1
|
Cao H, Deng H, Wang Y, Liu D, Li L, Li M, Peng D, Dai J, Li J, Qiu H, Li S. The Distal Promoter of the B438L Gene of African Swine Fever Virus Is Responsible for the Transcription of the Alternatively Spliced B169L. Viruses 2024; 16:1058. [PMID: 39066221 PMCID: PMC11281499 DOI: 10.3390/v16071058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The B169L protein (pB169L) of African swine fever virus (ASFV) is a structural protein with an unidentified function during the virus replication. The sequences of the B169L gene and the downstream B438L gene are separated by short intergenic regions. However, the regulatory mode of the gene transcription remains unknown. Here, we identified two distinct promoter regions and two transcription start sites (TSSs) located upstream of the open reading frame (ORF) of B438L. Using the promoter reporter system, we demonstrated that the cis activity of the ORF proximal promoter exhibited significantly higher levels compared with that of the distal promoter located in the B169L gene. Furthermore, transfection with the plasmids with two different promoters for B438L could initiate the transcription and expression of the B438L gene in HEK293T cells, and the cis activity of the ORF proximal promoter also displayed higher activities compared with the distal promoter. Interestingly, the B438L distal promoter also initiated the transcription of the alternatively spliced B169L mRNA (B169L mRNA2) encoding a truncated pB169L (tpB169L) (amino acids 92-169), and the gene transcription efficiency was increased upon mutation of the initiation codon located upstream of the alternatively spliced B169L gene. Taken together, we demonstrated that the distal promoter of B438L gene initiates the transcription of both the B438L mRNA and B169L mRNA2. Comprehensive analysis of the transcriptional regulatory mode of the B438L gene is beneficial for the understanding of the association of B438L protein and pB169L and the construction of the gene-deleted ASFV.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Huaji Qiu
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (H.C.); (H.D.); (Y.W.); (D.L.); (L.L.); (M.L.); (D.P.); (J.D.); (J.L.)
| | - Su Li
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (H.C.); (H.D.); (Y.W.); (D.L.); (L.L.); (M.L.); (D.P.); (J.D.); (J.L.)
| |
Collapse
|
2
|
Sertznig H, Hillebrand F, Erkelenz S, Schaal H, Widera M. Behind the scenes of HIV-1 replication: Alternative splicing as the dependency factor on the quiet. Virology 2018; 516:176-188. [PMID: 29407375 DOI: 10.1016/j.virol.2018.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 01/31/2023]
Abstract
Alternative splicing plays a key role in the HIV-1 life cycle and is essential to maintain an equilibrium of mRNAs that encode viral proteins and polyprotein-isoforms. In particular, since all early HIV-1 proteins are expressed from spliced intronless and late enzymatic and structural proteins from intron containing, i.e. splicing repressed viral mRNAs, cellular splicing factors and splicing regulatory proteins are crucial for the replication capacity. In this review, we will describe the complex network of cis-acting splicing regulatory elements (SREs), which are mainly localized in the neighbourhoods of all HIV-1 splice sites and warrant the proper ratio of individual transcript isoforms. Since SREs represent binding sites for trans-acting cellular splicing factors interacting with the cellular spliceosomal apparatus we will review the current knowledge of interactions between viral RNA and cellular proteins as well as their impact on viral replication. Finally, we will discuss potential therapeutic approaches targeting HIV-1 alternative splicing.
Collapse
Affiliation(s)
- Helene Sertznig
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Frank Hillebrand
- Institute of Virology, Heinrich Heine University, University Hospital, Düsseldorf, Germany
| | - Steffen Erkelenz
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Heiner Schaal
- Institute of Virology, Heinrich Heine University, University Hospital, Düsseldorf, Germany
| | - Marek Widera
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
3
|
Ingemarsdotter CK, Poddar S, Mercier S, Patzel V, Lever AML. Expression of Herpes Simplex Virus Thymidine Kinase/Ganciclovir by RNA Trans-Splicing Induces Selective Killing of HIV-Producing Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 7:140-154. [PMID: 28624190 PMCID: PMC5415956 DOI: 10.1016/j.omtn.2017.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/20/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023]
Abstract
Antiviral strategies targeting hijacked cellular processes are less easily evaded by the virus than viral targets. If selective for viral functions, they can have a high therapeutic index. We used RNA trans-splicing to deliver the herpes simplex virus thymidine kinase-ganciclovir (HSV-tk/GCV) cell suicide system into HIV-producing cells. Using an extensive in silico bioinformatics and RNA structural analysis approach, ten HIV RNA trans-splicing constructs were designed targeting eight different HIV splice donor or acceptor sites and were tested in cells expressing HIV. Trans-spliced mRNAs were identified in HIV-expressing cells using qRT-PCR with successful detection of fusion RNA transcripts between HIV RNA and the HSV-tk RNA transcripts from six of ten candidate RNA trans-splicing constructs. Conventional PCR and Sanger sequencing confirmed RNA trans-splicing junctions. Measuring cell viability in the presence or absence of GCV expression of HSV-tk by RNA trans-splicing led to selective killing of HIV-producing cells using either 3' exon replacement or 5' exon replacement in the presence of GCV. Five constructs targeting four HIV splice donor and acceptor sites, D4, A5, A7, and A8, involved in regulating the generation of multiple HIV RNA transcripts proved to be effective for trans-splicing mediated selective killing of HIV-infected cells, within which individual constructs targeting D4 and A8 were the most efficient.
Collapse
Affiliation(s)
- Carin K Ingemarsdotter
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Sushmita Poddar
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Sarah Mercier
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Volker Patzel
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Andrew M L Lever
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
4
|
Abstract
Despite its small genome size, the Human Immunodeficiency Virus 1 (HIV-1) is one of the most successful pathogens and has infected more than 70 million people worldwide within the last decades. In total, HIV-1 expresses 16 canonical proteins from only nine genes within its 10 kb genome. Expression of the structural genes gag, pol, and env, the regulatory genes rev and tat and the accessory genes vpu, nef, vpr, and vif enables assembly of the viral particle, regulates viral gene transcription, and equips the virus to evade or counteract host immune responses. In addition to the canonically expressed proteins, a growing number of publications describe the existence of non-canonical fusion proteins in HIV-1 infected cells. Most of them are encoded by the tat-env-rev locus. While the majority of these fusion proteins (e.g., TNV/p28 tev , p186Drev, Tat1-Rev2, Tat^8c, p17tev, or Ref) are the result of alternative splicing events, Tat-T/Vpt is produced upon programmed ribosomal frameshifting, and a Rev1-Vpu fusion protein is expressed due to a nucleotide polymorphism that is unique to certain HIV-1 clade A and C strains. A better understanding of the expression and activity of these non-canonical viral proteins will help to dissect their potential role in viral replication and reveal how HIV-1 optimized the coding potential of its genes. The goal of this review is to provide an overview of previously described HIV-1 fusion proteins and to summarize our current knowledge of their expression patterns and putative functions.
Collapse
Affiliation(s)
- Simon Langer
- Institute of Molecular Virology, Ulm University Medical Center Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center Ulm, Germany
| |
Collapse
|
5
|
Vega Y, Delgado E, de la Barrera J, Carrera C, Zaballos Á, Cuesta I, Mariño A, Ocampo A, Miralles C, Pérez-Castro S, Álvarez H, López-Miragaya I, García-Bodas E, Díez-Fuertes F, Thomson MM. Sequence Analysis of In Vivo-Expressed HIV-1 Spliced RNAs Reveals the Usage of New and Unusual Splice Sites by Viruses of Different Subtypes. PLoS One 2016; 11:e0158525. [PMID: 27355361 PMCID: PMC4927154 DOI: 10.1371/journal.pone.0158525] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/16/2016] [Indexed: 11/18/2022] Open
Abstract
HIV-1 RNAs are generated through a complex splicing mechanism, resulting in a great diversity of transcripts, which are classified in three major categories: unspliced, singly spliced (SS), and doubly spliced (DS). Knowledge on HIV-1 RNA splicing in vivo and by non-subtype B viruses is scarce. Here we analyze HIV-1 RNA splice site usage in CD4+CD25+ lymphocytes from HIV-1-infected individuals through pyrosequencing. HIV-1 DS and SS RNAs were amplified by RT-PCR in 19 and 12 samples, respectively. 13,108 sequences from HIV-1 spliced RNAs, derived from viruses of five subtypes (A, B, C, F, G), were identified. In four samples, three of non-B subtypes, five 3' splice sites (3'ss) mapping to unreported positions in the HIV-1 genome were identified. Two, designated A4i and A4j, were used in 22% and 25% of rev RNAs in two viruses of subtypes B and A, respectively. Given their close proximity (one or two nucleotides) to A4c and A4d, respectively, they could be viewed as variants of these sites. Three 3'ss, designated A7g, A7h, and A7i, located 20, 32, and 18 nucleotides downstream of A7, respectively, were identified in a subtype C (A7g, A7h) and a subtype G (A7i) viruses, each in around 2% of nef RNAs. The new splice sites or variants of splice sites were associated with the usual sequence features of 3'ss. Usage of unusual 3'ss A4d, A4e, A5a, A7a, and A7b was also detected. A4f, previously identified in two subtype C viruses, was preferentially used by rev RNAs of a subtype C virus. These results highlight the great diversity of in vivo splice site usage by HIV-1 RNAs. The fact that four of five newly identified splice sites or variants of splice sites were detected in non-subtype B viruses allows anticipating an even greater diversity of HIV-1 splice site usage than currently known.
Collapse
Affiliation(s)
- Yolanda Vega
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Elena Delgado
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Jorge de la Barrera
- Bioinformatics Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Cristina Carrera
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Ángel Zaballos
- Genomics Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Isabel Cuesta
- Bioinformatics Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Ana Mariño
- Hospital Arquitecto Marcide. Ferrol, A Coruña, Spain
| | - Antonio Ocampo
- Complejo Hospitalario Universitario de Vigo. Vigo, Pontevedra, Spain
| | - Celia Miralles
- Complejo Hospitalario Universitario de Vigo. Vigo, Pontevedra, Spain
| | | | | | | | - Elena García-Bodas
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Francisco Díez-Fuertes
- AIDS Immunopathogenesis Unit. Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Michael M. Thomson
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
- * E-mail:
| |
Collapse
|
6
|
Langer SM, Hopfensperger K, Iyer SS, Kreider EF, Learn GH, Lee LH, Hahn BH, Sauter D. A Naturally Occurring rev1-vpu Fusion Gene Does Not Confer a Fitness Advantage to HIV-1. PLoS One 2015; 10:e0142118. [PMID: 26554585 PMCID: PMC4640844 DOI: 10.1371/journal.pone.0142118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/16/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pandemic strains of HIV-1 (group M) encode a total of nine structural (gag, pol, env), regulatory (rev, tat) and accessory (vif, vpr, vpu, nef) genes. However, some subtype A and C viruses exhibit an unusual gene arrangement in which the first exon of rev (rev1) and the vpu gene are placed in the same open reading frame. Although this rev1-vpu gene fusion is present in a considerable fraction of HIV-1 strains, its functional significance is unknown. RESULTS Examining infectious molecular clones (IMCs) of HIV-1 that encode the rev1-vpu polymorphism, we show that a fusion protein is expressed in infected cells. Due to the splicing pattern of viral mRNA, however, these same IMCs also express a regular Vpu protein, which is produced at much higher levels. To investigate the function of the fusion gene, we characterized isogenic IMC pairs differing only in their ability to express a Rev1-Vpu protein. Analysis in transfected HEK293T and infected CD4+ T cells showed that all of these viruses were equally active in known Vpu functions, such as down-modulation of CD4 or counteraction of tetherin. Furthermore, the polymorphism did not affect Vpu-mediated inhibition of NF-кB activation or Rev-dependent nuclear export of incompletely spliced viral mRNAs. There was also no evidence for enhanced replication of Rev1-Vpu expressing viruses in primary PBMCs or ex vivo infected human lymphoid tissues. Finally, the frequency of HIV-1 quasispecies members that encoded a rev1-vpu fusion gene did not change in HIV-1 infected individuals over time. CONCLUSIONS Expression of a rev1-vpu fusion gene does not affect regular Rev and Vpu functions or alter HIV-1 replication in primary target cells. Since there is no evidence for increased replication fitness of rev1-vpu encoding viruses, this polymorphism likely emerged in the context of other mutations within and/or outside the rev1-vpu intergenic region, and may have a neutral phenotype.
Collapse
Affiliation(s)
- Simon M. Langer
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | | | - Shilpa S. Iyer
- Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - Edward F. Kreider
- Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - Gerald H. Learn
- Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - Lan-Hui Lee
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
- Department of Laboratory, Kunming Branch, Taipei City Hospital, 10844, Taipei, Taiwan
| | - Beatrice H. Hahn
- Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
- * E-mail:
| |
Collapse
|
7
|
Vega Y, Delgado E, Carrera C, Nebreda P, Fernández-García A, Cuevas MT, Pérez-Álvarez L, Thomson MM. Identification of new and unusual rev and nef transcripts expressed by an HIV type 1 primary isolate. AIDS Res Hum Retroviruses 2013; 29:1075-8. [PMID: 23540799 DOI: 10.1089/aid.2013.0053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
We analyzed RNA splice site usage in three HIV-1 subtype B primary isolates through reverse transcriptase polymerase chain reaction (RT-PCR) amplification of spliced RNAs using a fluorescently labeled primer, with computerized size determination and quantification of PCR products, which were also identified by clone sequencing. In one isolate, P2149-3, unusual and unreported spliced transcripts were detected. This isolate preferentially used for rev RNA generation a 3' splice site (3'ss) located five nucleotides upstream of A4a, previously identified only in a T cell line-adapted virus and in a group O isolate, and designated A4d. P2149-3 also used an unreported 3'ss for rev RNA generation, designated A4h, located 20 nucleotides upstream of 3'ss A4c. Additionally, unusual nef RNAs using 3'ss A5a and A7a and with exon composition 1.3.7 were identified. The identification of several unusual and unreported spliced transcripts in an HIV-1 primary isolate suggests a greater diversity of splice site usage in HIV-1 than previously appreciated.
Collapse
Affiliation(s)
- Yolanda Vega
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Elena Delgado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Cristina Carrera
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Paloma Nebreda
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | - María Teresa Cuevas
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Lucía Pérez-Álvarez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael M. Thomson
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
8
|
Abstract
The complex interplay between the host immune response and HIV has been the subject of intense research over the last 25 years. HIV and simian immunodeficiency virus (SIV) CD8 T cells have been of particular interest since they were demonstrated to be temporally associated with reduction in virus load shortly following transmission. Here, we briefly review the phenotypic and functional properties of HIV-specific and SIV-specific CD8 T-cell subsets during HIV infection and consider the influence of viral variation with specific responses that are associated with disease progression or control. The development of an effective HIV/AIDS vaccine combined with existing successful prevention and treatment strategies is essential for preventing new infections. In the context of previous clinical HIV/AIDS vaccine trials, we consider the challenges faced by therapeutic and vaccine strategies designed to elicit effective HIV-specific CD8 T cells.
Collapse
|
9
|
Delgado E, Carrera C, Nebreda P, Fernández-García A, Pinilla M, García V, Pérez-Álvarez L, Thomson MM. Identification of new splice sites used for generation of rev transcripts in human immunodeficiency virus type 1 subtype C primary isolates. PLoS One 2012; 7:e30574. [PMID: 22363449 PMCID: PMC3281843 DOI: 10.1371/journal.pone.0030574] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 12/21/2011] [Indexed: 12/16/2022] Open
Abstract
The HIV-1 primary transcript undergoes a complex splicing process by which more than 40 different spliced RNAs are generated. One of the factors contributing to HIV-1 splicing complexity is the multiplicity of 3′ splice sites (3'ss) used for generation of rev RNAs, with two 3'ss, A4a and A4b, being most commonly used, a third site, A4c, used less frequently, and two additional sites, A4d and A4e, reported in only two and one isolates, respectively. HIV-1 splicing has been analyzed mostly in subtype B isolates, and data on other group M clades are lacking. Here we examine splice site usage in three primary isolates of subtype C, the most prevalent clade in the HIV-1 pandemic, by using an in vitro infection assay of peripheral blood mononuclear cells. Viral spliced RNAs were identified by RT-PCR amplification using a fluorescently-labeled primer and software analyses and by cloning and sequencing the amplified products. The results revealed that splice site usage for generation of rev transcripts in subtype C differs from that reported for subtype B, with most rev RNAs using two previously unreported 3'ss, one located 7 nucleotides upstream of 3'ss A4a, designated A4f, preferentially used by two isolates, and another located 14 nucleotides upstream of 3'ss A4c, designated A4g, preferentially used by the third isolate. A new 5′ splice site, designated D2a, was also identified in one virus. Usage of the newly identified splice sites is consistent with sequence features commonly found in subtype C viruses. These results show that splice site usage may differ between HIV-1 subtypes.
Collapse
Affiliation(s)
- Elena Delgado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Cristina Carrera
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Paloma Nebreda
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | - Milagros Pinilla
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Valentina García
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Lucía Pérez-Álvarez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael M. Thomson
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- * E-mail:
| |
Collapse
|
10
|
Bialuk I, Whitney S, Andresen V, Florese RH, Nacsa J, Cecchinato V, Valeri VW, Heraud JM, Gordon S, Parks RW, Montefiori DC, Venzon D, Demberg T, Guroff MR, Landucci G, Forthal DN, Franchini G. Vaccine induced antibodies to the first variable loop of human immunodeficiency virus type 1 gp120, mediate antibody-dependent virus inhibition in macaques. Vaccine 2011; 30:78-94. [PMID: 22037204 DOI: 10.1016/j.vaccine.2011.10.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/11/2011] [Accepted: 10/17/2011] [Indexed: 12/21/2022]
Abstract
The role of antibodies directed against the hyper variable envelope region V1 of human immunodeficiency virus type 1 (HIV-1), has not been thoroughly studied. We show that a vaccine able to elicit strain-specific non-neutralizing antibodies to this region of gp120 is associated with control of highly pathogenic chimeric SHIV(89.6P) replication in rhesus macaques. The vaccinated animal that had the highest titers of antibodies to the amino terminus portion of V1, prior to challenge, had secondary antibody responses that mediated cell killing by antibody-dependent cellular cytotoxicity (ADCC), as early as 2 weeks after infection and inhibited viral replication by antibody-dependent cell-mediated virus inhibition (ADCVI), by 4 weeks after infection. There was a significant inverse correlation between virus level and binding antibody titers to the envelope protein, (R=-0.83, p=0.015), and ADCVI (R=-0.84 p=0.044). Genotyping of plasma virus demonstrated in vivo selection of three SHIV(89.6P) variants with changes in potential N-linked glycosylation sites in V1. We found a significant inverse correlation between virus levels and titers of antibodies that mediated ADCVI against all the identified V1 virus variants. A significant inverse correlation was also found between neutralizing antibody titers to SHIV(89.6) and virus levels (R=-0.72 p=0.0050). However, passive inoculation of purified immunoglobulin from animal M316, the macaque that best controlled virus, to a naïve macaque, resulted in a low serum neutralizing antibodies and low ADCVI activity that failed to protect from SHIV(89.6P) challenge. Collectively, while our data suggest that anti-envelope antibodies with neutralizing and non-neutralizing Fc(R-dependent activities may be important in the control of SHIV replication, they also demonstrate that low levels of these antibodies alone are not sufficient to protect from infection.
Collapse
Affiliation(s)
- Izabela Bialuk
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kumar S, Bose D, Suryawanshi H, Sabharwal H, Mapa K, Maiti S. Specificity of RSG-1.2 peptide binding to RRE-IIB RNA element of HIV-1 over Rev peptide is mainly enthalpic in origin. PLoS One 2011; 6:e23300. [PMID: 21853108 PMCID: PMC3154333 DOI: 10.1371/journal.pone.0023300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/12/2011] [Indexed: 02/03/2023] Open
Abstract
Rev is an essential HIV-1 regulatory protein which binds to the Rev responsive element (RRE) present within the env gene of HIV-1 RNA genome. This binding facilitates the transport of the RNA to the cytoplasm, which in turn triggers the switch between viral latency and active viral replication. Essential components of this complex have been localized to a minimal arginine rich Rev peptide and stem IIB region of RRE. A synthetic peptide known as RSG-1.2 binds with high binding affinity and specificity to the RRE-IIB than the Rev peptide, however the thermodynamic basis of this specificity has not yet been addressed. The present study aims to probe the thermodynamic origin of this specificity of RSG-1.2 over Rev Peptide for RRE-IIB. The temperature dependent melting studies show that RSG-1.2 binding stabilizes the RRE structure significantly (ΔTm = 4.3°C), in contrast to Rev binding. Interestingly the thermodynamic signatures of the binding have also been found to be different for both the peptides. At pH 7.5, RSG-1.2 binds RRE-IIB with a Ka = 16.2±0.6×107 M−1 where enthalpic change ΔH = −13.9±0.1 kcal/mol is the main driving force with limited unfavorable contribution from entropic change TΔS = −2.8±0.1 kcal/mol. A large part of ΔH may be due to specific stacking between U72 and Arg15. In contrast binding of Rev (Ka = 3.1±0.4×107 M−1) is driven mainly by entropy (ΔH = 0 kcal/mol and TΔS = 10.2±0.2 kcal/mol) which arises from major conformational changes in the RNA upon binding.
Collapse
Affiliation(s)
- Santosh Kumar
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India
| | - Debojit Bose
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India
| | - Hemant Suryawanshi
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India
| | - Harshana Sabharwal
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India
| | - Koyeli Mapa
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India
| | - Souvik Maiti
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India
- * E-mail:
| |
Collapse
|
12
|
Carrera C, Pinilla M, Pérez-Álvarez L, Thomson MM. Identification of unusual and novel HIV type 1 spliced transcripts generated in vivo. AIDS Res Hum Retroviruses 2010; 26:815-20. [PMID: 20624070 DOI: 10.1089/aid.2010.0011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HIV-1 transcripts are generated through a complex alternative splicing mechanism, resulting in the production of multiple RNAs coding for each viral protein. HIV-1 RNA splicing has been analyzed mostly in in vitro assays, and in vivo data are scarce. Here we analyze HIV-1 transcripts generated in peripheral blood mononuclear cells of HIV-1-infected individuals by RT-PCR amplification and sequencing of RNA extracted from unstimulated cells. We identify several unusual or unreported transcripts, most of them splicing within the Nef coding sequence. The majority are predicted to code for a Nef C-terminal 34 amino acid peptide, but others code for Vpr, a truncated Tat, and a 41 amino acid peptide encoded in an antisense exon. We also identify nef and env transcripts splicing four nucleotides downstream of SA5. These results represent the first report on the in vivo generation of diverse novel HIV-1-spliced transcripts, frequently encoding a Nef C-terminal peptide.
Collapse
Affiliation(s)
- Cristina Carrera
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Milagros Pinilla
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Lucía Pérez-Álvarez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael M. Thomson
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
13
|
Asang C, Hauber I, Schaal H. Insights into the selective activation of alternatively used splice acceptors by the human immunodeficiency virus type-1 bidirectional splicing enhancer. Nucleic Acids Res 2008; 36:1450-63. [PMID: 18203748 PMCID: PMC2275126 DOI: 10.1093/nar/gkm1147] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The guanosine-adenosine-rich exonic splicing enhancer (GAR ESE) identified in exon 5 of the human immunodeficiency virus type-1 (HIV-1) pre-mRNA activates either an enhancer-dependent 5′ splice site (ss) or 3′ ss in 1-intron reporter constructs in the presence of the SR proteins SF2/ASF2 and SRp40. Characterizing the mode of action of the GAR ESE inside the internal HIV-1 exon 5 we found that this enhancer fulfils a dual splicing regulatory function (i) by synergistically mediating exon recognition through its individual SR protein-binding sites and (ii) by conferring 3′ ss selectivity within the 3′ ss cluster preceding exon 5. Both functions depend upon the GAR ESE, U1 snRNP binding at the downstream 5′ ss D4 and the E42 sequence located between these elements. Therefore, a network of cross-exon interactions appears to regulate splicing of the alternative exons 4a and 5. As the GAR ESE-mediated activation of the upstream 3′ ss cluster also is essential for the processing of intron-containing vpu/env-mRNAs during intermediate viral gene expression, the GAR enhancer substantially contributes to the regulation of viral replication.
Collapse
Affiliation(s)
- Corinna Asang
- Institut für Virologie, Universitätsklinikum Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
14
|
Anderson JL, Johnson AT, Howard JL, Purcell DFJ. Both linear and discontinuous ribosome scanning are used for translation initiation from bicistronic human immunodeficiency virus type 1 env mRNAs. J Virol 2007; 81:4664-76. [PMID: 17329338 PMCID: PMC1900145 DOI: 10.1128/jvi.01028-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) generates 16 alternatively spliced isoforms of env mRNA that contain the same overlapping open reading frames for Vpu and Env proteins but differ in their 5' untranslated regions (UTR). A subset of env mRNAs carry the extra upstream Rev initiation codon in the 5' UTR. We explored the effect of the alternative UTR on the translation of Vpu and Env proteins from authentic env mRNAs expressed from cDNA constructs. Vpu expression from the subset of env mRNA isoforms with exons containing an upstream Rev AUG codon was minimal. However, every env mRNA isoform expressed similar levels of Env protein. Mutations that removed, altered the strength of, or introduced upstream AUG codons dramatically altered Vpu expression but had little impact on the consistent expression of Env. These data show that the different isoforms of env mRNA are not redundant but instead regulate Vpu production in HIV-1-infected cells. Furthermore, while the initiation of Vpu translation conforms to the leaky ribosome-scanning model, the consistent Env synthesis infers a novel, discontinuous ribosome-scanning mechanism to translate Env.
Collapse
Affiliation(s)
- Jenny L Anderson
- Department of Microbiology and Immunology, The University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | |
Collapse
|
15
|
Kammler S, Otte M, Hauber I, Kjems J, Hauber J, Schaal H. The strength of the HIV-1 3' splice sites affects Rev function. Retrovirology 2006; 3:89. [PMID: 17144911 PMCID: PMC1697824 DOI: 10.1186/1742-4690-3-89] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 12/04/2006] [Indexed: 11/16/2022] Open
Abstract
Background The HIV-1 Rev protein is a key component in the early to late switch in HIV-1 splicing from early intronless (e.g. tat, rev) to late intron-containing Rev-dependent (e.g. gag, vif, env) transcripts. Previous results suggested that cis-acting sequences and inefficient 5' and 3' splice sites are a prerequisite for Rev function. However, we and other groups have shown that two of the HIV-1 5' splice sites, D1 and D4, are efficiently used in vitro and in vivo. Here, we focus on the efficiency of the HIV-1 3' splice sites taking into consideration to what extent their intrinsic efficiencies are modulated by their downstream cis-acting exonic sequences. Furthermore, we delineate their role in RNA stabilization and Rev function. Results In the presence of an efficient upstream 5' splice site the integrity of the 3' splice site is not essential for Rev function whereas an efficient 3' splice site impairs Rev function. The detrimental effect of a strong 3' splice site on the amount of Rev-dependent intron-containing HIV-1 glycoprotein coding (env) mRNA is not compensatable by weakening the strength of the upstream 5' splice site. Swapping the HIV-1 3' splice sites in an RRE-containing minigene, we found a 3' splice site usage which was variably dependent on the presence of the usual downstream exonic sequence. The most evident activation of 3' splice site usage by its usual downstream exonic sequence was observed for 3' splice site A1 which was turned from an intrinsic very weak 3' splice site into the most active 3' splice site, even abolishing Rev activity. Performing pull-down experiments with nuclear extracts of HeLa cells we identified a novel ASF/SF2-dependent exonic splicing enhancer (ESE) within HIV-1 exon 2 consisting of a heptameric sequence motif occurring twice (M1 and M2) within this short non-coding leader exon. Single point mutation of M1 within an infectious molecular clone is detrimental for HIV-1 exon 2 recognition without affecting Rev-dependent vif expression. Conclusion Under the conditions of our assay, the rate limiting step of retroviral splicing, competing with Rev function, seems to be exclusively determined by the functional strength of the 3' splice site. The bipartite ASF/SF2-dependent ESE within HIV-1 exon 2 supports cross-talk between splice site pairs across exon 2 (exon definition) which is incompatible with processing of the intron-containing vif mRNA. We propose that Rev mediates a switch from exon to intron definition necessary for the expression of all intron-containing mRNAs.
Collapse
Affiliation(s)
- Susanne Kammler
- Institut für Virologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Geb. 22.21, D-40225 Düsseldorf, Germany
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Allé, Bldg. 1130, DK-8000 Aarhus C, Denmark
| | - Marianne Otte
- Institut für Virologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Geb. 22.21, D-40225 Düsseldorf, Germany
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Geb. 26.03, D-40225 Düsseldorf, Germany
| | - Ilona Hauber
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, D-20251 Hamburg, Germany
| | - Jørgen Kjems
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Allé, Bldg. 1130, DK-8000 Aarhus C, Denmark
| | - Joachim Hauber
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, D-20251 Hamburg, Germany
| | - Heiner Schaal
- Institut für Virologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Geb. 22.21, D-40225 Düsseldorf, Germany
| |
Collapse
|
16
|
Fujimura RK, Khamis I, Shapshak P, Goodkin K. Regional quantitative comparison of multispliced to unspliced ratios of HIV-1 RNA copy number in infected human brain. ACTA ACUST UNITED AC 2006; 2:45-60. [PMID: 16873205 DOI: 10.1300/j128v02n04_04] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Infection of the brain by HIV-1 often results in cognitive- motor disorders, the most severe form being HIV-1 associated dimentia (HAD). However, the etiology and pathogenesis of neuroAIDS at the molecular level is still not fully understood and controversial issues remain, including the significance of abortive infection and localized viral load. This paper proposes that quantitative comparison of HIV-1 proviral and RNAloads across the brain will clarify some of these issues. It was hypothesized that there are differences in ratios of multispliced and unspliced HIV RNA in different regions of brain by analogy with prior findings of brain regional differences in virus and strains of HIV-1. A competitive RT-PCR method was used to compare ratios of multispliced to unspliced HIV-1 RNA's across brain regions of one case with HAD. Statistical analysis results showed that data obtained by repeated assays for each RNA preparation were not significantly different. Significant differences were detected between specimens obtained from different regions of the brain. The ratio of MS/US RNA in the frontal lobe was significantly greater than in the basal ganglia, medial temporal lobe, and another site in the temporal lobe. It must be noted that our approach has been the analysis of macroscopic brain regions separated by several centimeters; future studies will analyze microscopic analysis of these brain regions. The current study was preformed to produce results on gross differences in neuroanatomical locations at cm distances. Future studies will be performed to compare different regions with microscopic anatomic specificity.
Collapse
Affiliation(s)
- Robert K Fujimura
- Geriatric Research, Education, Clinical Center, Veterans Administration Medical Center, and the Department of Psychiatry and Behavioral Sciences, University of Miami School of Medicine, FL 33125, USA.
| | | | | | | |
Collapse
|
17
|
Lützelberger M, Reinert LS, Das AT, Berkhout B, Kjems J. A novel splice donor site in the gag-pol gene is required for HIV-1 RNA stability. J Biol Chem 2006; 281:18644-51. [PMID: 16675444 DOI: 10.1074/jbc.m513698200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Productive infection and successful replication of human immunodeficiency virus 1 (HIV-1) requires the balanced expression of all viral genes. This is achieved by a combination of alternative splicing events and regulated nuclear export of viral RNA. Because viral splicing is incomplete and intron-containing RNAs must be exported from the nucleus where they are normally retained, it must be ensured that the unspliced HIV-1 RNA is actively exported from the nucleus and protected from degradation by processes such as nonsense-mediated decay. Here we report the identification of a novel 178-nt-long exon located in the gag-pol gene of HIV-1 and its inclusion in at least two different mRNA species. Although efficiently spliced in vitro, this exon appears to be tightly repressed and infrequently used in vivo. The splicing is activated or repressed in vitro by the splicing factors ASF/SF2 and heterogeneous nuclear ribonucleoprotein A1, respectively, suggesting that splicing is controlled by these factors. Interestingly, mutations in the 5'-splice site resulted in a dramatic reduction in the steady-state level of HIV-1 RNA, and this effect was partially reversed by expression of U1 small nuclear RNA harboring the compensatory mutation. This implies that U1 small nuclear RNA binding to optimal but non-functional splice sites might have a role in protecting unspliced HIV-1 mRNA from degradation.
Collapse
Affiliation(s)
- Martin Lützelberger
- Department of Molecular Biology, University of Aarhus, C. F. Møllers Allé 130, 8000 Arhus C, Denmark
| | | | | | | | | |
Collapse
|
18
|
Mishra SH, Shelley CM, Barrow DJ, Darby MK, Germann MW. Solution structures and characterization of human immunodeficiency virus Rev responsive element IIB RNA targeting zinc finger proteins. Biopolymers 2006; 83:352-64. [PMID: 16826557 DOI: 10.1002/bip.20565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Rev responsive element (RRE), a part of unspliced human immunodeficiency virus (HIV) RNA, serves a crucial role in the production of infectious HIV virions. The viral protein Rev binds to RRE and facilitates transport of mRNA to the cytoplasm. Inhibition of the Rev-RRE interaction disrupts the viral life cycle. Using a phage display protocol, dual zinc finger proteins (ZNFs) were generated that bind specifically to RREIIB at the high affinity Rev binding site. These proteins were further shortened and simplified, and they still retained their RNA binding affinity. The solution structures of ZNF29 and a mutant, ZNF29G29R, have been determined by nuclear magnetic resonance (NMR) spectroscopy. Both proteins form C(2)H(2)-type zinc fingers with essentially identical structures. RNA protein interactions were evaluated quantitatively by isothermal titration calorimetry, which revealed dissociation constants (K(d)'s) in the nanomolar range. The interaction with the RNA is dependent upon the zinc finger structure; in the presence of EDTA, RNA binding is abolished. For both proteins, RNA binding is mediated by the alpha-helical portion of the zinc fingers and target the bulge region of RREIIB-TR. However, ZNF29G29R exhibits significantly stronger binding to the RNA target than ZNF29; this illustrates that the binding of the zinc finger scaffold is amenable to further improvements.
Collapse
Affiliation(s)
- Subrata H Mishra
- Department of Chemistry, Georgia State University, Atlanta, 30303, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Human immunodeficiency virus type-1 (HIV-1) relies on both partial and complete splicing of its full-length RNA transcripts to generate a distribution of essential spliced mRNA products. The complexity of the splicing process, which can employ multiple alternative splice sites, challenges our ability to understand how mutations in splice sites may influence the composition of the resulting mRNA pool and, more broadly, the development of viral progeny. Here, we begin to systematically address these issues by developing a mechanistic mathematical model for the splicing process. We identify as key parameters the probabilities that the cellular splice machinery selects specific splice acceptors, and we show how the splicing process depends on these probabilities. Further, by incorporating this splicing model into a detailed kinetic model for HIV-1 intracellular development we find that an increase in the fraction of either rev or tat mRNA in the HIV-1 mRNA pool is generally beneficial for HIV-1 growth. However, a splice site mutation that excessively increases the fraction of either mRNA can be detrimental due to the corresponding reduction in the other mRNA, suggesting that a balance of Rev and Tat is needed in order for HIV-1 to optimize its growth. Although our model is based on still very limited quantitative data on RNA splicing, Rev-mediated splicing regulation and nuclear export, and the effects of associated mutations, it serves as a starting point for better understanding how variations in essential post-transcriptional functions can impact the intracellular development of HIV-1.
Collapse
Affiliation(s)
- Hwijin Kim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3633 Engineering Hall, 1415 Engineering Drive, Madison, Wisconsin 53706-1607, USA
| | | |
Collapse
|
20
|
Victoria JG, Robinson WE. Disruption of the putative splice acceptor site for SIV(mac239)Vif reveals tight control of SIV splicing and impaired replication in Vif non-permissive cells. Virology 2005; 338:281-91. [PMID: 15950999 DOI: 10.1016/j.virol.2005.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 04/25/2005] [Accepted: 05/06/2005] [Indexed: 11/24/2022]
Abstract
Vif is dispensable for simian immunodeficiency virus (SIV) replication in some cells, termed permissive (i.e., CEM-SS), but not in others, termed non-permissive (i.e., H9, CEMx174, and peripheral blood lymphocytes). Non-permissive cells express the RNA editing enzyme, APOBEC3G. To determine whether vif mRNA could be alternatively spliced, a mutation altering the putative vif splice acceptor site (SA1) was introduced into SIV(mac239) (SIV(Deltavif-SA)). Despite three consensus splice acceptor sites nearby SA1, SIV(Deltavif-SA) did not efficiently generate alternatively spliced vif mRNA. SIV(Deltavif-SA) was growth attenuated in CEMx174 and H9 cells but not in CEM-SS cells. Following SIV(Deltavif-SA), but not SIV(mac239), infection in either H9 or CEMx174 cells viral cDNA contained numerous G to A mutations; no such differences were observed in CEM-SS cells. This pattern is consistent with mutations generated by APOBEC3G in the absence of Vif. Therefore, efficient splicing of SIV vif mRNA is tightly controlled and requires the SA1 site.
Collapse
Affiliation(s)
- Joseph G Victoria
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4800, USA
| | | |
Collapse
|
21
|
Abstract
The persistence of human immunodeficiency virus type-1 (HIV-1) has long been attributed to its high mutation rate and the capacity of its resulting heterogeneous virus populations to evade host immune responses and antiviral drugs. However, this view is incomplete because it does not explain how the virus persists in light of the adverse effects mutations in the viral genome and variations in host functions can potentially have on viral functions and growth. Here we show that the resilience of HIV-1 can be credited, at least in part, to a robust response to perturbations that emerges as an intrinsic property of its intracellular development. Specifically, robustness in HIV-1 arises through the coupling of two feedback loops: a Rev-mediated negative feedback and a Tat-mediated positive feedback. By employing a mechanistic kinetic model for its growth we found that HIV-1 buffers the effects of many potentially detrimental variations in essential viral and cellular functions, including the binding of Rev to mRNA; the level of rev mRNA in the pool of fully spliced mRNA; the splicing of mRNA; the Rev-mediated nuclear export of incompletely-spliced mRNAs; and the nuclear import of Tat and Rev. The virus did not, however, perform robustly to perturbations in all functions. Notably, HIV-1 tended to amplify rather than buffer adverse effects of variations in the interaction of Tat with viral mRNA. This result shows how targeting therapeutics against molecular components of the viral positive-feedback loop open new possibilities and potential in the effective treatment of HIV-1.
Collapse
Affiliation(s)
- Hwijin Kim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706-1607, USA
| | | |
Collapse
|
22
|
Dave RS, Pomerantz RJ. Antiviral effects of human immunodeficiency virus type 1-specific small interfering RNAs against targets conserved in select neurotropic viral strains. J Virol 2004; 78:13687-96. [PMID: 15564478 PMCID: PMC533941 DOI: 10.1128/jvi.78.24.13687-13696.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA interference, a natural biological phenomenon mediated by small interfering RNAs (siRNAs), has been demonstrated in recent studies to be an effective strategy against human immunodeficiency virus type 1 (HIV-1). In the present study, we used 21-bp chemically synthesized siRNA duplexes whose sequences were derived from the gp41 gene, nef, tat, and rev regions of viral RNA. These sequences are conserved in select neurotropic strains of HIV-1 (JR-FL, JR-CSF, and YU-2). The designed siRNAs exerted a potent antiviral effect on these HIV-1 strains. The antiviral effect was mediated at the RNA level (as observed by the down-regulation of the HIV-1-specific spliced transcript generating a 1.2-kbp reverse transcription [RT]-PCR product) as well as viral assembly on the cell membrane. Spliced transcripts (apart from the most abundant transcript generating a 1.2-kbp RT-PCR product) arising from an unspliced precursor likely contributed, albeit to a lesser extent, to the antiviral effect. The resultant progeny viruses had infectivities similar to that of input virus. We therefore conclude that these siRNAs interfere with the processing of the unspliced transcripts for the gp41 gene, tat, rev, and nef, eventually affecting viral assembly and leading to the overall inhibition of viral production. Apart from using the gp41 gene as a target, the conservation of each of these targets in the above-mentioned viral strains, as well as several primary isolates, would enable these siRNAs to be used as potent antiviral tools for investigations with cells derived from the central nervous system in order to evaluate their therapeutic potential and assess their utility in inhibiting HIV-1 neuropathogenesis and neuroinvasion.
Collapse
MESH Headings
- Antiviral Agents/pharmacology
- Base Sequence
- Brain/virology
- Cells, Cultured
- Cerebrospinal Fluid/virology
- Gene Products, nef/chemistry
- Gene Products, nef/genetics
- Gene Products, nef/metabolism
- Gene Products, rev/chemistry
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Gene Products, tat/chemistry
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- HIV Envelope Protein gp41/chemistry
- HIV Envelope Protein gp41/genetics
- HIV Envelope Protein gp41/metabolism
- HIV-1/chemistry
- HIV-1/genetics
- HIV-1/metabolism
- HeLa Cells
- Humans
- Macrophages/virology
- Monocytes/virology
- RNA Interference
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- nef Gene Products, Human Immunodeficiency Virus
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Rajnish S Dave
- Dorrance H. Hamilton Laboratories, Center for Human Virology and Biodefense, Division of Infectious Diseases and Environmental Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St., Suite 329, Philadelphia, PA 19107, USA
| | | |
Collapse
|
23
|
Caputi M, Freund M, Kammler S, Asang C, Schaal H. A bidirectional SF2/ASF- and SRp40-dependent splicing enhancer regulates human immunodeficiency virus type 1 rev, env, vpu, and nef gene expression. J Virol 2004; 78:6517-26. [PMID: 15163745 PMCID: PMC416506 DOI: 10.1128/jvi.78.12.6517-6526.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrated human immunodeficiency virus type 1 (HIV-1) genome is transcribed in a single pre-mRNA that is alternatively spliced into more than 40 mRNAs. We characterized a novel bidirectional exonic splicing enhancer (ESE) that regulates the expression of the HIV-1 env, vpu, rev, and nef mRNAs. The ESE is localized downstream of the vpu-, env-, and nef-specific 3' splice site no. 5. SF2/ASF and SRp40 activate the ESE and are required for efficient 3' splice site usage and binding of the U1 snRNP to the downstream 5' splice site no. 4. U1 snRNP binding to the 5' splice site no. 4 is required for splicing of the rev and nef mRNAs and to increase expression of the partially spliced env mRNA. Finally, our results indicate that this ESE is necessary for the recruitment of the U1 snRNP to the 5' splice site no. 4, even when the 5' splice site and the U1 snRNA have been mutated to obtain a perfect complementary match. The ESE characterized here is highly conserved in most viral subtypes.
Collapse
MESH Headings
- Base Sequence
- Enhancer Elements, Genetic
- Exons
- Gene Expression Regulation, Viral
- Gene Products, env/genetics
- Gene Products, env/metabolism
- Gene Products, nef/genetics
- Gene Products, nef/metabolism
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- HIV-1/classification
- HIV-1/genetics
- HIV-1/physiology
- HeLa Cells
- Human Immunodeficiency Virus Proteins
- Humans
- Molecular Sequence Data
- Nuclear Proteins/metabolism
- Phosphoproteins/metabolism
- RNA Splicing
- RNA, Messenger/biosynthesis
- RNA, Viral/biosynthesis
- RNA-Binding Proteins
- Ribonucleoprotein, U1 Small Nuclear/metabolism
- Serine-Arginine Splicing Factors
- Spliceosomes
- Viral Regulatory and Accessory Proteins/genetics
- Viral Regulatory and Accessory Proteins/metabolism
- nef Gene Products, Human Immunodeficiency Virus
- rev Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Massimo Caputi
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
24
|
Domsic JK, Wang Y, Mayeda A, Krainer AR, Stoltzfus CM. Human immunodeficiency virus type 1 hnRNP A/B-dependent exonic splicing silencer ESSV antagonizes binding of U2AF65 to viral polypyrimidine tracts. Mol Cell Biol 2003; 23:8762-72. [PMID: 14612416 PMCID: PMC262674 DOI: 10.1128/mcb.23.23.8762-8772.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) exonic splicing silencers (ESSs) inhibit production of certain spliced viral RNAs by repressing alternative splicing of the viral precursor RNA. Several HIV-1 ESSs interfere with spliceosome assembly by binding cellular hnRNP A/B proteins. Here, we have further characterized the mechanism of splicing repression using a representative HIV-1 hnRNP A/B-dependent ESS, ESSV, which regulates splicing at the vpr 3' splice site. We show that hnRNP A/B proteins bound to ESSV are necessary to inhibit E complex assembly by competing with the binding of U2AF65 to the polypyrimidine tracts of repressed 3' splice sites. We further show evidence suggesting that U1 snRNP binds the 5' splice site despite an almost complete block of splicing by ESSV. Possible splicing-independent functions of U1 snRNP-5' splice site interactions during virus replication are discussed.
Collapse
Affiliation(s)
- Jeffrey K Domsic
- Program in Molecular Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
25
|
Appay V, Hansasuta P, Sutton J, Schrier RD, Wong JK, Furtado M, Havlir DV, Wolinsky SM, McMichael AJ, Richman DD, Rowland-Jones SL, Spina CA. Persistent HIV-1-specific cellular responses despite prolonged therapeutic viral suppression. AIDS 2002; 16:161-70. [PMID: 11807299 DOI: 10.1097/00002030-200201250-00004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
DESIGN Antiretroviral therapy (ART) currently represents the best way to avert the lethal consequences of chronic persistent HIV-1 infection. It leads to significant reductions of plasma viremia, often to undetectable levels, but it can also be linked with the reduction and disappearance of detectable HIV-specific CD8 T-cell responses. RESULTS Here we describe a group of patients in whom ongoing replication of HIV, particularly transcription of Nef mRNA species, was detected despite prolonged and clinically successful antiretroviral treatment. Modest, but significant, numbers of HIV-specific CD8 T cells and CD4 T-cell responses were found in these subjects, with the strongest responses directed towards Nef epitopes. Detailed phenotypic analysis of the HIV-specific CD8 cells demonstrated low perforin levels and persistent expression of CD27, a phenotype associated with incomplete differentiation of cytotoxic T lymphocytes (CTL). CONCLUSION This immature CTL phenotype has been described previously in association with chronic HIV disease, but its continued persistence is surprising in the setting of prolonged viral suppression on therapy and the presence of HIV-specific CD4 cell activity.
Collapse
Affiliation(s)
- Victor Appay
- Medical Research Council Human Immunology Unit, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bilodeau PS, Domsic JK, Mayeda A, Krainer AR, Stoltzfus CM. RNA splicing at human immunodeficiency virus type 1 3' splice site A2 is regulated by binding of hnRNP A/B proteins to an exonic splicing silencer element. J Virol 2001; 75:8487-97. [PMID: 11507194 PMCID: PMC115094 DOI: 10.1128/jvi.75.18.8487-8497.2001] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The synthesis of human immunodeficiency virus type 1 (HIV-1) mRNAs is a complex process by which more than 30 different mRNA species are produced by alternative splicing of a single primary RNA transcript. HIV-1 splice sites are used with significantly different efficiencies, resulting in different levels of mRNA species in infected cells. Splicing of Tat mRNA, which is present at relatively low levels in infected cells, is repressed by the presence of exonic splicing silencers (ESS) within the two tat coding exons (ESS2 and ESS3). These ESS elements contain the consensus sequence PyUAG. Here we show that the efficiency of splicing at 3' splice site A2, which is used to generate Vpr mRNA, is also regulated by the presence of an ESS (ESSV), which has sequence homology to ESS2 and ESS3. Mutagenesis of the three PyUAG motifs within ESSV increases splicing at splice site A2, resulting in increased Vpr mRNA levels and reduced skipping of the noncoding exon flanked by A2 and D3. The increase in Vpr mRNA levels and the reduced skipping also occur when splice site D3 is mutated toward the consensus sequence. By in vitro splicing assays, we show that ESSV represses splicing when placed downstream of a heterologous splice site. A1, A1(B), A2, and B1 hnRNPs preferentially bind to ESSV RNA compared to ESSV mutant RNA. Each of these proteins, when added back to HeLa cell nuclear extracts depleted of ESSV-binding factors, is able to restore splicing repression. The results suggest that coordinate repression of HIV-1 RNA splicing is mediated by members of the hnRNP A/B protein family.
Collapse
Affiliation(s)
- P S Bilodeau
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
27
|
Krummheuer J, Lenz C, Kammler S, Scheid A, Schaal H. Influence of the small leader exons 2 and 3 on human immunodeficiency virus type 1 gene expression. Virology 2001; 286:276-89. [PMID: 11485396 DOI: 10.1006/viro.2001.0974] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) uses an elaborate alternative splicing pattern for the generation of both the 1.8-kb as well as the 4-kb classes of mRNA. An additional diversity of transcripts in both classes is created by the optional inclusion of the small exons 2 and 3 in the leader sequence. To analyze a possible influence of these leader exons on HIV-1 gene expression, several series of expression vectors with different leaders were constructed, expressing either Rev and Env or a heterologous coding sequence, i.e., the chloramphenicol acetyl transferase (CAT) ORF. Transfection experiments of HeLa-T4(+) cells revealed for all series of constructs that mRNA as well as protein expression was stimulated by the presence of exon 2 and reduced by exon 3. The function of the leader exons 2 and 3 is neither dependent on the regulatory proteins Tat or Rev nor on viral coding sequences. Neither transcription rates nor stability of polyadenylated RNAs were found to be responsible for the different levels of steady-state mRNA. When either exon 2 or 3 was inserted into a heterologous intron, processing of the primary transcripts generated identical mRNA species while maintaining the differences in exon 2/3-dependent mRNA steady-state levels. These results may be explained by exon-specific nuclear RNA degradation rates, as also indicated by results from an in vitro degradation assay using a HeLa nuclear extract.
Collapse
MESH Headings
- Alternative Splicing
- Cell Line
- Cytoplasm/genetics
- Exons
- Gene Expression Regulation, Viral
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- Genetic Vectors
- HIV Long Terminal Repeat
- HIV-1/genetics
- HIV-1/metabolism
- HeLa Cells
- Humans
- Introns
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Nuclear
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Viral Proteins/genetics
- Viral Proteins/metabolism
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- J Krummheuer
- Institut für Medizinische Mikrobiologie und Virologie, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
28
|
Willard-Gallo KE, Furtado M, Burny A, Wolinsky SM. Down-modulation of TCR/CD3 surface complexes after HIV-1 infection is associated with differential expression of the viral regulatory genes. Eur J Immunol 2001; 31:969-79. [PMID: 11298321 DOI: 10.1002/1521-4141(200104)31:4<969::aid-immu969>3.0.co;2-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have investigated the mechanism(s) involved in progressive abrogation of CD3-gamma gene expression after HIV-1 or HIV-2 infection. A comparison of intracellular virus expression with T cell receptor surface density, revealed both high and low levels of viral p24 antigen in the TCR/CD3(hi), TCR/CD3(lo), and TCR/CD3(-) cells. Furthermore, in non-productively infected cells expressing the multiply spliced, virally encoded tat, rev, and nef regulatory gene transcripts, the same progressive loss of surface TCR/CD3 complexes was observed. We treated HIV-1-infected cells with antisense (AS) phosphorothioate oligodeoxynucleotides (P-OdN) targeted to the viral regulatory genes. All of the HIV-1 sequence-specific AS-P-OdN's inhibited intracellular p24 antigen expression in a time- and dose-dependent manner; although, blocking p24 expression alone was not sufficient to modulate TCR/CD3 surface density. Only Tat-AS and Nef-AS were able to delay TCR/CD3 down-modulation on receptor-positive cells or drive receptor up-regulation on receptor-negative cells. In contrast, Rev-AS accelerated TCR/CD3 loss on receptor-positive cells. RT-PCR revealed that Tat-AS and Nef-AS reduce the level of tat, nef, and rev transcripts, while Rev-AS increases the level of tat and nef transcripts in infected cells. Thus, when intracellular conditions favor expression of tat and/or nef in the absence of rev, CD3-gamma gene transcripts and TCR/CD3 surface density are down-modulated.
Collapse
MESH Headings
- CD3 Complex/metabolism
- Cell Line
- Dose-Response Relationship, Drug
- Down-Regulation
- Flow Cytometry
- Gene Expression Regulation, Viral
- Gene Products, nef/genetics
- Gene Products, nef/metabolism
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- HIV Core Protein p24/metabolism
- HIV-1/genetics
- HIV-1/growth & development
- HIV-1/physiology
- Humans
- Oligonucleotides, Antisense/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
- Time Factors
- nef Gene Products, Human Immunodeficiency Virus
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- K E Willard-Gallo
- Laboratory of Experimental Hematology, University of Brussels (ULB), Brussels, Belgium.
| | | | | | | |
Collapse
|
29
|
Greenway AL, Holloway G, McPhee DA. HIV-1 Nef: a critical factor in viral-induced pathogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:299-343. [PMID: 10987095 DOI: 10.1016/s1054-3589(00)48010-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- A L Greenway
- AIDS Cellular Biology Unit, Macfarlane Burnet Centre for Medical Research, Fairfield, Victoria, Australia
| | | | | |
Collapse
|
30
|
Brodie SJ. Nonlymphoid reservoirs of HIV replication in children with chronic‐progressive disease. J Leukoc Biol 2000. [DOI: 10.1189/jlb.68.3.351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Scott J. Brodie
- University of Washington School of Medicine, Virology Division, Retrovirology Laboratory, Seattle, Washington
| |
Collapse
|
31
|
Brodie SJ, Patterson BK, Lewinsohn DA, Diem K, Spach D, Greenberg PD, Riddell SR, Corey L. HIV-specific cytotoxic T lymphocytes traffic to lymph nodes and localize at sites of HIV replication and cell death. J Clin Invest 2000; 105:1407-17. [PMID: 10811848 PMCID: PMC315465 DOI: 10.1172/jci8707] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/1999] [Accepted: 04/04/2000] [Indexed: 11/17/2022] Open
Abstract
We have tracked the in vivo migration and have identified in vivo correlates of cytotoxic T-lymphocyte (CTL) activity in HIV-seropositive subjects infused with autologous gene-marked CD8(+) HIV-specific CTL. The number of circulating gene-marked CTL ranged from 1.6 to 3.5% shortly after infusion to less than 0.5% 2 weeks later. Gene-marked CTL were present in the lymph node at 4.5- to 11-fold excess and colocalized within parafollicular regions of the lymph node adjacent to cells expressing HIV tat fusion transcripts, a correlate of virus replication. The CTL clones expressed the CCR5 receptor and localized among HIV-infected cells expressing the ligands MIP-1alpha and MIP-1beta, CC-chemokines produced at sites of virus replication. Aggregates of apoptotic cells and cells expressing granzyme-B localized within these same sites. In contrast, lymph node sections from untreated HIV-seropositive subjects, all with significant viral burden (> 50,000 HIV RNA copies/mL plasma), showed no CC-chemokine expression and exhibited only sporadic and randomly distributed cells expressing granzymes and/or apoptotic cells. These studies show that the infused CTL specifically migrate to sites of HIV replication and retain their antigen-specific cytolytic potential. Moreover, these studies provide a methodology that will facilitate studies of both the magnitude and functional phenotype of Ag-specific CD8(+) T cells in vivo.
Collapse
Affiliation(s)
- S J Brodie
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Panther LA, Coombs RW, Aung SA, dela Rosa C, Gretch D, Corey L. Unintegrated HIV-1 circular 2-LTR proviral DNA as a marker of recently infected cells: relative effect of recombinant CD4, zidovudine, and saquinavir in vitro. J Med Virol 1999; 58:165-73. [PMID: 10335865 DOI: 10.1002/(sici)1096-9071(199906)58:2<165::aid-jmv11>3.0.co;2-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Unintegrated HIV-1 proviral DNA is one of the earliest detectable forms of HIV-1, and the influence of an antiretroviral drug on its appearance may reflect the efficacy of that agent in preventing infection of new cells. We characterized the dynamics of HIV-1 p24 (p24) antigen production, HIV-1 gag DNA, tandem long-terminal-repeat circular unintegrated proviral (2-LTR) HIV-1 DNA, HIV-1 tat mRNA, and cell viability in the presence of three antiretroviral agents: recombinant soluble CD4 (rsCD4), zidovudine, and saquinavir. Interference with HIV-1 entry by rsCD4 decreased p24 antigen levels modestly, decreased HIV-1 gag by twofold, and 2-LTR was detectable at the end of the culture period. Inhibition of reverse transcription by zidovudine decreased p24 antigen levels modestly, decreased HIV-1 gag by 19-fold, and inhibited detection of 2-LTR HIV-1 DNA. The protease inhibitor, saquinavir, had the greatest overall effect, with the lowest levels of p24 antigen and HIV-1 gag, and inhibition of 2-LTR. There was no detection of tat mRNA in the saquinavir-treated cultures. In addition, cell viability was significantly higher in cultures treated with saquinavir. In these experiments, 2-LTR HIV-1 DNA was indicative of the relative inhibitory effects of three antiretroviral agents acting at different steps of the HIV-1 replication cycle. We demonstrated in vitro that 2-LTR HIV-1 DNA was a useful indicator of an antiretroviral drug in preventing new cell infection and could be utilized as a dynamic marker of drug efficacy in HIV-1-infected patients.
Collapse
Affiliation(s)
- L A Panther
- Department of Laboratory Medicine, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
33
|
Séguin B, Staffa A, Cochrane A. Control of human immunodeficiency virus type 1 RNA metabolism: role of splice sites and intron sequences in unspliced viral RNA subcellular distribution. J Virol 1998; 72:9503-13. [PMID: 9811683 PMCID: PMC110448 DOI: 10.1128/jvi.72.12.9503-9513.1998] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the course of examining the various factors which affect the metabolism of human immunodeficiency virus type 1 (HIV-1) RNA, we examined the role of intron sequences and splice sites in determining the subcellular distribution of the RNA. Using in situ hybridization, we demonstrated that in the absence of Rev, unspliced RNA generated with an HIV-1 env expression construct displayed discrete localization in the nucleus, coincident with the location of the gene and not associated with SC35-containing nuclear speckles. Expression of Rev resulted in a disperse signal for the unspliced RNA throughout both the nucleus and the cytoplasm. Subsequent fractionation of the nucleus revealed that the majority of unspliced viral RNA within the nucleus is associated with the nuclear matrix and that upon expression of Rev, a small proportion of the unspliced RNA is found within the nucleoplasm. Mutations which altered splice site utilization did not alter the sequestration of unspliced RNA into discrete nuclear regions. In contrast, a 2.2-kb deletion of intron sequence resulted in a shift from discrete regions within the nucleus to a disperse signal throughout the cell, indicating that intron sequences, and not just splice sites, are required for the observed nuclear sequestration of unspliced viral RNA.
Collapse
Affiliation(s)
- B Séguin
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, M5S 1 A8, Canada
| | | | | |
Collapse
|
34
|
Lindemann D, Rethwilm A. Characterization of a human foamy virus 170-kilodalton Env-Bet fusion protein generated by alternative splicing. J Virol 1998; 72:4088-94. [PMID: 9557698 PMCID: PMC109638 DOI: 10.1128/jvi.72.5.4088-4094.1998] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Primate foamy viruses (FVs) express, in addition to the 130-kDa envelope protein, a 170-kDa glycoprotein, which reacts with antisera specific for the envelope and Bel proteins. We determined the exact nature of this 170-kDa glycoprotein by using the molecularly cloned human FV (HFV). Radioimmunoprecipitation analysis of 293T cells transfected with appropriate expression constructs by using antisera specific for the HFV Env, Bel1, and Bel2 proteins, as well as reverse transcription-PCR analysis of HFV-infected cells, demonstrated that this protein is an Env-Bet fusion protein that is secreted into the supernatant. However, it is only loosely associated, or not associated, with viral particles. gp170 is generated by an alternatively spliced Env mRNA using a splice donor and splice acceptor pair localized within the env open reading frame (ORF), which is normally used to generate Bell and Bet transcripts derived from the internal promoter within the env ORF. gp170 is expressed at a level 30 to 50% of the Env precursor gp130. However, it alone does not confer infectivity to HFV particles, because capsids derived from proviruses expressing only the gp170 were not released into the supernatant. In contrast, viruses derived from proviral clones deficient in gp170 expression showed similar in vitro infectivity and replication kinetics to wild-type virus. Furthermore, both types of viruses were inactivated to a similar extent by neutralizing sera, indicating that shedding of gp170 probably does not affect the humoral immune response in the infected host.
Collapse
Affiliation(s)
- D Lindemann
- Institut für Virologie und Immunbiologie, Universität Würzburg, Germany.
| | | |
Collapse
|
35
|
Bibollet-Ruche F, Cuny G, Pourrut X, Brengues C, Galat-Luong A, Galat G, Delaporte E. Multiply spliced env and nef transcripts of simian immunodeficiency virus from West African green monkey (SIVagm-sab). AIDS Res Hum Retroviruses 1998; 14:515-9. [PMID: 9566554 DOI: 10.1089/aid.1998.14.515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have characterized the spliced transcripts of nef and envelope genes of SIVagm from African green monkey of the sabaeus subspecies. Most of the transcripts we have studied, representing the most abundant mRNA species in our assay, have undergone a specific splicing event that removes a part of the trans-activation response (TAR) element. This region is predicted to form a stable secondary structure (four stem-loop elements in SIVagm-sab) that affects the trans-activation of viral gene expression by Tat and the translation of the viral transcripts. Contrary to what is observed in other viruses, in which this R-region splicing has also been described (e.g., HIV-2), the LTR splicing in SIVagm-sab removes part of the first stem-loop and the following ones, nearly completely disrupting the TAR element secondary structure. Because LTR splicing seems to be a conserved feature among the strains we have characterized, these results suggest that this phenomenon could have important consequences for virus replication, pathogenicity, and latency.
Collapse
|
36
|
Quackenbush SL, Holzschu DL, Bowser PR, Casey JW. Transcriptional analysis of walleye dermal sarcoma virus (WDSV). Virology 1997; 237:107-12. [PMID: 9344912 DOI: 10.1006/viro.1997.8755] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Walleye dermal sarcoma virus (WDSV) is a complex retrovirus associated with dermal sarcomas of walleye that develop and regress on a seasonal basis. WDSV contains, in addition to gag, pol, and env, three open reading frames (ORFs) designated ORF A, ORF B, and ORF C. The polymerase chain reaction technique was used to amplify and clone cDNAs representing subgenomic viral mRNAs isolated from developing (fall) and regressing (spring) tumors. Nine different singly or multiply spliced viral transcripts were identified and all were found to utilize a common 5' leader sequence. This leader sequence is spliced to the pol/env junction or downstream of env to generate singly spliced transcripts. Multiply spliced transcripts contain the 5' leader, the pol/env junction, and sequences derived from the 3' end of the genome. One multiply spliced transcript was isolated with the potential to encode the full-length ORF A protein. In addition, WDSV produced mRNAs that utilize alternative splice acceptor sites which would allow synthesis of five variant forms of the ORF A protein. In contrast, the ORF B protein is postulated to arise from a singly spliced transcript with the potential to encode the entire open reading frame. Spliced subgenomic transcripts representing ORF C mRNAs were not identified, suggesting that ORF C may be encoded from the full-length viral genomic transcript. We estimate that at least a 100-fold lower amount of the accessory/regulatory subgenomic transcripts exists in developing vs regressing tumors. These results demonstrate that WDSV undergoes an elaborate pattern of mRNA splicing similar to that of other complex retroviruses.
Collapse
Affiliation(s)
- S L Quackenbush
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
37
|
Damier L, Domenjoud L, Branlant C. The D1-A2 and D2-A2 pairs of splice sites from human immunodeficiency virus type 1 are highly efficient in vitro, in spite of an unusual branch site. Biochem Biophys Res Commun 1997; 237:182-7. [PMID: 9266854 DOI: 10.1006/bbrc.1997.7091] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using in vitro splicing assays with HeLa cell nuclear extracts, we showed that the HIV-1 pairs of splice sites D1-A2 and D2-A2 are efficiently used in vitro, as compared to the control D1-A2 pair of sites from the E3 transcription unit of human adenovirus-2. The strong efficiency of the two HIV-1 pairs of sites is surprising, as we also showed by primer extension analysis that the branch-site sequence used at the HIV-1 acceptor site A2 is UAGCAGA, with a dominant utilization of the ultimate G as the branched residue. No significant increase of the splicing efficiency was observed upon replacement of the wild-type branch-site sequence by a canonical sequence, in spite of the utilization of an A residue as the branched nucleotide. Results are discussed taking into account the present knowledge on branch-site selection.
Collapse
Affiliation(s)
- L Damier
- Laboratoire d'Enzymologie et de Genie Génétique, URA CNRS 457, Université Henri Poincaré Nancy 1, Vandoeuvre les Nancy, France
| | | | | |
Collapse
|
38
|
Berkhout B, van Wamel JL. Identification of a novel splice acceptor in the HIV-1 genome: independent expression of the cytoplasmic tail of the envelope protein. Arch Virol 1996; 141:839-55. [PMID: 8678830 DOI: 10.1007/bf01718159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Multiple splicing sites exist in the RNA genome of the human immunodeficiency virus type 1 (HIV-1). In a screen for subgenomic forms of the HIV-1 genome that could be transferred to fresh cells by virus infection, we identified a novel spliced variant of HIV-1 RNA that uses a hitherto unknown splice acceptor site within the envelope (Env) gene. We demonstrate that this splice acceptor is infrequently used in HIV-infected T cells. Interestingly, an AUG initiator codon is created at this splice junction which has the potential to direct the synthesis of the cytoplasmic tail of the Env gp41 protein. Transient transfection experiments with the new cDNA cloned in an expression vector demonstrated efficient utilization of this start codon and the C-terminus of the Env open reading frame. Independent expression of the 152 amino acid long, intracellular Env domain provides novel regulatory mechanisms for modulating viral infectivity and perhaps pathogenicity.
Collapse
Affiliation(s)
- B Berkhout
- Department of Virology, University of Amsterdam, The Netherlands
| | | |
Collapse
|
39
|
Furtado MR, Kingsley LA, Wolinsky SM. Changes in the viral mRNA expression pattern correlate with a rapid rate of CD4+ T-cell number decline in human immunodeficiency virus type 1-infected individuals. J Virol 1995; 69:2092-2100. [PMID: 7884855 PMCID: PMC188875 DOI: 10.1128/jvi.69.4.2092-2100.1995] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The rate of disease progression varies considerably among human immunodeficiency virus type 1 (HIV-1)-infected individuals. Several cross-sectional studies have shown an association between the stage of HIV-1 disease and the viral burden or the relative levels of viral gene expression. To study the extent of HIV-1 transcription and replication and its correlations with disease progression, we quantified serial, longitudinal samples of blood cells from 10 HIV-1-infected individuals with markedly different rates of CD4+ T-cell number decline following seroconversion. After normalization for the input nucleic acid content, multiply spliced viral mRNA and unspliced viral RNA were quantified by competitive reverse transcription-PCR using oligonucleotide primers which flank the major tat/rev/nef splice junction and span an internal region of the gag open reading frame, respectively. Coamplification of internal cRNA template controls was used to normalize for variation in the efficiency of reverse transcription and in vitro enzymatic amplification. Similarly, proviral DNA was also quantified by competitive PCR performed within the linear range of amplification. Viral RNA was detected in the blood cells of each individual from all time points regardless of the rate of CD4+ T-cell decline. Unspliced genomic viral RNA rapidly increased in the blood cells from HIV-1-infected individuals who had a precipitously declining CD4+ T-cell number. In contrast, both unspliced and multiply spliced viral mRNAs remained relatively stable in the blood cells from HIV-1-infected individuals who have had a relatively benign clinical course. These data demonstrate that the extent of viral transcription and replication correlates with the rate of CD4+ T-cell number decline and that quantifying intracellular viral RNA is of potential prognostic value.
Collapse
Affiliation(s)
- M R Furtado
- Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611
| | | | | |
Collapse
|
40
|
Mary C, Telles JN, Cheynet V, Oriol G, Mallet F, Mandrand B, Verrier B. Quantitative and discriminative detection of individual HIV-1 mRNA subspecies by an RNAse mapping assay. J Virol Methods 1994; 49:9-23. [PMID: 7829596 DOI: 10.1016/0166-0934(94)90051-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
HIV-1 genes are expressed through the complex splicing of a single mRNA precursor leading to three mRNA classes: unspliced, singly-spliced and multiply-spliced. Each class may include several mRNA species specifically encoding one or two HIV-1 proteins. Northern blotting and RT-PCR are the techniques currently used to analyse HIV-1 mRNA expression. Northern blotting allows quantitative detection of these three classes of viral RNA but does not discriminate between individual RNA species. RT-PCR allows discrimination between different species but does not provide a quantitative analysis. Here, we describe an application of an RNAse mapping assay which gives both quantitative and discriminative HIV-1 RNA detection. A radiolabeled probe overlapping the major splicing sites of HIV-1 used for the generation of HIV-1 mRNA subspecies was synthesized. This probe protects differential sizes of these species, allowing discrimination between them. We investigated the RNA expression pattern in high titer HIV-1 producing cells. The HIV-1-specific probe allowed the detection of multiply-spliced vpr, rev and nef mRNAs, singly-spliced env mRNA and unspliced genomic RNA. With its discriminative and quantitative properties, this application is particularly convenient for the investigation of HIV-1 mRNA expression during the course of HIV-1 infections.
Collapse
Affiliation(s)
- C Mary
- Unité mixte CNRS/Biomérieux, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Purcell DF, Martin MA. Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol 1993; 67:6365-78. [PMID: 8411338 PMCID: PMC238071 DOI: 10.1128/jvi.67.11.6365-6378.1993] [Citation(s) in RCA: 392] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Multiple RNA splicing sites exist within human immunodeficiency virus type 1 (HIV-1) genomic RNA, and these sites enable the synthesis of many mRNAs for each of several viral proteins. We evaluated the biological significance of the alternatively spliced mRNA species during productive HIV-1 infections of peripheral blood lymphocytes and human T-cell lines to determine the potential role of alternative RNA splicing in the regulation of HIV-1 replication and infection. First, we used a semiquantitative polymerase chain reaction of cDNAs that were radiolabeled for gel analysis to determine the relative abundance of the diverse array of alternatively spliced HIV-1 mRNAs. The predominant rev, tat, vpr, and env RNAs contained a minimum of noncoding sequence, but the predominant nef mRNAs were incompletely spliced and invariably included noncoding exons. Second, the effect of altered RNA processing was measured following mutagenesis of the major 5' splice donor and several cryptic, constitutive, and competing 3' splice acceptor motifs of HIV-1NL4-3. Mutations that ablated constitutive splice sites led to the activation of new cryptic sites; some of these preserved biological function. Mutations that ablated competing splice acceptor sites caused marked alterations in the pool of virus-derived mRNAs and, in some instances, in virus infectivity and/or the profile of virus proteins. The redundant RNA splicing signals in the HIV-1 genome and alternatively spliced mRNAs provides a mechanism for regulating the relative proportions of HIV-1 proteins and, in some cases, viral infectivity.
Collapse
Affiliation(s)
- D F Purcell
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|
42
|
Patterson BK, Till M, Otto P, Goolsby C, Furtado MR, McBride LJ, Wolinsky SM. Detection of HIV-1 DNA and messenger RNA in individual cells by PCR-driven in situ hybridization and flow cytometry. Science 1993; 260:976-9. [PMID: 8493534 DOI: 10.1126/science.8493534] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human immunodeficiency virus type-1 (HIV-1) DNA and messenger RNA sequences in both cell lines and blood obtained directly from HIV-1-infected patients were amplified by polymerase chain reaction and hybridized to fluorescein-labeled probes in situ, and the individually labeled cells were analyzed by flow cytometry. After flow cytometric analysis, heterogeneous cell populations were reproducibly resolved into HIV-1-positive and -negative distributions. Fluorescence microscopy showed that the cellular morphology was preserved and intracellular localization of amplified product DNA was maintained. Retention of nonspecific probe was not observed. Analysis of proviral DNA and viral messenger RNA in cells in the blood of HIV-1-infected patients showed that the HIV-1 genome persists in a large reservoir of latently infected cells. With the use of this technique it is now possible to detect single-copy DNA or low-abundance messenger RNA rapidly and reproducibly in a minor subpopulation of cells in suspension at single-cell resolution and to sort those cells for further characterization.
Collapse
Affiliation(s)
- B K Patterson
- Department of Pathology, Northwestern University Medical School, Chicago, IL 60611
| | | | | | | | | | | | | |
Collapse
|
43
|
Beisel CE, Edwards JF, Dunn LL, Rice NR. Analysis of multiple mRNAs from pathogenic equine infectious anemia virus (EIAV) in an acutely infected horse reveals a novel protein, Ttm, derived from the carboxy terminus of the EIAV transmembrane protein. J Virol 1993; 67:832-42. [PMID: 8419648 PMCID: PMC237437 DOI: 10.1128/jvi.67.2.832-842.1993] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Transcription of pathogenic equine infectious anemia virus (EIAV) in an acutely infected horse was examined by using the polymerase chain reaction and nucleotide sequencing. Four spliced transcripts were identified in liver tissue, in contrast to the multiplicity of alternatively spliced messages reported for in vitro-propagated human immunodeficiency virus, simian immunodeficiency virus, and, to a lesser extent, EIAV. Nucleotide sequence analysis demonstrated that three of these mRNAs encode known viral proteins: the envelope precursor, the product of the S2 open reading frame, and the regulatory proteins Tat and Rev. The fourth transcript encodes a novel Tat-TM fusion protein, Ttm. Ttm is a 27-kDa protein translated from the putative tat CTG initiation codon and containing the carboxy-terminal portion of TM immediately downstream from the membrane-spanning domain. p27ttm is expressed in EIAV-infected canine cells and was recognized by peptide antisera against both Tat and TM. Cells transfected with ttm cDNA also expressed p27ttm, which appeared to be localized to the endoplasmic reticulum or Golgi apparatus by indirect immunofluorescence. The carboxy terminus of lentiviral TM proteins has previously been shown to influence viral infectivity, growth kinetics, and cytopathology, suggesting that Ttm plays an important role in the EIAV life cycle.
Collapse
Affiliation(s)
- C E Beisel
- Laboratory of Molecular Virology and Carcinogenesis, NCI-Frederick Cancer Research and Development Center, Maryland 21702
| | | | | | | |
Collapse
|
44
|
Alexandersen S, Carpenter S, Christensen J, Storgaard T, Viuff B, Wannemuehler Y, Belousov J, Roth JA. Identification of alternatively spliced mRNAs encoding potential new regulatory proteins in cattle infected with bovine leukemia virus. J Virol 1993; 67:39-52. [PMID: 8380084 PMCID: PMC237335 DOI: 10.1128/jvi.67.1.39-52.1993] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The polymerase chain reaction was used to detect and characterize low-abundance bovine leukemia virus (BLV) mRNAs. In infected cattle we could detect spliced mRNA with a splice pattern consistent with a Tax/Rex mRNA, as well as at least four alternatively spliced RNAs. Two of the alternatively spliced mRNAs encoded hitherto unrecognized BLV proteins, designated RIII and GIV. The Tax/Rex and alternatively spliced mRNAs could be detected at their highest levels in BLV-infected cell cultures; the next highest levels were found in samples from calves experimentally infected at 6 weeks postinoculation. Alternatively spliced mRNAs were also expressed, albeit at lower levels, in naturally infected animals; they were detected by a nested polymerase chain reaction. Interestingly, the GIV mRNA was specifically detected in naturally infected cows with persistent lymphocytosis and in two of five calves at 6 months after experimental infection with BLV. Furthermore, the calf with the strongest signal for GIV had the highest lymphocyte counts. These data may suggest a correlation between expression of the GIV product and development of persistent lymphocytosis. Some of the donor and acceptor sites in the alternatively spliced mRNAs were highly unusual. The biological mechanisms and significance of such a choice of unexpected splice sites are currently unknown.
Collapse
Affiliation(s)
- S Alexandersen
- Department of Pharmacology and Pathobiology, Royal Veterinary and Agricultural University of Copenhagen, Frederiksberg, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Seshamma T, Bagasra O, Oakes JW, Pomerantz RJ. A quantitative reverse transcriptase-polymerase chain reaction for HIV-1-specific RNA species. J Virol Methods 1992; 40:331-45. [PMID: 1282131 DOI: 10.1016/0166-0934(92)90091-q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ability to evaluate the patterns and levels of human immunodeficiency virus type I (HIV-1)-specific RNA in latently and productively-infected cell lines, and primary human cells, is critical to the understanding of HIV-1 expression in cell cultures and possibly in vivo. We have developed a quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), utilizing in vitro transcribed RNA standards, to evaluate the copy number per cell and per microgram of total cellular RNA of multiply-spliced, unspliced and total HIV-1-specific RNA species. The latently-infected monocytic and T-lymphocyte cell lines, U1 and ACH-2 respectively, are shown to express between 10(4) to 10(6) copies of total HIV-1-specific RNA per cell, based on the state of cellular stimulation. A dramatic increase of unspliced HIV-1-specific RNA in both the U1 cell line and the ACH-2 cell line is demonstrated by this quantitative RT-PCR, 24 h after stimulation with phorbol esters. These data suggest that a single integrated HIV-1 provirus can rapidly express large quantities of HIV-1-specific RNA. Quantitative RT-PCR, for HIV-1-specific transcripts, should prove extremely useful in evaluating retroviral load and pathogenesis in cell cultures and in vivo.
Collapse
Affiliation(s)
- T Seshamma
- Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| | | | | | | |
Collapse
|
46
|
Göttlinger HG, Dorfman T, Cohen EA, Haseltine WA. The role of the tnv protein and tnv RNA splicing signals in replication of HIV-1 IIIB isolates. Virology 1992; 189:618-28. [PMID: 1641982 DOI: 10.1016/0042-6822(92)90585-d] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The requirement for tnv, a tat-env-rev fusion protein expressed by the IIIB strain of HIV-1, was tested. The expression of tnv was prevented by altering the 5' splice site that flanks the central coding exon of tnv. Mutants that carry such an altered 5' splice site replicate normally in an established T-cell line and in peripheral blood lymphocytes, demonstrating that tnv has no effect on virus replication. However, two mutants that carry an alteration in the 3' splice site of the same exon are replication defective. The 3' splice site mutations result in significant reduction in the expression of the 16-kDa tat protein and induce the expression of large amounts of a 19-kDa rev-related protein that initiates within the central coding exon of tnv. S1 nuclease analysis reveals that splicing to the central tnv exon occurs with substantially increased efficiency via the use of an alternate 3' splice site six nucleotides 3' from the mutated site. The effect of the 3' splice site mutations on viral protein expression and replication are fully reversed by a second site mutation that eliminates the alternate splice site.
Collapse
Affiliation(s)
- H G Göttlinger
- Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
47
|
Agy MB, Frumkin LR, Corey L, Coombs RW, Wolinsky SM, Koehler J, Morton WR, Katze MG. Infection of Macaca nemestrina by human immunodeficiency virus type-1. Science 1992; 257:103-6. [PMID: 1621083 DOI: 10.1126/science.1621083] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
After observations that Macaca nemestrina were exceptionally susceptible to simian immunodeficiency virus and human immunodeficiency virus type-2 (HIV-2), studies of HIV-1 replication were initiated. Several strains of HIV-1, including a recent patient isolate, replicated in vitro in peripheral blood mononuclear cells (PBMCs) and in CD4-positive M. nemestrina lymphocytes in a CD4-dependent fashion. Eight animals were subsequently inoculated with either cell-associated or cell-free suspensions of HIV-1. All animals had HIV-1 isolated by cocultivation, had HIV-1 DNA in their PBMCs as shown by polymerase chain reaction, and experienced sustained seroconversion to a broad spectrum of HIV-1 proteins. Macaca nemestrina is an animal model of HIV-1 infections that provides opportunities for evaluating the pathogenesis of acute HIV-1 replication and candidate vaccines and therapies.
Collapse
Affiliation(s)
- M B Agy
- Regional Primate Research Center, University of Washington, Seattle, WA 98195
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wolinsky SM, Wike CM, Korber BT, Hutto C, Parks WP, Rosenblum LL, Kunstman KJ, Furtado MR, Muñoz JL. Selective transmission of human immunodeficiency virus type-1 variants from mothers to infants. Science 1992; 255:1134-7. [PMID: 1546316 DOI: 10.1126/science.1546316] [Citation(s) in RCA: 441] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multiple human immunodeficiency virus type-1 sequences from the V3 and V4-V5 regions of the envelope gene were analyzed from three mother-infant pairs. The infants' viral sequences were less diverse than those of their mothers. In two pairs, a proviral form infrequently found in the mother predominated in her infant. A conserved N-linked glycosylation site within the V3 region, present in each mother's sequence set, was absent in all of the infants' sequence sets. These findings demonstrate that a minor subset of maternal virus is transmitted to the infant.
Collapse
Affiliation(s)
- S M Wolinsky
- Department of Medicine, Northwestern University Medical School, Chicago, IL 60611
| | | | | | | | | | | | | | | | | |
Collapse
|