1
|
Egawa N, Wang Q, Griffin HM, Murakami I, Jackson D, Mahmood R, Doorbar J. HPV16 and 18 genome amplification show different E4-dependence, with 16E4 enhancing E1 nuclear accumulation and replicative efficiency via its cell cycle arrest and kinase activation functions. PLoS Pathog 2017; 13:e1006282. [PMID: 28306742 PMCID: PMC5371391 DOI: 10.1371/journal.ppat.1006282] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/29/2017] [Accepted: 03/08/2017] [Indexed: 12/03/2022] Open
Abstract
To clarify E1^E4’s role during high-risk HPV infection, the E4 proteins of HPV16 and 18 were compared side by side using an isogenic keratinocyte differentiation model. While no effect on cell proliferation or viral genome copy number was observed during the early phase of either virus life cycle, time-course experiments showed that viral genome amplification and L1 expression were differently affected upon differentiation, with HPV16 showing a much clearer E4 dependency. Although E4 loss never completely abolished genome amplification, its more obvious contribution in HPV16 focused our efforts on 16E4. As previously suggested, in the context of the virus life cycle, 16E4s G2-arrest capability was found to contribute to both genome amplification success and L1 accumulation. Loss of 16E4 also lead to a reduced maintenance of ERK, JNK and p38MAPK activity throughout the genome amplifying cell layers, with 16E4 (but not 18E4) co-localizing precisely with activated cytoplasmic JNK in both wild type raft tissue, and HPV16-induced patient biopsy tissue. When 16E1 was co-expressed with E4, as occurs during genome amplification in vivo, the E1 replication helicase accumulated preferentially in the nucleus, and in transient replication assays, E4 stimulated viral genome amplification. Interestingly, a 16E1 mutant deficient in its regulatory phosphorylation sites no longer accumulated in the nucleus following E4 co-expression. E4-mediated stabilisation of 16E2 was also apparent, with E2 levels declining in organotypic raft culture when 16E4 was absent. These results suggest that 16E4-mediated enhancement of genome amplification involves its cell cycle inhibition and cellular kinase activation functions, with E4 modifying the activity and function of viral replication proteins including E1. These activities of 16E4, and the different kinase patterns seen here with HPV18, 31 and 45, may reflect natural differences in the biology and tropisms of these viruses, as well as differences in E4 function. In HPV induced lesions, the most abundant protein expressed in the productive stage of viral life cycle is E1^E4 (E4), with its expression being coincident with viral genome amplification. To clarify the role of E4 in the high-risk HPV life cycle, we carried out a comparative analysis of E4 function in HPV16 and 18 using an isogenic keratinocyte cell-line background. Our results show that E1^E4 contributes to virus genome replication efficiency and life cycle completion rather than being essential. These effects were seen more dramatically with HPV16. The difference between HPV16 and HPV18 in our system suggests important tropism differences between these viruses. HPV16 E4’s contribution to the virus life cycle is mediated by several activities, including its G2 arrest function, as well as its role in activating members of the MAPK pathway, including ERK, p38, and most notably pJNK. These 16 E4 functions facilitated the nuclear localization of the E1 virus helicase and enhanced E1/E2 dependent viral genome amplification as well as stabilising E2. We suspect that the massive accumulation of E4 in the upper epithelial layers may however underlie a more critical role for E4 post-genome amplification.
Collapse
Affiliation(s)
- Nagayasu Egawa
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Qian Wang
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Heather M. Griffin
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Isao Murakami
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Deborah Jackson
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Radma Mahmood
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
- * E-mail:
| |
Collapse
|
2
|
Griffin H, Doorbar J. Detection of Papillomavirus Gene Expression Patterns in Tissue Sections. ACTA ACUST UNITED AC 2016; 41:14B.7.1-14B.7.20. [PMID: 27153382 DOI: 10.1002/cpmc.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular events during the papillomavirus life cycle can be mapped in infected tissue biopsies using antibodies to viral and cellular gene products, or by in situ hybridization approaches that detect viral DNA or viral transcription products. For proteins, ease of immunodetection depends on antibody specificity and antigen availability. Epitopes in formalin-fixed paraffin-embedded (FFPE) samples are often masked by crosslinking and must be exposed for immunodetection. RNA in FFPE material is often degraded, and such tissue must be handled carefully to optimize detection. Viral proteins and viral genomic DNA are both well preserved in routinely processed FFPE samples, with sensitive detection methodologies allowing the simultaneous detection of multiple markers. The combined visualization of nucleic acid and (viral) protein targets, when coupled with image analysis approaches that allow correlation with standard pathology diagnosis, have allowed us to understand the molecular changes required for normal HPV life-cycle organization as well as deregulation during cancer progression. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Heather Griffin
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Bergner S, Halec G, Schmitt M, Aubin F, Alonso A, Auvinen E. Individual and Complementary Effects of Human Papillomavirus Oncogenes on Epithelial Cell Proliferation and Differentiation. Cells Tissues Organs 2015; 201:97-108. [PMID: 26636751 DOI: 10.1159/000441716] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2015] [Indexed: 11/19/2022] Open
Abstract
Previous studies on human papillomavirus (HPV) type 16 protein functions have established the oncogenic nature of three viral proteins: E5, E6 and E7. Here we have studied the functions of these proteins by functional deletion of the individual E5, E6 or E7, or both E6 and E7 oncogenes in the context of the whole viral genome. These mutants, or the intact wild-type genome, were expressed from the natural viral promoters along with differentiation of epithelial HaCaT cells in three-dimensional collagen raft cultures. High episomal viral copy numbers were obtained using a transfection-based loxp-HPV16-eGFP-N1 vector system. All epithelial equivalents carrying the different HPV type 16 genomes showed pronounced hyperplastic and dysplastic morphology. Particularly the E7 oncogene, with contribution of E6, was shown to enhance cell proliferation. Specifically, the crucial role of E7 in HPV-associated hyperproliferation was clearly manifested. Based on morphological characteristics, immunohistochemical staining for differentiation and proliferation markers, and low expression of E1^E4, we propose that our raft culture models produce cervical intraepithelial neoplasia (CIN)1 and CIN2-like tissue. Our experimental setting provides an alternative tool to study concerted functions of HPV proteins in the development of epithelial dysplasia.
Collapse
Affiliation(s)
- Sven Bergner
- Research Program in Infection and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
4
|
Role of calpain in the formation of human papillomavirus type 16 E1^E4 amyloid fibers and reorganization of the keratin network. J Virol 2011; 85:9984-97. [PMID: 21752901 DOI: 10.1128/jvi.02158-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human papillomavirus (HPV) type 16 E1^E4 (16E1^E4) protein is expressed in the middle to upper layers of infected epithelium and has several roles within the virus life cycle. It is apparent that within the epithelium there are multiple species of 16E1^E4 that differ in length and/or degree of phosphorylation and that some or all of these can associate with the cellular keratin networks, leading to network disruption. We show here that the cellular cysteine protease calpain cleaves the 16E1^E4 protein after amino acid 17 to generate species that lack the N terminus. These C-terminal fragments are able to multimerize and form amyloid-like fibers. This can lead to accumulation of 16E1^E4 and disruption of the normal dynamics of the keratin networks. The cleavage of E1^E4 proteins by calpain may be a common strategy used by α-group viruses, since we show that cleavage of type 18 E1^E4 in raft culture is also dependent on calpain. Interestingly, the cleavage of 16E1^E4 by calpain appears to be highly regulated as differentiation of HPV genome-containing cells by methylcellulose is insufficient to induce cleavage. We hypothesize that this is important since it ensures that the formation of the amyloid fibers is not prematurely triggered in the lower layers and is restricted to the upper layers, where calpain is active and where disruption of the keratin networks may aid virus release.
Collapse
|
5
|
McIntosh PB, Laskey P, Sullivan K, Davy C, Wang Q, Jackson DJ, Griffin HM, Doorbar J. E1--E4-mediated keratin phosphorylation and ubiquitylation: a mechanism for keratin depletion in HPV16-infected epithelium. J Cell Sci 2010; 123:2810-22. [PMID: 20663917 DOI: 10.1242/jcs.061978] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The keratin IF network of epidermal keratinocytes provides a protective barrier against mechanical insult, it is also a major player in absorbing stress in these cells. The human papilloma virus (HPV) type 16 E1--E4 protein accumulates in the upper layers of HPV16-infected epithelium and is known to associate with and reorganise the keratin IF network in cells in culture. Here, we show that this function is conserved amongst a number of HPV alpha-group E1--E4 proteins and that the differentiation-dependent keratins are also targeted. Using time-lapse microscopy, HPV16 E1--E4 was found to effect a dramatic cessation of keratin IF network dynamics by associating with both soluble and insoluble keratin. Network disruption was accompanied by keratin hyperphosphorylation at several sites, including K8 S73, which is typically phosphorylated in response to stress stimuli. Keratin immunoprecipitated from E1--E4-expressing cells was also found to be ubiquitylated, indicating that it is targeted for proteasomal degradation. Interestingly, the accumulation of hyperphosphorylated, ubiquitylated E1--E4-keratin structures was found to result in an impairment of proteasomal function. These observations shed new light on the mechanism of keratin IF network reorganisation mediated by HPV16 E1--E4 and provide an insight into the depletion of keratin co-incident with E1--E4 accumulation observed in HPV-infected epithelium.
Collapse
Affiliation(s)
- Pauline B McIntosh
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, N10 3UE, UK
| | | | | | | | | | | | | | | |
Collapse
|
6
|
A novel interaction between the human papillomavirus type 16 E2 and E1--E4 proteins leads to stabilization of E2. Virology 2009; 394:266-75. [PMID: 19783272 DOI: 10.1016/j.virol.2009.08.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/29/2009] [Accepted: 08/26/2009] [Indexed: 11/21/2022]
Abstract
The E4 (also called E1--E4) and E2 proteins of human papillomavirus type 16 are thought to be expressed within the same cells of a lesion, and their open reading frames overlap, suggesting that they may have a functional relationship. We have examined the effect of co-expression of these two proteins and found that each enhances the level of the other. We also identified the N-terminus of E2 as the first example of a viral protein that directly binds the HPV16 E1--E4 protein. This appears to result in the E2 becoming less soluble and promotes its relocation from the nucleus to the cytoplasm. In addition, the turnover of the E2 protein is decreased in the presence of E1--E4. All this raises the possibility that E1--E4 acts to influence E2 activity by varying the amount of available E2 in the cell.
Collapse
|
7
|
Davy CE, Ayub M, Jackson DJ, Das P, McIntosh P, Doorbar J. HPV16 E1^E4 protein is phosphorylated by Cdk2/cyclin A and relocalizes this complex to the cytoplasm. Virology 2006; 349:230-44. [PMID: 16540140 DOI: 10.1016/j.virol.2006.02.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 12/20/2005] [Accepted: 02/08/2006] [Indexed: 11/16/2022]
Abstract
The human papillomavirus type 16 E1--E4 protein is expressed abundantly in cells supporting viral DNA amplification, but its expression is lost during malignant progression. In cell culture, 16E1--E4 causes G2 cell cycle arrest by associating with and preventing the nuclear entry of Cdk1/cyclin B1 complexes. Here, we show that 16E1--E4 is also able to associate with cyclin A and Cdk2 during the G2 phase of the cell cycle. Only a weak association was apparent during S-phase, and progression through S-phase appeared unaffected. As with cyclin B1, the interaction of 16E1--E4 with cyclin A is dependent on residues T22/T23 and results in the accumulation of cyclin A in the cytoplasm where it colocalizes with 16E1--E4. 16E1--E4 serine 32 was found to be phosphorylated by Cdk2/cyclin A. We hypothesize that the interaction of 16E1--E4 with cyclin A may serve to increase the efficiency with which 16E1--E4 is able to prevent mitotic entry.
Collapse
Affiliation(s)
- Clare E Davy
- Division of Virology, MRC National Institute for Medical Research, London NW7 1AA, UK.
| | | | | | | | | | | |
Collapse
|
8
|
Nakahara T, Peh WL, Doorbar J, Lee D, Lambert PF. Human papillomavirus type 16 E1circumflexE4 contributes to multiple facets of the papillomavirus life cycle. J Virol 2005; 79:13150-65. [PMID: 16189016 PMCID: PMC1235822 DOI: 10.1128/jvi.79.20.13150-13165.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The life cycle of human papillomaviruses (HPVs) is tightly linked to the differentiation program of the host's stratified epithelia that it infects. E1(circumflex)E4 is a viral protein that has been ascribed multiple biochemical properties of potential biological relevance to the viral life cycle. To identify the role(s) of the viral E1(circumflex)E4 protein in the HPV life cycle, we characterized the properties of HPV type 16 (HPV16) genomes harboring mutations in the E4 gene in NIKS cells, a spontaneously immortalized keratinocyte cell line that when grown in organotypic raft cultures supports the HPV life cycle. We learned that E1(circumflex)E4 contributes to the replication of the viral plasmid genome as a nuclear plasmid in basal cells, in which we also found E1(circumflex)E4 protein to be expressed at low levels. In the suprabasal compartment of organotypic raft cultures harboring E1(circumflex)E4 mutant HPV16 genomes there were alterations in the frequency of suprabasal cells supporting DNA synthesis, the levels of viral DNA amplification, and the degree to which the virus perturbs differentiation. Interestingly, the comparison of the phenotypes of various mutations in E4 indicated that the E1(circumflex)E4 protein-encoding requirements for these various processes differed. These data support the hypothesis that E1(circumflex)E4 is a multifunctional protein and that the different properties of E1(circumflex)E4 contribute to different processes in both the early and late stages of the virus life cycle.
Collapse
Affiliation(s)
- Tomomi Nakahara
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, 53706, USA
| | | | | | | | | |
Collapse
|
9
|
Davy CE, Jackson DJ, Raj K, Peh WL, Southern SA, Das P, Sorathia R, Laskey P, Middleton K, Nakahara T, Wang Q, Masterson PJ, Lambert PF, Cuthill S, Millar JBA, Doorbar J. Human papillomavirus type 16 E1 E4-induced G2 arrest is associated with cytoplasmic retention of active Cdk1/cyclin B1 complexes. J Virol 2005; 79:3998-4011. [PMID: 15767402 PMCID: PMC1061520 DOI: 10.1128/jvi.79.7.3998-4011.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Human papillomavirus type 16 (HPV16) can cause cervical cancer. Expression of the viral E1 E4 protein is lost during malignant progression, but in premalignant lesions, E1 E4 is abundant in cells supporting viral DNA amplification. Expression of 16E1 E4 in cell culture causes G2 cell cycle arrest. Here we show that unlike many other G2 arrest mechanisms, 16E1 E4 does not inhibit the kinase activity of the Cdk1/cyclin B1 complex. Instead, 16E1 E4 uses a novel mechanism in which it sequesters Cdk1/cyclin B1 onto the cytokeratin network. This prevents the accumulation of active Cdk1/cyclin B1 complexes in the nucleus and hence prevents mitosis. A mutant 16E1 E4 (T22A, T23A) which does not bind cyclin B1 or alter its intracellular location fails to induce G2 arrest. The significance of these results is highlighted by the observation that in lesions induced by HPV16, there is evidence for Cdk1/cyclin B1 activity on the keratins of 16E1 E4-expressing cells. We hypothesize that E1 E4-induced G2 arrest may play a role in creating an environment optimal for viral DNA replication and that loss of E1 E4 expression may contribute to malignant progression.
Collapse
Affiliation(s)
- Clare E Davy
- Division of Virology, National Institute for Medical Research, London, NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang Q, Griffin H, Southern S, Jackson D, Martin A, McIntosh P, Davy C, Masterson PJ, Walker PA, Laskey P, Omary MB, Doorbar J. Functional analysis of the human papillomavirus type 16 E1=E4 protein provides a mechanism for in vivo and in vitro keratin filament reorganization. J Virol 2004; 78:821-33. [PMID: 14694114 PMCID: PMC368840 DOI: 10.1128/jvi.78.2.821-833.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-risk human papillomaviruses, such as human papillomavirus type 16 (HPV16), are the primary cause of cervical cancer. The HPV16 E1=E4 protein associates with keratin intermediate filaments and causes network collapse when expressed in epithelial cells in vitro. Here, we show that keratin association and network reorganization also occur in vivo in low-grade cervical neoplasia caused by HPV16. The 16E1=E4 protein binds to keratins directly and interacts strongly with keratin 18, a member of the type I intermediate-filament family. By contrast, 16E1=E4 bound only weakly to keratin 8, a type II intermediate-filament protein, and showed no detectable affinity for the type III protein, vimentin. The N-terminal 16 amino acids of the 16E1=E4 protein, which contains the YPLLXLL motif that is conserved among supergroup A viruses, were sufficient to target green fluorescent protein to the keratin network. When expressed in the SiHa cervical epithelial cell line, the full-length 16E1=E4 protein caused an almost total inhibition of keratin dynamics, despite the phosphorylation of keratin 18 at serine 33, which normally leads to 14-3-3-mediated keratin solubilization. Mutant 16E1=E4 proteins which lack the LLKLL motif, or which have lost amino acids from their C termini, and which were compromised in the ability to associate with keratins did not disturb normal keratin dynamics. 16E1=E4 was found to exist as dimers and hexamers, whereas a C-terminal deletion mutant (16E1=E4Delta87-92) existed as monomers and formed multimeric structures only poorly. Considered together, our results suggest that by associating with keratins through its N terminus, and by associating with itself through its C terminus, 16E1=E4 may act as a keratin cross-linker and prevent the movement of keratins between the soluble and insoluble compartments. The increase in avidity associated with multimeric binding may contribute to the ability of 16E1=E4 to sequester its cellular targets in the cytoplasm.
Collapse
Affiliation(s)
- Qian Wang
- Division of Virology, National Institute for Medical Research, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Genther SM, Sterling S, Duensing S, Münger K, Sattler C, Lambert PF. Quantitative role of the human papillomavirus type 16 E5 gene during the productive stage of the viral life cycle. J Virol 2003; 77:2832-42. [PMID: 12584306 PMCID: PMC149772 DOI: 10.1128/jvi.77.5.2832-2842.2003] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human papillomaviruses (HPVs) are small circular DNA viruses that cause warts. Infection with high-risk anogenital HPVs, such as HPV type 16 (HPV16), is associated with human cancers, specifically cervical cancer. The life cycle of HPVs is intimately tied to the differentiation status of the host epithelium and has two distinct stages: the nonproductive stage and the productive stage. In the nonproductive stage, which arises in the poorly differentiated basal epithelial compartment of a wart, the virus maintains itself as a low-copy-number nuclear plasmid. In the productive stage, which arises as the host cell undergoes terminal differentiation, viral DNA is amplified; the capsid genes, L1 and L2, are expressed; and progeny virions are produced. This stage of the viral life cycle relies on the ability of the virus to reprogram the differentiated cells to support DNA synthesis. Papillomaviruses encode multiple oncoproteins, E5, E6, and E7. In the present study, we analyze the role of one of these viral oncogenes, E5, in the viral life cycle. To assess the role of E5 in the HPV16 life cycle, we introduced wild-type (WT) or E5 mutant HPV16 genomes into NIKS, a keratinocyte cell line that supports the papillomavirus life cycle. By culturing these cells under conditions that allow them to remain undifferentiated, a state similar to that of basal epithelial cells, we determined that E5 does not play an essential role in the nonproductive stage of the HPV16 life cycle. To determine if E5 plays a role in the productive stage of the viral life cycle, we cultured keratinocyte populations in organotypic raft cultures, which promote the differentiation and stratification of epithelial cells. We found that cells harboring E5 mutant genomes displayed a quantitative reduction in the percentage of suprabasal cells undergoing DNA synthesis, compared to cells containing WT HPV16 DNA. This reduction in DNA synthesis, however, did not prevent amplification of viral DNA in the differentiated cellular compartment. Likewise, late viral gene expression and the perturbation of normal keratinocyte differentiation were retained in cells harboring E5 mutant genomes. These data demonstrate that E5 plays a subtle role during the productive stage of the HPV16 life cycle.
Collapse
Affiliation(s)
- Sybil M Genther
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
12
|
Nakahara T, Nishimura A, Tanaka M, Ueno T, Ishimoto A, Sakai H. Modulation of the cell division cycle by human papillomavirus type 18 E4. J Virol 2002; 76:10914-20. [PMID: 12368334 PMCID: PMC136601 DOI: 10.1128/jvi.76.21.10914-10920.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The life cycle of human papillomaviruses (HPVs) is tightly coupled to the differentiation program of their host epithelial cells. HPV E4 gene expression is first observed in the parabasal layers of squamous epithelia, suggesting that the E4 gene product contributes to the mechanism of differentiation-dependent virus replication, although its biological function remains unclear. We analyzed the effect of HPV type 18 E4 on cell proliferation and found that E4 expression induced cell cycle arrest at the G(2)/M boundary. The functional region of E4 necessary for the growth arrest activity was located in the central portion of the molecule, and this activity was independent of the E4-mediated collapse of cytokeratin intermediate filament structures.
Collapse
Affiliation(s)
- Tomomi Nakahara
- Laboratory of Gene Analysis, Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-Ku, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Davy CE, Jackson DJ, Wang Q, Raj K, Masterson PJ, Fenner NF, Southern S, Cuthill S, Millar JBA, Doorbar J. Identification of a G(2) arrest domain in the E1 wedge E4 protein of human papillomavirus type 16. J Virol 2002; 76:9806-18. [PMID: 12208959 PMCID: PMC136512 DOI: 10.1128/jvi.76.19.9806-9818.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) is the most common cause of cervical carcinoma. Cervical cancer develops from low-grade lesions that support the productive stages of the virus life cycle. The 16E1 wedge E4 protein is abundantly expressed in such lesions and can be detected in cells supporting vegetative viral genome amplification. Using an inducible mammalian expression system, we have shown that 16E1 wedge E4 arrests HeLa cervical epithelial cells in G(2). 16E1 wedge E4 also caused a G(2) arrest in SiHa, Saos-2 and Saccharomyces pombe cells and, as with HeLa cells, was found in the cytoplasm. However, whereas 16E1 wedge E4 is found on the keratin networks in HeLa and SiHa cells, in Saos-2 and S. pombe cells that lack keratins, 16E1 wedge E4 had a punctate distribution. Mutagenesis studies revealed a proline-rich region between amino acids 17 and 45 of 16E1 wedge E4 to be important for arrest. This region, which we have termed the "arrest domain," contains a putative nuclear localization signal, a cyclin-binding motif, and a single cyclin-dependent kinase (Cdk) phosphorylation site. A single point mutation in the putative Cdk phosphorylation site (T23A) abolished 16E1 wedge E4-mediated G(2) arrest. Arrest did not involve proteins regulating the phosphorylation state of Cdc2 and does not appear to involve the activation of the DNA damage or incomplete replication checkpoint. G(2) arrest was also mediated by the E1 wedge E4 protein of HPV11, a low-risk mucosal HPV type that also causes cervical lesions. The E1 wedge E4 protein of HPV1, which is more distantly related to that of HPV16, did not cause G(2) arrest. We conclude that, like other papillomavirus proteins, 16E1 wedge E4 affects cell cycle progression and that it targets a conserved component of the cell cycle machinery.
Collapse
Affiliation(s)
- Clare E Davy
- Division of Virology, National Institute for Medical Research, London NW7 1AA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Peh WL, Middleton K, Christensen N, Nicholls P, Egawa K, Sotlar K, Brandsma J, Percival A, Lewis J, Liu WJ, Doorbar J. Life cycle heterogeneity in animal models of human papillomavirus-associated disease. J Virol 2002; 76:10401-16. [PMID: 12239317 PMCID: PMC136551 DOI: 10.1128/jvi.76.20.10401-10416.2002] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Animal papillomaviruses are widely used as models to study papillomavirus infection in humans despite differences in genome organization and tissue tropism. Here, we have investigated the extent to which animal models of papillomavirus infection resemble human disease by comparing the life cycles of 10 different papillomavirus types. Three phases in the life cycles of all viruses were apparent using antibodies that distinguish between early events, the onset of viral genome amplification, and the expression of capsid proteins. The initiation of these phases follows a highly ordered pattern that appears important for the production of virus particles. The viruses examined included canine oral papillomavirus, rabbit oral papillomavirus (ROPV), cottontail rabbit papillomavirus (CRPV), bovine papillomavirus type 1, and human papillomavirus types 1, 2, 11, and 16. Each papillomavirus type showed a distinctive gene expression pattern that could be explained in part by differences in tissue tropism, transmission route, and persistence. As the timing of life cycle events affects the accessibility of viral antigens to the immune system, the ideal model system should resemble human mucosal infection if vaccine design is to be effective. Of the model systems examined here, only ROPV had a tissue tropism and a life cycle organization that resembled those of the human mucosal types. ROPV appears most appropriate for studies of the life cycles of mucosal papillomavirus types and for the development of prophylactic vaccines. The persistence of abortive infections caused by CRPV offers advantages for the development of therapeutic vaccines.
Collapse
Affiliation(s)
- Woei Ling Peh
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Doorbar J, Elston RC, Napthine S, Raj K, Medcalf E, Jackson D, Coleman N, Griffin HM, Masterson P, Stacey S, Mengistu Y, Dunlop J. The E1E4 protein of human papillomavirus type 16 associates with a putative RNA helicase through sequences in its C terminus. J Virol 2000; 74:10081-95. [PMID: 11024137 PMCID: PMC102047 DOI: 10.1128/jvi.74.21.10081-10095.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2000] [Accepted: 07/20/2000] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) infects cervical epithelium and is associated with the majority of cervical cancers. The E1E4 protein of HPV16 but not those of HPV1 or HPV6 was found to associate with a novel member of the DEAD box protein family of RNA helicases through sequences in its C terminus. This protein, termed E4-DBP (E4-DEAD box protein), has a molecular weight of 66,000 (66K) and can shuttle between the nucleus and the cytoplasm. It binds to RNA in vitro, including the major HPV16 late transcript (E1E4. L1), and has an RNA-independent ATPase activity which can be partially inhibited by E1E4. E4-DBP was detectable in the cytoplasm of cells expressing HPV16 E1E4 (in vivo and in vitro) and could be immunoprecipitated as an E1E4 complex from cervical epithelial cell lines. In cell lines lacking cytoplasmic intermediate filaments, loss of the leucine cluster-cytoplasmic anchor region of HPV16 E1wedgeE4 resulted in both proteins colocalizing exclusively to the nucleoli. Two additional HPV16 E1E4-binding proteins, of 80K and 50K, were identified in pull-down experiments but were not recognized by antibodies to E4-DBP or the conserved DEAD box motif. Sequence analysis of E4-DBP revealed homology in its E4-binding region with three Escherichia coli DEAD box proteins involved in the regulation of mRNA stability and degradation (RhlB, SrmB, and DeaD) and with the Rrp3 protein of Saccharomyces cerevisiae, which is involved in ribosome biogenesis. The synthesis of HPV16 coat proteins occurs after E1E4 expression and genome amplification and is regulated at the level of mRNA stability and translation. Identification of E4-DBP as an HPV16 E1E4-associated protein indicates a possible role for E1E4 in virus synthesis.
Collapse
Affiliation(s)
- J Doorbar
- Division of Virology, National Institute for Medical Research, Mill Hill, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Doorbar J, Foo C, Coleman N, Medcalf L, Hartley O, Prospero T, Napthine S, Sterling J, Winter G, Griffin H. Characterization of events during the late stages of HPV16 infection in vivo using high-affinity synthetic Fabs to E4. Virology 1997; 238:40-52. [PMID: 9375007 DOI: 10.1006/viro.1997.8768] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HPV late gene expression is initiated as an infected basal cell migrates through the differentiating layers of the epidermis, resulting in the onset of vegetative viral DNA replication and the expression of viral late proteins. We have used a large synthetic immunoglobulin library displayed on phage (diversity 6.5 x 10(10) phage) to isolate three Fabs (TVG405, 406, and 407) which recognize distinct epitopes on the E4 late protein of HPV16. A C-terminal monoclonal (TVG404) was generated by hybridoma technology, and N-terminal polyclonal antiserum was prepared by peptide immunization (alpha N-term). The most potent antibody (TVG405) had an affinity for E4 of approximately 1.0 nM. All antibodies recognized the protein in paraffin-embedded archival material, allowing us to map events in the late stages of virus infection. Expression of E4 in vivo does not coincide with synthesis of the major virus coat protein L1, but precedes it by 1 or 2 cell layers in premalignant lesions caused by HPV16 and by up to 20 cell layers in HPV63-induced warts. In higher grade lesions associated with HPV16, E4 is produced in the absence of L1. By contrast, vegetative viral DNA replication and E4 expression correlate exactly and in some lesions begin as the infected epithelial cell leaves the basal layer. Differentiation markers such as filaggrin, loricrin, and certain keratins are not detectable in E4-positive cells, and nuclear degeneration is delayed. HPV16 E4 has a filamentous distribution in the lower epithelial layers, but associates with solitary perinuclear structures in more differentiated cells. Antibodies to the N-terminus of the protein stained these structures poorly. Our findings are compatible with a role for the HPV16 E4 protein in vegetative DNA replication or in modifying the phenotype of the infected cell to favor virus synthesis or virus release. The Fabs will be of value in the evaluation of model systems for mimicking HPV infection in vitro.
Collapse
Affiliation(s)
- J Doorbar
- National Institute for Medical Research, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Roberts S, Ashmole I, Rookes SM, Gallimore PH. Mutational analysis of the human papillomavirus type 16 E1--E4 protein shows that the C terminus is dispensable for keratin cytoskeleton association but is involved in inducing disruption of the keratin filaments. J Virol 1997; 71:3554-62. [PMID: 9094627 PMCID: PMC191502 DOI: 10.1128/jvi.71.5.3554-3562.1997] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The function of the human papillomavirus (HPV) E4 proteins is unknown. In cultured epithelial cells the proteins associate with the keratin intermediate filaments (IFs) and, for some E4 types, e.g., HPV type 16 (HPV-16), induce collapse of the keratin networks. An N-terminal leucine-rich motif (LLXLL) is a conserved feature of many E4 proteins. In a previous study we showed that deletion of this region from the HPV-1 and -16 E4 proteins abrogated the localization of the mutant proteins to the keratin cytoskeleton in a simian virus 40-transformed human keratinocyte cell line (S. Roberts, I. Ashmole, L. J. Gibson, S. M. Rookes, G. J. Barton, and P. H. Gallimore, J. Virol. 68:6432-6445, 1994). The E4 proteins of HPV-1 and -16 have little sequence homology except at the N terminus. Therefore, to establish the role of sequences other than those at the N terminus, we have performed a mutational analysis of the HPV-16 E4 protein. The results of the analysis were as follows: (i) similar to findings for the HPV-1 protein, no mutation of HPV-16 E4 sequences (other than the N-terminal leucine motif) results in a mutant protein which fails to colocalize to the keratin IFs; (ii) the C-terminal domain (residues 61 to 92) is not essential for association with the cytoskeleton; and (iii) deletion of C-terminal sequences (residues 84 to 92; LTVIVTLHP) corresponding to part of a domain conserved between mucosal E4 proteins affects the ability of the mutant protein to induce cytoskeletal collapse, despite colocalization with the keratin IFs. Further analysis of this region showed that conserved hydrophobic residues valines 86 and 88 are important. In addition, we show that the HPV-16 E4 protein is detergent insoluble and exists as several disulfide-linked, high-molecular-weight complexes which could represent homo-oligomers. The C-terminal sequences (residues 84 to 92), in particular valines 86 and 88, are important in the formation of these insoluble complexes. The results of this study support our postulate that the E4 proteins include functional domains at the N terminus and the C terminus, with the intervening sequences possibly acting as a flexible hinge.
Collapse
Affiliation(s)
- S Roberts
- Cancer Research Campaign Institute for Cancer Studies, The Medical School, University of Birmingham, United Kingdom
| | | | | | | |
Collapse
|
18
|
Le Cann P, Chabaud M, Leboulleux D, Mougin C, Mayelo V, Legrand MC, Calvet C, Afoutou JM, Coll-Seck AM, Coursaget P. Detection of antibodies to L1, L2, and E4 proteins of human papillomavirus types 6, 11, and 16 by ELISA using synthetic peptides. J Med Virol 1995; 45:410-4. [PMID: 7545211 DOI: 10.1002/jmv.1890450410] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antibodies against eight synthetic peptides spanning different epitopes located on L1, L2, and E4 proteins of human papillomavirus (HPV) types 16, 6, and 11 were examined in sera from 73 women infected by HPV and from 139 healthy controls. Only three of these peptides were reactive. Two located on proteins L2 and E4 of HPV 16 seem type specific since antibodies to these peptides were detected, respectively, in 21% and 15% of the HPV 16 infected patients and in 2.5% and none of women infected by other HPVs. The third peptide located on the L1 protein of HPV 6 bears a common epitope since antibodies to this peptide were detected not only in 85% of women infected by HPV 6 or 11, but also in 82% of women infected by other HPVs, and in 74% and 71% of the control groups (10-12-year-old children and adults, respectively). In conclusion, none of the peptides investigated seems useful to develop ELISAs for serological diagnosis of HPV infection.
Collapse
Affiliation(s)
- P Le Cann
- Institut de Virologie, Faculté de Pharmacie, Tours, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kamel D, Turpeenniemi-Hujanen T, Vähäkangas K, Pääkkö P, Soini Y. Proliferating cell nuclear antigen but not p53 or human papillomavirus DNA correlates with advanced clinical stage in renal cell carcinoma. Histopathology 1994; 25:339-47. [PMID: 7835839 DOI: 10.1111/j.1365-2559.1994.tb01352.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this study we investigated 56 renal cell carcinomas immunohistochemically for the expression of proliferating cell nuclear antigen (PCNA) and tumour suppressor protein p53. We also analyzed for the presence of human papilloma virus (HPV) DNA subtypes 6, 11, 16, 18, 31 and 33 by in situ hybridization. In carcinomas which showed more than 10% of PCNA positive nuclei there were significantly more cases with invasion (P = 0.032) or metastatic disease (P = 0.047). Nine out of 22 grade III-IV tumours (40.9%) but only six out of 30 grade I-II tumours (20%) showed more than 10% of PCNA positive cells (P = 0.097). Patients with 10% or more PCNA positive cells in kidney tumours had more advanced disease at the time of diagnosis than those showing less PCNA positive cells (P = 0.05). Six p53 positive cases were found among 56 tumours (11%), but only one case had more than 10% positive cell nuclei. The presence of HPV DNA was found in 29 out of 56 cases (52%). Multiple subtypes were found in 19 cases (34%). The most commonly occurring subtypes were 18 and 33. There was no association between PCNA, p53 and the presence of HPV DNA subtypes. Because of the association of PCNA with invasion and metastatic disease, it would be worth while to study PCNA further as a possible marker for aggressiveness of renal carcinomas. Both this study and those concentrated on mutational analysis suggest that p53 is generally not important for the development of renal cell carcinoma. On the other hand, the presence of HPV DNA in these tumours implicates HPV viral infection in the aetiology of renal cancer.
Collapse
Affiliation(s)
- D Kamel
- Department of Pathology, University of Oulu, Finland
| | | | | | | | | |
Collapse
|
20
|
Roberts S, Ashmole I, Gibson LJ, Rookes SM, Barton GJ, Gallimore PH. Mutational analysis of human papillomavirus E4 proteins: identification of structural features important in the formation of cytoplasmic E4/cytokeratin networks in epithelial cells. J Virol 1994; 68:6432-45. [PMID: 7521917 PMCID: PMC237063 DOI: 10.1128/jvi.68.10.6432-6445.1994] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have previously demonstrated that human papillomavirus type 1 (HPV 1) and 16 (HPV 16) E4 proteins form cytoplasmic filamentous networks which specifically colocalize with cytokeratin intermediate-filament (IF) networks when expressed in simian virus 40-transformed keratinocytes. The HPV 16 (but not the HPV 1) E4 protein induced the collapse of the cytokeratin networks. (S. Roberts, I. Ashmole, G. D. Johnson, J. W. Kreider, and P. H. Gallimore, Virology 197:176-187, 1993). The mode of interaction of E4 with the cytokeratin IFs is unknown. To identify E4 sequences important in mediating this interaction, we have constructed a large panel of mutant HPV (primarily HPV 1) E4 proteins and expressed them by using the same simian virus 40-epithelial expression system. Mutation of HPV 1 E4 residues 10 to 14 (LLGLL) abrogated the formation of cytoplasmic filamentous networks. This sequence corresponds to a conserved motif, LLXLL, found at the N terminus of other E4 proteins, and similar results were obtained on deletion of the HPV 16 motif, LLKLL (residues 12 to 16). Our findings indicate that this conserved motif is likely to play a central role in the association between E4 and the cytokeratins. An HPV 1 E4 mutant protein containing a deletion of residues 110 to 115 induced the collapse of the cytokeratin IFs in a manner analogous to the HPV 16 E4 protein. The sequence deleted, DLDDFC, is highly conserved between cutaneous E4 proteins. HPV 1 E4 residues 42 to 80, which are rich in charged amino acids, appeared to be important in the cytoplasmic localization of E4. In addition, we have mapped the N-terminal residues of HPV 1 E4 16-kDa and 10/11-kDa polypeptides expressed by using the baculovirus system and shown that they begin at tyrosine 16 and alanine 59, respectively. Similar-sized E4 proteins are also found in vivo. N-terminal deletion proteins, which closely resemble the 16-kDa and 10/11-kDa species, expressed in keratinocytes were both cytoplasmic and nuclear but did not form cytoplasmic filamentous networks. These findings support the postulate that N-terminal proteolytic processing of the E1-- E4 protein may modulate its function in vivo.
Collapse
Affiliation(s)
- S Roberts
- Department of Cancer Studies, Medical School, University of Birmingham, United Kingdom
| | | | | | | | | | | |
Collapse
|