1
|
TLR-5 agonist Salmonella abortus equi flagellin FliC enhances FliC-gD-based DNA vaccination against equine herpesvirus 1 infection. Arch Virol 2019; 164:1371-1382. [PMID: 30888564 DOI: 10.1007/s00705-019-04201-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/13/2019] [Indexed: 01/12/2023]
Abstract
Equine herpesvirus 1 (EHV-1) induces serious respiratory infections, viral abortion, neurological signs, and neonatal mortality in horses. Despite the use of vaccines, EHV-1 infection also causes a high annual economic burden to the equine industry. The poor immunogenicity of and protection conferred by EHV-1 vaccines are the major factors responsible for the spread of EHV-1 infection. The present study examined the immunogenicity of a novel DNA vaccine co-expressing FliC, a flagellin protein, in Salmonella abortus equi and the gD protein of EHV-1. Mice and horses were immunized intramuscularly with the vaccine, and mice were challenged with EHV-1. Immunofluorescence and western blotting revealed that FliC and gD can be efficiently expressed in cells. This novel vaccine significantly increased gD-specific antibody and interferon gamma (IFN-γ) levels in immunized mice and horses. Compared with controls, the viral load and morbidity were markedly reduced in FliC-gD-immunized mice after they were challenged with EHV-1. Furthermore, the immunogenicity of FliC-gD in a natural host was tested. Our results indicate that vaccinated mice and horses exhibit increased humoral and improved cellular immune responses.
Collapse
|
2
|
Del Medico Zajac MP, Zanetti FA, Esusy MS, Federico CR, Zabal O, Valera AR, Calamante G. Induction of Both Local Immune Response in Mice and Protection in a Rabbit Model by Intranasal Immunization with Modified Vaccinia Ankara Virus Expressing a Secreted Form of Bovine Herpesvirus 1 Glycoprotein D. Viral Immunol 2016; 30:70-76. [PMID: 27809679 DOI: 10.1089/vim.2016.0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, we evaluated the immunogenicity and efficacy of mucosal delivery of a recombinant modified vaccinia Ankara virus (MVA) expressing the secreted version of bovine herpesvirus type 1 (BoHV-1) glycoprotein D (MVA-gDs) without addition of adjuvant in two animal models. First, we demonstrated the capability of MVA-gDs of inducing both local and systemic anti-gD humoral immune response after intranasal immunization of mice. Then, we confirmed that two doses of MVA-gDs administered intranasally to rabbits induced systemic anti-gD antibodies and conferred protection against BoHV-1 challenge. Our results show the potential of using MVA as a vector for the rational design of veterinary vaccines capable of inducing specific and protective immune responses both at local and systemic level.
Collapse
Affiliation(s)
- María Paula Del Medico Zajac
- 1 Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (CICVyA-INTA) , Hurlingham, Argentina .,2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Ciudad Autónoma de Buenos Aires, Argentina
| | - Flavia Adriana Zanetti
- 1 Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (CICVyA-INTA) , Hurlingham, Argentina .,2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Ciudad Autónoma de Buenos Aires, Argentina
| | - María Soledad Esusy
- 1 Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (CICVyA-INTA) , Hurlingham, Argentina
| | - Carlos Rodolfo Federico
- 1 Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (CICVyA-INTA) , Hurlingham, Argentina .,2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Ciudad Autónoma de Buenos Aires, Argentina
| | - Osvaldo Zabal
- 3 Instituto de Virología, Instituto Nacional de Tecnología Agropecuaria (CICVyA-INTA) , Hurlingham, Argentina
| | - Alejandro Rafael Valera
- 4 Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata , La Plata, Argentina
| | - Gabriela Calamante
- 1 Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (CICVyA-INTA) , Hurlingham, Argentina
| |
Collapse
|
3
|
Abstract
Bovine herpesvirus 1 (BHV-1) infection is widespread and causes a variety of diseases. Although similar in many respects to the human immune response to human herpesvirus 1, the differences in the bovine virus proteins, immune system components and strategies, physiology, and lifestyle mean the bovine immune response to BHV-1 is unique. The innate immune system initially responds to infection, and primes a balanced adaptive immune response. Cell-mediated immunity, including cytotoxic T lymphocyte killing of infected cells, is critical to recovery from infection. Humoral immunity, including neutralizing antibody and antibody-dependent cell-mediated cytotoxicity, is important to prevention or control of (re-)infection. BHV-1 immune evasion strategies include suppression of major histocompatibility complex presentation of viral antigen, helper T-cell killing, and latency. Immune suppression caused by the virus potentiates secondary infections and contributes to the costly bovine respiratory disease complex. Vaccination against BHV-1 is widely practiced. The many vaccines reported include replicating and non-replicating, conventional and genetically engineered, as well as marker and non-marker preparations. Current development focuses on delivery of major BHV-1 glycoproteins to elicit a balanced, protective immune response, while excluding serologic markers and virulence or other undesirable factors. In North America, vaccines are used to prevent or reduce clinical signs, whereas in some European Union countries marker vaccines have been employed in the eradication of BHV-1 disease.
Collapse
|
4
|
Zhao Y, Cao Y, Cui L, Ma B, Mu X, Li Y, Zhang Z, Li D, Wei W, Gao M, Wang J. Duck enteritis virus glycoprotein D and B DNA vaccines induce immune responses and immunoprotection in Pekin ducks. PLoS One 2014; 9:e95093. [PMID: 24736466 PMCID: PMC3988170 DOI: 10.1371/journal.pone.0095093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/22/2014] [Indexed: 11/19/2022] Open
Abstract
DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks.
Collapse
Affiliation(s)
- Yan Zhao
- Group of Avian Respiratory infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Northeast Agricultural University, Harbin, China
| | | | - Lihong Cui
- Northeast Agricultural University, Harbin, China
| | - Bo Ma
- Northeast Agricultural University, Harbin, China
| | - Xiaoyu Mu
- Northeast Agricultural University, Harbin, China
| | - Yanwei Li
- Northeast Agricultural University, Harbin, China
| | - Zhihui Zhang
- Northeast Agricultural University, Harbin, China
| | - Dan Li
- Northeast Agricultural University, Harbin, China
| | - Wei Wei
- Northeast Agricultural University, Harbin, China
| | - Mingchun Gao
- Northeast Agricultural University, Harbin, China
| | - Junwei Wang
- Northeast Agricultural University, Harbin, China
- * E-mail:
| |
Collapse
|
5
|
Immunization of cattle with recombinant Newcastle disease virus expressing bovine herpesvirus-1 (BHV-1) glycoprotein D induces mucosal and serum antibody responses and provides partial protection against BHV-1. Vaccine 2010; 28:3159-70. [PMID: 20189484 PMCID: PMC3428038 DOI: 10.1016/j.vaccine.2010.02.051] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/05/2010] [Accepted: 02/12/2010] [Indexed: 11/28/2022]
Abstract
Bovine herpesvirus-1 (BHV-1) is a major cause of respiratory tract diseases in cattle. Vaccination of cattle against BHV-1 is a high priority. A major concern of currently modified live BHV-1 vaccines is their ability to cause latent infection and subsequent reactivation resulting in many outbreaks. Thus, there is a need for alternative strategies. We generated two recombinant Newcastle disease viruses (NDVs) expressing the glycoprotein D (gD) of BHV-1 from an added gene. One recombinant, rLaSota/gDFL, expressed gD without any modification. The other recombinant, rLaSota/gDF, expressed a chimeric gD in which the ectodomain of gD was fused with the transmembrane domain and cytoplasmic tail of the NDV fusion F glycoprotein. Remarkably, the native gD expressed by rLaSota/gDFL virus was incorporated into the NDV virion 2.5-fold more efficiently than the native NDV proteins, whereas the chimeric gD was not detectably incorporated even though it was abundantly expressed on the infected cell surface. The expression of gD did not increase the virulence of the rNDV vectors in chickens. A single intranasal and intratracheal inoculation of calves with either recombinant NDV elicited mucosal and systemic antibodies specific to BHV-1, with the responses to rLaSota/gDFL being higher than those to rLaSota/gDF. Following challenge with BHV-1, calves immunized with the recombinant NDVs had lower titers and earlier clearance of challenge virus compared to the empty vector control, and reduced disease was observed with rLaSota/gDFL. Following challenge, the titers of serum antibodies specific to BHV-1 were higher in the animals immunized with the rNDV vaccines compared to the rNDV parent virus, indicating that the vaccines primed for secondary responses. Our data suggest that NDV can be used as a vaccine vector in bovines and that BHV-1 gD may be useful in mucosal vaccine against BHV-1 infection, but might require augmentation by a second dose or the inclusion of additional BHV-1 antigens.
Collapse
|
6
|
Haig DM, Grant D, Deane D, Campbell I, Thomson J, Jepson C, Buxton D, Russell GC. An immunisation strategy for the protection of cattle against alcelaphine herpesvirus-1-induced malignant catarrhal fever. Vaccine 2008; 26:4461-8. [PMID: 18601965 DOI: 10.1016/j.vaccine.2008.06.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/02/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
Abstract
The aim of this study was to stimulate immunity in the oro-nasal-pharyngeal region of cattle to protect them from alcelaphine herpesvirus-1 (AlHV-1)-induced malignant catarrhal fever. Attenuated C500 strain AlHV-1 was used along with Freund's adjuvant intramuscularly (IM) in the upper neck region to immunise cattle. Virulent C500 strain AlHV-1 was used for intranasal challenge. Nine of ten cattle were protected. Protection was associated with high levels of neutralising antibody in nasal secretions. Some protected animals showed transient low levels of viral DNA in blood samples and in one lymph node sample after challenge whereas viral DNA was detected in the blood and in lymph node samples of all animals with MCF. This is the most promising immunisation strategy to date for the control of malignant catarrhal fever.
Collapse
Affiliation(s)
- David M Haig
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Peralta A, Molinari P, Conte-Grand D, Calamante G, Taboga O. A chimeric baculovirus displaying bovine herpesvirus-1 (BHV-1) glycoprotein D on its surface and their immunological properties. Appl Microbiol Biotechnol 2007; 75:407-14. [PMID: 17285288 DOI: 10.1007/s00253-006-0825-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 12/20/2006] [Accepted: 12/22/2006] [Indexed: 11/29/2022]
Abstract
The ability of a recombinant baculovirus containing the ectodomain of the mature sequence of glycoprotein D (gD) fused to the amino-terminus of baculoviral glycoprotein gp64 to display gD on its surface and to serve as an improved immunogen against bovine herpesvirus-1 was tested. The gD-gp64 fusion protein was correctly expressed on the virus particles as revealed by immunomicroscopy assays. Mice immunized with 5 x 10(8) plaque forming units developed antibodies that specifically reacted in an enzyme-linked immunosorbent assay with recombinant gD and whole bovine herpesvirus-1. These antibodies were able to neutralize bovine herpesvirus-1 in vitro, whereas those elicited by a version of gD expressed in Escherichia coli did not. Our data demonstrated that the display on the virion surface of recombinant baculovirus can provide a tool for the development of recombinant vaccines against bovine herpesvirus-1.
Collapse
Affiliation(s)
- A Peralta
- Instituto de Biotecnología, CICVyA, INTA, Castelar, CC25 (1712), Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
8
|
Del Médico Zajac MP, Puntel M, Zamorano PI, Sadir AM, Romera SA. BHV-1 vaccine induces cross-protection against BHV-5 disease in cattle. Res Vet Sci 2006; 81:327-34. [PMID: 16540133 DOI: 10.1016/j.rvsc.2006.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 01/10/2006] [Accepted: 01/26/2006] [Indexed: 11/16/2022]
Abstract
Protection against BHV-5 disease induced by inactivated BHV-1 or BHV-5 based vaccines was analysed. Two groups of calves were subcutaneously immunized with an inactivated BHV-1 or BHV-5 based vaccine. A third group was not vaccinated and used as control. In the post-vaccination period, we studied the humoral and cellular immune response resulting similar to both groups. The efficacy of the vaccines was tested after intranasal challenge of the calves with a virulent Argentinean BHV-5 isolate (A-663). All control animals developed neurological signs associated with BHV-5 infection and high levels of virus shedding. Calves immunized with the BHV-1 and BHV-5 inactivated vaccines were protected against BHV-5 disease. Our study provides evidence that strongly support the existence of cross-protection between BHV-1 and BHV-5 in calves. Even though this has already been suggested by previous works, this is the first time an exhaustive study of the immune response is performed and typical clinical BHV-5 meningoencephalitis signs are reproduced in an experimental BHV-5 challenge trial.
Collapse
Affiliation(s)
- M P Del Médico Zajac
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología, Agropecuaria (INTA), Castelar, CC77, 1708 Morón, Argentina.
| | | | | | | | | |
Collapse
|
9
|
Keuser V, Detry B, Thiry J, de Fays K, Schynts F, Pastoret PP, Vanderplasschen A, Thiry E. Characterization of caprine herpesvirus 1 glycoprotein D gene and its translation product. Virus Res 2006; 115:112-21. [PMID: 16140410 DOI: 10.1016/j.virusres.2005.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
Caprine herpesvirus 1 (CpHV-1) is responsible of systemic infection in neonatal kids as well as abortion and fertility disorders in adult goats. This virus is closely related to bovine herpesvirus 1 (BoHV-1) which causes infectious bovine rhinotracheitis. Glycoprotein D (gD) mediates important functions in alphaherpesviruses and is also a main immunogen. The sequence of CpHV-1 gD gene and the biochemical properties of its translation product were analyzed and compared to those of BoHV-1 and other alphaherpesviruses. A relatively high homology was found between CpHV-1 and BoHV-1 glycoproteins D amino acid sequences (similarity of 68.8%). Moreover, six cysteine residues are conserved by CpHV-1 gD and the other studied alphaherpesviruses. CpHV-1 gD has a molecular mass similar to BoHV-1 gD and contains complex N-linked oligosaccharides. In contrast to the BoHV-1 gD, CpHV-1 gD is expressed as a late protein. In spite of the observed differences which could influence its biological functions, CpHV-1 gD shares most characteristics with other alphaherpesviruses and especially BoHV-1.
Collapse
Affiliation(s)
- Véronique Keuser
- Department of Infectious and Parasitic Diseases, Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Okazaki K, Fujii S, Takada A, Kida H. The amino-terminal residue of glycoprotein B is critical for neutralization of bovine herpesvirus 1. Virus Res 2005; 115:105-11. [PMID: 16153736 DOI: 10.1016/j.virusres.2005.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 11/26/2022]
Abstract
In order to address the neutralization epitope on bovine herpesvirus 1 (BHV1) glycoprotein B (gB), a panel of monoclonal antibodies (MAbs), a series of truncation forms of the glycoprotein and an MAb-escape mutant were used in this study. Immunocytochemistry on the truncations using MAbs against the glycoprotein revealed that the neutralization epitopes recognized by the MAbs lay between residues 1 and 52 of mature gB. Comparison of the sequences among the mutant, parent, and revertant viruses demonstrated that the amino-terminal residue of mature gB of the escape mutant was changed from Arg to Gln. These findings indicate that the amino-terminal residue of gB is critical for neutralization of BHV1.
Collapse
Affiliation(s)
- Katsunori Okazaki
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Lorne A Babiuk
- Veterinary Infectious Disease Organization Saskatoon, Saskatchewan S7N 5E3, Canada
| | | | | |
Collapse
|
12
|
Yokomizo Y, Watanabe F, Imada Y, Inumaru S, Yanaka T, Tsuji T. Mucosal immunoadjuvant activity of the low toxic recombinant Escherichia coli heat-labile enterotoxin produced by Bacillus brevis for the bacterial subunit or component vaccine in pigs and cattle. Vet Immunol Immunopathol 2002; 87:291-300. [PMID: 12072249 DOI: 10.1016/s0165-2427(02)00055-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A gene encoding the mature Escherichia coli heat-labile enterotoxin (LT) lacking the nick site in the A subunit by deleting tripeptides was introduced in a vector pNH301 and expressed extracellularly as mutant molecule of holotoxin at high levels in Bacilus brevis HPD31-S5 of the host bacterium. The mucosal adjuvant activities of the produced mutant LT (mLT) preparation were studied in pigs and cattle. Intranasal immunization of pigs with the recombinant subunit vaccine of Erysipelothrix rhusiopathiae or the component vaccine of Bordetella bronchiseptica mixed with the mLT resulted in a substantial enhancement of both mucosal and serum-specific antibody levels. The immunized pigs were also protected when challenge-exposed intradermally with a highly virulent E. rhusiopathiae strain or challenge-exposed intranasally with a highly virulent strain of B. bronchiseptica. The mLT intranasally administered with recombinant intimin (an outer membrane adhesin) of E. coli O157:H7 also induced an elevation of IgA-specific antibody in the nasal secretion and saliva of calves as well as an elevation of IgG1-specific antibody level against the intimin in the sera and colostrum of cows. The three kinds tested protein antigens were poorly immunogenic when antigen administered intranasally alone. The mLT intranasally administered at a higher effective dose did not induce local adverse reactions or diarrhea in pigs and cattle. The present study demonstrates that the recombinant mLT produced using the B. brevis expression system might represent promising immunoadjuvants for the potential application of intranasal vaccines directed against infectious diseases in pigs and cattle.
Collapse
Affiliation(s)
- Y Yokomizo
- National Institute of Animal Health, Kannondai 3-1-5, Ibarakiken, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Ioannou XP, Griebel P, Hecker R, Babiuk LA, van Drunen Littel-van den Hurk S. The immunogenicity and protective efficacy of bovine herpesvirus 1 glycoprotein D plus Emulsigen are increased by formulation with CpG oligodeoxynucleotides. J Virol 2002; 76:9002-10. [PMID: 12186884 PMCID: PMC136463 DOI: 10.1128/jvi.76.18.9002-9010.2002] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2002] [Accepted: 06/11/2002] [Indexed: 11/20/2022] Open
Abstract
The immunogenicity and protective efficacy of a bovine herpesvirus 1 (BHV-1) subunit vaccine formulated with Emulsigen (Em) and a synthetic oligodeoxynucleotide containing unmethylated CpG dinucleotides (CpG ODN) was determined in cattle. A truncated, secreted version of BHV-1 glycoprotein D (tgD) formulated with Em and CpG ODN at concentrations of 25, 2.5, or 0.25 mg/dose produced a more balanced immune response, higher levels of virus neutralizing antibodies, and greater protection after BHV-1 challenge compared to tgD adjuvanted with either Em or CpG ODN alone. In contrast, tgD formulated with Em and either 25 mg of a non-CpG ODN or another immunostimulatory compound, dimethyl dioctadecyl ammonium bromide, induced similar immunity and protection compared to tgD formulated with Em alone, a finding which confirms the immunostimulatory effect of ODN to be CpG motif mediated. Our results demonstrate the ability of CpG ODN to induce a strong and balanced immune response in a target species.
Collapse
Affiliation(s)
- X P Ioannou
- Veterinary Infectious Disease Organization, Saskatoon, Saskatchewan, S7N 5E3 Canada
| | | | | | | | | |
Collapse
|
14
|
Abstract
The conjunctiva forms a continuous mucosal surface from the eyelid margin to the cornea, and makes contact with airborne antigens and those on the adjacent eyelid skin and preocular tear film. Conjunctival lymphoid follicles (CLF) undergo hyperplasia upon conjunctival infection by a specific array of pathogens; infection-associated enlargement of draining preauricular lymph nodes suggests that CLF participate in the afferent limb of acquired immune responses for the ocular surface. In this review, we examine the evidence for classification of CLF as part of the common mucosal immune system, and explore the possible therapeutic implications.
Collapse
Affiliation(s)
- James Chodosh
- Molecular Pathogenesis of Eye Infection Research Center, Dean A. McGee Eye Institute, Departments of Ophthalmology and Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | |
Collapse
|
15
|
Gogev S, Vanderheijden N, Lemaire M, Schynts F, D'Offay J, Deprez I, Adam M, Eloit M, Thiry E. Induction of protective immunity to bovine herpesvirus type 1 in cattle by intranasal administration of replication-defective human adenovirus type 5 expressing glycoprotein gC or gD. Vaccine 2002; 20:1451-65. [PMID: 11818166 DOI: 10.1016/s0264-410x(01)00458-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replication-defective human adenoviruses type 5 (HAd5) expressing the bovine herpesvirus type 1 (BHV-1) glycoprotein gC or gD under the control of the human cytomegalovirus immediate-early promoter/enhancer (AdCMVgC or AdCMVgD) or the 5' regulatory region of the human desmin gene (AdDESMgC or AdDESMgD) were generated. A preliminary experiment performed on rabbits showed that the intranasal administration of AdCMV elicited higher levels of BHV-1 neutralizing antibodies than the intramuscular administration of AdDESM. The obtained results allowed to select the replication-defective AdCMVgC and AdCMVgD for further assessment of their potential as a recombinant vaccine in cattle. Calves were injected intranasally twice 3 weeks apart with either AdCMVgC or AdCMVgD or a combination of these two recombinants or a commercially available live vaccine for comparison. The highest BHV-1 neutralizing antibody titres were obtained with AdCMVgD followed by the live vaccine and to a lower extent with the combination of the two recombinants (AdCMVgC+AdCMVgD). Calves were protected against intranasal BHV-1 challenge performed 3 weeks after the second immunization. In view of the obtained results, recombinant HAd5 may be developed as an intranasal vaccine vector in cattle administrated either alone or sequentially with non-human adenovirus-based vectors.
Collapse
Affiliation(s)
- Sacha Gogev
- Laboratory of Virology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Lie'ge, Boulevard de Colonster, 20-B 43 bis, 4000, Sart Tilman-Lie'ge, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Breathnach CC, Yeargan MR, Sheoran AS, Allen GP. The mucosal humoral immune response of the horse to infective challenge and vaccination with equine herpesvirus-1 antigens. Equine Vet J 2001; 33:651-7. [PMID: 11770985 DOI: 10.2746/042516401776249318] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Equine herpesvirus-1 (EHV-1) remains a frequent cause of upper respiratory tract infection and abortion in horses worldwide. However, little is known about the local antibody response elicited in the upper airways of horses following exposure to EHV-1. This study analysed the mucosal humoral immune response of weanling foals following experimental infection with virulent EHV-1, or vaccination with either of 2 commercial vaccines. Twenty weanlings were assigned to 5 groups and were inoculated with, or vaccinated against, EHV-1 following different regimens. Finally, all weanlings were simultaneously challenged intranasally with virulent EHV-1 Army 183 (A183). Nasal wash and serum samples were collected at regular intervals until 13 weeks after final challenge. Nasal washes were assayed for EHV-1-specific equine IgGa, IgGb, IgG(T), IgA, IgM and total virus-specific antibody using an indirect, quantitative ELISA. Total serum antibody responses were also monitored, and clinical signs of EHV-disease were recorded for each individual. Virus-specific IgA dominated the mucosal antibody response elicited in weanlings inoculated with A183, being detectable at up to 3.1 microg/mg total IgA 13 weeks after challenge. Neither inactivated EHV-1 administered i.m., nor attenuated EHV-1 administered intranasally induced detectable mucosal antibodies. EHV-1-specific mucosal antibodies impeded EHV-1 plaque formation in vitro. Such virus-neutralising antibody probably contributes to a reduction of shedding of EHV-1 from the respiratory tract of virus-infected horses.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Animals, Newborn/immunology
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Antigens, Viral/administration & dosage
- Antigens, Viral/immunology
- Enzyme-Linked Immunosorbent Assay/veterinary
- Herpesviridae Infections/immunology
- Herpesviridae Infections/prevention & control
- Herpesviridae Infections/veterinary
- Herpesvirus 1, Equid/immunology
- Herpesvirus 1, Equid/isolation & purification
- Herpesvirus 1, Equid/pathogenicity
- Herpesvirus Vaccines/administration & dosage
- Herpesvirus Vaccines/immunology
- Horse Diseases/immunology
- Horse Diseases/prevention & control
- Horses
- Immunity, Mucosal
- Immunoglobulin A/blood
- Immunoglobulin G/blood
- Immunoglobulin M/blood
- Nasal Mucosa/immunology
- Polymerase Chain Reaction/veterinary
- Time Factors
- Vaccination/methods
- Vaccination/veterinary
- Virulence
Collapse
Affiliation(s)
- C C Breathnach
- M. H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington 40546-0099, USA
| | | | | | | |
Collapse
|
17
|
Rebelatto MC, Guimond P, Bowersock TL, HogenEsch H. Induction of systemic and mucosal immune response in cattle by intranasal administration of pig serum albumin in alginate microparticles. Vet Immunol Immunopathol 2001; 83:93-105. [PMID: 11604164 DOI: 10.1016/s0165-2427(01)00370-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biodegradable microparticles are an efficient mucosal delivery system that protect antigens from the harsh mucosal environment and facilitate their uptake by M cells at the epithelium of mucosal-associated lymphoid tissue. In this study, we determined the systemic and mucosal immune response in calves following intranasal and oral immunization with pig serum albumin (PSA) encapsulated in alginate microparticles. The size of the particles ranged from 1 to 50 microm in diameter, with 95% of the particles being smaller than 5 microm. High levels of anti-PSA IgG1 antibodies were found in the serum, nasal secretions, and to a less extent in saliva of calves vaccinated intranasally, but not orally, with PSA-microparticles. There was no significant increase of PSA-specific IgA. A weak lymphocyte proliferative immune response was observed in peripheral blood mononuclear cells (PBMCs), and few anti-PSA antibody-secreting cells (ASC) were detected in the blood of calves immunized intranasally. The combined systemic and mucosal response observed in intranasally immunized animals may be attributed to the wide variation in the size of the alginate microparticles, with smaller particles translocating to regional lymph nodes and inducing a systemic immune response, and larger particles being retained in the NALT and inducing a mucosal immune response. The procedure presented here may be useful as an intranasal vaccine against respiratory diseases in cattle.
Collapse
Affiliation(s)
- M C Rebelatto
- Department of Veterinary Pathobiology, School of Veterinary Medicine, Purdue University, 1243 VPB Building, West Lafayette, IN 47906, USA.
| | | | | | | |
Collapse
|
18
|
Rebelatto MC, Siger L, Hogenesch H. Kinetics and type of immune response following intranasal and subcutaneous immunisation of calves. Res Vet Sci 2001; 71:9-15. [PMID: 11666140 DOI: 10.1053/rvsc.2001.0477] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protection of animals against respiratory infections has long been known to depend on respiratory mucosal immunity. However, few studies have been reported on the immune response following intranasal (i.n.) immunisation with non-living, soluble antigens. This study determined the kinetics of the humoral and cellular immune responses in calves after i.n. immunisation with Limulus haemocyanin (LH) with cholera toxin adjuvant, or subcutaneous (s.c.) immunisation with LH in incomplete Freund's adjuvant. A proliferative response of peripheral blood mononuclear cells cultured in vitro with LH was observed in animals immunised 7-10 days after i.n. and s.c. immunisations with no significant differences between the two immunised groups. LH -specific antibody was present in the serum of animals immunised s.c. (IgM, IgG1 and IgG2) and i.n. (IgA). Although significant IgA responses were observed, i.n. immunisations in cattle with soluble protein antigens and cholera toxin as an adjuvant did not induce a strong systemic immune response.
Collapse
Affiliation(s)
- M C Rebelatto
- Department of Veterinary Pathobiology, School of Veterinary Medicine, Purdue University, 1243 VPB Bldg., West Lafayette, IN 47906, USA.
| | | | | |
Collapse
|
19
|
Abstract
For many years vaccination of animals has been practiced to prevent infectious diseases using inactivated organisms or modified live organisms. The live vaccines were effective but lacked safety. The vaccines made with inactivated organisms required an adjuvant to induce an immune response that was not as effective as either the clinical disease or live vaccines. An 'ideal' vaccine would induce effective immunity specific for the type of infection, have long duration, require minimal or no boosters, have impeccable safety, would not induce adverse reactions, and be easy to administer. The desire to meet these criteria, and especially safety, has resulted in the development of vaccines that do not depend on the use of the viable disease agent. The emphasis on subunit or inactivated vaccines that meet the desired criteria of a perfect vaccine has resulted in a critical need for better adjuvants and delivery systems. This has resulted in a technological innovation revolution with development of a wide array of different technologies to generate effective vaccines. This review will describe the historical relevance of adjuvants used for parenterally administered inactivated/subunit vaccines as well as describe some of the exciting technological advances including adjuvants (ISCOMS), delivery systems (recombinant vectors, microparticles), and novel approaches (transgenic plants, naked DNA) that are currently being, or will be used in the future, in the search for better, more effective vaccines that meet the current and future needs of veterinary medicine.
Collapse
|
20
|
Cascio KE, Belknap EB, Schultheiss PC, Ames AD, Collins JK. Encephalitis induced by bovine herpesvirus 5 and protection by prior vaccination or infection with bovine herpesvirus 1. J Vet Diagn Invest 1999; 11:134-9. [PMID: 10098684 DOI: 10.1177/104063879901100205] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Calves were intranasally challenged with bovine herpesvirus 5 (BHV5) and followed for the development of viral infection, clinical encephalitis, histologic lesions in the brain, and viral sequences in the trigeminal ganglia. Calves that were previously vaccinated with bovine herepesvirus 1 (BHV1, n = 4) or previously infected with BHV1 (n = 5) or that had not been exposed to either virus (n = 4) were compared. No calf developed signs of encephalitis, although all calves developed an infection as indicated by nasal secretion of BHV5 and seroconversion to the virus. Histologic lesions of encephalitis consisting of multifocal gliosis and perivascular cuffs of lymphocytes were observed in calves not previously exposed to BHV1. BHV5 sequences were amplified from the trigeminal ganglia of calves previously vaccinated and from calves not previously exposed to BHV1; calves sequentially challenged with BHV1 and later BHV5 had exclusively BHV1 sequences in their trigeminal ganglia. Administration of dexamethasone 28 days after BHV5 challenge did not influence clinical disease or histologic lesions in either previously unexposed calves (n = 2) or previously immunized calves (n = 2), although it did cause recrudescence of BHV5, as detected by nasal virus secretion.
Collapse
Affiliation(s)
- K E Cascio
- Department of Microbiology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523, USA
| | | | | | | | | |
Collapse
|
21
|
Zhu X, Wu S, Letchworth GJ. Yeast-secreted bovine herpesvirus type 1 glycoprotein D has authentic conformational structure and immunogenicity. Vaccine 1997; 15:679-88. [PMID: 9178470 DOI: 10.1016/s0264-410x(96)00234-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bovine herpesvirus-1 (BHV-1) glycoprotein D (gD), an envelope glycoprotein, engenders mucosal and systemic immunity protecting cattle from viral infection. Production of gD with authentic immunogenicity is required for a subunit vaccine. We placed the truncated BHV-1 gD gene, lacking its putative transmembrane and cytoplasmic domains, under the control of the methanol-inducible AOX1 promoter in the yeast Pichia pastoris. Truncated BHV-1 gD (tgD) was efficiently secreted into the culture medium as a 68 kDa protein using either the yeast alpha prepro or native BHV-1 gD signal sequences. The yeast-secreted tgD had N-linked glycosylation and appears to have authentic conformational structure and immunogenicity based on the following observations A panel of monoclonal antibodies recognizing five neutralizing epitopes reacted with yeast tgD. Sera from yeast tgD-immunized mice immunoprecipitated native BHV-1 gD and neutralized BHV-1 infection in vitro. Yeast tgD competitively blocked all reaction between native gD and monospecific gD polyclonal sera from cattle. Based on these data, yeast-derived BHV-1 tgD is an excellent candidate for a subunit vaccine.
Collapse
Affiliation(s)
- X Zhu
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
22
|
Haanes EJ, Guimond P, Wardley R. The bovine parainfluenza virus type-3 (BPIV-3) hemagglutinin/neuraminidase glycoprotein expressed in baculovirus protects calves against experimental BPIV-3 challenge. Vaccine 1997; 15:730-8. [PMID: 9178475 DOI: 10.1016/s0264-410x(96)00231-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Despite the availability of numerous vaccine schedules, "shipping fever", an acute bronchopneumonia brought on in part by a complex of bovine respiratory viruses, remains a major source of economic loss in the beef and dairy industries. We are exploring new strategies of bovine vaccine design which we hope may provide more effective and more cost-efficient control of these pathogens. In this report, we examined the possible use of subunit vaccines, using as an example the hemagglutinin/neuraminidase (HN) protein of bovine parainfluenza virus type-3 (BPIV-3) expressed in the baculovirus expression system. We showed that the protein was expressed at high levels, and was modified to a similar, but not identical size as the native HN protein expressed from BPIV-3 infected bovine cells. We further demonstrated antigenicity and biological activity of the expressed HN protein. Finally, we vaccinated colostrum deprived sera-negative calves with the baculo HN recombinant protein and challenged with BPIV-3. Vaccination induced excellent serum neutralizing antibody responses, and surprisingly, good mucosal antibody responses, even though the vaccine was administered parenterally. The vaccinated animals were well protected against challenge.
Collapse
Affiliation(s)
- E J Haanes
- Pharmacia & Upjohn Inc., Kalamazoo, MI 49001, USA
| | | | | |
Collapse
|
23
|
Galeota JA, Flores EF, Kit S, Kit M, Osorio FA. A quantitative study of the efficacy of a deletion mutant bovine herpesvirus-1 differential vaccine in reducing the establishment of latency by wildtype virus. Vaccine 1997; 15:123-8. [PMID: 9066027 DOI: 10.1016/s0264-410x(96)00165-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Using quantitative polymerase chain reaction (PCR) we have studied the latency established by wildtype (WT) bovine herpesvirus-1 (BHV-1) after challenge of cattle that had been vaccinated with a double deletion (gC-/tk-) mutant BHV-1 vaccine. Fourteen animals were vaccinated intramuscularly with 2 ml containing 10(7.4) CCID50 (cell culture infectious dose 50%) of IBRV (NG) dltkdlgC and challenged, along with six unvaccinated control animals, 30 days later with 10(8.2) CCID50 of WT BHV-1 (Cooper). The ability of this vaccine to prevent acute clinical BHV-1 infection after this challenge has been previously reported. Sixty days after challenge, eight of the vaccinates and the six control animals were euthanitized and the trigeminal ganglia (TG) examined for the amount of WT BHV-1 DNA by an internal standard quantitative PCR. The quantitative protocol that we used is based on co-amplification of BHV-1 gC specific sequences (present in WT BHV-1 but absent in the vaccine strain) and sequences from the bovine growth hormone (BGH) gene, which is used as an internal standard. The TG of the eight vaccinates contained BHV-1 WT DNA, but in a statistically significantly lower amount than the unvaccinated controls. These results are significant from the standpoint that, to our knowledge, this is the first report of a systematic quantitative approach to the study of the effect of BHV-1 vaccines on latency. This technique could be used to measure and compare the efficiency of various BHV-1 vaccines in preventing or diminishing latency, which is a significant factor for the perpetuation of BHV-1 in cattle populations.
Collapse
Affiliation(s)
- J A Galeota
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln 68583-0905, USA
| | | | | | | | | |
Collapse
|
24
|
Saif LJ. Mucosal immunity: an overview and studies of enteric and respiratory coronavirus infections in a swine model of enteric disease. Vet Immunol Immunopathol 1996; 54:163-9. [PMID: 8988861 PMCID: PMC7119851 DOI: 10.1016/s0165-2427(96)05702-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Based on the tenet of a common mucosal immune system, antigenic stimulation at one mucosal site results in the distribution of antigen-specific IgA precursor cells to distant mucosal sites. However, recent studies suggest that functional compartmentalization and limited reciprocity may exist within some components of the common mucosal immune system. Although oral immunization is often very effective in inducing immunity to respiratory pathogens, the converse (respiratory immunization to prevent enteric diseases) may not be as effective. To address this question and to study interactions between the bronchus-associated (BALT) and gut-associated (GALT) lymphoid tissues related to protective immunity, we used as a model two antigenically related porcine coronaviruses which replicate primarily in the intestine (transmissible gastroenteritis virus, TGEV) or respiratory tract (porcine respiratory coronavirus, PRCV). The tissue distribution and magnitude of the antibody secreting cell (ASC) responses (measured by ELISPOT) and cell-mediated immune responses (measured by lymphoproliferative assays, LPA) coincided with the viral tissue tropisms. Immunization via GALT (gut infection with TGEV) elicited high numbers of IgA ASC and high LPA responses in GALT (gut lamina propria, LP or mesenteric lymph nodes, MLN), but lower responses in BALT (bronchial lymph nodes, BLN) and induced complete protection against enteric TGEV challenge. In contrast immunization via BALT (respiratory infection with PRCV) elicited systemic type responses (high numbers of IgG ASC in the BLN), but few ASC and low LPA responses in the gut LP or MLN and induced only partial protection against enteric TGEV challenge. Thus administration of vaccines intranasally may not be optimally effective for inducing intestinal immunity in contrast to the reported efficacy of oral vaccines for inducing respiratory immunity.
Collapse
MESH Headings
- Administration, Intranasal
- Administration, Oral
- Animals
- Coronavirus/pathogenicity
- Coronavirus Infections/etiology
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Disease Models, Animal
- Gastroenteritis, Transmissible, of Swine/etiology
- Gastroenteritis, Transmissible, of Swine/immunology
- Gastroenteritis, Transmissible, of Swine/virology
- Immunity, Mucosal/immunology
- Respiratory Tract Diseases/virology
- Swine
- Transmissible gastroenteritis virus/pathogenicity
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- L J Saif
- Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, Ohio State University, Wooster 44691, USA
| |
Collapse
|
25
|
Salt JS, Mulcahy G, Kitching RP. Isotype-specific antibody responses to foot-and-mouth disease virus in sera and secretions of "carrier' and "non-carrier' cattle. Epidemiol Infect 1996; 117:349-60. [PMID: 8870633 PMCID: PMC2271708 DOI: 10.1017/s0950268800001539] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Isotype-specific antibody responses to foot-and-mouth disease virus (FMDV) were measured in the sera and upper respiratory tract secretions of vaccinated and susceptible cattle challenged with FMDV by direct contact or by intranasal inoculation. A comparison was made between cattle that eliminated FMDV and those that developed and maintained a persistent infection. Serological and mucosal antibody responses were detected in all animals after challenge. IgA and IgM were detected before the development of IgG1 and IgG2 responses. IgM was not detected in vaccinated cattle. Challenge with FMDV elicited a prolonged biphasic secretory antibody response in FMDV "carrier' animals only. The response was detected as FMDV-specific IgA in both mucosal secretions and serum samples, which gained statistical significance (P < 0.05) by 5 weeks after challenge. This observation could represent the basis of a test to differentiate vaccinated and/or recovered convalescent cattle from FMDV "carriers'.
Collapse
Affiliation(s)
- J S Salt
- Institute for Animal Health, Pirbright Laboratory, Surrey, UK
| | | | | |
Collapse
|
26
|
Li Y, Van Drunen Littel-Van den Hurk S, Liang X, Babiuk LA. Production and characterization of bovine herpesvirus 1 glycoprotein B ectodomain derivatives in an hsp70A gene promoter-based expression system. Arch Virol 1996; 141:2019-29. [PMID: 8920833 DOI: 10.1007/bf01718212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Different derivatives of bovine herpesvirus 1 (BHV-1) glycoprotein B (gB) ectodomain were expressed in a novel heat-shock expression system. The putative ectodomain, gBt, and the N-terminal subunit, gBb, were of the expected molecular weight and were secreted. Their production were heat-inducible and the purified proteins were able to elicit antibody responses in mice of a comparable level as induced by authentic gB. The truncated C-terminal subunit, gBct, was retained in the endoplasmic reticulum. Our studies suggest that the gBb subunit may play a major role in constituting the overall configuration of gB and is required for the intracellular transport of gB.
Collapse
Affiliation(s)
- Y Li
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
27
|
Takada A, Kida H. Protective immune response of chickens against Newcastle disease, induced by the intranasal vaccination with inactivated virus. Vet Microbiol 1996; 50:17-25. [PMID: 8810004 DOI: 10.1016/0378-1135(96)00004-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Intranasal vaccination of chickens with inactivated Newcastle disease virus (NDV) induced both local and systemic antibody responses, resulting in protection against intranasal challenge with a lethal dose of a virulent NDV strain. The immune response was enhanced by the use of cholera toxin B subunit (CTB) as an adjuvant and only small amounts of the challenge virus were recovered from the birds vaccinated together with CTB. On the other hand, subcutaneous vaccination with the same antigen induced only a serum antibody response in chickens, allowing the challenge virus to replicate in the sinus. The present results indicate that secretory antibodies induced on the respiratory mucosal surface by intranasal vaccination with inactivated NDV protected chickens from lethal infection by inhibiting virus replication at the portal of entry for the virus.
Collapse
Affiliation(s)
- A Takada
- Department of Disease Control, Hokkaido University Graduate School of Veterinary Medicine, Sapporo, Japan
| | | |
Collapse
|
28
|
Takada A, Kida H. Induction of protective antibody responses against pseudorabies virus by intranasal vaccination with glycoprotein B in mice. Arch Virol 1995; 140:1629-35. [PMID: 7487494 DOI: 10.1007/bf01322536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Intranasal vaccination of mice with glycoprotein B (gB) of pseudorabies virus (PRV) induced specific IgA and IgG antibody responses in the secretion of the respiratory tract, resulting in protection of the animals against intranasal challenge with a lethal dose of virulent PRV. The immune response was enhanced by the use of cholera toxin B subunit as an adjuvant. The present results indicate that local vaccination with gB is a promising strategy to confer protective immunity on animals against PRV infection by inducing secretory antibodies on their mucosal surfaces where the primary replication of the virus occurs.
Collapse
Affiliation(s)
- A Takada
- Department of Veterinary Hygiene and Microbiology, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
29
|
Madic J, Magdalena J, Quak J, van Oirschot JT. Isotype-specific antibody responses in sera and mucosal secretions of calves experimentally infected with bovine herpesvirus 1. Vet Immunol Immunopathol 1995; 46:267-83. [PMID: 7502487 DOI: 10.1016/0165-2427(94)05363-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Enzyme-linked immunosorbent assays (ELISAs) were developed for studying the kinetics of isotype-specific antibody responses in sera, nasal, ocular and genital secretions of calves infected with bovine herpesvirus 1 (BHV1). The BHV1-specific IgM and IgA antibodies were measured in antibody capture assays, and the IgG1 and IgG2 antibodies in indirect double antibody sandwich assays. The ELISAs were shown to be isotype-specific, sensitive and reproducible. Antibodies of all isotypes were able to neutralise the virus in vitro. Calves were infected intranasally with one of seven BHV1 field strains. Nine to 13 days after infection BHV1-specific antibodies of the IgM isotype appeared in serum, nasal and ocular secretions and these were detectable until four weeks after infection. The first IgA antibodies were detected a few days later than the IgM antibodies. In serum the IgA antibodies were no longer detectable after 3 weeks, but these did persist for prolonged periods in mucosal secretions. The calves developed a uniform IgG1 response from 13 days after infection, but the IgG2 response was quite variable; both persisted until the end of the experiment. No antibody responses were detected in genital secretions. There were no marked differences in isotype responses between calves infected with different strains of BHV1.
Collapse
Affiliation(s)
- J Madic
- Institute for Animal Science and Health, Department of Virology, Lelystad, Netherlands
| | | | | | | |
Collapse
|
30
|
Abdelmagid OY, Minocha HC, Collins JK, Chowdhury SI. Fine mapping of bovine herpesvirus-1 (BHV-1) glycoprotein D (gD) neutralizing epitopes by type-specific monoclonal antibodies and sequence comparison with BHV-5 gD. Virology 1995; 206:242-53. [PMID: 7530392 DOI: 10.1016/s0042-6822(95)80039-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Overlapping fragments of the bovine herpesvirus-1 (BHV-1) glycoprotein (gD) ORF were expressed as trpE-gD fusion proteins in Escherichia coli to map linear neutralizing epitopes defined by BHV-1-specific MAbs. The MAbs 3402 and R54 reacted with the expressed fragments on Western blots that located the epitopes between the amino acids 52-126 and 165-216, respectively, of gD. Bovine covalescent sera with high neutralizing antibody titers against BHV-1 reacted with these bacterially expressed proteins containing both of the epitopes. Alignment of these sequences from BHV-1 with the corresponding region of the BHV-5 gD ORF sequences (reported here) identified several amino acid mismatches. Since the MAbs 3402 and R54 neutralize the BHV-1 and not BHV-5, it was presumed that these were important amino acids in defining the epitope. To further localize the neutralizing epitopes, synthetic peptides corresponding to these regions in the BHV-1 gD ORF were tested for their capacity to block monoclonal antibody neutralization of BHV-1 infectivity. The peptides encompassing amino acids 92-106 (3402 epitope) and amino acids 202-213 (R54 epitope) of the BHV-1 gD competed with BHV-1 for the binding by MAbs 3402 and R54, respectively, in a dose-dependent manner. Antisera produced in rabbits to these peptides conjugated to a carrier reacted strongly with a 30-kDa protein by Western blotting and had neutralizing antibody titers against BHV-1.
Collapse
Affiliation(s)
- O Y Abdelmagid
- Department of Pathology and Microbiology, College of Veterinary Medicine, Kansas State University, Manhattan 66506
| | | | | | | |
Collapse
|
31
|
Tikoo SK, Campos M, Babiuk LA. Bovine herpesvirus 1 (BHV-1): biology, pathogenesis, and control. Adv Virus Res 1995; 45:191-223. [PMID: 7793325 DOI: 10.1016/s0065-3527(08)60061-5] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S K Tikoo
- Veterinary Infectious Disease Organization, University of Saskatchewan, Canada
| | | | | |
Collapse
|
32
|
Dolby CA, Hannant D, Mumford JA. Response of ponies to adjuvanted EHV-1 whole virus vaccine and challenge with virus of the homologous strain. THE BRITISH VETERINARY JOURNAL 1995; 151:27-37. [PMID: 7735868 DOI: 10.1016/s0007-1935(05)80061-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Five yearling ponies were vaccinated with inactivated Equid herpesvirus type 1 (EHV-1) in Freund's complete adjuvant as a double emulsion and revaccinated 6 weeks later with EHV-1 in Freund's incomplete adjuvant. These ponies and three age-matched controls were challenged intra-nasally after a further 6 weeks with homologous live virus and monitored clinically, biologically and serologically. After challenge, clinical signs were mild in both groups. No cell-associated viraemias were detected in vaccinated ponies. Vaccination induced high levels of complement-fixing (CF) and virus-neutralizing (VN) antibody, and elicited a response to all major viral glycoproteins as shown by western blot analysis.
Collapse
Affiliation(s)
- C A Dolby
- Department of Infectious Diseases, Animal Health Trust, Newmarket, Suffolk, UK
| | | | | |
Collapse
|
33
|
Kydd JH, Smith KC, Hannant D, Livesay GJ, Mumford JA. Distribution of equid herpesvirus-1 (EHV-1) in the respiratory tract of ponies: implications for vaccination strategies. Equine Vet J 1994; 26:466-9. [PMID: 7889920 DOI: 10.1111/j.2042-3306.1994.tb04051.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Twelve adult ponies and 2 conventional foals were exposed to 10(6.6) TCID50 of Equid herpesvirus-1 (EHV-1), strain Ab4 and samples of respiratory tract tissues were recovered. Infectious virus in tissue homogenates was detected using susceptible cell monolayers and expression of viral antigens was monitored using indirect immunoperoxidase histochemistry of paraffin sections. The results illustrated the rapid dissemination of EHV-1 throughout the respiratory tract, with early replication in the lungs one day after exposure. Endothelial cell infection was prominent in all areas of the nasopharynx by Day 4 emphasising the role of endotheliotropism and viraemia in dissemination of this virus to sites of secondary replication. Clinical disease in the adult ponies was mild.
Collapse
Affiliation(s)
- J H Kydd
- Department of Infectious Diseases, Animal Health Trust, Newmarket, UK
| | | | | | | | | |
Collapse
|
34
|
van Drunen Littel-van den Hurk S, Van Donkersgoed J, Kowalski J, van den Hurk JV, Harland R, Babiuk LA, Zamb TJ. A subunit gIV vaccine, produced by transfected mammalian cells in culture, induces mucosal immunity against bovine herpesvirus-1 in cattle. Vaccine 1994; 12:1295-302. [PMID: 7856294 DOI: 10.1016/s0264-410x(94)80055-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A truncated version of bovine herpesvirus-1 (BHV-1) glycoprotein IV (tgIV) was produced in a novel, non-destructive expression system based upon regulation of gene expression by the bovine heat-shock protein 70A (hsp70) gene promoter in Madin Darby bovine kidney (MDBK) cells. In this system, up to 20 micrograms ml-1 of secreted tgIV, which is equivalent to the yield from 4 x 10(6) cells, was produced daily over a period of up to 18 days. Different doses of tgIV were injected intramuscularly into seronegative calves. Virus-neutralizing antibodies were induced by all doses of tgIV, both in the serum and in the nasal superficial mucosa. However, the low dose (2.3 micrograms) induced significantly (p < 0.05) lower antibody titres than the medium (7 micrograms) and high (21 micrograms) doses. The medium and high doses of tgIV conferred protection from BHV-1 infection, as demonstrated by a significant (p < 0.05) reduction in clinical signs of respiratory disease and virus shedding in the nasal secretions postchallenge. However, the 2.3 micrograms group, although partially protected, was not significantly (p > 0.05) different from the placebo group. This study demonstrated the potential of an intramuscularly administered tgIV subunit vaccine to induce mucosal immunity to BHV-1 using an economic protein production system and an acceptable vaccine formulation. In addition, a strong correlation was observed between neutralizing antibodies in the serum and nasal superficial mucosa, virus shedding and clinical disease. Thus, serum neutralizing antibody levels in tgIV-immunized animals may be a good prognosticator of protection from BHV-1 infection and disease.
Collapse
|
35
|
Gao Y, Leary TP, Eskra L, Splitter GA. Truncated bovine herpesvirus-1 glycoprotein I (gpI) initiates a protective local immune response in its natural host. Vaccine 1994; 12:145-52. [PMID: 8147097 DOI: 10.1016/0264-410x(94)90053-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Current modified live and killed BHV-1 vaccines have not reduced the incidence of bovine herpesvirus-1 (BHV-1), the principal viral agent in bovine respiratory disease complex. The requirement for production of viral proteins for immune study has resulted in the establishment of a cell line which constitutively expresses BHV-1 gpI. A truncated BHV-1 envelope gpI protein was secreted into the culture supernatant of D17 cells transfected with the gpI gene lacking the coding sequence for the transmembrane region (TMR). The transmembrane domain is essential for gpI stability in the envelope, virus infectivity and, most probably, natural killer cell recognition; however, we have tested the possibility that this domain is not required for inducing an adaptive, protective immune response. Immunization of calves with this truncated gpI protein induced gpI-specific nasal IgA, IgG1, serum neutralizing antibodies and gpI-specific peripheral lymphocyte proliferation. All immunized calves were protected from clinical disease after BHV-1 challenge. Further, nine of ten immunized calves had no intranasal viral shedding. One animal shed a minimal amount of virus following challenge, but produced no antibodies to other viral proteins as evidenced by immunoprecipitation of 35S-labelled viral proteins by sera from virus-challenged animals. This study represents the first evidence that a recombinant truncated gpI subunit vaccine can confer local mucosal immunity and establish a strong protective barrier against disease caused by BHV-1 in the natural host. Also, these data demonstrate the feasibility of preventing initial viral replication in the host and distinguishing vaccinated from wild-type virus-infected animals.
Collapse
Affiliation(s)
- Y Gao
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
36
|
van Drunen Littel-van den Hurk S, Tikoo SK, Liang X, Babiuk LA. Bovine herpesvirus-1 vaccines. Immunol Cell Biol 1993; 71 ( Pt 5):405-20. [PMID: 8270270 DOI: 10.1038/icb.1993.47] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Vaccination has been important in controlling a wide variety of viral and bacterial infections of man and animals. Vaccines to herpesvirus infection of cattle are no exception. The present review describes the different types of conventional vaccines that have been used to date and furthermore describes the novel approaches which are presently being implemented to develop more effective vaccines. These include subunit vaccines as well as genetically engineered modified live deletion mutants. Both these novel vaccine approaches appear to be more efficacious than conventional vaccines. Furthermore, these vaccines provide an additional dimension for control and eradication of infection by providing an opportunity to develop companion diagnostic tests to differentiate infected animals from vaccinated animals. This review summarizes these developments as well as present knowledge regarding the important host defence mechanisms required for preventing infection and aiding recovery from infection.
Collapse
|
37
|
Wiedmann M, Brandon R, Wagner P, Dubovi EJ, Batt CA. Detection of bovine herpesvirus-1 in bovine semen by a nested PCR assay. J Virol Methods 1993; 44:129-39. [PMID: 8227276 DOI: 10.1016/0166-0934(93)90015-j] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A nested PCR assay targeting a portion of the glycoprotein IV gene has been developed for the detection of Bovine Herpesvirus-1 (BHV-1). Rapid and sensitive detection of the PCR products was achieved using a nonisotopic reverse dot-blot format with a visible color readout. Cross-reactivity of this PCR assay was not observed with the closely related BHV-3. The sensitivity of this assay when tested on a supernatant from a BHV-1 cell culture was approximately 4.5 TCID50 (50% tissue culture infectious dose). A procedure using the chelating resin Chelex 100 was used to prepare viral DNA from artificially inoculated samples of extended and raw semen for use in the PCR assay. In combination with nested PCR and reverse dot blot, this method allowed the detection of 5 x 10(3) TCID per 0.5 ml of semen, which is comparable to the detection in the Cornell Semen Test. The whole procedure can be completed in approximately 8 h. This assay has therefore the potential of replacing the currently available yet time consuming and costly detection methods for BHV-1 in bovine semen.
Collapse
Affiliation(s)
- M Wiedmann
- Department of Food Science Cornell University Ithaca, NY 14853
| | | | | | | | | |
Collapse
|