1
|
Goel M, Mangel SC. Dopamine-Mediated Circadian and Light/Dark-Adaptive Modulation of Chemical and Electrical Synapses in the Outer Retina. Front Cell Neurosci 2021; 15:647541. [PMID: 34025356 PMCID: PMC8131545 DOI: 10.3389/fncel.2021.647541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
The vertebrate retina, like most other brain regions, undergoes relatively slow alterations in neural signaling in response to gradual changes in physiological conditions (e.g., activity changes to rest), or in response to gradual changes in environmental conditions (e.g., day changes into night). As occurs elsewhere in the brain, the modulatory processes that mediate slow adaptation in the retina are driven by extrinsic signals (e.g., changes in ambient light level) and/or by intrinsic signals such as those of the circadian (24-h) clock in the retina. This review article describes and discusses the extrinsic and intrinsic modulatory processes that enable neural circuits in the retina to optimize their visual performance throughout day and night as the ambient light level changes by ~10 billion-fold. In the first synaptic layer of the retina, cone photoreceptor cells form gap junctions with rods and signal cone-bipolar and horizontal cells (HCs). Distinct extrinsic and intrinsic modulatory processes in this synaptic layer are mediated by long-range feedback of the neuromodulator dopamine. Dopamine is released by dopaminergic cells, interneurons whose cell bodies are located in the second synaptic layer of the retina. Distinct actions of dopamine modulate chemical and electrical synapses in day and night. The retinal circadian clock increases dopamine release in the day compared to night, activating high-affinity dopamine D4 receptors on cones. This clock effect controls electrical synapses between rods and cones so that rod-cone electrical coupling is minimal in the day and robust at night. The increase in rod-cone coupling at night improves the signal-to-noise ratio and the reliability of very dim multi-photon light responses, thereby enhancing detection of large dim objects on moonless nights.Conversely, maintained (30 min) bright illumination in the day compared to maintained darkness releases sufficient dopamine to activate low-affinity dopamine D1 receptors on cone-bipolar cell dendrites. This non-circadian light/dark adaptive process regulates the function of GABAA receptors on ON-cone-bipolar cell dendrites so that the receptive field (RF) surround of the cells is strong following maintained bright illumination but minimal following maintained darkness. The increase in surround strength in the day following maintained bright illumination enhances the detection of edges and fine spatial details.
Collapse
Affiliation(s)
- Manvi Goel
- Department of Neuroscience, Ohio State University College of Medicine, Columbus, OH, United States
| | - Stuart C Mangel
- Department of Neuroscience, Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
2
|
Hirano AA, Vuong HE, Kornmann HL, Schietroma C, Stella SL, Barnes S, Brecha NC. Vesicular Release of GABA by Mammalian Horizontal Cells Mediates Inhibitory Output to Photoreceptors. Front Cell Neurosci 2020; 14:600777. [PMID: 33335476 PMCID: PMC7735995 DOI: 10.3389/fncel.2020.600777] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Feedback inhibition by horizontal cells regulates rod and cone photoreceptor calcium channels that control their release of the neurotransmitter glutamate. This inhibition contributes to synaptic gain control and the formation of the center-surround antagonistic receptive fields passed on to all downstream neurons, which is important for contrast sensitivity and color opponency in vision. In contrast to the plasmalemmal GABA transporter found in non-mammalian horizontal cells, there is evidence that the mechanism by which mammalian horizontal cells inhibit photoreceptors involves the vesicular release of the inhibitory neurotransmitter GABA. Historically, inconsistent findings of GABA and its biosynthetic enzyme, L-glutamate decarboxylase (GAD) in horizontal cells, and the apparent lack of surround response block by GABAergic agents diminished support for GABA's role in feedback inhibition. However, the immunolocalization of the vesicular GABA transporter (VGAT) in the dendritic and axonal endings of horizontal cells that innervate photoreceptor terminals suggested GABA was released via vesicular exocytosis. To test the idea that GABA is released from vesicles, we localized GABA and GAD, multiple SNARE complex proteins, synaptic vesicle proteins, and Cav channels that mediate exocytosis to horizontal cell dendritic tips and axonal terminals. To address the perceived relative paucity of synaptic vesicles in horizontal cell endings, we used conical electron tomography on mouse and guinea pig retinas that revealed small, clear-core vesicles, along with a few clathrin-coated vesicles and endosomes in horizontal cell processes within photoreceptor terminals. Some small-diameter vesicles were adjacent to the plasma membrane and plasma membrane specializations. To assess vesicular release, a functional assay involving incubation of retinal slices in luminal VGAT-C antibodies demonstrated vesicles fused with the membrane in a depolarization- and calcium-dependent manner, and these labeled vesicles can fuse multiple times. Finally, targeted elimination of VGAT in horizontal cells resulted in a loss of tonic, autaptic GABA currents, and of inhibitory feedback modulation of the cone photoreceptor Cai, consistent with the elimination of GABA release from horizontal cell endings. These results in mammalian retina identify the central role of vesicular release of GABA from horizontal cells in the feedback inhibition of photoreceptors.
Collapse
Affiliation(s)
- Arlene A. Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Helen E. Vuong
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Helen L. Kornmann
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cataldo Schietroma
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Salvatore L. Stella
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven Barnes
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicholas C. Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Abstract
At the first retinal synapse, horizontal cells (HCs) contact both photoreceptor terminals and bipolar cell dendrites, modulating information transfer between these two cell types to enhance spatial contrast and mediate color opponency. The synaptic mechanisms through which these modulations occur are still debated. The initial hypothesis of a GABAergic feedback from HCs to cones has been challenged by pharmacological inconsistencies. Surround antagonism has been demonstrated to occur via a modulation of cone calcium channels through ephaptic signaling and pH changes in the synaptic cleft. GABAergic transmission between HCs and cones has been reported in some lower vertebrates, like the turtle and tiger salamander. In these reports, it was revealed that GABA is released from HCs through reverse transport and target GABA receptors are located at the cone terminals. In mammalian retinas, there is growing evidence that HCs can release GABA through conventional vesicular transmission, acting both on autaptic GABA receptors and on receptors expressed at the dendritic tips of the bipolar cells. The presence of GABA receptors on mammalian cone terminals remains equivocal. Here, we looked specifically for functional GABA receptors in mouse photoreceptors by recording in the whole-cell or amphotericin/gramicidin-perforated patch clamp configurations. Cones could be differentiated from rods through morphological criteria. Local GABA applications evoked a Cl- current in cones but not in rods. It was blocked by the GABAA receptor antagonist bicuculline methiodide and unaffected by the GABAC receptor antagonist TPMPA [(1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid]. The voltage dependency of the current amplitude was as expected from a direct action of GABA on cone pedicles but not from an indirect modulation of cone currents following the activation of the GABA receptors of HCs. This supports a direct role of GABA released from HCs in the control of cone activity in the mouse retina.
Collapse
|
4
|
Lipin MY, Vigh J. Quantifying the effect of light activated outer and inner retinal inhibitory pathways on glutamate release from mixed bipolar cells. Synapse 2018; 72:e22028. [PMID: 29360185 DOI: 10.1002/syn.22028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 11/12/2022]
Abstract
Inhibition mediated by horizontal and amacrine cells in the outer and inner retina, respectively, are fundamental components of visual processing. Here, our purpose was to determine how these different inhibitory processes affect glutamate release from ON bipolar cells when the retina is stimulated with full-field light of various intensities. Light-evoked membrane potential changes (ΔVm ) were recorded directly from axon terminals of intact bipolar cells receiving mixed rod and cone inputs (Mbs) in slices of dark-adapted goldfish retina. Inner and outer retinal inhibition to Mbs was blocked with bath applied picrotoxin (PTX) and NBQX, respectively. Then, control and pharmacologically modified light responses were injected into axotomized Mb terminals as command potentials to induce voltage-gated Ca2+ influx (QCa ) and consequent glutamate release. Stimulus-evoked glutamate release was quantified by the increase in membrane capacitance (ΔCm ). Increasing depolarization of Mb terminals upon removal of inner and outer retinal inhibition enhanced the ΔVm /QCa ratio equally at a given light intensity and inhibition did not alter the overall relation between QCa and ΔCm . However, relative to control, light responses recorded in the presence of PTX and PTX + NBQX increased ΔCm unevenly across different stimulus intensities: at dim stimulus intensities predominantly the inner retinal GABAergic inhibition controlled release from Mbs, whereas the inner and outer retinal inhibition affected release equally in response to bright stimuli. Furthermore, our results suggest that non-linear relationship between QCa and glutamate release can influence the efficacy of inner and outer retinal inhibitory pathways to mediate Mb output at different light intensities.
Collapse
Affiliation(s)
- Mikhail Y Lipin
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, Colorado, 80523-1617
| | - Jozsef Vigh
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, Colorado, 80523-1617
| |
Collapse
|
5
|
Affiliation(s)
- Jeffrey S. Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3701
| |
Collapse
|
6
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. Invaginating Presynaptic Terminals in Neuromuscular Junctions, Photoreceptor Terminals, and Other Synapses of Animals. Neuromolecular Med 2017; 19:193-240. [PMID: 28612182 PMCID: PMC6518423 DOI: 10.1007/s12017-017-8445-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Typically, presynaptic terminals form a synapse directly on the surface of postsynaptic processes such as dendrite shafts and spines. However, some presynaptic terminals invaginate-entirely or partially-into postsynaptic processes. We survey these invaginating presynaptic terminals in all animals and describe several examples from the central nervous system, including giant fiber systems in invertebrates, and cup-shaped spines, electroreceptor synapses, and some specialized auditory and vestibular nerve terminals in vertebrates. We then examine mechanoreceptors and photoreceptors, concentrating on the complex of pre- and postsynaptic processes found in basal invaginations of the cell. We discuss in detail the role of vertebrate invaginating horizontal cell processes in both chemical and electrical feedback mechanisms. We also discuss the common presence of indenting or invaginating terminals in neuromuscular junctions on muscles of most kinds of animals, and especially discuss those of Drosophila and vertebrates. Finally, we consider broad questions about the advantages of possessing invaginating presynaptic terminals and describe some effects of aging and disease, especially on neuromuscular junctions. We suggest that the invagination is a mechanism that can enhance both chemical and electrical interactions at the synapse.
Collapse
Affiliation(s)
- Ronald S Petralia
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA.
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD, 21224, USA
| |
Collapse
|
7
|
Chaffiol A, Ishii M, Cao Y, Mangel SC. Dopamine Regulation of GABA A Receptors Contributes to Light/Dark Modulation of the ON-Cone Bipolar Cell Receptive Field Surround in the Retina. Curr Biol 2017; 27:2600-2609.e4. [PMID: 28844643 DOI: 10.1016/j.cub.2017.07.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/22/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
Abstract
Cone bipolar cells are interneurons that receive synaptic input from cone photoreceptor cells and provide the output of the first synaptic layer of the retina. These cells exhibit center-surround receptive fields, a prototype of lateral inhibition between neighboring sensory cells in which stimulation of the receptive field center excites the cell whereas stimulation of the surrounding region laterally inhibits the cell. This fundamental sensory coding mechanism facilitates spatial discrimination and detection of stimulus edges. However, although it is well established that the receptive field surround is strongest when ambient or background illumination is most intense, e.g., at midday, and that the surround is minimal following maintained darkness, the synaptic mechanisms that produce and modulate the surround have not been resolved. Using electrical recording of bipolar cells under experimental conditions in which the cells exhibited surround light responses, and light and electron microscopic immunocytochemistry, we show in the rabbit retina that bright-light-induced activation of dopamine D1 receptors located on ON-center cone bipolar cell dendrites increases the expression and activity of GABAA receptors on the dendrites of the cells and that surround light responses depend on endogenous GABAA receptor activation. We also show that maintained darkness and D1 receptor blockade following maintained illumination and D1 receptor activation result in minimal GABAA receptor expression and activity and greatly diminished surrounds. Modulation of the D1/GABAA receptor signaling pathway of ON-cBC dendrites by the ambient light level facilitates detection of spatial details on bright days and large dim objects on moonless nights.
Collapse
Affiliation(s)
- Antoine Chaffiol
- Department of Neuroscience, The Ohio State University College Of Medicine, Columbus, OH 43210, USA
| | - Masaaki Ishii
- Department of Neuroscience, The Ohio State University College Of Medicine, Columbus, OH 43210, USA
| | - Yu Cao
- Department of Neuroscience, The Ohio State University College Of Medicine, Columbus, OH 43210, USA
| | - Stuart C Mangel
- Department of Neuroscience, The Ohio State University College Of Medicine, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Chapot CA, Euler T, Schubert T. How do horizontal cells 'talk' to cone photoreceptors? Different levels of complexity at the cone-horizontal cell synapse. J Physiol 2017; 595:5495-5506. [PMID: 28378516 DOI: 10.1113/jp274177] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/27/2017] [Indexed: 11/08/2022] Open
Abstract
The first synapse of the retina plays a fundamental role in the visual system. Due to its importance, it is critical that it encodes information from the outside world with the greatest accuracy and precision possible. Cone photoreceptor axon terminals contain many individual synaptic sites, each represented by a presynaptic structure called a 'ribbon'. These synapses are both highly sophisticated and conserved. Each ribbon relays the light signal to one ON cone bipolar cell and several OFF cone bipolar cells, while two dendritic processes from a GABAergic interneuron, the horizontal cell, modulate the cone output via parallel feedback mechanisms. The presence of these three partners within a single synapse has raised numerous questions, and its anatomical and functional complexity is still only partially understood. However, the understanding of this synapse has recently evolved, as a consequence of progress in understanding dendritic signal processing and its role in facilitating global versus local signalling. Indeed, for the downstream retinal network, dendritic processing in horizontal cells may be essential, as they must support important functional operations such as contrast enhancement, which requires spatial averaging of the photoreceptor array, while at the same time preserving accurate spatial information. Here, we review recent progress made towards a better understanding of the cone synapse, with an emphasis on horizontal cell function, and discuss why such complexity might be necessary for early visual processing.
Collapse
Affiliation(s)
- Camille A Chapot
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany.,Graduate Training Centre of Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
9
|
Knoflach F, Hernandez MC, Bertrand D. GABAA receptor-mediated neurotransmission: Not so simple after all. Biochem Pharmacol 2016; 115:10-7. [DOI: 10.1016/j.bcp.2016.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/17/2016] [Indexed: 12/28/2022]
|
10
|
Liu X, Grove JCR, Hirano AA, Brecha NC, Barnes S. Dopamine D1 receptor modulation of calcium channel currents in horizontal cells of mouse retina. J Neurophysiol 2016; 116:686-97. [PMID: 27193322 DOI: 10.1152/jn.00990.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
Horizontal cells form the first laterally interacting network of inhibitory interneurons in the retina. Dopamine released onto horizontal cells under photic and circadian control modulates horizontal cell function. Using isolated, identified horizontal cells from a connexin-57-iCre × ROSA26-tdTomato transgenic mouse line, we investigated dopaminergic modulation of calcium channel currents (ICa) with whole cell patch-clamp techniques. Dopamine (10 μM) blocked 27% of steady-state ICa, an action blunted to 9% in the presence of the L-type Ca channel blocker verapamil (50 μM). The dopamine type 1 receptor (D1R) agonist SKF38393 (20 μM) inhibited ICa by 24%. The D1R antagonist SCH23390 (20 μM) reduced dopamine and SKF38393 inhibition. Dopamine slowed ICa activation, blocking ICa by 38% early in a voltage step. Enhanced early inhibition of ICa was eliminated by applying voltage prepulses to +120 mV for 100 ms, increasing ICa by 31% and 11% for early and steady-state currents, respectively. Voltage-dependent facilitation of ICa and block of dopamine inhibition after preincubation with a Gβγ-blocking peptide suggested involvement of Gβγ proteins in the D1R-mediated modulation. When the G protein activator guanosine 5'-O-(3-thiotriphosphate) (GTPγS) was added intracellularly, ICa was smaller and showed the same slowed kinetics seen during D1R activation. With GTPγS in the pipette, additional block of ICa by dopamine was only 6%. Strong depolarizing voltage prepulses restored the GTPγS-reduced early ICa amplitude by 36% and steady-state ICa amplitude by 3%. These results suggest that dopaminergic inhibition of ICa via D1Rs is primarily mediated through the action of Gβγ proteins in horizontal cells.
Collapse
Affiliation(s)
- Xue Liu
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and Technology, Chongqing, People's Republic of China; Department of Neurobiology and Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California
| | - James C R Grove
- Department of Neurobiology and Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Arlene A Hirano
- Department of Neurobiology and Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; and
| | - Nicholas C Brecha
- Department of Neurobiology and Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; and
| | - Steven Barnes
- Department of Neurobiology and Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; and Department of Physiology and Biophysics and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
11
|
Popova E. GABAergic neurotransmission and retinal ganglion cell function. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:261-83. [PMID: 25656810 DOI: 10.1007/s00359-015-0981-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/13/2023]
Abstract
Ganglion cells are the output retinal neurons that convey visual information to the brain. There are ~20 different types of ganglion cells, each encoding a specific aspect of the visual scene as spatial and temporal contrast, orientation, direction of movement, presence of looming stimuli; etc. Ganglion cell functioning depends on the intrinsic properties of ganglion cell's membrane as well as on the excitatory and inhibitory inputs that these cells receive from other retinal neurons. GABA is one of the most abundant inhibitory neurotransmitters in the retina. How it modulates the activity of different types of ganglion cells and what is its significance in extracting the basic features from visual scene are questions with fundamental importance in visual neuroscience. The present review summarizes current data concerning the types of membrane receptors that mediate GABA action in proximal retina; the effects of GABA and its antagonists on the ganglion cell light-evoked postsynaptic potentials and spike discharges; the action of GABAergic agents on centre-surround organization of the receptive fields and feature related ganglion cell activity. Special emphasis is put on the GABA action regarding the ON-OFF and sustained-transient ganglion cell dichotomy in both nonmammalian and mammalian retina.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
12
|
Popova E. Ionotropic GABA Receptors and Distal Retinal ON and OFF Responses. SCIENTIFICA 2014; 2014:149187. [PMID: 25143858 PMCID: PMC4131092 DOI: 10.1155/2014/149187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/24/2014] [Accepted: 05/27/2014] [Indexed: 05/27/2023]
Abstract
In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells in distal retina. The activity of large populations of ON and OFF bipolar cells is reflected in the b- and d-waves of the diffuse electroretinogram (ERG). The role of gamma-aminobutyric acid (GABA), acting through ionotropic GABA receptors in shaping the ON and OFF responses in distal retina, is a matter of debate. This review summarized current knowledge about the types of the GABAergic neurons and ionotropic GABA receptors in the retina as well as the effects of GABA and specific GABAA and GABAC receptor antagonists on the activity of the ON and OFF bipolar cells in both nonmammalian and mammalian retina. Special emphasis is put on the effects on b- and d-waves of the ERG as a useful tool for assessment of the overall function of distal retinal ON and OFF channels. The role of GABAergic system in establishing the ON-OFF asymmetry concerning the time course and absolute and relative sensitivity of the ERG responses under different conditions of light adaptation in amphibian retina is also discussed.
Collapse
Affiliation(s)
- E. Popova
- Department of Physiology, Medical Faculty, Medical University, 1431 Sofia, Bulgaria
| |
Collapse
|
13
|
Tse DY, Chung I, Wu SM. Possible roles of glutamate transporter EAAT5 in mouse cone depolarizing bipolar cell light responses. Vision Res 2014; 103:63-74. [PMID: 24972005 DOI: 10.1016/j.visres.2014.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/11/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
A remarkable feature of neuronal glutamate transporters (EAATs) is their dual functions of classical carriers and ligand-gated chloride (Cl(-)) channels. Cl(-) conductance is rapidly activated by glutamate in subtype EAAT5, which mediates light responses in depolarizing bipolar cells (DBC) in retinae of lower vertebrates. In this study, we examine whether EAAT5 also mediates the DBC light response in mouse. We took advantage of an infrared illuminated micro-injection system, and studied the effects of the EAAT blocker (TBOA) and a glutamate receptor agonist (LAP4) on the mouse electroretinogram (ERG) b-wave responses. Our results showed that TBOA and LAP4 shared similar temporal patterns of inhibition: both inhibited the ERG b-wave shortly after injection and recovered with similar time courses. TBOA inhibited the b-wave completely at mesopic light intensity with an IC50 value about 1 log unit higher than that of LAP4. The inhibitory effects of TBOA and LAP4 were found to be additive in the photopic range. Furthermore, TBOA alone inhibited the b-wave in the cone operative range in knockout mice lacking DBCRs at a low concentration that did not alter synaptic glutamate clearance activity. It also produced a stronger inhibition than that of LAP4 on the cone-driven b-wave measured with a double flash method in wildtype mice. These electrophysiological data suggest a significant role for EAAT5 in mediating cone-driven DBC light responses. Our immunohistochemistry data indicated the presence of postsynaptic EAAT5 on some DBCCs and some DBCRs, providing an anatomical basis for EAAT5's role in DBC light responses.
Collapse
Affiliation(s)
- Dennis Y Tse
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| | - Inyoung Chung
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA; Department of Ophthalmology, Gyeongsang National University, Jinju, Republic of Korea
| | - Samuel M Wu
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
14
|
Puller C, Manookin MB, Neitz M, Neitz J. Specialized synaptic pathway for chromatic signals beneath S-cone photoreceptors is common to human, Old and New World primates. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2014; 31:A189-94. [PMID: 24695169 PMCID: PMC4282935 DOI: 10.1364/josaa.31.00a189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The distribution of the soluble NSF-attachment protein receptor protein syntaxin-4 and the Na-K-Cl cotransporter (NKCC) were investigated in the outer plexiform layer of human retina using immunohistochemistry. Both proteins, which are proposed to be components of a gamma-aminobutyric acid mediated feed-forward circuit from horizontal cells directly to bipolar cells, were enriched beneath S-cones. The expression pattern of syntaxin-4 was further analyzed in baboon and marmoset to determine if the synaptic specialization is common to primates. Syntaxin-4 was enriched beneath S-cones in both species, which together with the human results indicates that this specialization may have evolved for the purpose of mediating unique color vision capacities that are exclusive to primates.
Collapse
|
15
|
Puller C, Haverkamp S, Neitz M, Neitz J. Synaptic elements for GABAergic feed-forward signaling between HII horizontal cells and blue cone bipolar cells are enriched beneath primate S-cones. PLoS One 2014; 9:e88963. [PMID: 24586460 PMCID: PMC3930591 DOI: 10.1371/journal.pone.0088963] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/16/2014] [Indexed: 01/19/2023] Open
Abstract
The functional roles and synaptic features of horizontal cells in the mammalian retina are still controversial. Evidence exists for feedback signaling from horizontal cells to cones and feed-forward signaling from horizontal cells to bipolar cells, but the details of the latter remain elusive. Here, immunohistochemistry and confocal microscopy were used to analyze the expression patterns of the SNARE protein syntaxin-4, the GABA receptor subunits α1 and ρ, and the cation-chloride cotransporters NKCC and KCC2 in the outer plexiform layer of primate retina. In macaque retina, as observed previously in other species, syntaxin-4 was expressed on dendrites and axon terminals of horizontal cells at cone pedicles and rod spherules. At cones, syntaxin-4 appeared densely clustered in two bands, at horizontal cell dendritic tips and at the level of desmosome-like junctions. Interestingly, in the lower band where horizontal cells may synapse directly onto bipolar cells, syntaxin-4 was highly enriched beneath short-wavelength sensitive (S) cones and colocalized with calbindin, a marker for HII horizontal cells. The enrichment at S-cones was not observed in either mouse or ground squirrel. Furthermore, high amounts of both GABA receptor and cation-chloride cotransporter subunits were found beneath primate S-cones. Finally, while syntaxin-4 was expressed by both HI and HII horizontal cell types, the intense clustering and colocalization with calbindin at S-cones indicated an enhanced expression in HII cells. Taken together, GABA receptors beneath cone pedicles, chloride transporters, and syntaxin-4 are putative constituents of a synaptic set of proteins which would be required for a GABA-mediated feed-forward pathway via horizontal cells carrying signals directly from cones to bipolar cells.
Collapse
Affiliation(s)
- Christian Puller
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States of America
| | - Silke Haverkamp
- Neuroanatomy, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States of America
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
16
|
Schubert T, Hoon M, Euler T, Lukasiewicz PD, Wong ROL. Developmental regulation and activity-dependent maintenance of GABAergic presynaptic inhibition onto rod bipolar cell axonal terminals. Neuron 2013; 78:124-37. [PMID: 23583111 DOI: 10.1016/j.neuron.2013.01.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2013] [Indexed: 01/12/2023]
Abstract
Presynaptic inhibition onto axons regulates neuronal output, but how such inhibitory synapses develop and are maintained in vivo remains unclear. Axon terminals of glutamatergic retinal rod bipolar cells (RBCs) receive GABAA and GABAC receptor-mediated synaptic inhibition. We found that perturbing GABAergic or glutamatergic neurotransmission does not prevent GABAergic synaptogenesis onto RBC axons. But, GABA release is necessary for maintaining axonal GABA receptors. This activity-dependent process is receptor subtype specific: GABAC receptors are maintained, whereas GABAA receptors containing α1, but not α3, subunits decrease over time in mice with deficient GABA synthesis. GABAA receptor distribution on RBC axons is unaffected in GABAC receptor knockout mice. Thus, GABAA and GABAC receptor maintenance are regulated separately. Although immature RBCs elevate their glutamate release when GABA synthesis is impaired, homeostatic mechanisms ensure that the RBC output operates within its normal range after eye opening, perhaps to regain proper visual processing within the scotopic pathway.
Collapse
Affiliation(s)
- Timm Schubert
- Department of Biological Structure, University of Washington, School of Medicine, 1959 Northeast Pacific Street, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Buldyrev I, Taylor WR. Inhibitory mechanisms that generate centre and surround properties in ON and OFF brisk-sustained ganglion cells in the rabbit retina. J Physiol 2012; 591:303-25. [PMID: 23045347 DOI: 10.1113/jphysiol.2012.243113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Lateral inhibition produces the centre-surround organization of retinal receptive fields, in which inhibition driven by the mean luminance enhances the sensitivity of ganglion cells to spatial and temporal contrast. Surround inhibition is generated in both synaptic layers; however, the synaptic mechanisms within the inner plexiform layer are not well characterized within specific classes of retinal ganglion cell. Here, we compared the synaptic circuits generating concentric centre-surround receptive fields in ON and OFF brisk-sustained ganglion cells (BSGCs) in the rabbit retina. We first characterized the synaptic inputs to the centre of ON BSGCs, for comparison with previous results from OFF BSGCs. Similar to wide-field ganglion cells, the spatial extent of the excitatory centre and inhibitory surround was larger for the ON than the OFF BSGCs. The results indicate that the surrounds of ON and OFF BSGCs are generated in both the outer and the inner plexiform layers. The inner plexiform layer surround inhibition comprised GABAergic suppression of excitatory inputs from bipolar cells. However, ON and OFF BSGCs displayed notable differences. Surround suppression of excitatory inputs was weaker in ON than OFF BSGCs, and was mediated largely by GABA(C) receptors in ON BSGCs, and by both GABA(A) and GABA(C) receptors in OFF BSGCs. Large ON pathway-mediated glycinergic inputs to ON and OFF BSGCs also showed surround suppression, while much smaller GABAergic inputs showed weak, if any, spatial tuning. Unlike OFF BSGCs, which receive strong glycinergic crossover inhibition from the ON pathway, the ON BSGCs do not receive crossover inhibition from the OFF pathway. We compare and discuss possible roles for glycinergic inhibition in the two cell types.
Collapse
Affiliation(s)
- Ilya Buldyrev
- Casey Eye Institute, Department of Ophthalmology, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
19
|
Thoreson WB, Mangel SC. Lateral interactions in the outer retina. Prog Retin Eye Res 2012; 31:407-41. [PMID: 22580106 PMCID: PMC3401171 DOI: 10.1016/j.preteyeres.2012.04.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
Lateral interactions in the outer retina, particularly negative feedback from horizontal cells to cones and direct feed-forward input from horizontal cells to bipolar cells, play a number of important roles in early visual processing, such as generating center-surround receptive fields that enhance spatial discrimination. These circuits may also contribute to post-receptoral light adaptation and the generation of color opponency. In this review, we examine the contributions of horizontal cell feedback and feed-forward pathways to early visual processing. We begin by reviewing the properties of bipolar cell receptive fields, especially with respect to modulation of the bipolar receptive field surround by the ambient light level and to the contribution of horizontal cells to the surround. We then review evidence for and against three proposed mechanisms for negative feedback from horizontal cells to cones: 1) GABA release by horizontal cells, 2) ephaptic modulation of the cone pedicle membrane potential generated by currents flowing through hemigap junctions in horizontal cell dendrites, and 3) modulation of cone calcium currents (I(Ca)) by changes in synaptic cleft proton levels. We also consider evidence for the presence of direct horizontal cell feed-forward input to bipolar cells and discuss a possible role for GABA at this synapse. We summarize proposed functions of horizontal cell feedback and feed-forward pathways. Finally, we examine the mechanisms and functions of two other forms of lateral interaction in the outer retina: negative feedback from horizontal cells to rods and positive feedback from horizontal cells to cones.
Collapse
Affiliation(s)
- Wallace B. Thoreson
- Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Stuart C. Mangel
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| |
Collapse
|
20
|
The effect of pentobarbital sodium and propofol anesthesia on multifocal electroretinograms in rhesus macaques. Doc Ophthalmol 2011; 124:59-72. [PMID: 22200766 DOI: 10.1007/s10633-011-9306-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
We compared the suitability of pentobarbital sodium (PB) and propofol (PF) anesthetics for multifocal electroretinograms (mfERGs) in rhesus macaques. mfERGs were collected from 4 ocularly normal rhesus macaques. All animals were pre-anesthetized with intramuscular ketamine (10-15 mg/kg). Intravenous PB induction/maintenance levels were 15 mg/kg/2-10 mg/kg and for PF, 2-5 mg/kg/6-24 mg/kg/h. There were 3 testing sessions with PB anesthesia and 5-7 testing sessions with PF anesthesia. All PB sessions were carried out before PF. First-order (K1) and second-order (first slice) kernels (K2.1) response density amplitude (RDA), implicit time (IT), and root mean square signal-to-noise ratios (RMS SNR) of the low-frequency (LFC) and high-frequency (HFC) components were evaluated. The use of PF or PB anesthesia resulted in robust, replicable mfERGs in rhesus macaques; however, RMS SNR of K1 LFC in ring and quadrant analyses was significantly larger for PF than for PB. Additionally, K1 RDA under PF was significantly larger than under PB for N1, P1, and P2 components (ring and quadrant) and for N2 (quadrant). PF IT was significantly prolonged (<1 ms) relative to PB IT for N1, P1 (ring), and N1 (quadrant), while PB IT was significantly prolonged (0.8-4.2 ms) relative to PF IT for N2 and P2 (ring and quadrant). K1 HFC and K2.1 LFC did not differ significantly between PB and PF in the ring or quadrant analyses. The response differences found with PB and PF anesthesia likely arise from variable relative effects of the anesthetics on retinal γ-aminobutyric acid (GABA(A)) receptors, and in part, on glycine and on glutamate receptors. Given the advantages of a stable anesthetic plane with continuous intravenous infusion and a smoother, more rapid recovery, PF is an appealing alternative for mfERG testing in rhesus macaques.
Collapse
|
21
|
Dhingra A, Fina ME, Neinstein A, Ramsey DJ, Xu Y, Fishman GA, Alexander KR, Qian H, Peachey NS, Gregg RG, Vardi N. Autoantibodies in melanoma-associated retinopathy target TRPM1 cation channels of retinal ON bipolar cells. J Neurosci 2011; 31:3962-3967. [PMID: 21411639 PMCID: PMC3073846 DOI: 10.1523/jneurosci.6007-10.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/19/2011] [Accepted: 01/27/2011] [Indexed: 11/21/2022] Open
Abstract
Melanoma-associated retinopathy (MAR) is characterized by night blindness, photopsias, and a selective reduction of the electroretinogram b-wave. In certain cases, the serum contains autoantibodies that react with ON bipolar cells, but the target of these autoantibodies has not been identified. Here we show that the primary target of autoantibodies produced in MAR patients with reduced b-wave is the TRPM1 cation channel, the newly identified transduction channel in ON bipolar cells. Sera from two well characterized MAR patients, but not from a control subject, stained human embryonic kidney cells transfected with the TRPM1 gene, and Western blots probed with these MAR sera showed the expected band size (∼180 kDa). Staining of mouse and primate retina with MAR sera revealed immunoreactivity in all types of ON bipolar cells. Similar to staining for TRPM1, staining with the MAR sera was strong in dendritic tips and somas and was weak or absent in axon terminals. This staining colocalized with GFP in Grm6-GFP transgenic mice, where GFP is expressed in all and only ON bipolar cells, and also colocalized with Gα(o), a marker for all types of ON bipolar cells. The staining in ON bipolar cells was confirmed to be specific to TRPM1 because MAR serum did not stain these cells in a Trpm1(-/-) mouse. Evidence suggests that the recognized epitope is likely intracellular, and the sera can be internalized by retinal cells. We conclude that the vision of at least some patients with MAR is compromised due to autoantibody-mediated inactivation of the TRPM1 channel.
Collapse
Affiliation(s)
- Anuradha Dhingra
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Deniz S, Wersinger E, Schwab Y, Mura C, Erdelyi F, Szabó G, Rendon A, Sahel JA, Picaud S, Roux MJ. Mammalian retinal horizontal cells are unconventional GABAergic neurons. J Neurochem 2010; 116:350-62. [PMID: 21091475 DOI: 10.1111/j.1471-4159.2010.07114.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lateral interactions at the first retinal synapse have been initially proposed to involve GABA by transporter-mediated release from horizontal cells, onto GABA(A) receptors expressed on cone photoreceptor terminals and/or bipolar cell dendrites. However, in the mammalian retina, horizontal cells do not seem to contain GABA systematically or to express membrane GABA transporters. We here report that mouse retinal horizontal cells express GAD65 and/or GAD67 mRNA, and were weakly but consistently immunostained for GAD65/67. While GABA was readily detected after intracardiac perfusion, it was lost during classical preparation for histology or electrophysiology. It could not be restored by incubation in a GABA-containing medium, confirming the absence of membrane GABA transporters in these cells. However, GABA was synthesized de novo from glutamate or glutamine, upon addition of pyridoxal 5'-phosphate, a cofactor of GAD65/67. Mouse horizontal cells are thus atypical GABAergic neurons, with no functional GABA uptake, but a glutamate and/or glutamine transport system allowing GABA synthesis, probably depending physiologically from glutamate released by photoreceptors. Our results suggest that the role of GABA in lateral inhibition may have been underestimated, at least in mammals, and that tissue pre-incubation with glutamine and pyridoxal 5'-phosphate should yield a more precise estimate of outer retinal processing.
Collapse
Affiliation(s)
- Sercan Deniz
- Department of Neurobiology and Genetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR_7104, Inserm U 964, Université de Strasbourg, Illkirch, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lassová L, Fina M, Sulaiman P, Vardi N. Immunocytochemical evidence that monkey rod bipolar cells use GABA. Eur J Neurosci 2010; 31:685-96. [PMID: 20384812 DOI: 10.1111/j.1460-9568.2010.07106.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Certain bipolar cells in most species immunostain for GABA or its synthesizing enzyme glutamic acid decarboxylase. However, it is unknown whether they actually release GABA and, if so, from which cellular compartment and by what release mechanism. We investigated these questions in monkey retina where rod bipolar cells immunostain for GABA. We found that rod bipolar cells immunostain for one isoform of GAD (GAD65) in their somas, dendrites and axon terminals. Near the fovea, the somatic stain of rod bipolar cells is weaker than that of horizontal cells but, at the periphery, it is stronger. Staining for the vesicular GABA transporter in monkey rod bipolar cells is negative. However, staining for the GABA transporter GAT3 is positive in the soma and primary dendrites (but not in the axon terminals). Staining for GAT3 is also positive in horizontal cells. Double staining of rod bipolar cells and the alpha subunit of the GABAA receptor reveals scarce GABAA puncta that appose rod bipolar dendrites. We conclude that monkey rod bipolar cells use GABA and discuss the possibility that they tonically release GABA from their dendrites using a reverse action of GAT3.
Collapse
Affiliation(s)
- Luisa Lassová
- Department of Neuroscience, 122 Anat-Chem Building, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | | | | | | |
Collapse
|
24
|
Schubert T, Huckfeldt RM, Parker E, Campbell JE, Wong ROL. Assembly of the outer retina in the absence of GABA synthesis in horizontal cells. Neural Dev 2010; 5:15. [PMID: 20565821 PMCID: PMC2919532 DOI: 10.1186/1749-8104-5-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/18/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The inhibitory neurotransmitter gamma-amino-butyric acid (GABA) not only modulates excitability in the mature nervous system but also regulates neuronal differentiation and circuit development. Horizontal cells, a subset of interneurons in the outer retina, are transiently GABAergic during the period of cone photoreceptor synaptogenesis. In rodents, both horizontal cells and cone axonal terminals express GABAA receptors. To explore the possibility that transient GABA expression in mouse neonatal horizontal cells influences the structural development of synaptic connectivity in the outer retina, we examined a mutant in which expression of GAD67, the major synthesizing enzyme for GABA, is selectively knocked out in the retina. RESULTS Immunocytochemistry and electron microscopy revealed that the assembly of triad synapses involving cone axonal pedicles and the dendrites of horizontal and bipolar cells is unaffected in the mutant retina. Moreover, loss of GABA synthesis in the outer retina did not perturb the spatial distributions and cell densities of cones and horizontal cells. However, there were some structural alterations at the cellular level: the average size of horizontal cell dendritic clusters was larger in the mutant, and there was also a small but significant increase in cone photoreceptor pedicle area. Moreover, metabotropic glutamate receptor 6 (mGluR6) receptors on the dendrites of ON bipolar cells occupied a slightly larger proportion of the cone pedicle in the mutant. CONCLUSIONS Together, our analysis shows that transient GABA synthesis in horizontal cells is not critical for synapse assembly and axonal and dendritic lamination in the outer retina. However, pre- and postsynaptic structures are somewhat enlarged in the absence of GABA in the developing outer retina, providing for a modest increase in potential contact area between cone photoreceptors and their targets. These findings differ from previous results in which pharmacological blockade of GABAA receptors in the neonatal rabbit retina caused a reduction in cone numbers and led to a grossly disorganized outer retina.
Collapse
Affiliation(s)
- Timm Schubert
- Department of Biological Structure, University of Washington, School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
25
|
Guo C, Hirano AA, Stella SL, Bitzer M, Brecha NC. Guinea pig horizontal cells express GABA, the GABA-synthesizing enzyme GAD 65, and the GABA vesicular transporter. J Comp Neurol 2010; 518:1647-69. [PMID: 20235161 DOI: 10.1002/cne.22294] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gamma-aminobutyric acid (GABA) is likely expressed in horizontal cells of all species, although conflicting physiological findings have led to considerable controversy regarding its role as a transmitter in the outer retina. This study has evaluated key components of the GABA system in the outer retina of guinea pig, an emerging retinal model system. The presence of GABA, its rate-limiting synthetic enzyme glutamic acid decarboxylase (GAD(65) and GAD(67) isoforms), the plasma membrane GABA transporters (GAT-1 and GAT-3), and the vesicular GABA transporter (VGAT) was evaluated by using immunohistochemistry with well-characterized antibodies. The presence of GAD(65) mRNA was also evaluated by using laser capture microdissection and reverse transcriptase-polymerase chain reaction. Specific GABA, GAD(65), and VGAT immunostaining was localized to horizontal cell bodies, as well as to their processes and tips in the outer plexiform layer. Furthermore, immunostaining of retinal whole mounts and acutely dissociated retinas showed GAD(65) and VGAT immunoreactivity in both A-type and B-type horizontal cells. However, these cells did not contain GAD(67), GAT-1, or GAT-3 immunoreactivity. GAD(65) mRNA was detected in horizontal cells, and sequencing of the amplified GAD(65) fragment showed approximately 85% identity with other mammalian GAD(65) mRNAs. These studies demonstrate the presence of GABA, GAD(65), and VGAT in horizontal cells of the guinea pig retina, and support the idea that GABA is synthesized from GAD(65), taken up into synaptic vesicles by VGAT, and likely released by a vesicular mechanism from horizontal cells.
Collapse
Affiliation(s)
- Chenying Guo
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
26
|
Serial multifocal electroretinograms during long-term elevation and reduction of intraocular pressure in non-human primates. Doc Ophthalmol 2010; 120:273-89. [PMID: 20422254 DOI: 10.1007/s10633-010-9231-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
The purpose of this study was to evaluate the relationship between elevations of intraocular pressure (IOP) and the multifocal electroretinogram (mfERG) in non-human primates. Experimental glaucoma was induced in 4 rhesus and 4 cynomolgus monkeys by laser trabecular meshwork destruction (LTD) in one eye. To evaluate the contribution of ganglion cells to mfERG changes, one monkey of each species had previously underwent unilateral optic nerve transection (ONT). After >or=44 weeks of elevation, the IOP was reduced by trabeculectomy in 2 non-transected animals. In the intact (non-transected) animals, there was an increase in the amplitude of the early mfERG waveforms (N1 and P1) of the first-order kernel (K1) throughout the period of IOP elevation in all of the rhesus, but not all of the cynomolgus monkeys. A species difference was also present as a decrease of the second-order kernel, first slice (K2.1) in all of the cynomolgus monkeys but only in 1 of the rhesus monkeys (the 1 with the ONT). Similar IOP effects on the mfERG were seen in the ONT animals. Surgical lowering of IOP resulted in a return of the elevated K1 amplitudes to baseline levels. However, the depressed K2.1 RMS in the cynomolgus monkeys did not recover. These results demonstrate species-specific changes in cone-driven retinal function during periods of elevated IOP. These IOP-related effects can occur in the absence of retinal ganglion cells and may be reversible.
Collapse
|
27
|
Russell TL, Werblin FS. Retinal synaptic pathways underlying the response of the rabbit local edge detector. J Neurophysiol 2010; 103:2757-69. [PMID: 20457864 DOI: 10.1152/jn.00987.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the circuitry that underlies the behavior of the local edge detector (LED) retinal ganglion cell in rabbit by measuring the spatial and temporal properties of excitatory and inhibitory currents under whole cell voltage clamp. Previous work showed that LED excitation is suppressed by activity in the surround. However, the contributions of outer and inner retina to this characteristic and the neurotransmitters used are currently unknown. Blockage of retinal inhibitory pathways (GABA(A), GABA(C), and glycine) eliminated edge selectivity. Inverting gratings in the surround with 50-microm stripe sizes did not stimulate horizontal cells, but suppressed on and off excitation by roughly 60%, indicating inhibition of bipolar terminals (feedback inhibition). On pharmacologic blockage, we showed that feedback inhibition used both GABA(A) and GABA(C) receptors, but not glycine. Glycinergic inhibition suppressed GABAergic feedback inhibition in the center, enabling larger excitatory currents in response to luminance changes. Excitation, feedback inhibition, and direct (feedforward) inhibition responded to luminance-neutral flipping gratings of 20- to 50-microm widths, showing they are driven by independent subunits within their receptive fields, which confers sensitivity to borders between areas of texture and nontexture. Feedforward inhibition was glycinergic, its rise time was faster than decay time, and did not function to delay spiking at the onset of a stimulus. Both the on and off phases could be triggered by luminance shifts as short in duration as 33 ms and could be triggered during scenes that already produced a high baseline level of feedforward inhibition. Our results show how LED circuitry can use subreceptive field sensitivity to detect visual edges via the interaction between excitation and feedback inhibition and also respond to rapid luminance shifts within a rapidly changing scene by producing feedforward inhibition.
Collapse
Affiliation(s)
- Thomas L Russell
- Division of Neurobiology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
28
|
Yu YC, Satoh H, Wu SM, Marshak DW. Histamine enhances voltage-gated potassium currents of ON bipolar cells in macaque retina. Invest Ophthalmol Vis Sci 2008; 50:959-65. [PMID: 18836167 DOI: 10.1167/iovs.08-2746] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The goal was to understand the functions of retinopetal axons containing histamine. In prior work, type 3 histamine receptors (HR3) have been localized to the tips of ON bipolar cell dendrites in macaque retinas. Voltage-gated potassium channels have also been localized to bipolar cell dendrites, and the hypothesis tested in the present study was that these are modulated by histamine. METHODS Whole-cell recordings of potassium currents were made from bipolar cells in slice preparations of macaque retina. In voltage-clamp mode, the cells were held at -60 mV and stepped to values from -60 to 80 mV. Recordings of the membrane potential were also made in current-clamp mode. Histamine, the HR3 agonist (R) alpha-methylhistamine (RAMH), tetraethyl ammonium (TEA), and 4-aminopyridine (4-AP) were applied in the superfusate. RESULTS Histamine produced a dose-dependent increase in potassium currents in a subset of bipolar cells. At 5 microM, histamine increased the currents by 15% or more in the ON bipolar cells but not in the OFF bipolar cells. RAMH at 5 microM increased the amplitude of the potassium currents in the ON bipolar cells. In 10 mM TEA, potassium currents were reduced in all the bipolar cells, and there was no effect of histamine. Histamine hyperpolarized the resting membrane potential of the ON bipolar cells by 5 mV. CONCLUSIONS By enhancing potassium currents in the ON bipolar cells, histamine is expected to reduce the amplitude of the light responses and limit their duration. The hyperpolarization of the resting membrane potential would also reduce neurotransmitter release at their output synapses.
Collapse
Affiliation(s)
- Yong-Chun Yu
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas 77225, USA
| | | | | | | |
Collapse
|
29
|
Lin B, Martin PR, Solomon SG, Grünert U. Distribution of glycine receptor subunits on primate retinal ganglion cells: a quantitative analysis. Eur J Neurosci 2008. [DOI: 10.1111/j.1460-9568.2000.01311.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Cervia D, Casini G, Bagnoli P. Physiology and pathology of somatostatin in the mammalian retina: a current view. Mol Cell Endocrinol 2008; 286:112-22. [PMID: 18242820 DOI: 10.1016/j.mce.2007.12.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 10/11/2007] [Accepted: 12/12/2007] [Indexed: 12/30/2022]
Abstract
In the retina, peptidergic signalling participates in multiple circuits of visual information processing. The neuropeptide somatostatin (SRIF) is localised to amacrine cells and, in some instances, in a subset of ganglion cells. The variegated expression patterns of SRIF receptors (sst(1)-sst(5)) and the variety of signalling mechanisms activated by retinal SRIF suggest that this peptide may exert multiple actions on retinal neurons and on retinal physiology, although our current understanding reflects a rather complicated picture. SRIF, mostly through sst(2), may act as a positive factor in the retina by regulating retinal homeostasis and protecting neurons against damage. In this respect, SRIF analogues seem to constitute a promising therapeutic arsenal to cure different retinal diseases, as for instance, ischemic and diabetic retinopathies. However, further investigations are needed not only to fully understand the functional role of the SRIF system in the retina but also to exploit new chemical space for drug-like molecules.
Collapse
Affiliation(s)
- Davide Cervia
- Department of Environmental Sciences, University of Tuscia, Viterbo, Italy
| | | | | |
Collapse
|
31
|
Hirano AA, Brandstätter JH, Vila A, Brecha NC. Robust syntaxin-4 immunoreactivity in mammalian horizontal cell processes. Vis Neurosci 2007; 24:489-502. [PMID: 17640443 PMCID: PMC2744743 DOI: 10.1017/s0952523807070198] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 03/12/2007] [Indexed: 12/22/2022]
Abstract
Horizontal cells mediate inhibitory feed-forward and feedback communication in the outer retina; however, mechanisms that underlie transmitter release from mammalian horizontal cells are poorly understood. Toward determining whether the molecular machinery for exocytosis is present in horizontal cells, we investigated the localization of syntaxin-4, a SNARE protein involved in targeting vesicles to the plasma membrane, in mouse, rat, and rabbit retinae using immunocytochemistry. We report robust expression of syntaxin-4 in the outer plexiform layer of all three species. Syntaxin-4 occurred in processes and tips of horizontal cells, with regularly spaced, thicker sandwich-like structures along the processes. Double labeling with syntaxin-4 and calbindin antibodies, a horizontal cell marker, demonstrated syntaxin-4 localization to horizontal cell processes; whereas, double labeling with PKC antibodies, a rod bipolar cell (RBC) marker, showed a lack of co-localization, with syntaxin-4 immunolabeling occurring just distal to RBC dendritic tips. Syntaxin-4 immunolabeling occurred within VGLUT-1-immunoreactive photoreceptor terminals and underneath synaptic ribbons, labeled by CtBP2/RIBEYE antibodies, consistent with localization in invaginating horizontal cell tips at photoreceptor triad synapses. Vertical sections of retina immunostained for syntaxin-4 and peanut agglutinin (PNA) established that the prominent patches of syntaxin-4 immunoreactivity were adjacent to the base of cone pedicles. Horizontal sections through the OPL indicate a one-to-one co-localization of syntaxin-4 densities at likely all cone pedicles, with syntaxin-4 immunoreactivity interdigitating with PNA labeling. Pre-embedding immuno-electron microscopy confirmed the subcellular localization of syntaxin-4 labeling to lateral elements at both rod and cone triad synapses. Finally, co-localization with SNAP-25, a possible binding partner of syntaxin-4, indicated co-expression of these SNARE proteins in the same subcellular compartment of the horizontal cell. Taken together, the strong expression of these two SNARE proteins in the processes and endings of horizontal cells at rod and cone terminals suggests that horizontal cell axons and dendrites are likely sites of exocytotic activity.
Collapse
Affiliation(s)
- Arlene A Hirano
- Departments of Neurobiology & Medicine, Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
32
|
Frazao R, Nogueira MI, Wässle H. Colocalization of synaptic GABA(C)-receptors with GABA (A)-receptors and glycine-receptors in the rodent central nervous system. Cell Tissue Res 2007; 330:1-15. [PMID: 17610086 DOI: 10.1007/s00441-007-0446-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
Fast inhibition in the nervous system is preferentially mediated by GABA- and glycine-receptors. Two types of ionotropic GABA-receptor, the GABA(A)-receptor and GABA(C)-receptor, have been identified; they have specific molecular compositions, different sensitivities to GABA, different kinetics, and distinct pharmacological profiles. We have studied, by immunocytochemistry, the synaptic localization of glycine-, GABA(A)-, and GABA(C)-receptors in rodent retina, spinal cord, midbrain, and brain-stem. Antibodies specific for the alpha1 subunit of the glycine-receptor, the gamma2 subunit of the GABA(A)-receptor, and the rho subunits of the GABA(C)-receptor have been applied. Using double-immunolabeling, we have determined whether these receptors are expressed at the same postsynaptic sites. In the retina, no such colocalization was observed. However, in the spinal cord, we found the colocalization of glycine-receptors with GABA(A)- or GABA(C)-receptors and the colocalization of GABA(A)- and GABA(C)-receptors in approximately 25% of the synapses. In the midbrain and brain-stem, GABA(A)- and GABA(C)-receptors were colocalized in 10%-15% of the postsynaptic sites. We discuss the possible expression of heteromeric (hybrid) receptors assembled from GABA(A)- and GABA(C)-receptor subunits. Our results suggest that GABA(A)- and GABA(C)-receptors are colocalized in a minority of synapses of the central nervous system.
Collapse
Affiliation(s)
- Renata Frazao
- Neuroanatomie, Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, 60528, Frankfurt/Main, Germany
| | | | | |
Collapse
|
33
|
Giersch A, Speeg-Schatz C, Tondre M, Gottenkiene S. Impairment of contrast sensitivity in long-term lorazepam users. Psychopharmacology (Berl) 2006; 186:594-600. [PMID: 16586087 DOI: 10.1007/s00213-006-0378-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
RATIONALE Oculomotor balance and contrast sensitivity are known to be impaired after an intake of a single dose of lorazepam. To the best of our knowledge, these effects have not been explored in long-term users of lorazepam, despite the potential importance of such deficits in everyday life. OBJECTIVE We tested the ophthalmological effects and contrast sensitivity for static stimuli in long-term lorazepam users. MATERIALS AND METHODS There were 15 lorazepam users and 15 sex-, age- and education level-matched control subjects tested, using a simple blind procedure. RESULTS The ophthalmological effects were scarce, with a discrete exophoria. Visual acuity was preserved. Contrast sensitivity, however, was more markedly impaired, consistent with the effects of an acute dose of lorazepam. The effects were not correlated with anxiety or sedation. CONCLUSIONS The results are discussed in terms of their possible impact on everyday life. As visual acuity does not allow the detection of the impairments that are observed in the present study, it is suggested that a more systematic exploration of contrast sensitivity be carried out in long-term users of benzodiazepines.
Collapse
Affiliation(s)
- Anne Giersch
- INSERM U666-Department of Psychiatry, Hôpitaux Universitaires de Strasbourg, 1, place de l'Hôpital, 67091, Strasbourg Cedex, France.
| | | | | | | |
Collapse
|
34
|
GASTINGER MATTHEWJ, BARBER ALISTAIRJ, VARDI NOGA, MARSHAK DAVIDW. Histamine receptors in mammalian retinas. J Comp Neurol 2006; 495:658-67. [PMID: 16506196 PMCID: PMC3348866 DOI: 10.1002/cne.20902] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mammalian retinas are innervated by histaminergic axons that originate from perikarya in the posterior hypothalamus. To identify the targets of these retinopetal axons, we localized histamine receptors (HR) in monkey and rat retinas by light and electron microscopy. In monkeys, puncta containing HR3 were found at the tips of ON-bipolar cell dendrites in cone pedicles and rod spherules, closer to the photoreceptors than the other neurotransmitter receptors. This is the first ultrastructural localization of any histamine receptor and the first direct evidence that HR3 is present on postsynaptic membranes in the central nervous system. In rat retinas, most HR1 were localized to dopaminergic amacrine cells. The differences in histamine receptor localization may reflect the differences in the activity patterns of the two species.
Collapse
Affiliation(s)
- MATTHEW J. GASTINGER
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77225
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, Texas 77225
| | - ALISTAIR J. BARBER
- Penn State Retina Research Group, Department of Ophthalmology, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033
| | - NOGA VARDI
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - DAVID W. MARSHAK
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, Texas 77225
- Correspondence to: David W. Marshak, Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, P.O. Box 20708, Houston, TX 77225.
| |
Collapse
|
35
|
Duebel J, Haverkamp S, Schleich W, Feng G, Augustine GJ, Kuner T, Euler T. Two-photon imaging reveals somatodendritic chloride gradient in retinal ON-type bipolar cells expressing the biosensor Clomeleon. Neuron 2006; 49:81-94. [PMID: 16387641 DOI: 10.1016/j.neuron.2005.10.035] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 09/01/2005] [Accepted: 10/31/2005] [Indexed: 11/16/2022]
Abstract
A somatodendritic gradient of Cl(-) concentration ([Cl(-)](i)) has been postulated to generate GABA-evoked responses of different polarity in retinal bipolar cells, hyperpolarizing in OFF cells with low dendritic [Cl(-)](i), and depolarizing in ON cells with high dendritic [Cl(-)](i). As glutamate released by the photoreceptors depolarizes OFF cells and hyperpolarizes ON cells, the bipolars' antagonistic receptive field (RF) could be computed by simply integrating glutamatergic inputs from the RF center and GABAergic inputs from horizontal cells in the RF surround. Using ratiometric two-photon imaging of Clomeleon, a Cl(-) indicator transgenically expressed in ON bipolar cells, we found that dendritic [Cl(-)](i) exceeds somatic [Cl(-)](i) by up to 20 mM and that GABA application can lead to Cl(-) efflux (depolarization) in these dendrites. Blockers of Cl(-) transporters reduced the somatodendritic [Cl(-)](i) gradient. Hence, our results support the idea that ON bipolar cells employ a somatodendritic [Cl(-)](i) gradient to invert GABAergic horizontal cell input.
Collapse
Affiliation(s)
- Jens Duebel
- Department of Biomedical Optics, Max-Planck-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Varela C, Blanco R, De la Villa P. Depolarizing effect of GABA in rod bipolar cells of the mouse retina. Vision Res 2005; 45:2659-67. [PMID: 15923018 DOI: 10.1016/j.visres.2005.03.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 03/15/2005] [Accepted: 03/23/2005] [Indexed: 11/20/2022]
Abstract
Gamma-amino butyric acid (GABA) has been characterized as inhibitory neurotransmitter through chloride mediated channels in the adult nervous system. However, using gramicidin perforated patch-clamp recordings from rod bipolar cells dissociated from retinas of adult mice, we find that GABA is capable of inducing cell depolarization. Currents mediated by GABA(A) and GABA(C) receptors were further isolated by the use of GABA receptor specific blockers. In rod bipolar cells dissociated from the mouse retina, activation of GABA(A) receptors located at the cell dendrites induces ionic currents which show a reversal potential of -33 mV. However, local activation of GABA(C) receptors located at the axon terminal induces ionic currents with a reversal potential of -60 mV. According to Nernst equation, the dendrites of rod bipolar cells of the mouse retina would have a high intracellular chloride concentration ([Cl(-)](i)) and there must be an intracellular gradient in [Cl(-)](i), being the [Cl(-)](i) more elevated in the dendrites than in the axon terminal. The depolarizing effect of GABA at the dendrites of rod bipolar cells may contribute to the lateral interaction in the mammalian retina, thereby enhancing visual discrimination of stimuli input.
Collapse
Affiliation(s)
- Carolina Varela
- Departamento de Fisiología, Universidad de Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | | | | |
Collapse
|
37
|
Varela C, Rivera L, Blanco R, De la Villa P. Depolarizing effect of GABA in horizontal cells of the rabbit retina. Neurosci Res 2005; 53:257-64. [PMID: 16081177 DOI: 10.1016/j.neures.2005.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 06/24/2005] [Accepted: 07/01/2005] [Indexed: 11/16/2022]
Abstract
Gamma-amino butyric acid (GABA) has been characterized as an inhibitory neurotransmitter acting through chloride mediated channels in the adult nervous system. Using gramicidin-perforated patch clamp recordings from horizontal cells dissociated from the retinas of adult rabbits, we found that GABA is able to induce cell depolarization. Ionic currents induced by GABA in dissociated horizontal cells showed a reversal potential close to -30 mV. This value is more positive than the resting potential of these cells (ca. -70 mV). Therefore, according to the Nernst equation, the intracellular chloride concentration in horizontal cells was estimated to be of 44 mM. The depolarizing effect of GABA at the dendrites of horizontal cells may serve to shape the center-surround organization of the receptive fields in retinal cells, thereby securing the shape discrimination of visual input.
Collapse
Affiliation(s)
- Carolina Varela
- Departamento de Fisiología, Universidad de Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Hirano AA, Brandstätter JH, Brecha NC. Cellular distribution and subcellular localization of molecular components of vesicular transmitter release in horizontal cells of rabbit retina. J Comp Neurol 2005; 488:70-81. [PMID: 15912504 PMCID: PMC2820412 DOI: 10.1002/cne.20577] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanism underlying transmitter release from retinal horizontal cells is poorly understood. We investigated the possibility of vesicular transmitter release from mammalian horizontal cells by examining the expression of synaptic proteins that participate in vesicular transmitter release at chemical synapses. Using immunocytochemistry, we evaluated the cellular and subcellular distribution of complexin I/II, syntaxin-1, and synapsin I in rabbit retina. Strong labeling for complexin I/II, proteins that regulate a late step in vesicular transmitter release, was found in both synaptic layers of the retina, and in somata of A- and B-type horizontal cells, of gamma-aminobutyric acid (GABA)- and glycinergic amacrine cells, and of ganglion cells. Immunoelectron microscopy demonstrated the presence of complexin I/II in horizontal cell processes postsynaptic to rod and cone ribbon synapses. Syntaxin-1, a core protein of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) complex known to bind to complexin, and synapsin I, a synaptic vesicle-associated protein involved in the Ca(2+)-dependent recruitment of synaptic vesicles for transmitter release, were also present in the horizontal cells and their processes at photoreceptor synapses. Photoreceptors and bipolar cells did not express any of these proteins at their axon terminals. The presence of complexin I/II, syntaxin-1, and synapsin I in rabbit horizontal cell processes and tips suggests that a vesicular mechanism may underlie transmitter release from mammalian horizontal cells.
Collapse
Affiliation(s)
- Arlene A Hirano
- Department of Neurobiology & Medicine, Geffen School of Medicine at University of California at Los Angeles, 90095, USA.
| | | | | |
Collapse
|
39
|
Reitsamer HA, Pflug R, Franz M, Huber S. Dopaminergic modulation of horizontal-cell-axon-terminal receptive field size in the mammalian retina. Vision Res 2005; 46:467-74. [PMID: 16023694 DOI: 10.1016/j.visres.2005.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 04/27/2005] [Accepted: 05/23/2005] [Indexed: 10/25/2022]
Abstract
Receptive fields of gap junction-coupled axon terminals of B-type horizontal cells of isolated rabbit retinae were measured by recording light responses to slit shaped light stimuli at different eccentricities from the recording site. The D1/D5 agonist SKF-38393 and the membrane permeant second messenger 8-bromo-cAMP caused decreases of space constants by 20% while the D1/D5 antagonist SCH-23390 increased space constants by 25%. The results of this study indicate that axon terminal receptive fields of the rabbit retina can be modulated by D1/D5 receptor activation based on a cAMP-mediated mechanism. The data also suggest the presence of endogenous dopamine as an agent for axon terminal receptive field size modulation.
Collapse
Affiliation(s)
- Herbert A Reitsamer
- Department of Physiology, Center for Physiology and Pathophysiology, Medical University of Vienna, Austria
| | | | | | | |
Collapse
|
40
|
Chapter 1 Morphology and physiology of the retina. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1567-4231(09)70198-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
41
|
Yang XL. Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol 2004; 73:127-50. [PMID: 15201037 DOI: 10.1016/j.pneurobio.2004.04.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2003] [Accepted: 04/12/2004] [Indexed: 11/16/2022]
Abstract
Glutamate and gamma-aminobutyric acid (GABA) are major excitatory and inhibitory neurotransmitters in the vertebrate retina, "a genuine neural center" (Ramón y Cajal, 1964, Recollections of My Life, C.E. Horne (Translater) MIT Press, Cambridge, MA). Photoreceptors, generating visual signals, and bipolar cells, mediating signal transfer from photoreceptors to ganglion cells, both release glutamate, which induces and/or changes the activity of the post-synaptic neurons (horizontal and bipolar cells for photoreceptors; amacrine and ganglion cells for bipolar cells). Horizontal and amacrine cells, which mediate lateral interaction in the outer and inner retina respectively, use GABA as a principal neurotransmitter. In recent years, glutamate receptors and GABA receptors in the retina have been extensively studied, using multi-disciplinary approaches. In this article some important advances in this field are reviewed, with special reference to retinal information processing. Photoreceptors possess metabotropic glutamate receptors and several subtypes of GABA receptors. Most horizontal cells express AMPA receptors, which may be predominantly assembled from flop slice variants. In addition, these cells also express GABAA and GABAC receptors. Signal transfer from photoreceptors to bipolar cells is rather complicated. Whereas AMPA/KA receptors mediate transmission for OFF type bipolar cells, several subtypes of glutamate receptors, both ionotropic and metabotropic, are involved in the generation of light responses of ON type bipolar cells. GABAA and GABAC receptors with distinct kinetics are differentially expressed on dendrites and axon terminals of both ON and OFF bipolar cells, mediating inhibition from horizontal cells and amacrine cells. Amacrine cells possess ionotropic glutamate receptors, whereas ganglion cells express both ionotropic and metabotropic glutamate receptors. GABAA receptors exist in amacrine and ganglion cells. Physiological data further suggest that GABAC receptors may be involved in the activity of these neurons. Moreover, responses of these retinal third order neurons are modulated by GABAB receptors, and in ganglion cells there exist several subtypes of GABAB receptors. A variety of glutamate receptor and GABA receptor subtypes found in the retina perform distinct functions, thus providing a wide range of neural integration and versatility of synaptic transmission. Perspectives in this research field are presented.
Collapse
Affiliation(s)
- Xiong-Li Yang
- Institute of Neurobiology, Fudan University, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
42
|
Wong KY, Adolph AR, Dowling JE. Retinal bipolar cell input mechanisms in giant danio. I. Electroretinographic analysis. J Neurophysiol 2004; 93:84-93. [PMID: 15229213 DOI: 10.1152/jn.00259.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UNLABELLED Electroretinograms (ERGs) were recorded from the giant danio (Danio aequipinnatus) to study glutamatergic input mechanisms onto bipolar cells. Glutamate analogs were applied to determine which receptor types mediate synaptic transmission from rods and cones to on and off bipolar cells. Picrotoxin, strychnine, and tetrodotoxin were used to isolate the effects of the glutamate analogs to the photoreceptor-bipolar cell synapse. Under photopic conditions, the group III metabotropic glutamate receptor (mGluR) antagonist (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG) only slightly reduced the b-wave, whereas the excitatory amino acid transporter (EAAT) blocker dl-threo-beta-benzyl-oxyaspartate (TBOA) removed most of it. Complete elimination of the b-wave required both antagonists. The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) blocked the d-wave. Under scotopic conditions, rod and cone inputs onto on bipolar cells were studied by comparing the sensitivities of the b-wave to photopically matched green and red stimuli. The b-wave was >1 log unit more sensitive to the green than to the red stimulus under control conditions. In CPPG or l-AP4 (l-(+)-2-amino-4-phosphonobutyric acid, a group III mGluR agonist), the sensitivity of the b-wave to the green stimulus was dramatically reduced and the b-waves elicited by the 2 stimuli became nearly matched. The d-wave elicited by dim green stimuli, which presumably could be detected only by the rods, was eliminated by NBQX. IN CONCLUSION 1) cone signals onto on bipolar cells involve mainly EAATs but also mGluRs (presumably mGluR6) to a lesser extent; 2) rods signal onto on bipolars by mainly mGluR6; 3) off bipolar cells receive signals from both photoreceptor types by AMPA/kainate receptors.
Collapse
Affiliation(s)
- Kwoon Y Wong
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | | | | |
Collapse
|
43
|
Xia Y, Nawy S. The gap junction blockers carbenoxolone and 18β-glycyrrhetinic acid antagonize cone-driven light responses in the mouse retina. Vis Neurosci 2003; 20:429-35. [PMID: 14658771 DOI: 10.1017/s0952523803204089] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gap junctions are widely expressed throughout the retina, and play an important role in the processing of visual information. It has been proposed that horizontal cells express unpaired gap junctions, or hemichannels, in their dendrites, and that current flowing through hemichannels reduces transmembrane voltage at cone terminals, promoting the opening of Ca2+channels near sites of transmitter release. This model predicts that pharmacological block of gap junctions should reduce the Ca2+current at the equivalent cone voltage, thereby decreasing the postsynaptic light response. To test this prediction, and estimate the relative magnitude of this effect on third-order cells, we recorded light responses in mouse ganglion cells under photopic conditions and applied two gap junction antagonists, carbenoxolone and the structurally related 18β-glycyrrhetinic acid (GA). Both carbenoxolone and GA decreased the size of the light response to about 30% of control. Cells that were physiologically identified as ON, OFF, or ON/OFF were equally affected by carbenoxolone/GA. These gap junction blockers did not interfere with gamma-aminobutyric acid (GABA) or glutamate receptors, as they did not affect responses to direct activation of these receptors. Under control conditions, spots larger than 200 μm in diameter activated ganglion cell receptive-field surrounds. Comparing responses to small and large spots before and during carbenoxolone treatment, we found that carbenoxolone did not preferentially inhibit surround antagonism at the ganglion cell level, but instead scaled the responses to all spot sizes. Our results extend the findings of studies in lower vertebrates which showed that light responses in horizontal cells are decreased by carbenoxolone treatment, and support the idea that hemichannels in the outer retina, most likely on horizontal cells, constitute important gates that are critical for allowing light responses to move forward into the retinal circuit. Furthermore, it suggests that ganglion cell surrounds are generated in the inner retina.
Collapse
Affiliation(s)
- Yingqiu Xia
- Department of Ophthalmology and Visual Science, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
44
|
Billups D, Attwell D. Control of intracellular chloride concentration and GABA response polarity in rat retinal ON bipolar cells. J Physiol 2002; 545:183-98. [PMID: 12433959 PMCID: PMC2290660 DOI: 10.1113/jphysiol.2002.024877] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
GABAergic modulation of retinal bipolar cells plays a crucial role in early visual processing. It helps to form centre-surround receptive fields which filter the visual signal spatially at the bipolar cell dendrites in the outer retina, and it produces temporal filtering at the bipolar cell synaptic terminals in the inner retina. The observed chloride transporter distribution in ON bipolar cells has been predicted to produce an intracellular chloride concentration, [Cl(-)](i), that is significantly higher in the dendrites than in the synaptic terminals. This would allow dendritic GABA-gated Cl(-) channels to generate the depolarization needed for forming the lateral inhibitory surround of the cell's receptive field, while synaptic terminal GABA-gated Cl(-) channels generate the hyperpolarization needed for temporal shaping of the light response. In contrast to this idea, we show here that in ON bipolar cells [Cl(-)](i) is only slightly higher in the dendrites than in the synaptic terminals, and that GABA-gated channels in the dendrites may generate a hyperpolarization rather than a depolarization. We also show that [Cl(-)](i) is controlled by movement of Cl(-) through ion channels in addition to transporters, that changes of [K(+)](o) alter [Cl(-)](i) and that voltage-dependent equilibration of [Cl(-)](i) in bipolar cells will produce a time-dependent adaptation of GABAergic modulation with a time constant of 8 s after illumination-evoked changes of membrane potential. Time-dependent adaptation of [Cl(-)](i) to voltage changes in retinal bipolar cells may add a previously unsuspected layer of temporal processing to signals as they pass through the retina.
Collapse
Affiliation(s)
- Daniela Billups
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
45
|
Cueva JG, Haverkamp S, Reimer RJ, Edwards R, Wässle H, Brecha NC. Vesicular gamma-aminobutyric acid transporter expression in amacrine and horizontal cells. J Comp Neurol 2002; 445:227-37. [PMID: 11920703 PMCID: PMC3696019 DOI: 10.1002/cne.10166] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The vesicular gamma-aminobutyric acid (GABA) transporter (VGAT), which transports the inhibitory amino acid transmitters GABA and glycine, is localized to synaptic vesicles in axon terminals. The localization of VGAT immunoreactivity to mouse and rat retina was evaluated with light and electron microscopy by using well-characterized VGAT antibodies. Specific VGAT immunoreactivity was localized to numerous varicose processes in all laminae of the inner plexiform layer (IPL) and to the outer plexiform layer (OPL). Amacrine cell somata characterized by weak VGAT immunoreactivity in the cytoplasm were located in the ganglion cell layer and proximal inner nuclear layer (INL) adjacent to the IPL. In rat retina, VGAT-immunoreactive cell bodies also contained GABA, glycine, or parvalbumin (PV) immunoreactivity, suggesting vesicular uptake of GABA or glycine by these cells. A few varicose VGAT-immunoreactive processes entered the OPL from the IPL. VGAT immunoreactivity in the OPL was predominantly localized to horizontal cell processes. VGAT and calcium binding protein-28K immunoreactivities (CaBP; a marker for horizontal cells) were colocalized in processes and terminals distributed to the OPL. Furthermore, VGAT immunoreactivity overlapped or was immediately adjacent to postsynaptic density-95 (PSD-95) immunoreactivity, which is prominent in photoreceptor terminals. Preembedding immunoelectron microscopy of mouse and rat retinae showed that VGAT immunoreactivity was localized to horizontal cell processes and their terminals. Immunoreactivity was distributed throughout the cytoplasm of the horizontal cell processes. Taken together, these findings demonstrate VGAT immunoreactivity in both amacrine and horizontal cell processes, suggesting these cells contain vesicles that accumulate GABA and glycine, possibly for vesicular release.
Collapse
Affiliation(s)
- Juan G Cueva
- Department of Neurobiology, University of California at Los Angeles, Los Angeles, California 90095-1763, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The receptive field (RF) of retinal ganglion cells (RGCs) consists of an excitatory central region, the RF center, and an inhibitory peripheral region, the RF surround. It is still unknown in detail which inhibitory interneurons (horizontal or amacrine cells) and which inhibitory circuits (presynaptic or postsynaptic) generate the RF surround. To study surround inhibition, light-evoked whole-cell currents were recorded from RGCs of the isolated, intact rabbit retina. The RFs were stimulated with light or dark spots of increasing diameters and with annular light stimuli. Direct inhibitory currents could be isolated by voltage clamping ganglion cells close to the Na(+)/K(+) reversal potential. They mostly represent an input from GABAergic amacrine cells that contribute to the inhibitory surround of ganglion cells. This direct inhibitory input and its physiological function were also investigated by recording light-evoked action potentials of RGCs in the current-clamp mode and by changing the intracellular Cl(-) concentration. The excitatory input of the ganglion cells could be isolated by voltage clamping ganglion cells at the Cl(-) reversal potential. Large light spots and annular light stimuli caused a strong attenuation of the excitatory input. Both GABA(A) receptors and GABA(C) receptors contributed to this inhibition, and picrotoxinin was able to completely block it. Together, these results show that the RF surround of retinal ganglion cells is mediated by a combination of direct inhibitory synapses and presynaptic surround inhibition.
Collapse
|
47
|
Evidence that different cation chloride cotransporters in retinal neurons allow opposite responses to GABA. J Neurosci 2001. [PMID: 11027226 DOI: 10.1523/jneurosci.20-20-07657.2000] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA gating an anion channel primarily permeable to chloride can hyperpolarize or depolarize, depending on whether the chloride equilibrium potential (E(Cl)) is negative or positive, respectively, to the resting membrane potential (E(rest)). If the transmembrane Cl(-) gradient is set by active transport, those neurons or neuronal regions that exhibit opposite responses to GABA should express different chloride transporters. To test this, we immunostained retina for the K-Cl cotransporter (KCC2) that normally extrudes chloride and for the Na-K-Cl cotransporter (NKCC) that normally accumulates chloride. KCC2 was expressed wherever E(Cl) is either known or predicted to be negative to E(rest) (ganglion cells, bipolar axons, and OFF bipolar dendrites), whereas NKCC was expressed wherever E(Cl) is either known or predicted to be positive to E(rest) (horizontal cells and ON bipolar dendrites). Thus, in the retina, the opposite effects of GABA on different cell types and on different cellular regions are probably primarily determined by the differential targeting of these two chloride transporters.
Collapse
|
48
|
Andrade da Costa BL, de Mello FG, Hokoç JN. Comparative study of glutamate mediated gamma-aminobutyric acid release from nitric oxide synthase and tyrosine hydroxylase immunoreactive cells of the Cebus apella retina. Neurosci Lett 2001; 302:21-4. [PMID: 11278102 DOI: 10.1016/s0304-3940(01)01634-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of excitatory amino acids (EAAs) upon transporter-mediated gamma-aminobutyric acid (GABA) release were investigated in cells containing tyrosine hydroxylase (TH) or nitric oxide synthase (NOS) in retina of the primate Cebus apella. Retinas were treated in vitro with 50 microM Kainate (KA) or 5 mM L-Glutamate (L-Glu), for 30 min at 37 degrees C, in an Mg2+-free Locke's solution with or without Ca2+. The effects of EAAs were measured immunocytochemically by determining the GABA content in TH or NOS-immunoreactive cells in the inner retina, after stimulation. L-Glu and KA induced a Ca2+-independent GABA release from most GABA-immunoreactive cells of the inner retina. Double label experiments indicated that this release occurs in NOS+/GABA+ cells, but not in TH+/GABA+ cells suggesting that these cell subpopulations may be differentiated in some functional aspects.
Collapse
|
49
|
Lin B, Martin PR, Solomon SG, Grunert U. Distribution of glycine receptor subunits on primate retinal ganglion cells: a quantitative analysis. Eur J Neurosci 2000. [DOI: 10.1046/j.1460-9568.2000.01311.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Dacey D, Packer OS, Diller L, Brainard D, Peterson B, Lee B. Center surround receptive field structure of cone bipolar cells in primate retina. Vision Res 2000; 40:1801-11. [PMID: 10837827 DOI: 10.1016/s0042-6989(00)00039-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In non-mammalian vertebrates, retinal bipolar cells show center-surround receptive field organization. In mammals, recordings from bipolar cells are rare and have not revealed a clear surround. Here we report center-surround receptive fields of identified cone bipolar cells in the macaque monkey retina. In the peripheral retina, cone bipolar cell nuclei were labeled in vitro with diamidino-phenylindole (DAPI), targeted for recording under microscopic control, and anatomically identified by intracellular staining. Identified cells included 'diffuse' bipolar cells, which contact multiple cones, and 'midget' bipolar cells, which contact a single cone. Responses to flickering spots and annuli revealed a clear surround: both hyperpolarizing (OFF) and depolarizing (ON) cells responded with reversed polarity to annular stimuli. Center and surround dimensions were calculated for 12 bipolar cells from the spatial frequency response to drifting, sinusoidal luminance modulated gratings. The frequency response was bandpass and well fit by a difference of Gaussians receptive field model. Center diameters were all two to three times larger than known dendritic tree diameters for both diffuse and midget bipolar cells in the retinal periphery. In one instance intracellular staining revealed tracer spread between a recorded cell and its nearest neighbors, suggesting that homotypic electrical coupling may contribute to receptive field center size. Surrounds were around ten times larger in diameter than centers and in most cases the ratio of center to surround strength was approximately 1. We suggest that the center-surround receptive fields of the major primate ganglion cell types are established at the bipolar cell, probably by the circuitry of the outer retina.
Collapse
Affiliation(s)
- D Dacey
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA 98195-7420, USA.
| | | | | | | | | | | |
Collapse
|