berlin, Faculty of Veterinary Medicine, Institute of Immunology and Molecular Biology, Philippstraße 13, 10115 Berlin, Germany
| | - Lars Möller
- Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Armin O. Schmitt
- Humboldt-Universität zu Berlin, Department for Crop and Animal Sciences, Invalidenstraße 42, 10115 Berlin, Germany
| | - Thorsten Wolff
- Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | | | - Andreas Herrmann
- Humboldt-Universität zu Berlin, Institute of Biology, Molecular Biophysics, Invalidenstraße 42, 10115 Berlin, Germany
| | - Michael Veit
- Freie Universität Berlin, Faculty of Veterinary Medicine, Institute of Immunology and Molecular Biology, Philippstraße 13, 10115 Berlin, Germany
| |
Collapse
|
22
|
Fischer WB, Wang YT, Schindler C, Chen CP. Mechanism of function of viral channel proteins and implications for drug development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:259-321. [PMID: 22364876 PMCID: PMC7149447 DOI: 10.1016/b978-0-12-394305-7.00006-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Viral channel-forming proteins comprise a class of viral proteins which, similar to their host companions, are made to alter electrochemical or substrate gradients across lipid membranes. These proteins are active during all stages of the cellular life cycle of viruses. An increasing number of proteins are identified as channel proteins, but the precise role in the viral life cycle is yet unknown for the majority of them. This review presents an overview about these proteins with an emphasis on those with available structural information. A concept is introduced which aligns the transmembrane domains of viral channel proteins with those of host channels and toxins to give insights into the mechanism of function of the viral proteins from potential sequence identities. A summary of to date investigations on drugs targeting these proteins is given and discussed in respect of their mode of action in vivo.
Collapse
Affiliation(s)
- Wolfgang B. Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| | - Yi-Ting Wang
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| | - Christina Schindler
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| | - Chin-Pei Chen
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
23
|
Function of membrane rafts in viral lifecycles and host cellular response. Biochem Res Int 2011; 2011:245090. [PMID: 22191032 PMCID: PMC3235436 DOI: 10.1155/2011/245090] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 12/31/2022] Open
Abstract
Membrane rafts are small (10–200 nm) sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. Membrane rafts play an important role in viral infection cycles and viral virulence. Viruses are divided into four main classes, enveloped DNA virus, enveloped RNA virus, nonenveloped DNA virus, and nonenveloped RNA virus. General virus infection cycle is also classified into two sections, the early stage (entry process) and the late stage (assembly, budding, and release processes of virus particles). In the viral cycle, membrane rafts act as a scaffold of many cellular signal transductions, which are associated with symptoms caused by viral infections. In this paper, we describe the functions of membrane rafts in viral lifecycles and host cellular response according to each virus classification, each stage of the virus lifecycle, and each virus-induced signal transduction.
Collapse
|
24
|
Muraki Y, Okuwa T, Furukawa T, Matsuzaki Y, Sugawara K, Himeda T, Hongo S, Ohara Y. Palmitoylation of CM2 is dispensable to influenza C virus replication. Virus Res 2011; 157:99-105. [PMID: 21352864 DOI: 10.1016/j.virusres.2011.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 11/28/2022]
Abstract
CM2 is the second membrane protein of influenza C virus. The significance of the posttranslational modifications of CM2 remains to be clarified in the context of viral replication, although the positions of the modified amino acids on CM2 have been determined. In the present study, using reverse genetics we generated rCM2-C65A, a recombinant influenza C virus lacking CM2 palmitoylation site, in which cysteine at residue 65 of CM2 was mutated to alanine, and examined viral growth and viral protein synthesis in the recombinant-infected cells. The rCM2-C65A virus grew as efficiently as did the parental virus in cultured HMV-II cells as well as in embryonated chicken eggs. The synthesis and biochemical features of HEF, NP, M1 and mutant CM2 in the rCM2-C65A-infected HMV-II cells were similar to those in the parental virus-infected cells. Furthermore, membrane flotation analysis of the infected cells revealed that equal amount of viral proteins was recovered in the plasma membrane fractions of the rCM2-C65A-infected cells to that in the parental virus-infected cells. These findings indicate that defect in palmitoylation of CM2 does not affect transport and maturation of HEF, NP and M1 as well as CM2 in virus-infected cells, and palmitoylation of CM2 is dispensable to influenza C virus replication.
Collapse
Affiliation(s)
- Yasushi Muraki
- Department of Microbiology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Protein S-palmitoylation, the reversible thioester linkage of a 16-carbon palmitate lipid to an intracellular cysteine residue, is rapidly emerging as a fundamental, dynamic, and widespread post-translational mechanism to control the properties and function of ligand- and voltage-gated ion channels. Palmitoylation controls multiple stages in the ion channel life cycle, from maturation to trafficking and regulation. An emerging concept is that palmitoylation is an important determinant of channel regulation by other signaling pathways. The elucidation of enzymes controlling palmitoylation and developments in proteomics tools now promise to revolutionize our understanding of this fundamental post-translational mechanism in regulating ion channel physiology.
Collapse
Affiliation(s)
- Michael J Shipston
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, Scotland, United Kingdom.
| |
Collapse
|
26
|
Mi S, Li Y, Yan J, Gao GF. Na(+)/K (+)-ATPase β1 subunit interacts with M2 proteins of influenza A and B viruses and affects the virus replication. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1098-105. [PMID: 21104370 DOI: 10.1007/s11427-010-4048-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 07/04/2010] [Indexed: 01/23/2023]
Abstract
Interplay between the host and influenza virus has a pivotal role for the outcome of infection. The matrix proteins M2/BM2 from influenza (A and B) viruses are small type III integral membrane proteins with a single transmembrane domain, a short amino-terminal ectodomain and a long carboxy-terminal cytoplasmic domain. They function as proton channels, mainly forming a membrane-spanning pore through the transmembrane domain tetramer, and are essential for virus assembly and release of the viral genetic materials in the endosomal fusion process. However, little is known about the host factors which interact with M2/BM2 proteins and the functions of the long cytoplasmic domain are currently unknown. Starting with yeast two-hybrid screening and applying a series of experiments we identified that the β1 subunit of the host Na(+)/K(+)-ATPase β1 subunit (ATP1B1) interacts with the cytoplasmic domain of both the M2 and BM2 proteins. A stable ATP1B1 knockdown MDCK cell line was established and we showed that the ATP1B1 knockdown suppressed influenza virus A/WSN/33 replication, implying that the interaction is crucial for influenza virus replication in the host cell. We propose that influenza virus M2/BM2 cytoplasmic domain has an important role in the virus-host interplay and facilitates virus replication.
Collapse
Affiliation(s)
- ShuoFu Mi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
27
|
Influenza A viruses: why focusing on M2e-based universal vaccines. Virus Genes 2010; 42:1-8. [PMID: 21082230 DOI: 10.1007/s11262-010-0547-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/21/2010] [Indexed: 12/11/2022]
Abstract
The threat of highly virulent avian influenza, such as H5N1 and swine-origin H1N1 influenza viruses, bring out an urgent need to develop a universal influenza vaccine, which may provide cross-protection against different strain of influenza A viruses. The extra-domain of influenza M2 protein (M2e), which is almost completely conserved among all subtypes of influenza A viruses, is considered as a promising candidate target for the development of a broad-spectrum recombinant influenza A vaccine. The results of several preclinical studies with M2e protein, with or without carriers, have already proved the successful protection of M2e-based vaccinated animal model against lethal challenge of heterologous and homologous influenza A viruses. Recently, the results of Phase I/II clinical trail studies with M2e-based vaccines have raised hopes for considering these vaccines against seasonal and pandemic influenza A strains. Hence, it is expected that more and more effective and safe universal influenza vaccines based on M2e will be developed for prevention of seasonal and pandemic influenza in the near future.
Collapse
|
28
|
Pielak RM, Chou JJ. Solution NMR structure of the V27A drug resistant mutant of influenza A M2 channel. Biochem Biophys Res Commun 2010; 401:58-63. [PMID: 20833142 PMCID: PMC3215091 DOI: 10.1016/j.bbrc.2010.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 09/04/2010] [Indexed: 10/19/2022]
Abstract
The M2 protein of influenza A virus forms a proton-selective channel that is required for viral replication. It is the target of the anti-influenza drugs, amantadine and rimantadine. Widespread drug resistant mutants, however, has greatly compromised the effectiveness of these drugs. Here, we report the solution NMR structure of the highly pathogenic, drug resistant mutant V27A. The structure reveals subtle structural differences from wildtype that maybe linked to drug resistance. The V27A mutation significantly decreases hydrophobic packing between the N-terminal ends of the transmembrane helices, which explains the looser, more dynamic tetrameric assembly. The weakened channel assembly can resist drug binding either by destabilizing the rimantadine-binding pocket at Asp44, in the case of the allosteric inhibition model, or by reducing hydrophobic contacts with amantadine in the pore, in the case of the pore-blocking model. Moreover, the V27A structure shows a substantially increased channel opening at the N-terminal end, which may explain the faster proton conduction observed for this mutant. Furthermore, due to the high quality NMR data recorded for the V27A mutant, we were able to determine the structured region connecting the channel domain to the C-terminal amphipathic helices that was not determined in the wildtype structure. The new structural data show that the amphipathic helices are packed much more closely to the channel domain and provide new insights into the proton transfer pathway.
Collapse
Affiliation(s)
- Rafal M. Pielak
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - James J. Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Liang X, Li ZY. Ion channels as antivirus targets. Virol Sin 2010; 25:267-80. [PMID: 20960300 DOI: 10.1007/s12250-010-3136-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022] Open
Abstract
Ion channels are membrane proteins that are found in a number of viruses and which are of crucial physiological importance in the viral life cycle. They have one common feature in that their action mode involves a change of electrochemical or proton gradient across the bilayer lipid membrane which modulates viral or cellular activity. We will discuss a group of viral channel proteins that belong to the viroproin family, and which participate in a number of viral functions including promoting the release of viral particles from cells. Blocking these channel-forming proteins may be "lethal", which can be a suitable and potential therapeutic strategy. In this review we discuss seven ion channels of viruses which can lead serious infections in human beings: M2 of influenza A, NB and BM2 of influenza B, CM2 of influenza C, Vpu of HIV-1, p7 of HCV and 2B of picornaviruses.
Collapse
Affiliation(s)
- Xin Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | | |
Collapse
|
30
|
McBride CE, Machamer CE. Palmitoylation of SARS-CoV S protein is necessary for partitioning into detergent-resistant membranes and cell-cell fusion but not interaction with M protein. Virology 2010; 405:139-48. [PMID: 20580052 PMCID: PMC2914208 DOI: 10.1016/j.virol.2010.05.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 04/27/2010] [Accepted: 05/26/2010] [Indexed: 12/21/2022]
Abstract
Coronaviruses are enveloped RNA viruses that generally cause mild disease in humans. However, the recently emerged coronavirus that caused severe acute respiratory syndrome (SARS-CoV) is the most pathogenic human coronavirus discovered to date. The SARS-CoV spike (S) protein mediates virus entry by binding cellular receptors and inducing fusion between the viral envelope and the host cell membrane. Coronavirus S proteins are palmitoylated, which may affect function. Here, we created a non-palmitoylated SARS-CoV S protein by mutating all nine cytoplasmic cysteine residues. Palmitoylation of SARS-CoV S was required for partitioning into detergent-resistant membranes and for cell–cell fusion. Surprisingly, however, palmitoylation of S was not required for interaction with SARS-CoV M protein. This contrasts with the requirement for palmitoylation of mouse hepatitis virus S protein for interaction with M protein and may point to important differences in assembly and infectivity of these two coronaviruses.
Collapse
Affiliation(s)
- Corrin E McBride
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
31
|
Influenza virus m2 ion channel protein is necessary for filamentous virion formation. J Virol 2010; 84:5078-88. [PMID: 20219914 DOI: 10.1128/jvi.00119-10] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Influenza A virus buds from cells as spherical (approximately 100-nm diameter) and filamentous (approximately 100 nm x 2 to 20 microm) virions. Previous work has determined that the matrix protein (M1) confers the ability of the virus to form filaments; however, additional work has suggested that the influenza virus M2 integral membrane protein also plays a role in viral filament formation. In examining the role of the M2 protein in filament formation, we observed that the cytoplasmic tail of M2 contains several sites that are essential for filament formation. Additionally, whereas M2 is a nonraft protein, expression of other viral proteins in the context of influenza virus infection leads to the colocalization of M2 with sites of virus budding and lipid raft domains. We found that an amphipathic helix located within the M2 cytoplasmic tail is able to bind cholesterol, and we speculate that M2 cholesterol binding is essential for both filament formation and the stability of existing viral filaments.
Collapse
|
32
|
The lack of an inherent membrane targeting signal is responsible for the failure of the matrix (M1) protein of influenza A virus to bud into virus-like particles. J Virol 2010; 84:4673-81. [PMID: 20181696 DOI: 10.1128/jvi.02306-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The matrix protein (M1) of influenza A virus is generally viewed as a key orchestrator in the release of influenza virions from the plasma membrane during infection. In contrast to this model, recent studies have indicated that influenza virus requires expression of the envelope proteins for budding of intracellular M1 into virus particles. Here we explored the mechanisms that control M1 budding. Similarly to previous studies, we found that M1 by itself fails to form virus-like-particles (VLPs). We further demonstrated that M1, in the absence of other viral proteins, was preferentially targeted to the nucleus/perinuclear region rather than to the plasma membrane, where influenza virions bud. Remarkably, we showed that a 10-residue membrane targeting peptide from either the Fyn or Lck oncoprotein appended to M1 at the N terminus redirected M1 to the plasma membrane and allowed M1 particle budding without additional viral envelope proteins. To further identify a functional link between plasma membrane targeting and VLP formation, we took advantage of the fact that M1 can interact with M2, unless the cytoplasmic tail is absent. Notably, native M2 but not mutant M2 effectively targeted M1 to the plasma membrane and produced extracellular M1 VLPs. Our results suggest that influenza virus M1 may not possess an inherent membrane targeting signal. Thus, the lack of efficient plasma membrane targeting is responsible for the failure of M1 in budding. This study highlights the fact that interactions of M1 with viral envelope proteins are essential to direct M1 to the plasma membrane for influenza virus particle release.
Collapse
|
33
|
Shen C, Guo Y, Cheng A, Wang M, Zhou Y, Lin D, Xin H, Zhang N. Characterization of subcellular localization of duck enteritis virus UL51 protein. Virol J 2009; 6:92. [PMID: 19575796 PMCID: PMC2714536 DOI: 10.1186/1743-422x-6-92] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 07/03/2009] [Indexed: 11/10/2022] Open
Abstract
Background Knowledge of the subcellular localization of a protein can provide useful insights about its function. While the subcellular localization of many alphaherpesvirus UL51 proteins has been well characterized, little is known about where duck enteritis virus (DEV) UL51 protein (pUL51) is targeted to. Thus, in this study, we investigated the subcellular localization and distribution of DEV pUL51 by computer aided analysis, as well as indirect immunofluorescence (IIF) and transmission immunoelectron microscopy (TIEM) approaches in DEV-infected cells. Results The DEV UL51 gene product was identified as an approximate 34 kDa protein in DEV-infected cells analyzed by western blotting. Computer aided analysis suggested that DEV pUL51 is not targeted to the mitochondrial, extra-cellular or nucleus, but be targeted to the cytoplasmic in host cells, more specifically, palmitoylation of the pUL51 through the N-terminal cysteine at position 9 makes membrane association and Golgi localization possible. Using IIF analysis, we found that DEV pUL51 was first detected in a juxtanuclear region of DEV-infected cells at 9 h postinfection (p.i.), and then was detected widely distributed in the cytoplasm and especially was stronger in the juxtanuclear region from 12 to 60 h p.i. TIEM analysis revealed that DEV pUL51 was mainly associated with cytoplasmic virions and also with some membranous structure near the pUL51-specific immuno-labeling intracellular virion in the cytoplasmic vesicles; moreover, the pUL51 efficiently accumulated in the Golgi apparatus at first, and then was sent to the plasma membrane from the Golgi by some unknown mechanism. Conclusion In this work, we described the basic characteristics of pUL51 subcellular localization and distribution for the first time. From these results, we concluded that palmitoylation at the N-terminal cysteine, which is conserved in all alphaherpesvirus UL51 homologs, is required for its membrane association and Golgi localization, and the pUL51 mainly localized to the juxtanuclear region of DEV-infected cells, as well seemed to be incorporated into mature virions as a component of the tegument. The research will provide useful clues for DEV pUL51 functional analysis, and will be usefull for further understanding the localization properties of alphaherpesvirus UL51 homologs.
Collapse
Affiliation(s)
- Chanjuan Shen
- Avian Diseases Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Ya'an, Sichuan, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Palmitoylation of the influenza A virus M2 protein is not required for virus replication in vitro but contributes to virus virulence. J Virol 2009; 83:8655-61. [PMID: 19553312 DOI: 10.1128/jvi.01129-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The influenza A virus M2 protein has important roles during virus entry and in the assembly of infectious virus particles. The cytoplasmic tail of the protein can be palmitoylated at a cysteine residue, but this residue is not conserved in a number of human influenza A virus isolates. Recombinant viruses encoding M2 proteins with a serine substituted for the cysteine at position 50 were generated in the A/WSN/33 (H1N1) and A/Udorn/72 (H3N2) genetic backgrounds. The recombinant viruses were not attenuated for replication in MDCK cells, Calu-3 cells, or in primary differentiated murine trachea epithelial cell cultures, indicating there was no significant contribution of M2 palmitoylation to virus replication in vitro. The A/WSN/33 M2C50S virus displayed a slightly reduced virulence after infection of mice, suggesting that there may be novel functions for M2 palmitoylation during in vivo infection.
Collapse
|
35
|
Mapping the sequence mutations of the 2009 H1N1 influenza A virus neuraminidase relative to drug and antibody binding sites. Biol Direct 2009; 4:18; discussion 18. [PMID: 19457254 PMCID: PMC2691737 DOI: 10.1186/1745-6150-4-18] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/20/2009] [Indexed: 11/30/2022] Open
Abstract
In this work, we study the consequences of sequence variations of the "2009 H1N1" (swine or Mexican flu) influenza A virus strain neuraminidase for drug treatment and vaccination. We find that it is phylogenetically more closely related to European H1N1 swine flu and H5N1 avian flu rather than to the H1N1 counterparts in the Americas. Homology-based 3D structure modeling reveals that the novel mutations are preferentially located at the protein surface and do not interfere with the active site. The latter is the binding cavity for 3 currently used neuraminidase inhibitors: oseltamivir (Tamiflu®), zanamivir (Relenza®) and peramivir; thus, the drugs should remain effective for treatment. However, the antigenic regions of the neuraminidase relevant for vaccine development, serological typing and passive antibody treatment can differ from those of previous strains and already vary among patients. This article was reviewed by Sandor Pongor and L. Aravind.
Collapse
|
36
|
Abstract
Channel-forming proteins are found in a number of viral genomes. In some cases, their role in the viral life cycle is well understood, in some cases it needs still to be elucidated. A common theme is that their mode of action involves a change of electrochemical or proton gradient across the lipid membrane which modulates the viral or cellular activity. Blocking these proteins can be a suitable therapeutic strategy as for some viruses this may be "lethal." Besides the many biological relevant questions still to be answered, there are also many open questions concerning the biophysical side as well as structural information and the mechanism of function on a molecular level. The immanent biophysical issues are addressed and the work in the field is summarized.
Collapse
|
37
|
Stability and function of the influenza A virus M2 ion channel protein is determined by both extracellular and cytoplasmic domains. Arch Virol 2008; 154:147-51. [PMID: 19082683 DOI: 10.1007/s00705-008-0283-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
Abstract
A series of M2/NB chimeras were used to investigate the ion channel activity of the IAV M2 protein. Replacing the M2 cytoplasmic domain with the equivalent NB domain (AAB chimera) did not influence ion channel activity, while replacement of N-terminal domains (BAA and BAB chimeras) resulted in loss of activity. Extension of the M2 protein N-terminal domain resulted in full restoration of ion channel activity in BAA chimeras but only partial restoration in BAB. While not directly involved in ion channel activity, the N- and C-terminals of M2 are important for stabilization of the transmembrane domain structure.
Collapse
|
38
|
Structure and mechanism of the M2 proton channel of influenza A virus. Nature 2008; 451:591-5. [PMID: 18235503 DOI: 10.1038/nature06531] [Citation(s) in RCA: 767] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 12/03/2007] [Indexed: 11/08/2022]
Abstract
The integral membrane protein M2 of influenza virus forms pH-gated proton channels in the viral lipid envelope. The low pH of an endosome activates the M2 channel before haemagglutinin-mediated fusion. Conductance of protons acidifies the viral interior and thereby facilitates dissociation of the matrix protein from the viral nucleoproteins--a required process for unpacking of the viral genome. In addition to its role in release of viral nucleoproteins, M2 in the trans-Golgi network (TGN) membrane prevents premature conformational rearrangement of newly synthesized haemagglutinin during transport to the cell surface by equilibrating the pH of the TGN with that of the host cell cytoplasm. Inhibiting the proton conductance of M2 using the anti-viral drug amantadine or rimantadine inhibits viral replication. Here we present the structure of the tetrameric M2 channel in complex with rimantadine, determined by NMR. In the closed state, four tightly packed transmembrane helices define a narrow channel, in which a 'tryptophan gate' is locked by intermolecular interactions with aspartic acid. A carboxy-terminal, amphipathic helix oriented nearly perpendicular to the transmembrane helix forms an inward-facing base. Lowering the pH destabilizes the transmembrane helical packing and unlocks the gate, admitting water to conduct protons, whereas the C-terminal base remains intact, preventing dissociation of the tetramer. Rimantadine binds at four equivalent sites near the gate on the lipid-facing side of the channel and stabilizes the closed conformation of the pore. Drug-resistance mutations are predicted to counter the effect of drug binding by either increasing the hydrophilicity of the pore or weakening helix-helix packing, thus facilitating channel opening.
Collapse
|
39
|
McSwiggen JA, Seth S. A potential treatment for pandemic influenza using siRNAs targeting conserved regions of influenza A. Expert Opin Biol Ther 2008; 8:299-313. [DOI: 10.1517/14712598.8.3.299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Betakova T, Hay AJ. Evidence that the CM2 protein of influenza C virus can modify the pH of the exocytic pathway of transfected cells. J Gen Virol 2007; 88:2291-2296. [PMID: 17622634 DOI: 10.1099/vir.0.82785-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 115 residue CM2 protein of influenza C virus is a structural homologue of the M2 protein of influenza A virus. Expression of the CM2 protein in Xenopus oocytes showed that it can form a voltage-activated ion channel permeable to Cl-. To investigate whether the CM2 protein has pH modulating activity comparable to that of the M2 protein, CM2 was co-expressed with a pH-sensitive haemagglutinin (HA) from influenza A virus. The results indicate that, like the M2 protein, the CM2 protein has a capacity to reduce the acidity of the exocytic pathway and reduce conversion of the pH-sensitive HA to its low pH conformation during transport to the cell surface. By contrast, the NB protein of influenza B virus has no detectable activity. Although, the pH modulating activity of the CM2 protein was substantially less than that of the M2 protein, these observations provide support for a role in virus uncoating analogous to that of M2.
Collapse
Affiliation(s)
- Tatiana Betakova
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
- Institute of Virology - Slovaks Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovak Republic
| | - Alan J Hay
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
41
|
McCown MF, Pekosz A. Distinct domains of the influenza a virus M2 protein cytoplasmic tail mediate binding to the M1 protein and facilitate infectious virus production. J Virol 2006; 80:8178-89. [PMID: 16873274 PMCID: PMC1563831 DOI: 10.1128/jvi.00627-06] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic tail of the influenza A virus M2 protein is highly conserved among influenza A virus isolates. The cytoplasmic tail appears to be dispensable with respect to the ion channel activity associated with the protein but important for virus morphology and the production of infectious virus particles. Using reverse genetics and transcomplementation assays, we demonstrate that the M2 protein cytoplasmic tail is a crucial mediator of infectious virus production. Truncations of the M2 cytoplasmic tail result in a drastic decrease in infectious virus titers, a reduction in the amount of packaged viral RNA, a decrease in budding events, and a reduction in budding efficiency. The M1 protein binds to the M2 cytoplasmic tail, but the M1 binding site is distinct from the sequences that affect infectious virus particle formation. Influenza A virus strains A/Udorn/72 and A/WSN/33 differ in their requirements for M2 cytoplasmic tail sequences, and this requirement maps to the M1 protein. We conclude that the M2 protein is required for the formation of infectious virus particles, implicating the protein as important for influenza A virus assembly in addition to its well-documented role during virus entry and uncoating.
Collapse
Affiliation(s)
- Matthew F McCown
- Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Ave., St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
42
|
Schroeder C, Heider H, Möncke-Buchner E, Lin TI. The influenza virus ion channel and maturation cofactor M2 is a cholesterol-binding protein. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2004; 34:52-66. [PMID: 15221235 DOI: 10.1007/s00249-004-0424-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 03/06/2004] [Accepted: 05/19/2004] [Indexed: 11/26/2022]
Abstract
The influenza-virus M2 protein has proton channel activity required for virus uncoating and maturation of hemagglutinin (HA) through low-pH compartments. The proton channel is cytotoxic in heterologous expression systems and can be blocked with rimantadine. In an independent, rimantadine-resistant function, M2, interacting with the M1 protein, controls the shape of virus particles. These bud from cholesterol-rich membrane rafts where viral glycoproteins and matrix (M1)/RNP complexes assemble. We demonstrate that M2 preparations from influenza virus-infected cells and from a baculovirus expression system contain 0.5-0.9 molecules of cholesterol per monomer. Sequence analyses of the membrane-proximal M2 endodomain reveal interfacial hydrophobicity, a cholesterol-binding motif first identified in peripheral benzodiazepine receptor and human immunodeficiency virus gp41, and an overlapping phosphatidylinositol 4,5-bisphosphate-binding motif. M2 induced rimantadine-reversible cytotoxicity in intrinsically cholesterol-free E. coli, and purified E. coli-expressed M2 functionally reconstituted into cholesterol-free liposomes supported rimantadine-sensitive proton translocation. Therefore, cholesterol was nonessential for M2 ion-channel function and cytotoxicity and for the effect of rimantadine. Only about 5-8% of both M2 preparations, regardless of cholesterol content, associated with detergent-resistant membranes. Cholesterol affinity and palmitoylation, in combination with a short transmembrane segment suggest M2 is a peripheral raft protein. Preference for the raft/non-raft interface may determine colocalization with HA during apical transport, the low level of M2 incorporated into the viral envelope and its undisclosed role in virus budding for which a model is presented. M2 may promote clustering and merger of rafts and the pinching-off (fission) of virus particles.
Collapse
Affiliation(s)
- Cornelia Schroeder
- Abteilung Virologie, Institut für Mikrobiologie und Hygiene, Universität des Saarlandes, Homburg/Saar, 66421 Homburg, Germany
| | | | | | | |
Collapse
|
43
|
Chazal N, Gerlier D. Virus entry, assembly, budding, and membrane rafts. Microbiol Mol Biol Rev 2003; 67:226-37, table of contents. [PMID: 12794191 PMCID: PMC156468 DOI: 10.1128/mmbr.67.2.226-237.2003] [Citation(s) in RCA: 372] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As intracellular parasites, viruses rely heavily on the use of numerous cellular machineries for completion of their replication cycle. The recent discovery of the heterogeneous distribution of the various lipids within cell membranes has led to the proposal that sphingolipids and cholesterol tend to segregate in microdomains called membrane rafts. The involvement of membrane rafts in biosynthetic traffic, signal transduction, and endocytosis has suggested that viruses may also take advantage of rafts for completion of some steps of their replication cycle, such as entry into their cell host, assembly, and budding. In this review, we have attempted to delineate all the reliable data sustaining this hypothesis and to build some models of how rafts are used as platforms for assembly of some viruses. Indeed, if in many cases a formal proof of raft involvement in a virus replication cycle is still lacking, one can reasonably suggest that, owing to their ability to specifically attract some proteins, lipid microdomains provide a particular milieu suitable for increasing the efficiency of many protein-protein interactions which are crucial for virus infection and growth.
Collapse
Affiliation(s)
- Nathalie Chazal
- Immunologie-Virologie, EA 3038, Université Paul Sabatier, 31062 Toulouse, France.
| | | |
Collapse
|
44
|
Reid AH, Fanning TG, Janczewski TA, McCall S, Taubenberger JK. Characterization of the 1918 "Spanish" influenza virus matrix gene segment. J Virol 2002; 76:10717-23. [PMID: 12368314 PMCID: PMC136643 DOI: 10.1128/jvi.76.21.10717-10723.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coding region of influenza A virus RNA segment 7 from the 1918 pandemic virus, consisting of the open reading frames of the two matrix genes M1 and M2, has been sequenced. While this segment is highly conserved among influenza virus strains, the 1918 sequence does not match any previously sequenced influenza virus strains. The 1918 sequence matches the consensus over the M1 RNA-binding domains and nuclear localization signal and the highly conserved transmembrane domain of M2. Amino acid changes that correlate with high yield and pathogenicity in animal models were not found in the 1918 strain. Phylogenetic analyses suggest that both genes were mammalian adapted and that the 1918 sequence is very similar to the common ancestor of all subsequent human and classical swine matrix segments. The 1918 sequence matches other mammalian strains at 4 amino acids in the extracellular domain of M2 that differ consistently between avian and mammalian strains, suggesting that the matrix segment may have been circulating in human strains for at least several years before 1918.
Collapse
Affiliation(s)
- Ann H Reid
- Division of Molecular Pathology, Department of Cellular Pathology and Genetics, Armed Forces Institute of Pathology, Rockville, Maryland 20850-3125, USA.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Viral ion channels are short auxiliary membrane proteins with a length of ca. 100 amino acids. They are found in enveloped viruses from influenza A, influenza B and influenza C (Orthomyxoviridae), and the human immunodeficiency virus type 1 (HIV-1, Retroviridae). The channels are called M2 (influenza A), NB (influenza B), CM2 (influenza C) and Vpu (HIV-1). Recently, in Paramecium bursaria chlorella virus (PBCV-1, Phycodnaviridae), a K+ selective ion channel has been discovered. The viral channels form homo oligomers to allow an ion flux and represent miniaturised systems. Proton conductivity of M2 is established; NB, Vpu and the potassium channel from PBC-1 conduct ions; for CM2 ion conductivity is still under proof. This review summarises the current knowledge of these short viral membrane proteins. Their discovery is outlined and experimental evidence for their structure and function is discussed. Studies using computational methods are presented as well as investigations of drug-protein interactions.
Collapse
Affiliation(s)
- Wolfgang B Fischer
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, UK.
| | | |
Collapse
|
46
|
Abstract
Wild-type (WT) influenza A/PR/8/34 virus and its variant lacking the NS1 gene (delNS1) have been compared for their ability to mediate apoptosis in cultured cells and chicken embryos. Cell morphology, fragmentation of chromatin DNA, and caspase-dependent cleavage of the viral NP protein have been used as markers for apoptosis. Another marker was caspase cleavage of the viral M2 protein, which was also found to occur in an apoptosis-specific manner. In interferon (IFN)-competent host systems, such as MDCK cells, chicken fibroblasts, and 7-day-old chicken embryos, delNS1 virus induced apoptosis more rapidly and more efficiently than WT virus. As a consequence, delNS1 virus was also more lethal for chicken embryos than WT virus. In IFN-deficient Vero cells, however, apoptosis was delayed and developed with similar intensity after infection with both viruses. Taken together, these data indicate that the IFN antagonistic NS1 protein of influenza A viruses has IFN-dependent antiapoptotic potential.
Collapse
Affiliation(s)
- O P Zhirnov
- D. I. Ivanovsky Institute of Virology, Moscow 123098, Russia
| | | | | | | |
Collapse
|
47
|
Neumann G, Kawaoka Y. Genetic engineering of influenza and other negative-strand RNA viruses containing segmented genomes. Adv Virus Res 2000; 53:265-300. [PMID: 10582103 DOI: 10.1016/s0065-3527(08)60352-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- G Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison 53706, USA
| | | |
Collapse
|
48
|
Tobler K, Kelly ML, Pinto LH, Lamb RA. Effect of cytoplasmic tail truncations on the activity of the M(2) ion channel of influenza A virus. J Virol 1999; 73:9695-701. [PMID: 10559278 PMCID: PMC113015 DOI: 10.1128/jvi.73.12.9695-9701.1999] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The M(2) protein of influenza A virus forms a proton channel that is required for viral replication. The M(2) ion channel is a homotetramer and has a 24-residue N-terminal extracellular domain, a 19-residue transmembrane domain, and a 54-residue cytoplasmic tail. We show here that the N-terminal methionine residue is cleaved from the mature protein. Translational stop codons were introduced into the M(2) cDNA at residues 46, 52, 62, 72, 77, 82, 87, and 92. The deletion mutants were designated truncx, according to the amino acid position that was changed to a stop codon. We studied the role of the cytoplasmic tail by measuring the ion channel activity (the current sensitive to the M(2)-specific inhibitor amantadine) of the cytoplasmic tail truncation mutants expressed in oocytes of Xenopus laevis. When their conductance was measured over time, mutants trunc72, trunc77, and trunc92 behaved comparably to wild-type M(2) protein (a decrease of only 4% over 30 min). In contrast, conductance decreased by 28% for trunc82, 27% for trunc62, and 81% for trunc52 channels. Complete closure of the channel could be observed in some cells for trunc62 and trunc52 within 30 min. These data suggest that a role of the cytoplasmic tail region of the M(2) ion channel is to stabilize the pore against premature closure while the ectodomain is exposed to low pH.
Collapse
Affiliation(s)
- K Tobler
- Department of Biochemistry, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | | | |
Collapse
|
49
|
Sugrue RJ, Cui T, Xu Q, Fu J, Chan YC. The production of recombinant dengue virus E protein using Escherichia coli and Pichia pastoris. J Virol Methods 1997; 69:159-69. [PMID: 9504761 DOI: 10.1016/s0166-0934(97)00151-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dengue virus envelope protein was expressed as a GST fusion protein using E. coli and P. pastoris as expression hosts. In E. coli the recombinant E protein is expressed initially as a soluble 81 kDa GST fusion protein. Treatment of the fusion protein with thrombin released a 55 kDa protein, which is the expected size for correctly processed, non-glycosylated recombinant E protein. The antiserum from animals immunised with this recombinant E protein was found to specifically recognise the dengue virus E protein in virus-infected cells, thus demonstrating the immunogenic nature of the recombinant E protein. This expression system allowed production of up to 2 mg of purified recombinant E protein from a 1 1 bacterial culture. In contrast, expression of this GST fusion protein in P. pastoris is associated with extensive proteolytic degradation of the recombinant E protein. However, this proteolytic degradation was not observed in the truncated E protein sequences which were expressed. One of these recombinant fusion proteins, GST E401 was secreted into the culture medium at levels of up to 100 microg/l of growth medium.
Collapse
Affiliation(s)
- R J Sugrue
- Dengue Virus Group, Institute of Molecular and Cell Biology, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
50
|
Castrucci MR, Hughes M, Calzoletti L, Donatelli I, Wells K, Takada A, Kawaoka Y. The cysteine residues of the M2 protein are not required for influenza A virus replication. Virology 1997; 238:128-34. [PMID: 9375016 DOI: 10.1006/viro.1997.8809] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The M2 protein of influenza A virus functions as an ion channel. It contains three cysteine residues: cysteines 17 and 19, which form disulfide bonds in the ectodomain, and cysteine 50 which is acylated. To understand the role of these cysteine residues in virus replication, we used reverse genetics to create influenza viruses in which the individual cysteines were mutated and a virus in which all three cysteines were changed to serine. The M2 cysteine mutants that lacked either of the cysteine residues in the ectodomain and the mutant that lacked all three residues had appreciably lower amounts of M2 oligomers than did the wild-type virus when examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. None of the mutants, however, were defective in replication, either in vitro or in ferrets and mice. These findings demonstrate that noncovalent interactions are sufficient for the M2 protein to form functional oligomers for virus replication and that its cysteine residues are dispensable for influenza virus replication in vitro and in vivo.
Collapse
Affiliation(s)
- M R Castrucci
- Department of Virology, Istituto Superiore di Sanita, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|