1
|
de Almeida PG, Pinheiro GG, Nunes AM, Gonçalves AB, Thorsteinsdóttir S. Fibronectin assembly during early embryo development: A versatile communication system between cells and tissues. Dev Dyn 2016; 245:520-35. [PMID: 26845241 DOI: 10.1002/dvdy.24391] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fibronectin extracellular matrix is essential for embryogenesis. Its assembly is a cell-mediated process where secreted fibronectin dimers bind to integrin receptors on receiving cells, which actively assemble fibronectin into a fibrillar matrix. During development, paracrine communication between tissues is crucial for coordinating morphogenesis, typically being mediated by growth factors and their receptors. Recent reports of situations where fibronectin is produced by one tissue and assembled by another, with implications on tissue morphogenesis, suggest that fibronectin assembly may also be a paracrine communication event in certain contexts. RESULTS Here we addressed which tissues express fibronectin (Fn1) while also localizing assembled fibronectin matrix and determining the mRNA expression and/or protein distribution pattern of integrins α5 and αV, α chains of the major fibronectin assembly receptors, during early chick and mouse development. We found evidence supporting a paracrine system in fibronectin matrix assembly in several tissues, including immature mesenchymal tissues, components of central and peripheral nervous system and developing muscle. CONCLUSIONS Thus, similarly to growth factor signaling, fibronectin matrix assembly during early development can be both autocrine and paracrine. We therefore propose that it be considered a cell-cell communication event at the same level and significance as growth factor signaling during embryogenesis.
Collapse
Affiliation(s)
- Patrícia Gomes de Almeida
- Centre for Ecology, Evolution and Environmental Change (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Gonçalo G Pinheiro
- Centre for Ecology, Evolution and Environmental Change (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Andreia M Nunes
- Centre for Ecology, Evolution and Environmental Change (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - André B Gonçalves
- Centre for Ecology, Evolution and Environmental Change (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Sólveig Thorsteinsdóttir
- Centre for Ecology, Evolution and Environmental Change (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Sánchez RS, Sánchez SS. Paraxis is required for somite morphogenesis and differentiation in Xenopus laevis. Dev Dyn 2015; 244:973-87. [PMID: 26010523 DOI: 10.1002/dvdy.24294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 05/01/2015] [Accepted: 05/02/2015] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND In most vertebrates, the segmentation of the paraxial mesoderm involves the formation of metameric units called somites through a mesenchymal-epithelial transition. However, this process is different in Xenopus laevis because it does not form an epithelial somite. Xenopus somitogenesis is characterized by a complex cells rearrangement that requires the coordinated regulation of cell shape, adhesion, and motility. The molecular mechanisms that control these cell behaviors underlying somite formation are little known. Although the Paraxis has been implicated in the epithelialization of somite in chick and mouse, its role in Xenopus somite morphogenesis has not been determined. RESULTS Using a morpholino and hormone-inducible construction approaches, we showed that both gain and loss of function of paraxis affect somite elongation, rotation and alignment, causing a severe disorganization of somitic tissue. We further found that depletion or overexpression of paraxis in the somite led to the downregulation or upregulation, respectively, of cell adhesion expression markers. Finally, we demonstrated that paraxis is necessary for the proper expression of myotomal and sclerotomal differentiation markers. CONCLUSIONS Our results demonstrate that paraxis regulates the cell rearrangements that take place during the somitogenesis of Xenopus by regulating cell adhesion. Furthermore, paraxis is also required for somite differentiation.
Collapse
Affiliation(s)
- Romel Sebastián Sánchez
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán (T4000ILI), Argentina
| | - Sara Serafina Sánchez
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán (T4000ILI), Argentina
| |
Collapse
|
3
|
Achilleos A, Huffman NT, Marcinkiewicyz E, Seidah NG, Chen Q, Dallas SL, Trainor PA, Gorski JP. MBTPS1/SKI-1/S1P proprotein convertase is required for ECM signaling and axial elongation during somitogenesis and vertebral development†. Hum Mol Genet 2015; 24:2884-98. [PMID: 25652402 DOI: 10.1093/hmg/ddv050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/02/2015] [Indexed: 11/15/2022] Open
Abstract
Caudal regression syndrome (sacral agenesis), which impairs development of the caudal region of the body, occurs with a frequency of about 2 live births per 100 000 newborns although this incidence rises to 1 in 350 infants born to mothers with gestational diabetes. The lower back and limbs can be affected as well as the genitourinary and gastrointestinal tracts. The axial skeleton is formed during embryogenesis through the process of somitogenesis in which the paraxial mesoderm periodically segments into bilateral tissue blocks, called somites. Somites are the precursors of vertebrae and associated muscle, tendons and dorsal dermis. Vertebral anomalies in caudal regression syndrome may arise through perturbation of somitogenesis or, alternatively, could result from defective bone formation and patterning. We discovered that MBTPS1/SKI-1/S1P, which proteolytically activates a class of transmembrane transcription factors, plays a critical role in somitogenesis and the pathogenesis of lumbar/sacral vertebral anomalies. Conditional deletion of Mbtps1 yields a viable mouse with misshapen, fused and reduced number of lumbar and sacral vertebrae, under-developed hind limb bones and a kinky, shortened tail. We show that Mbtps1 is required to (i) maintain the Fgf8 'wavefront' in the presomitic mesoderm that underpins axial elongation, (ii) sustain the Lfng oscillatory 'clock' activity that governs the periodicity of somite formation and (iii) preserve the composition and character of the somitic extracellular matrix containing fibronectin, fibrillin2 and laminin. Based on this spinal phenotype and known functions of MBTPS1, we reason that loss-of-function mutations in Mbtps1 may cause the etiology of caudal regression syndrome.
Collapse
Affiliation(s)
| | - Nichole T Huffman
- Department of Oral and Craniofacial Sciences and the UMKC Center of Excellence in the Study of Dental and Musculoskeletal Tissues, Sch. Dentistry, University of Missouri - Kansas City, Kansas City, MO 64108, USA
| | | | - Nabil G Seidah
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada and
| | - Qian Chen
- Department of Oral and Craniofacial Sciences and the UMKC Center of Excellence in the Study of Dental and Musculoskeletal Tissues, Sch. Dentistry, University of Missouri - Kansas City, Kansas City, MO 64108, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences and the UMKC Center of Excellence in the Study of Dental and Musculoskeletal Tissues, Sch. Dentistry, University of Missouri - Kansas City, Kansas City, MO 64108, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA, Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jeff P Gorski
- Department of Oral and Craniofacial Sciences and the UMKC Center of Excellence in the Study of Dental and Musculoskeletal Tissues, Sch. Dentistry, University of Missouri - Kansas City, Kansas City, MO 64108, USA,
| |
Collapse
|
4
|
Deries M, Gonçalves AB, Vaz R, Martins GG, Rodrigues G, Thorsteinsdóttir S. Extracellular matrix remodeling accompanies axial muscle development and morphogenesis in the mouse. Dev Dyn 2011; 241:350-64. [PMID: 22127770 DOI: 10.1002/dvdy.23703] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2011] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Skeletal myogenesis is extensively influenced by the surrounding environment. However, how the extracellular matrix (ECM) affects morphogenesis of muscles is not well understood. RESULTS We mapped the three-dimensional (3D) organization of fibronectin, tenascin, and laminin by immunofluorescence during early epaxial myogenesis in mouse embryos. We define four stages of dermomyotome/myotome development and reveal the 3D organization of myogenic cells within their ECM during those stages. Fibronectin is abundant in all interstitial tissues, while tenascin is restricted to intersegmental borders. Bundles of fibronectin and tenascin also penetrate into the myotome, possibly promoting myocyte alignment. A laminin matrix delineates the dermomyotome and myotome and undergoes dynamic changes, correlating with key developmental events. CONCLUSION Our observations cast new light on how myotomal cells interact with their environment and suggest that, as the segmented myotomes transform into the epaxial muscle masses, the laminin matrix disassembles and myocytes use the abundant fibronectin matrix to reach their final organization.
Collapse
Affiliation(s)
- Marianne Deries
- Centro de Biologia Ambiental/Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
5
|
The extracellular matrix dimension of skeletal muscle development. Dev Biol 2011; 354:191-207. [PMID: 21420400 DOI: 10.1016/j.ydbio.2011.03.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 12/25/2022]
Abstract
Cells anchor to substrates by binding to extracellular matrix (ECM). In addition to this anchoring function however, cell-ECM binding is a mechanism for cells to sense their surroundings and to communicate and coordinate behaviour amongst themselves. Several ECM molecules and their receptors play essential roles in muscle development and maintenance. Defects in these proteins are responsible for some of the most severe muscle dystrophies at every stage of life from neonates to adults. However, recent studies have also revealed a role of cell-ECM interactions at much earlier stages of development as skeletal muscle forms. Here we review which ECM molecules are present during the early phases of myogenesis, how myogenic cells interact with the ECM that surrounds them and the potential consequences of those interactions. We conclude that cell-ECM interactions play significant roles during all stages of skeletal muscle development in the embryo and suggest that this "extracellular matrix dimension" should be added to our conceptual network of factors contributing to skeletal myogenesis.
Collapse
|
6
|
Formation and Differentiation of Avian Somite Derivatives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 638:1-41. [DOI: 10.1007/978-0-387-09606-3_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Kragtorp KA, Miller JR. Integrin alpha5 is required for somite rotation and boundary formation in Xenopus. Dev Dyn 2007; 236:2713-20. [PMID: 17685483 DOI: 10.1002/dvdy.21280] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The morphogenesis of somites in Xenopus laevis is characterized by a complex process of cell turning that requires coordinated regulation of cell shape, adhesion, and motility. The integrin alpha5 subunit has been implicated in the formation of somite boundaries in organisms utilizing epithelialization to create morphologically distinct somites, but its function has not been examined in Xenopus. We used a splice-blocking morpholino to knock down expression of integrin alpha5 during somite formation. Loss of integrin alpha5 delayed somite turning and accumulation of integrin beta1 at somite boundaries, and disrupted the fibronectin matrix surrounding developing somites. Irregular somite boundaries with a sparse and discontinuous fibronectin matrix formed upon eventual completion of somite turning. Recovery of somite morphology was improved, but still incomplete in far posterior somites. These data demonstrate that the role of integrin alpha5 in somite boundary formation is conserved in a species using a unique mechanism of somitogenesis.
Collapse
Affiliation(s)
- Katherine A Kragtorp
- Department of Genetics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
8
|
Rifes P, Carvalho L, Lopes C, Andrade RP, Rodrigues G, Palmeirim I, Thorsteinsdóttir S. Redefining the role of ectoderm in somitogenesis: a player in the formation of the fibronectin matrix of presomitic mesoderm. Development 2007; 134:3155-65. [PMID: 17670788 DOI: 10.1242/dev.003665] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The absence of ectoderm impairs somite formation in cultured presomitic mesoderm (PSM) explants, suggesting that an ectoderm-derived signal is essential for somitogenesis. Here we show in chick that the standard enzymatic treatments used for explant isolation destroy the fibronectin matrix surrounding the anterior PSM, which fails to form somites when cultured for 6 hours. By contrast, explants isolated with collagenase retain their fibronectin matrix and form somites under identical culture conditions. The additional presence of ectoderm enhances somite formation, whereas endoderm has no effect. Furthermore, we show that pancreatin-isolated PSM explants cultured in fibronectin-supplemented medium, form significantly more somites than control explants. Interestingly, ectoderm is the major producer of fibronectin (Fn1) transcripts, whereas all but the anterior-most region of the PSM expresses the fibronectin assembly receptor, integrin alpha5 (Itga5). We thus propose that the ectoderm-derived fibronectin is assembled by mesodermal alpha5beta1 integrin on the surface of the PSM. Finally, we demonstrate that inhibition of fibronectin fibrillogenesis in explants with ectoderm abrogates somitogenesis. We conclude that a fibronectin matrix is essential for morphological somite formation and that a major, previously unrecognised role of ectoderm in somitogenesis is the synthesis of fibronectin.
Collapse
Affiliation(s)
- Pedro Rifes
- Departamento de Biologia Animal e Centro de Biologia Ambiental, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
9
|
Hirsinger E, Jouve C, Dubrulle J, Pourquié O. Somite formation and patterning. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 198:1-65. [PMID: 10804460 DOI: 10.1016/s0074-7696(00)98002-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
As a consequence of their segmented arrangement and the diversity of their tissue derivatives, somites are key elements in the establishment of the metameric body plan in vertebrates. This article aims to largely review what is known about somite development, from the initial stages of somite formation through the process of somite regionalization along the three major body axes. The role of both cell intrinsic mechanisms and environmental cues are evaluated. The periodic and bilaterally synchronous nature of somite formation is proposed to rely on the existence of a developmental clock. Molecular mechanisms underlying these events are reported. The importance of an antero-posterior somitic polarity with respect to somite formation on one hand and body segmentation on the other hand is discussed. Finally, the mechanisms leading to the regionalization of somites along the dorso-ventral and medio-lateral axes are reviewed. This somitic compartmentalization is believed to underlie the segregation of dermis, skeleton, and dorsal and appendicular musculature.
Collapse
Affiliation(s)
- E Hirsinger
- Laboratoire de Génétique et de Physiologie du Développement (LGPD), Université de la Méditerranée-AP de Marseille, France
| | | | | | | |
Collapse
|
10
|
Abstract
Inductive events in the development of the sclerotome and their possible underlying mechanisms were reviewed from the primary literature. A brief review of morphological and anatomical aspects of sclerotome development was given. The importance of the notochord and neural tube in sclerotome induction and somite chondrogenesis in vivo and in vitro was established. The functions and patterns of expression of different sclerotome markers were discussed. Shh and Noggin were discussed as two molecules produced by the neural tube and notochord that appear to maintain and initiate the sclerotome, respectively. While the abilities of the axial organs and Shh and Noggin to induce sclerotome marker expression in the somite was not disputed, the exact nature of these inductions was discussed with regard to possible effects on gene expression, effects on cell survival, and physical effects on the cells and it was argued that the fundamental nature of inductive events in the sclerotome is still unknown.
Collapse
Affiliation(s)
- J L Dockter
- Department of Anatomy, University of California, San Francisco 94143, USA
| |
Collapse
|
11
|
Yang JT, Bader BL, Kreidberg JA, Ullman-Culleré M, Trevithick JE, Hynes RO. Overlapping and independent functions of fibronectin receptor integrins in early mesodermal development. Dev Biol 1999; 215:264-77. [PMID: 10545236 DOI: 10.1006/dbio.1999.9451] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mouse embryos deficient in fibronectin (FN-null) die at E8.5 with mesodermal defects. Eight integrin heterodimers alpha3beta1, alpha4beta1, alpha5beta1, alpha8beta1, alphavbeta1, alphavbeta3, alphavbeta6, and alphaIIbbeta3 can bind to FN. However, embryos deficient in each of these integrins exhibit less severe defects than do FN-null embryos, raising questions as to which integrin(s) are the key FN receptors for these early FN-dependent processes. alpha5beta1 is believed to be the key receptor and alpha5-null embryos display mesodermal defects similar to, although less severe than, those of FN-null. Here we report that the alpha5-null mutation exhibits a more severe phenotype on a 129Sv (129) than on a C57BL/6 (B6) background, as does the FN-null mutation. While alpha5-null/B6 embryos develop normal headfolds, alpha5-null/129 embryos have headfold defects similar to those of FN-null. The differences between FN-null and alpha5-null embryos, however, cannot be attributed to genetic background. FN-null embryos never form somites, whereas in alpha5-null/129 embryos the somites do condense but fail to epithelialize. Second, we examined double mutants carrying all possible pairwise combinations of null mutations in alpha3, alpha4, and alpha5 integrin genes. There was no evidence for any synergy between paired mutations, suggesting that these integrin genes do not have overlapping functions during early embryonic development. Finally, we examined double-mutant embryos deficient in both alpha5 and alphav integrin genes. These double-mutant embryos have an amniotic defect similar to that of FN-null embryos, but die even earlier with a defect in gastrulation. These studies thus revealed a gradation in the severity of defects in the mutations alpha5(-/-); alphav(-/-) > FN(-/-) (129) > FN(-/-) (B6) > alpha5(-/-) (129) > alpha5(-/-) (B6), and in each step in this series there is a certain degree of phenotypic overlap, suggesting that the defects arising from these mutations may result from disruptions of the same embryonic process.
Collapse
Affiliation(s)
- J T Yang
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
12
|
Linask KK, Ludwig C, Han MD, Liu X, Radice GL, Knudsen KA. N-cadherin/catenin-mediated morphoregulation of somite formation. Dev Biol 1998; 202:85-102. [PMID: 9758705 DOI: 10.1006/dbio.1998.9025] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Somitogenesis during early stages in the chick and mouse embryo was examined in relation to N-cadherin-mediated adhesion. Previous studies indicated that N-cadherin localizes to the somite regions during their formation. Those observations were extended to include a spatiotemporal immunohistochemical analyses of beta-catenin and alpha-catenin, as well as a more detailed study of N-cadherin, during segmentation, compaction, and compartmentalization of the somite. N-cadherin and the catenins appear early within the segmental plate and are expressed as small patch-like foci throughout this tissue. The small foci of immunostaining coalesce into larger clusters of N-cadherin/catenin-expressing regions. The clusters subsequently coalesce into a region of centrally localized cells that express N-cadherin/catenins at their apical surfaces. The multiple clusters are spaced wide apart in the anterior segmental plates that form the first 6 somite pairs, as contrasted to segmental plates that form somites 7 and beyond. To examine the functional significance of N-cadherin, segmental plates were exposed to antibodies that perturb N-cadherin-mediated adhesion in the chick embryo. The multiple, anomalous somites that result in these experiments indicate that each N-cadherin/catenin-expressing cluster can give rise to a somitic structure. beta-Catenin involvement in somitogenesis suggests a role for Wnt-mediated signaling. Embryos treated with LiCl also show induction of similar anomalous somites indicating further the possibility that Wnt-mediated signaling may be involved in the clustering event. It is suggested that beta-catenin serves to initiate the adhesion process which is spread then by N-cadherin. Later during compartmentalization, N-cadherin/catenins remain expressed by the myotome compartment. Taken together, these results suggest that the Ca2+-dependent cell adhesion molecule N-cadherin and the intracellular catenins are important in segmentation and formation of the somite and myotome compartment. It is proposed that the N-cadherin-mediated adhesion process may serve as a common, evolutionarily conserved, link in the differentiation pathways of skeletal and cardiac muscle.
Collapse
Affiliation(s)
- K K Linask
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Buchberger A, Seidl K, Klein C, Eberhardt H, Arnold HH. cMeso-1, a novel bHLH transcription factor, is involved in somite formation in chicken embryos. Dev Biol 1998; 199:201-15. [PMID: 9698440 DOI: 10.1006/dbio.1998.8919] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The segmentation of somites from the paraxial mesoderm is a crucial event in vertebrate embryonic development; however, the mechanisms underlying this process are not well understood. In a yeast two-hybrid screen we have identified the novel basic-helix-loop-helix (bHLH) protein cMeso-1 which is expressed in the presomitic mesoderm of early chicken embryos. Initially the gene is activated in the epiblast and transcripts concentrate later in and around the primitive streak. When the segmental plate is laid down the cMeso-1 expression domain successively retracts toward the caudal end but a second domain appears in bilateral stripes in the anterior paraxial mesoderm. This highly dynamic domain of cMeso-1 transcripts demarcates the area immediately posterior to the next prospective pair of somites in cyclic waves which apparently correspond to the formation of new somites. Loss of cMeso-1 function by antisense RNA or oligonucleotides results in severe attenuation of somitogenesis suggesting that it plays an important role in setting up the segmentation process. The dynamic and periodically reiterated expression of cMeso-1 along the anteroposterior axis is not dependent on anterior structures or the propagation of a signal along the anteroposterior axis but seems to follow an intrinsic patterning program which is already set up in the segmental plate.
Collapse
Affiliation(s)
- A Buchberger
- Department of Cell and Molecular Biology, Technical University of Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
14
|
Saga Y, Hata N, Koseki H, Taketo MM. Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev 1997; 11:1827-39. [PMID: 9242490 DOI: 10.1101/gad.11.14.1827] [Citation(s) in RCA: 265] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We isolated a novel bHLH protein gene Mesp2 (for mesoderm posterior 2) that cross-hybridizes with Mesp1 expressed in the early mouse mesoderm. Mesp2 is expressed in the rostral presomitic mesoderm, but down-regulated immediately after the formation of the segmented somites. To determine the function of MesP2 protein (MesP2) in somitogenesis, we generated Mesp2-deficient mice by gene targeting. The homozygous Mesp2 (-/-) mice died shortly after birth and had fused vertebral columns and dorsal root ganglia, with impaired sclerotomal polarity. The earliest defect in the homozygous embryos was a lack of segmented somites. Their disruption of the metameric features, altered expression of Mox-1, Pax-1, and Dll1, and lack of expression of Notch1, Notch2, and FGFR1 suggested that MesP2 controls sclerotomal polarity by regulating the signaling systems mediated by notch-delta and FGF, which are essential for segmentation.
Collapse
Affiliation(s)
- Y Saga
- Banyu Tsukuba Research Institute (Merck), Japan.
| | | | | | | |
Collapse
|
15
|
|
16
|
Pow CS, Hendrickx AG. Localization of integrin subunits alpha 6 and beta 1 during somitogenesis in the long-tailed macaque (M. fascicularis). Cell Tissue Res 1995; 281:101-8. [PMID: 7542566 DOI: 10.1007/bf00307963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The distribution of integrin subunits alpha 6 and beta 1, and the alpha 6 beta 1 integrin ligand, laminin, was examined during somitogenesis in developmental stages 11, 13, and 16 in the long-tailed macaque, using peroxidase immunocytochemistry. Within differentiating somites in stage 11, alpha 6 expression was observed in the sclerotome, basal surface of dermamyotomal cells adjacent to the basal lamina and on scattered cells throughout the dermamyotome. In further advanced somites in stages 13 and 16, alpha 6 immunoreactivity became restricted to the myotome. alpha 6 was expressed on mesenchymal core cells within the myocele of undifferentiated epithelioid somites and the ventromedial wall of somites commencing differentiation at each stage. beta 1 distribution resembled that of alpha 6 in stage 11 somitic tissue, however, it remained present on myotome and sclerotome cells in the later stages, and was also expressed on dermatomal cells in stage 16. Laminin immunoreactivity, while more intense and prevalent than alpha 6 and beta 1 in each stage examined, occurred on the same somite cell populations as the 2 integrin subunits. These results show a defined distribution of alpha 6 on somitic tissue, and suggest this integrin is involved in somite differentiation. They also support a possible role for alpha 6 in myoblast formation and migration. Overlapping of beta 1 and laminin immunoreactivity with that of alpha 6 further suggests that alpha 6 pairs with beta 1 as a functional heterodimer for laminin in defined somitic regions.
Collapse
Affiliation(s)
- C S Pow
- California Regional Primate Research Center, University of California, Davis 95616-8542, USA
| | | |
Collapse
|
17
|
Ontell M, Ontell MP, Buckingham M. Muscle-specific gene expression during myogenesis in the mouse. Microsc Res Tech 1995; 30:354-65. [PMID: 7787235 DOI: 10.1002/jemt.1070300503] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Over the past decade, significant advances in molecular biological techniques have substantially increased our understanding of in vivo myogenesis, supplementing the information that previously had been obtained from classical embryological and morphological studies of muscle development. In this review, we have attempted to correlate morphogenetic events in developing murine muscle with the expression of genes encoding the MyoD family of myogenic regulatory factors and the contractile proteins. Differences in the pattern of expression of these genes in murine myotomal and limb muscle are discussed in the context of muscle cell lineage and environmental factors. The differences in gene expression in these two types of muscle suggest that no single coordinated pattern of gene activation is required during the initial formation of the muscles of the mouse.
Collapse
Affiliation(s)
- M Ontell
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | |
Collapse
|
18
|
Lash JW. Blisters in the area pellucida, area opaca, and segmental plate of avian embryos. Anat Rec (Hoboken) 1990; 228:363-9. [PMID: 2285155 DOI: 10.1002/ar.1092280402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This is a special communication in an area of special interest to all researchers using avian material. Avian embryos in the Northeast, representing four species (chicken, quail, duck, guinea hen), have been found to be drastically deficient in presomitic tissue (segmental plate tissue) between 45 and 60 h of incubation. These deficiencies first appear in the embryo as blisters, then, through tissue repair, they disappear and the embryos continue seemingly normal development. Similar blisters and excrescences appear in the area pellucida and area opaca between 20 and 30 h of incubation. Associated with these blisters and excrescences in very young embryos and blisters in segmental plates, but not necessarily the result of them, is a high incidence of congenital malformation during later development. These anomalies may be affecting the results obtained in avian research.
Collapse
Affiliation(s)
- J W Lash
- Department of Anatomy, School of Medicine, University of Pennsylvania, Philadelphia 19104-6058
| |
Collapse
|