1
|
Pushchin I, Kondrashev S, Kamenev Y. Retinal ganglion cell topography and spatial resolution in the Japanese smelt Hypomesus nipponensis (McAllister, 1963). J Anat 2020; 238:905-916. [PMID: 33078423 DOI: 10.1111/joa.13346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/28/2022] Open
Abstract
Vision plays a crucial role in the life of the vast majority of vertebrate species. The spatial arrangement of retinal ganglion cells has been reported to be related to a species' visual behavior. There are many studies focusing on the ganglion cell topography in bony fish species. However, there are still large gaps in our knowledge on the subject. We studied the topography of retinal ganglion cells (GCs) in the Japanese smelt Hypomesus nipponensis, a highly visual teleostean fish with a complex life cycle. DAPI labeling was used to visualize cell nuclei in the ganglion cell and inner plexiform layers. The ganglion cell layer was relatively thin (about 6-8 μm), even in areas of increased cell density (area retinae temporalis), and was normally composed of a single layer of cells. In all retinal regions, rare cells occurred in the inner plexiform layer. Nissl-stained retinae were used to estimate the proportion of displaced amacrine cells and glia in different retinal regions. In all retinal regions, about 84.5% of cells in the GC layer were found to be ganglion cells. The density of GCs varied across the retina in a regular way. It was minimum (3990 and 2380 cells/mm2 in the smaller and larger fish, respectively) in the dorsal and ventral periphery. It gradually increased centripetally and reached a maximum of 14,275 and 10,960 cells/mm2 (in the smaller and larger fish, respectively) in the temporal retina, where a pronounced area retinae temporalis was detected. The total number of GCs varied from 177 × 103 (smaller fish) to 212 × 103 cells (larger fish). The theoretical anatomical spatial resolution (the anatomical estimate of the upper limit of visual acuity calculated from the density of GCs and eye geometry and expressed in cycles per degree) was minimum in the ventral periphery (smaller fish, 1.46 cpd; larger fish, 1.26 cpd) and maximum in area retinae temporalis (smaller fish, 2.83 cpd; larger fish, 2.75 cpd). The relatively high density of GCs and the presence of area retinae temporalis in the Japanese smelt are consistent with its highly visual behavior. The present findings contribute to our understanding of the factors affecting the topography of retinal ganglion cells and visual acuity in fish.
Collapse
Affiliation(s)
- Igor Pushchin
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Sergei Kondrashev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Yaroslav Kamenev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
2
|
Bertolesi GE, Hehr CL, McFarlane S. Wiring the retinal circuits activated by light during early development. Neural Dev 2014; 9:3. [PMID: 24521229 PMCID: PMC3937046 DOI: 10.1186/1749-8104-9-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/23/2014] [Indexed: 01/26/2023] Open
Abstract
Background Light information is sorted by neuronal circuits to generate image-forming (IF) (interpretation and tracking of visual objects and patterns) and non-image-forming (NIF) tasks. Among the NIF tasks, photic entrainment of circadian rhythms, the pupillary light reflex, and sleep are all associated with physiological responses, mediated mainly by a small group of melanopsin-expressing retinal ganglion cells (mRGCs). Using Xenopus laevis as a model system, and analyzing the c-fos expression induced by light as a surrogate marker of neural activity, we aimed to establish the developmental time at which the cells participating in both systems come on-line in the retina. Results We found that the peripheral retina contains 80% of the two melanopsin-expressing cell types we identified in Xenopus: melanopsin-expressing horizontal cells (mHCs; opn4m+/opn4x+/Prox1+) and mRGCs (2.7% of the total RGCs; opn4m+/opn4x+/Pax6+/Isl1), in a ratio of 6:1. Only mRGCs induced c-fos expression in response to light. Dopaminergic (tyrosine hydroxylase-positive; TH+) amacrine cells (ACs) may be part of the melanopsin-mediated circuit, as shown by preferential c-fos induction by blue light. In the central retina, two cell types in the inner nuclear layer (INL) showed light-mediated induction of c-fos expression [(On-bipolar cells (Otx2+/Isl1+), and a sub-population of ACs (Pax6−/Isl1−)], as well as two RGC sub-populations (Isl1+/Pax6+ and Isl1+/Pax6−). Melanopsin and opsin expression turned on a day before the point at which c-fos expression could first be activated by light (Stage 37/38), in cells of both the classic vision circuit, and those that participate in the retinal component of the NIF circuit. Key to the classic vision circuit is that the component cells engage from the beginning as functional ‘unit circuits’ of two to three cells in the INL for every RGC, with subsequent growth of the vision circuit occurring by the wiring in of more units. Conclusions We identified melanopsin-expressing cells and specific cell types in the INL and the RGC layer which induce c-fos expression in response to light, and we determined the developmental time when they become active. We suggest an initial formulation of retinal circuits corresponding to the classic vision pathway and melanopsin-mediated circuits to which they may contribute.
Collapse
Affiliation(s)
| | | | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr, NW, Health Sciences Building, Room 2164, Calgary AB T2N4N1, Canada.
| |
Collapse
|
3
|
Servili A, Herrera-Pérez P, Kah O, Muñoz-Cueto JA. The retina is a target for GnRH-3 system in the European sea bass, Dicentrarchus labrax. Gen Comp Endocrinol 2012; 175:398-406. [PMID: 22138555 DOI: 10.1016/j.ygcen.2011.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/21/2011] [Accepted: 11/11/2011] [Indexed: 12/11/2022]
Abstract
The European sea bass expresses three GnRH (Gonadotrophin Releasing Hormone) forms that exert pleiotropic actions via several classes of receptors. The GnRH-1 form is responsible for the endogenous regulation of gonadotrophin release by the pituitary gland but the role of GnRH-2 and GnRH-3 remains unclear in fish. In a previous study performed in sea bass, we have provided evidence of direct links between the GnRH-2 cells and the pineal organ and demonstrated a functional role for GnRH-2 in the modulation of the secretory activity of this photoreceptive organ. In this study, we have investigated the possible relationship between the GnRH-3 system and the retina in the same species. Thus, using a biotinylated dextran-amine tract-tracing method, we reveal the presence of retinopetal cells in the terminal nerve of sea bass, a region that also contains GnRH-3-immunopositive cells. Moreover, GnRH-3-immunoreactive fibers were observed at the boundary between the inner nuclear and the inner plexiform layers, and also within the ganglion cell layer. These results strongly suggest that the GnRH-3 neurons located in the terminal nerve area represent the source of GnRH-3 innervation in the retina of this species. In order to clarify whether the retina is a target for GnRH, the expression pattern of GnRH receptors (dlGnRHR) was also analyzed by RT-PCR and in situ hybridization. RT-PCR revealed the retinal expression of dlGnRHR-II-2b, -1a, -1b and -1c, while in situ hybridization only showed positive signals for the receptors dlGnRHR-II-2b and -1a. Finally, double-immunohistochemistry showed that GnRH-3 projections reaching the sea bass retina end in close proximity to tyrosine hydroxylase (dopaminergic) cells, which also expressed the dlGnRHR-II-2b receptor subtype. Taken together, these results suggest an important role for GnRH-3 in the modulation of dopaminergic cell activities and retinal functions in sea bass.
Collapse
Affiliation(s)
- Arianna Servili
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEIMAR), E-11510 Puerto Real, Spain
| | | | | | | |
Collapse
|
4
|
Immunohistochemical localization of calbindin D28k and calretinin in the retina of two lungfishes, Protopterus dolloi and Neoceratodus forsteri: Colocalization with choline acetyltransferase and tyrosine hydroxylase. Brain Res 2011; 1368:28-43. [DOI: 10.1016/j.brainres.2010.10.098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/26/2010] [Accepted: 10/26/2010] [Indexed: 01/25/2023]
|
5
|
Cell differentiation in the retina of an epibenthonic teleost, the Tench (Tinca tinca, Linneo 1758). Exp Eye Res 2009; 89:398-415. [DOI: 10.1016/j.exer.2009.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 04/13/2009] [Indexed: 11/17/2022]
|
6
|
Abstract
The active component of the marijuana plant Cannabis sativa, Delta9-tetrahydrocannabinol (THC), produces numerous beneficial effects, including analgesia, appetite stimulation and nausea reduction, in addition to its psychotropic effects. THC mimics the action of endogenous fatty acid derivatives, referred to as endocannabinoids. The effects of THC and the endocannabinoids are mediated largely by metabotropic receptors that are distributed throughout the nervous and peripheral organ systems. There is great interest in endocannabinoids for their role in neuroplasticity as well as for therapeutic use in numerous conditions, including pain, stroke, cancer, obesity, osteoporosis, fertility, neurodegenerative diseases, multiple sclerosis, glaucoma and inflammatory diseases, among others. However, there has been relatively far less research on this topic in the eye and retina compared with the brain and other organ systems. The purpose of this review is to introduce the "cannabinergic" field to the retinal community. All of the fundamental works on cannabinoids have been performed in non-retinal preparations, necessitating extensive dependence on this literature for background. Happily, the retinal cannabinoid system has much in common with other regions of the central nervous system. For example, there is general agreement that cannabinoids suppress dopamine release and presynaptically reduce transmitter release from cones and bipolar cells. How these effects relate to light and dark adaptations, receptive field formation, temporal properties of ganglion cells or visual perception are unknown. The presence of multiple endocannabinoids, degradative enzymes with their bioactive metabolites, and receptors provides a broad spectrum of opportunities for basic research and to identify targets for therapeutic application to retinal diseases.
Collapse
Affiliation(s)
- Stephen Yazulla
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, United States.
| |
Collapse
|
7
|
Morphogenesis in the retina of a slow-developing teleost: emergence of the GABAergic system in relation to cell proliferation and differentiation. Brain Res 2007; 1194:21-7. [PMID: 18178176 DOI: 10.1016/j.brainres.2007.11.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 11/16/2007] [Accepted: 11/26/2007] [Indexed: 11/22/2022]
Abstract
Gamma-aminobutyric acid (GABA) has been implicated in cell proliferation and differentiation during development. In the present study, immunohistochemical techniques were used to investigate the development of the GABAergic system in the retina of the trout and its relation to markers of differentiation [calretinin (CR), and tyrosine hydroxylase (TH)]. The expression of Pax6, an eye-patterning protein involved in the proliferation and emergence of specific retinal cell types, was also studied. Retinal layering was observed to begin centrally in prehatching embryos, as the first GABAergic cells appeared in the ganglion cell layer (GCL) and inner part of the inner nuclear layer (INL). At hatching, GABAergic cells were also observed in the horizontal cell layer (HCL). In alevins, GABAergic cells and processes spread laterally following retinal growth although they did not invade neuroblastic retinal regions. CR- and Pax6-immunoreactive (ir) cells were first seen in the GCL and the inner part of the INL, whereas sparse TH-ir cells appeared in the INL. In juveniles, GABAergic cells were observed in the GCL, inner part of the INL and HCL, whereas CR-ir cells spread to the outer part of the INL and HCL. A subset of CR-ir in the GCL and of Pax6-ir cells in the GCL and INL showed colocalization with GABAergic markers. This study provides further comparative knowledge about the development of GABAergic system of the retina in teleosts and shows differences and similarities with that reported in fast-developing species such as zebrafish, in which retinal expression of GABA was transient in some populations.
Collapse
|
8
|
Villar-Cerviño V, Abalo XM, Villar-Cheda B, Meléndez-Ferro M, Pérez-Costas E, Holstein GR, Martinelli GP, Rodicio MC, Anadón R. Presence of glutamate, glycine, and gamma-aminobutyric acid in the retina of the larval sea lamprey: comparative immunohistochemical study of classical neurotransmitters in larval and postmetamorphic retinas. J Comp Neurol 2007; 499:810-27. [PMID: 17048230 DOI: 10.1002/cne.21136] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neurochemistry of the retina of the larval and postmetamorphic sea lamprey was studied via immunocytochemistry using antibodies directed against the major candidate neurotransmitters [glutamate, glycine, gamma-aminobutyric acid (GABA), aspartate, dopamine, serotonin] and the neurotransmitter-synthesizing enzyme tyrosine hydroxylase. Immunoreactivity to rod opsin and calretinin was also used to distinguish some retinal cells. Two retinal regions are present in larvae: the central retina, with opsin-immunoreactive photoreceptors, and the lateral retina, which lacks photoreceptors and is mainly neuroblastic. We observed calretinin-immunostained ganglion cells in both retinal regions; immunolabeled bipolar cells were detected in the central retina only. Glutamate immunoreactivity was present in photoreceptors, ganglion cells, and bipolar cells. Faint to moderate glycine immunostaining was observed in photoreceptors and some cells of the ganglion cell/inner plexiform layer. No GABA-immunolabeled perikarya were observed. GABA-immunoreactive centrifugal fibers were present in the central and lateral retina. These centrifugal fibers contacted glutamate-immunostained ganglion cells. No aspartate, serotonin, dopamine, or TH immunoreactivity was observed in larvae, whereas these molecules, as well as GABA, glycine, and glutamate, were detected in neurons of the retina of recently transformed lamprey. Immunoreactivity to GABA was observed in outer horizontal cells, some bipolar cells, and numerous amacrine cells, whereas immunoreactivity to glycine was found in amacrine cells and interplexiform cells. Dopamine and serotonin immunoreactivity was found in scattered amacrine cells. Amacrine and horizontal cells did not express classical neurotransmitters (with the possible exception of glycine) during larval life, so transmitter-expressing cells of the larval retina appear to participate only in the vertical processing pathway.
Collapse
Affiliation(s)
- Verona Villar-Cerviño
- Departamento de Biología Celular y Ecología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Arenzana FJ, Arévalo R, Sánchez-González R, Clemente D, Aijón J, Porteros A. Tyrosine hydroxylase immunoreactivity in the developing visual pathway of the zebrafish. ACTA ACUST UNITED AC 2006; 211:323-34. [PMID: 16506065 DOI: 10.1007/s00429-006-0084-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2006] [Indexed: 02/04/2023]
Abstract
We analyzed the distribution of tyrosine hydroxylase immunoreactivity in the central nervous zones involved in the processing of visual information during zebrafish ontogeny, employing a segmental approach. In the retina, we observed immunolabeled cells in the inner nuclear layer after hatching. From the juvenile stages onwards, some of these cells presented two immunolabeled processes towards the inner and outer plexiform layers of the retina, which are identified as interplexiform cells. In the adult zebrafish retina, we have identified two cellular types displaying immunoreactivity for tyrosine hydroxylase: interplexiform and amacrine cells. In the optic tectum, derived from the mesencephalon, no immunolabeled neurons were observed in any of the stages analyzed. The periventricular gray zone and the superficial white zone display immunostained neuropile from the end of fry life onwards. At the 30-day postfertilization, the tyrosine hydroxylase immunoreactive neuropile in the optic tectum presents two bands located within the retinorecipient strata and deeper strata, respectively. All diencephalic regions, which receive direct retinal inputs, show immunolabeled cells in the preoptic area, in the pretectum, and in the ventral thalamus from embryonic stages onwards. During the fry development, the immunolabeled neurons can be observed in the periventricular pretectum from 15-days postfertilization and in both the ventrolateral thalamic nucleus and suprachiasmatic nucleus from 30-days postfertilization. The transient expression of tyrosine hydroxylase is observed in fibers of the optic tract during fry and juvenile development. The existence of immunolabeled neuropile in the zebrafish retinorecipient strata could be related to the turnover of retinotectal projections.
Collapse
Affiliation(s)
- F J Arenzana
- Dpto. de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca. Facultad de Medicina, Campus Miguel de Unamuno, Avda. Alfonso X el Sabio, 1., E-37007 , Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Zilberman-Peled B, Ron B, Gross A, Finberg JPM, Gothilf Y. A possible new role for fish retinal serotonin-N-acetyltransferase-1 (AANAT1): Dopamine metabolism. Brain Res 2006; 1073-1074:220-8. [PMID: 16427617 DOI: 10.1016/j.brainres.2005.12.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 12/08/2005] [Accepted: 12/08/2005] [Indexed: 11/29/2022]
Abstract
Serotonin-N-acetyltransferase (arylalkylamine-N-acetyltransferase, AANAT) is the key enzyme in the generation of melatonin rhythms in the pineal gland and retinal photoreceptors. Rhythmic AANAT activity drives rhythmic melatonin production in these tissues. Two AANATs, AANAT1 and AANAT2, are present in teleost fish species. Different spatial expression patterns, enzyme kinetics and substrate preferences suggest that they may have different functions. Enzyme activity assays revealed that recombinant seabream and zebrafish AANAT1s, but not AANAT2s, acetylate dopamine with kinetic characteristics that are similar to those for tryptamine acetylation. High performance liquid chromatography analysis of seabream retinal extracts indicated the presence of N-acetyldopamine. Time-of-day analysis of retinal AANAT activity and concentration of melatonin, dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and N-acetyldopamine revealed a daily pattern of retinal melatonin and N-acetyldopamine production that are correlated with retinal AANAT1 activity. In situ hybridization analysis of seabream retinal sections indicated that tyrosine hydroxylase is expressed in the inner nuclear layer (INL) and that AANAT1 is expressed in the outer nuclear layer (ONL) and INL. Together, these observations point to the possibility that dopamine is acetylated by retinal AANAT1 in the INL. Such novel activity of AANAT1 may reflect an important function in the circadian physiology of the retina.
Collapse
Affiliation(s)
- Bina Zilberman-Peled
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
11
|
Mora-Ferrer C, Behrend K. Dopaminergic modulation of photopic temporal transfer properties in goldfish retina investigated with the ERG. Vision Res 2004; 44:2067-81. [PMID: 15149838 DOI: 10.1016/j.visres.2003.11.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Revised: 10/23/2003] [Indexed: 11/25/2022]
Abstract
The influence of dopamine (DA) through either D1- or D2-dopamine receptors (D1-/D2-R) onto temporal transfer properties of the retina has been investigated using the ERG. Single flash responses and flicker responses were measured in the vitreous under photopic illumination conditions after application of either D1-/D2-R agonists or antagonists. All DA-R drugs did change the single flash responses, but only blockade of D2-R or activation of D1-R also changed the temporal transfer properties. In the Bode plot the gain characteristic was changed and thereby the upper limit frequency reduced. The action of DA is discussed on the base of a membrane resonance model in the outer retina versus a feed-forward inhibition model in the inner retina.
Collapse
Affiliation(s)
- Carlos Mora-Ferrer
- Inst. Zoologie, Abt. III, J. Gutenberg Universität, Colonel Kleinmann Weg 2, SB II 55099 Mainz, Germany.
| | | |
Collapse
|
12
|
Fan SF, Yazulla S. Inhibitory interaction of cannabinoid CB1 receptor and dopamine D2 receptor agonists on voltage-gated currents of goldfish cones. Vis Neurosci 2004; 21:69-77. [PMID: 15137583 DOI: 10.1017/s0952523804041070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dopamine is a light-adaptive signal that desensitizes the retina, while cannabinoids reportedly increase photosensitivity. The presynaptic membrane of goldfish retinal cones has dopamine D2 receptors and cannabinoid CB1 receptors. This work focused on whether dopamine D2 receptor agonist quinpirole and cannabinoid CB1 receptor agonist WIN 55212-2 (WIN) interacted to modulate voltage-dependent membrane currents of cones. A conventional patch-clamp method was used to record depolarization evoked whole-cell outward currents (Iout) and an inward calcium current (ICa) from the inner segment of cones in goldfish retinal slices. WIN had biphasic actions: low concentrations (<1 μM) increased the currentsviaGs, while higher concentrations (>1 μM) decreased the currentsviaGi/Go. Neither dopamine nor the D2 agonist quinpirole (1–20 μM) had a significant effect on eitherIoutorICa. Quinpirole at 50 μM had a mild suppressive (∼20%) effect onIout. However, quinpirole (<10 μM) completely blocked the enhancement of both currents seen with 0.7 μM WIN. The effect of quinpirole was blocked by sulpiride and by pertussis toxin, indicating that quinpirole was actingviaa D2 receptor-Gi/o coupled mechanism. The suppressive action of 50 μM quinpirole (∼20%) was not additive with the suppressive effect of 3 μM WIN (∼40%). D2 agonistsviaGi/o oppose the action of low concentrations of CB1 agonists actingviaGs to modulate cone membrane currents, suggesting a role in shaping the cone light response and/or sensitivity to changes in ambient light conditions. The nonadditive effect of high concentrations of WIN and quinpirole suggests that both decrease membrane currentsviathe same transduction pathway, Gi/Go protein kinase A (PKA).
Collapse
Affiliation(s)
- Shih-Fang Fan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | | |
Collapse
|
13
|
Abstract
The vertebrate retina receives efferent input from different parts of the central nervous system. Efferent fibers are thought to influence retinal information processing but their functional role is not well understood. One of the best-described retinopetal fiber systems in teleost retinae belongs to the terminal nerve complex. Gonadotropin-releasing hormone (GnRH) and molluscan cardioexcitatory tetrapeptide (FMRFamide)-containing fibers from the ganglion of the terminal nerve form a dense fiber plexus in the retina at the border of the inner nuclear and inner plexiform layer. Peptide-containing fibers surround and contact perikarya of dopaminergic interplexiform cells in teleost retina. In vitro experiments demonstrated that exogenously supplied GnRH mediates dopaminergic effects on the membrane potential and on the morphology of dendritic tips (spinules) of cone horizontal cells. These effects can be specifically blocked by GnRH-antagonists, indicating that the release of dopamine and dopamine-dependent effects on light adaptation of retinal neurons are affected by the terminal nerve complex. Recent data have shown that olfactory information has an impact on retinal physiology, but its precise role is not clear. The efferent fiber of the terminal nerve complex is one of the first retinopetal fiber systems for which the sources of the fibers, their cellular targets, and several physiological, morphological, and behavioral effects are known. The terminal nerve complex is therefore a model system for the analysis of local information processing which is influenced by a distinct fiber projection.
Collapse
Affiliation(s)
- U Behrens
- Anatomisches Institut, Universität Tübingen, Osterbergstr. 3, D 72074 Tübingen, Germany
| | | |
Collapse
|
14
|
Haamedi SN, Djamgoz MBA. Dopamine and nitric oxide control both flickering and steady-light-induced cone contraction and horizontal cell spinule formation in the teleost (carp) retina: serial interaction of dopamine and nitric oxide. J Comp Neurol 2002; 449:120-8. [PMID: 12115683 DOI: 10.1002/cne.10278] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adaptation to ambient light, which is an important characteristic of the vertebrate visual system, involves cellular and subcellular (synaptic) plasticity of the retina. The present study investigated dopamine (DA) and nitric oxide (NO) as possible neurochemical modulators controlling cone photomechanical movements (PMMs) and horizontal cell (HC) spinules in relation to steady and flickering light adaptation in the carp retina. Haloperidol (HAL; a nonspecific DA receptor blocker) or cPTIO (a NO scavenger) largely inhibited the cone PMMs and HC spinule formation induced by either steady or flickering light. These results suggested that both DA and NO could be involved in the light-adaptation changes induced by either pattern of input and that DA and NO effects may not be completely independent. The possibility that NO and DA interact serially was evaluated pharmacologically by cross-antagonist application (i.e., DA + cPTIO or NO + HAL). When a NO donor was coapplied with HAL to dark-adapted eyecups, normal light-adaptive cone PMMs and HC spinules occurred. In contrast, when DA was applied in the presence of cPTIO, the dark-adapted state persisted. It was concluded 1) that DA and NO are both light-adaptive neurochemicals, released in the retina during either steady or flickering light; 2) that the effects of DA and NO on light-adaptive cone PMMs and HC spinules do not occur in parallel; and 3) that NO and DA act mainly in series, specifically as follows: Light --> DA --> NO --> Cone PMMs + HC spinules.
Collapse
Affiliation(s)
- Sakineh N Haamedi
- Neurobiology Group, Department of Biological Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AZ, United Kingdom.
| | | |
Collapse
|
15
|
Abstract
Vertebrates can detect light intensity changes in vastly different photic environments, in part, because postreceptoral neurons undergo "network adaptation." Previous data implicated dopaminergic, cAMP-dependent inhibition of retinal ganglion cells in this process yet left unclear how this occurs and whether this occurs in darkness versus light. To test for light- and dopamine-dependent changes in ganglion cell cAMP levels in situ, we immunostained dark- and light-adapted retinas with anti-cAMP antisera in the presence and absence of various dopamine receptor ligands. To test for direct effects of dopamine receptor ligands and membrane-permeable protein kinase ligands on ganglion cell excitability, we recorded spikes from isolated ganglion cells in perforated-patch whole-cell mode before and during application of these agents by microperfusion. Our immunostainings show that light, endogenous dopamine, and exogenous dopamine elevate ganglion cell cAMP levels in situ by activating D1-type dopamine receptors. Our spike recordings show that D1-type agonists and 8-bromo cAMP reduce spike frequency and curtail sustained spike firing and that these effects entail protein kinase A activation. These effects resemble those of background light on ganglion cell responses to light flashes. Network adaptation could thus be produced, to some extent, by dopaminergic modulation of ganglion cell spike generation, a mechanism distinct from modulation of transmitter release onto ganglion cells or of transmitter-gated currents in ganglion cells. Combining these observations with results obtained in studies of photoreceptor, bipolar, and horizontal cells indicates that all three layers of neurons in the retina are equipped with mechanisms for adaptation to ambient light intensity.
Collapse
|
16
|
Abstract
Dopamine, a neuromodulator in the vertebrate retina, is involved in numerous functions related to light adaptation. However, unlike in mammals, localization of retinal D1-dopamine receptors in nonmammalian vertebrates has been hampered due to a lack of antisera. To address this problem, an antiserum against the 18 C-terminal amino acids of the goldfish D1 receptor (gfD1r) was generated in chicken eggs and tested in retinae of goldfish and rat, and rat caudate putamen, by using immunoblots and light microscopic immunocytochemistry. No labeling was observed in any tissue or immunoblots with preabsorbed gfD1r antiserum. Immunoblot analysis of goldfish retina revealed a single band at about 101 kDa. The patterns of gfD1r immunoreactivity (gfD1r-IR), found in rat caudate putamen and rat retina were virtually identical to that previously reported with other D1-receptor ligands and antisera. In goldfish retina, gfD1r-IR was most intense over cell bodies in the ganglion cell layer, amacrine cells in the proximal inner nuclear layer (INL), and bipolar cells in the distal INL. Weaker gfD1r-IR was observed over horizontal cell bodies and both plexiform layers. Müller cells and axons of cone photoreceptors were labeled as well. Double labeling showed that all protein kinase C-immunoreactive bipolar cells (ON type) were gfD1r-IR on the soma, axon terminal, and dendrites. All glutamate decarboxylase-immunoreactive (i.e., gamma-aminobutyric acid utilizing) amacrine cells and horizontal cells were gfD1r-IR. Retinal D1r distribution is more extensive than dopamine neuron innervation, but is consistent with physiologic estimates of dopamine function, suggestive of both wiring and volume transmission of dopamine in the retina. The gfD1r antiserum displays cross-reactivity to dopamine receptors in a mammal and a nonmammal and should prove useful in future studies of dopaminergic systems.
Collapse
Affiliation(s)
- C Mora-Ferrer
- Department of Neurobiology and Behavior, SUNY, Stony Brook, New York 11794-5230, USA
| | | | | | | |
Collapse
|
17
|
Wang Y, Harsanyi K, Mangel SC. Endogenous activation of dopamine D2 receptors regulates dopamine release in the fish retina. J Neurophysiol 1997; 78:439-49. [PMID: 9242292 DOI: 10.1152/jn.1997.78.1.439] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the fish retina, horizontal cell electrical coupling and light responsiveness is regulated by activation of dopamine D1 receptors that are located on the horizontal cells themselves. The effects of dopamine and dopamine D2 receptor agonists and antagonists on cone horizontal cell light responses were studied in in vitro superfused goldfish retinas. Horizontal cell light responses and electrical coupling were assessed by monitoring responses to full-field stimuli and to small, centered (0.4 mm diam) spots of light, respectively. Dopamine (0.2-10 microM) application uncoupled horizontal cells and decreased their responses to full-field stimuli. Application of the D2 antagonist eticlopride (10-50 microM) produced similar effects, whereas quinpirole (0.1-10 microM), a D2 agonist, had the opposite effects. The uncoupling effect of eticlopride was blocked by prior application of SCH23390 (10 microM), a D1 receptor antagonist, and was eliminated after destruction of dopaminergic neurons by prior treatment of the retinas with 6-hydroxydopamine. The effects of these D2 drugs were observed following flickering light stimulation, but were not observed following sustained light stimulation. Application of the D2 antagonists sulpiride (0.5-20 microM) and spiperone (0.25-10 microM) uncoupled horizontal cells when the total concentration of divalent cations (Mg2+ and Ca2+) in the Ringer solution was 1.1 mM. However, when the concentration of divalent cations was 0.2 mM, spiperone had no effect on the horizontal cells and sulpiride increased coupling. In contrast, eticlopride uncoupled the cells and decreased their light responsiveness irrespective of the concentration of divalent cations. The effects of quinpirole also depended on the concentration of divalent cations; its coupling effect was reduced when the divalent cation concentration was increased from 0.2 to 1.0 mM. The results suggest that activation of D2 receptors in the fish retina by endogenous dopamine decreases dopamine release and is greater after flickering compared with sustained light stimulation. These D2 receptors thus function as presynaptic autoreceptors that inhibit dopamine release from dopaminergic cells. In addition, the results also indicate that the effectiveness of some D2 drugs at these receptors is dependent on the concentration of divalent cations.
Collapse
Affiliation(s)
- Y Wang
- Department of Neurobiology, University of Alabama School of Medicine, Birmingham 35294, USA
| | | | | |
Collapse
|
18
|
Abstract
We propose that there exists within the avian, and perhaps more generally in the vertebrate retina, a two-state nonadapting flip-flop circuit, based on reciprocal inhibitory interactions between the photoreceptors, releasing melatonin, the dopaminergic amacrine cells, and amacrine cells which contain enkephalin-, neurotensin-, and somatostatin-like immunoreactivity (the ENSLI amacrine cells). This circuit consists of two loops, one based on the photoreceptors and dopaminergic amacrine cells, and the other on the dopaminergic and ENSLI amacrine cells. In the dark, the photoreceptors and ENSLI amacrine cells are active, with the dopaminergic amacrine cells inactive. In the light, the dopaminergic amacrine cells are active, with the photoreceptors and ENSLI amacrine cells inactive. The transition from dark to light state occurs over a narrow (< 1 log unit) range of low light intensities, and we postulate that this transition is driven by a graded, adapting pathway from photoreceptors, releasing glutamate, to ON-bipolar cells to dopaminergic amacrine cells. The properties of this pathway suggest that, once released from the reciprocal inhibitory controls of the dark state, dopamine release will show graded, adapting characteristics. Thus, we postulate that retinal function will be divided into two phases: a dopamine-independent phase at low light intensities, and a dopamine-dependent phase at higher light intensities. Dopamine-dependent functions may show two-state properties, or two-state properties on which are superimposed graded, adapting characteristics. Functions dependent upon melatonin, the enkephalins, neurotensin, and somatostatin may tend to show simpler two-state properties. We propose that the dark-light switch may have a role in a range of light-adaptive phenomena, in signalling night-day transitions to the suprachiasmatic nucleus and the pineal, and in the control of eye growth during development.
Collapse
Affiliation(s)
- I G Morgan
- Centre for Visual Science, Australian National University, Canberra, ACT, Australia
| | | |
Collapse
|
19
|
Behrens U, Wagner HJ. Localization of dopamined D1-receptors in vertebrate retinae. Neurochem Int 1995. [DOI: 10.1016/0197-0186(95)80008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Yazulla S, Studholme KM. Volume transmission of dopamine may modulate light-adaptive plasticity of horizontal cell dendrites in the recovery phase following dopamine depletion in goldfish retina. Vis Neurosci 1995; 12:827-36. [PMID: 8924407 DOI: 10.1017/s0952523800009391] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We investigated the recovery of light-adaptive spinule formation following dopamine depletion with intraocular injection of 6-hydroxydopamine (6-OHDA) and subsequent neogeneration of dopamine interplexiform cells (DA-IPC) at the marginal zone. DA-IPCs were gone by 2 weeks postinjection and appeared at the marginal zone by 6 weeks postinjection, at which time DA-IPC neurites grew toward the central retina, reaching within 0.5 mm of the central retina by 1 year. Retinas from day time, light-adapted fish at 2 weeks, 4 weeks, 3 months, and 1 year postinjection with 6-OHDA were processed for pre-embedding tyrosine hydroxylase immunoreactivity (TOH-IR) and compared to sham-injected and control retinas at the electron-microscopical (EM) level. Only 6-OHDA fish that tilted markedly toward the injected eye were used for these experiments. The tilt mimics the dorsal light reaction, indicating a 2-2.5 log unit increase in the photopic sensitivity of the 6-OHDA eye. Spinule formation was reduced by about 60% in the 2- and 4-week 6-OHDA retinas, but returned to control levels throughout the entire retina of 3-month and 1 year 6-OHDA retinas even though the central region of these retinas contained no detectable TOH-IR. Intraocular injection with 10 microM SCH 23390 (a D1 antagonist) reduced light-adaptive spinule formation by 50% both in control eyes as well as those eyes that were 3 months post 6-OHDA injected. The full return of spinule formation with only partial reinnervation of the retina with DA-IPC processes and their subsequent inhibition by SCH 23390 indicates that dopamine diffused large distances within the retina to regulate this synaptic plasticity (i.e. displayed volume transmission). Also, since all 6-OHDA injected fish displayed an increased photopic sensitivity in the injected eye when sacrificed, we suggest that horizontal cell spinules are not required for photopic luminosity coding in the outer retina.
Collapse
Affiliation(s)
- S Yazulla
- Department of Neurobiology and Behavior, SUNY, Stony Brook 11794-5230, USA
| | | |
Collapse
|
21
|
Differential effects of dopamine depletion on the distribution of [3H]SCH 23390 and [3H]spiperone binding sites in the goldfish retina. Vision Res 1995. [DOI: 10.1016/0042-6989(95)00010-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Savy C, Moussafi F, Durand J, Yelnik J, Simon A, Nguyen-Legros J. Distribution and spatial geometry of dopamine interplexiform cells in the retina. II. External arborizations in the adult rat and monkey. J Comp Neurol 1995; 355:392-404. [PMID: 7636021 DOI: 10.1002/cne.903550306] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The morphology and distribution of dopaminergic interplexiform cells in adult rat and monkey retinas were analyzed to determine any correlation with the function of dopamine in the outer retinal layers. The retinas were processed as whole mounts for tyrosine hydroxylase immunohistochemistry. There was a network formed by the sclerally directed processes of interplexiform cells in the inner nuclear, outer plexiform, and outer nuclear layers running throughout the retina. Their density was higher in the superior retina than in the inferior retina of the rat and was especially high in the superior temporal quadrant. The external network in this quadrant was significantly less dense in the monkey than in the rat, as are the interplexiform cells. The somata of interplexiform and other dopaminergic cells were about the same size in both rats and monkeys. Computer-assisted reconstruction of external arborizations of individual cells showed that external processes lay very close to horizontal and photoreceptor cells and also to blood capillaries. Because they were long, thin, and highly varicose; branched at right angles; and often arose from an axon hillock, the external processes were identified as axons. Therefore, we define the dopaminergic interplexiform cells as multiaxonal neurons, with at least one outwardly directed axon that reaches the outer plexiform layer. The function of the network of external processes from the interplexiform dopaminergic cells is discussed in terms of modulating the release of dopamine to external layers.
Collapse
Affiliation(s)
- C Savy
- Laboratoire de Neurocytologie Oculaire, INSERM U-86, Paris, France
| | | | | | | | | | | |
Collapse
|
23
|
Fröhlich E, Negishi K, Wagner HJ. The occurrence of dopaminergic interplexiform cells correlates with the presence of cones in the retinae of fish. Vis Neurosci 1995; 12:359-69. [PMID: 7786856 DOI: 10.1017/s0952523800008038] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using light-microscopic immunocytochemistry against tyrosine hydroxylase, we have investigated the morphology of dopaminergic cells in 23 species of fishes representing various systematic classes and subclasses and which live in very different habitats. We have, for the first time, observed teleosts with dopaminergic amacrine cells. Thus, in both bony and cartilaginous fishes, dopaminergic cells are differentiated as interplexiform and amacrine cells. The differentiation of dopaminergic cells into amacrine or interplexiform cells in fishes correlates with the absence or presence of cones. In pure-rod retinae, they occur as amacrine cells, and in mixed rod/cone retinae, they occur as interplexiform cells. We conclude therefore that the differentiation of retinal dopaminergic cells in fish does not depend on the evolutionary or systematic classification of a given species. Rather, it is correlated with the occurrence of rods and/or cones, and thus linked more closely to the habitat. We argue that, in fish, the presence of cones and cone-specific horizontal cells may be responsible for inducing dopaminergic cells to differentiate as interplexiform cells. Possible functions of dopamine in all-rod retinae, which may not require adaptation, may include neuromodulation in the inner plexiform layer for the sensitization of the rod pathway, the shaping of biological rhythms, and the control of eye growth.
Collapse
Affiliation(s)
- E Fröhlich
- Anatomisches Institut der Eberhard-Karls-Universität, Tübingen, Germany
| | | | | |
Collapse
|
24
|
Witkovsky P, Zhang J, Blam O. Dopaminergic neurons in the retina of Xenopus laevis: amacrine vs. interplexiform subtypes and relation to bipolar cells. Cell Tissue Res 1994; 278:45-56. [PMID: 7954703 DOI: 10.1007/bf00305777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Presumed dopaminergic neurons were visualized in the retina of the clawed frog, Xenopus laevis, by anti-tyrosine hydroxylase (TH) immunoreactivity. The studied cells constitute a uniform population with perikarya at the junction of inner nuclear (INL) and inner plexiform (IPL) layers. Each cell body gives rise to 4-6 relatively stout processes (0.5-2.0 microns in diameter) which run for up to 1.2 mm in strata 4-5 of the IPL. These processes have a very asymmetric distribution in the horizontal plane of the retina. A dense plexus of TH fine fibers is distributed uniformly in stratum 1 of the IPL. TH cells are distributed evenly but sparsely (16-20 cells/mm2) across the retina. About 20% of the TH neurons emit 1-3 distally directed fine processes, the majority of which extend < 20 microns, which barely suffices to reach the outer plexiform layer (OPL). Other longer processes are typically unbranched; some reach the OPL, others run tangentially in the INL. The axon terminals of Golgi-impregnated bipolar cells are characterized according to the strata of the IPL in which they arborize. About 80% are confined either to strata 1-2 or 3-5, conforming to the 'off' and 'on' zones defined by Famiglietti and Kolb (1976). The remainder appear to end in both zones, some extending across the entire width of the IPL. EM examination showed that TH processes receive bipolar synaptic input in both distal and proximal portions of the IPL.
Collapse
Affiliation(s)
- P Witkovsky
- Department of Ophthalmology, New York University Medical Center, NY 10016
| | | | | |
Collapse
|
25
|
Abstract
The effect of unilateral depletion of retinal dopamine on goldfish visual behavior was studied using a behavioral reflex, the dorsal light reaction (DLR). Retinal dopamine was depleted by intraocular injections of 6-hydroxydopamine (6-OHDA) on two successive days. By 2 weeks postinjection, dopamine interplexiform cells (DA-IPC) were not detected using tyrosine-hydroxylase immunoreactivity (TH-IR). By 6 weeks postinjection, generation of DA-IPC was observed at the marginal zone and by 9 months postinjection, 2-3 rows of DA-IPC were present at the marginal zone. Neurites extended several hundred micrometers toward the central retina. By 2 weeks postinjection, all 6-OHDA lesioned fish tilted 7-15 deg toward the injected eye under uniform overhead illumination. The tilting did not occur under scotopic illumination and reappeared within 1 min of light adaptation. Quantitation of the DLR showed that 6-OHDA lesioned fish behaved as if light were 2.4 log units more intense to the injected eye. Partial recovery was observed by 9 months postinjection, paralleling the reappearance of DA-IPC at the marginal zone. Tilting also was induced by unilateral intraocular injection with D1 and D2 dopamine receptor antagonists, SCH 23390 and S(-)-sulpiride, respectively. Fish did not tilt if they were light adapted at the time of injection. Tilting was observed if the animals were dark-adapted for 3 h and left in the dark for 1 h postinjection. Fish tilted toward the drug-injected eye within 2 min of light adaptation and gradually returned to vertical within 2 h. The tilting response to S(-)-sulpiride was stronger (approximately 20 deg vs. approximately 5 deg) and occurred at lower concentration (1 microM vs. 10 microM) compared to SCH 23390. We conclude that dopamine depletion mimics the dorsal light reaction by increasing the luminosity output of the eye and that dopamine is directly involved in photopic luminosity function.
Collapse
Affiliation(s)
- Z S Lin
- Department of Neurobiology and Behavior, University at Stony Brook, NY 11794-5230
| | | |
Collapse
|
26
|
Lin ZS, Yazulla S. Depletion of retinal dopamine does not affect the ERG b-wave increment threshold function in goldfish in vivo. Vis Neurosci 1994; 11:695-702. [PMID: 7918220 DOI: 10.1017/s095252380000300x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Increment threshold functions of the electroretinogram (ERG) b-wave were obtained from goldfish using an in vivo preparation to study intraretinal mechanisms underlying the increase in perceived brightness induced by depletion of retinal dopamine by 6-hydroxydopamine (6-OHDA). Goldfish received unilateral intraocular injections of 6-OHDA plus pargyline on successive days. Depletion of retinal dopamine was confirmed by the absence of tyrosine-hydroxylase immunoreactivity at 2 to 3 weeks postinjection as compared to sham-injected eyes from the same fish. There was no difference among normal, sham-injected or 6-OHDA-injected eyes with regard to ERG waveform, intensity-response functions or increment threshold functions. Dopamine-depleted eyes showed a Purkinje shift, that is, a transition from rod-to-cone dominated vision with increasing levels of adaptation. We conclude (1) dopamine-depleted eyes are capable of photopic vision; and (2) the ERG b-wave is not diagnostic for luminosity coding at photopic backgrounds. We also predict that (1) dopamine is not required for the transition from scotopic to photopic vision in goldfish; (2) the ERG b-wave in goldfish is influenced by chromatic interactions; (3) horizontal cell spinules, though correlated with photopic mechanisms in the fish retina, are not necessary for the transition from scotopic to photopic vision; and (4) the OFF pathway, not the ON pathway, is involved in the action of dopamine on luminosity coding in the retina.
Collapse
Affiliation(s)
- Z S Lin
- Department of Neurobiology and Behavior, University at Stony Brook, NY 11794-5230
| | | |
Collapse
|