1
|
Cao Y, Chen Y, Zhang L, Cai Y. Two monolignoid biosynthetic genes 4-coumarate:coenzyme A ligase (4CL) and p-coumaric acid 3-hdroxylase (C3H) involved in lignin accumulation in pear fruits. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:791-798. [PMID: 37520811 PMCID: PMC10382451 DOI: 10.1007/s12298-023-01329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/29/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023]
Abstract
One of the most important factors impacting the quality of pear fruit is the presence of stone cells and lignin. Lignin is the main component of stone cells in pear fruits. Two monolignoid biosynthetic genes 4-coumarate:coenzyme A ligase (4CL) and p-coumaric acid 3-hdroxylase (C3H) are involved in lignin accumulation in pear fruits. However, the functions of these genes in lignin biosynthesis were excluded in pear. In our study, we isolated and cloned Pb4CL11 (GenBank: KM455955.1) and PbC3H1 (GenBank: KM373790.1) from pear, which contained 1644 bp encoded 54 amino acids (AA), and 1539 bp encoded 513 AA, respectively. The expression of Pb4CL11 and PbC3H1 in Arabidopsis thaliana led to an increase in cell wall thickness for intervascular fibers and xylem cells and lignin content. Overexpression of Pb4CL11 and PbC3H1 in A. thaliana can significantly increase the expression of AtPAL, AtC4H, AtHCT, AtC3H, AtCCOMT, AtCCR, AtF5H, AtCOMT, AtCAD4 and AtCAD5 with promotion of lignin biosynthesis. Taken together, our study's findings not only demonstrated the probable function of Pb4CL11 and PbC3H1 in lignin biosynthesis but also laid the groundwork for future studies using molecular biological methods to control lignin production and the formation of stone cells in pear fruits.
Collapse
Affiliation(s)
- Yunpeng Cao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
| | - Yu Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui Zhifei Longcom Biopharmaceutical Co., Ltd., Hefei, China
| | - Lin Zhang
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Ishida K, Noutoshi Y. The function of the plant cell wall in plant-microbe interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:273-284. [PMID: 36279746 DOI: 10.1016/j.plaphy.2022.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The plant cell wall is an interface of plant-microbe interactions. The ability of microbes to decompose cell wall polysaccharides contributes to microbial pathogenicity. Plants have evolved mechanisms to prevent cell wall degradation. However, the role of the cell wall in plant-microbe interactions is not well understood. Here, we discuss four functions of the plant cell wall-physical defence, storage of antimicrobial compounds, production of cell wall-derived elicitors, and provision of carbon sources-in the context of plant-microbe interactions. In addition, we discuss the four families of cell surface receptors associated with plant cell walls (malectin-like receptor kinase family, wall-associated kinase family, leucine-rich repeat receptor-like kinase family, and lysin motif receptor-like kinase family) that have been the subject of several important studies in recent years. This review summarises the findings on both plant cell wall and plant immunity, improving our understanding and may provide impetus to various researchers.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
3
|
Mishler-Elmore JW, Zhou Y, Sukul A, Oblak M, Tan L, Faik A, Held MA. Extensins: Self-Assembly, Crosslinking, and the Role of Peroxidases. FRONTIERS IN PLANT SCIENCE 2021; 12:664738. [PMID: 34054905 PMCID: PMC8160292 DOI: 10.3389/fpls.2021.664738] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/19/2021] [Indexed: 05/29/2023]
Abstract
The extensin (EXT) network is elaborated by the covalent intermolecular crosslinking of EXT glycoprotein monomers, and its proper assembly is important for numerous aspects of basic wall architecture and cellular defense. In this review, we discuss new advances in the secretion of EXT monomers and the molecular drivers of EXT network self-assembly. Many of the functions of EXTs are conferred through covalent crosslinking into the wall, so we also discuss the different types of known intermolecular crosslinks, the enzymes that are involved, as well as the potential for additional crosslinks that are yet to be identified. EXTs also function in wall architecture independent of crosslinking status, and therefore, we explore the role of non-crosslinking EXTs. As EXT crosslinking is upregulated in response to wounding and pathogen infection, we discuss a potential regulatory mechanism to control covalent crosslinking and its relationship to the subcellular localization of the crosslinking enzymes.
Collapse
Affiliation(s)
| | - Yadi Zhou
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States
| | - Abhijit Sukul
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States
| | - Mercedes Oblak
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States
| | - Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Ahmed Faik
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH, United States
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States
| | - Michael A. Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH, United States
| |
Collapse
|
4
|
Dong H, Ye Y, Guo Y, Li H. Comparative transcriptome analysis revealed resistance differences of Cavendish bananas to Fusarium oxysporum f.sp. cubense race1 and race4. BMC Genet 2020; 21:122. [PMID: 33176672 PMCID: PMC7657330 DOI: 10.1186/s12863-020-00926-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/21/2020] [Indexed: 01/21/2023] Open
Abstract
Background Banana Fusarium wilt is a devastating disease of bananas caused by Fusarium oxysporum f. sp. cubense (Foc) and is a serious threat to the global banana industry. Knowledge of the pathogenic molecular mechanism and interaction between the host and Foc is limited. Results In this study, we confirmed the changes of gene expression and pathways in the Cavendish banana variety ‘Brazilian’ during early infection with Foc1 and Foc4 by comparative transcriptomics analysis. 1862 and 226 differentially expressed genes (DEGs) were identified in ‘Brazilian’ roots at 48 h after inoculation with Foc1 and Foc4, respectively. After Foc1 infection, lignin and flavonoid synthesis pathways were enriched. Glucosinolates, alkaloid-like compounds and terpenoids were accumulated. Numerous hormonal- and receptor-like kinase (RLK) related genes were differentially expressed. However, after Foc4 infection, the changes in these pathways and gene expression were almost unaffected or weakly affected. Furthermore, the DEGs involved in biological stress-related pathways also significantly differed after infection within two Foc races. The DEGs participating in phenylpropanoid metabolism and cell wall modification were also differentially expressed. By measuring the expression patterns of genes associated with disease defense, we found that five genes that can cause hypersensitive cell death were up-regulated after Foc1 infection. Therefore, the immune responses of the plant may occur at this stage of infection. Conclusion Results of this study contribute to the elucidation of the interaction between banana plants and Foc and to the development of measures to prevent banana Fusarium wilt. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12863-020-00926-3.
Collapse
Affiliation(s)
- Honghong Dong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yiting Ye
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yongyi Guo
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Huaping Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Abd-El-Khair H. Biological Control of Phyto-pathogenic Bacteria. COTTAGE INDUSTRY OF BIOCONTROL AGENTS AND THEIR APPLICATIONS 2020:299-336. [DOI: 10.1007/978-3-030-33161-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
6
|
Kenawy A, Dailin DJ, Abo-Zaid GA, Malek RA, Ambehabati KK, Zakaria KHN, Sayyed RZ, El Enshasy HA. Biosynthesis of Antibiotics by PGPR and Their Roles in Biocontrol of Plant Diseases. PLANT GROWTH PROMOTING RHIZOBACTERIA FOR SUSTAINABLE STRESS MANAGEMENT 2019:1-35. [DOI: 10.1007/978-981-13-6986-5_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
7
|
Liu N, Ma X, Sun Y, Hou Y, Zhang X, Li F. Necrotizing Activity of Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum Endopolygalacturonases in Cotton. PLANT DISEASE 2017; 101:1128-1138. [PMID: 30682957 DOI: 10.1094/pdis-05-16-0657-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Polygalacturonase (PG), which digests the pectin of plant cell walls, contributes to pathogenicity of fungi in plants. To explore the role of PG in pathogenicity of the fungal cotton pathogens Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum, VDPG1 and FOVPG1 were cloned and their expression in different cotton (Gossypium hirsutum) cultivars and media was analyzed. VDPG1 and FOVPG1 were strongly upregulated during infection. Purified VDPG1 and FOVPG1 play important roles in the symptom development of both resistant and susceptible cotton. Moreover, after inoculation with purified PGs, the hydroxyproline content of the cell walls increased in cotton seedlings, with resistant cultivar seedlings showing significantly higher hydroxyproline content than seedlings of the susceptible cultivar. PG gene expression analysis in different media showed that both PG genes were induced in pectin medium but not in glucose medium. This study highlighted the role of VDPG1 and FOVPG1 in pathogenicity and virulence, which were detected in fungus-inoculated cotton, suggesting that PGs play an important role in the pathogenicity of V. dahliae and F. oxysporum f. sp. vasinfectum.
Collapse
Affiliation(s)
- Nana Liu
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaowen Ma
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Yun Sun
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, P. R. China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, P. R. China
| |
Collapse
|
8
|
Zhao Y, Bi K, Gao Z, Chen T, Liu H, Xie J, Cheng J, Fu Y, Jiang D. Transcriptome Analysis of Arabidopsis thaliana in Response to Plasmodiophora brassicae during Early Infection. Front Microbiol 2017; 8:673. [PMID: 28484434 PMCID: PMC5401899 DOI: 10.3389/fmicb.2017.00673] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 03/31/2017] [Indexed: 01/28/2023] Open
Abstract
Clubroot disease is a serious threat to cruciferous plants worldwide, especially to oilseed rape. However, knowledge on pathogenic molecular mechanisms and host interaction is limited. We presume that the recognition between Arabidopsis thaliana and Plasmodiophora brassicae occurs at the early stage of infection and within a relatively short period. In this study, we demonstrated changes on gene expression and pathways in A. thaliana during early infection with P. brassicae using transcriptome analysis. We identified 1,903 and 1,359 DEGs at 24 and 48 h post-inoculation (hpi), respectively. Flavonoids and the lignin synthesis pathways were enhanced, glucosinolates, terpenoids, and proanthocyanidins accumulated and many hormonal- and receptor-kinase related genes were expressed, caused by P. brassicae infection during its early phase. Therefore, the early interaction between A. thaliana and P. brassicae plays an important role in the entire infection process. The results provide a new contribution to a better understanding of the interaction between host plants and P. brassicae, as well as the development of future measures for the prevention of clubroot.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Kai Bi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Zhixiao Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Tao Chen
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry UniversityYangling, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
9
|
Sharma R, Vishal P, Kaul S, Dhar MK. Epiallelic changes in known stress-responsive genes under extreme drought conditions in Brassica juncea (L.) Czern. PLANT CELL REPORTS 2017; 36:203-217. [PMID: 27844102 DOI: 10.1007/s00299-016-2072-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
Under severe drought conditions, Brassica juncea shows differential methylation and demethylation events, such that certain epialleles are silenced and some are activated. The plant employed avoidance strategy by delaying apoptosis through the activation of several genes. Harsh environmental conditions pose serious threat to normal growth and development of crops, sometimes leading to their death. However, plants have developed an essential mechanism of modulation of gene activities by epigenetic modifications. Brassica juncea is an important oilseed crop contributing effectively to the economy of India. In the present investigation, we studied the changes in the methylation level of various stress-responsive genes of B. juncea variety RH30 by methylation-dependent immune-precipitation-chip in response to severe drought. On the basis of changes in the number of differential methylation regions in response to drought, the promoter regions were designated as hypermethylated and hypomethylated. Gene body methylation increased in all the genes, whereas promoter methylation was dependent on the function of the gene. Overall, the genes responsible for delaying apoptosis were hypomethylated and many genes responsible for normal routine activities were hypermethylated at promoter regions, thereby suggesting that these may be suspending the activities under harsh conditions.
Collapse
Affiliation(s)
- Rahul Sharma
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Parivartan Vishal
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Manoj K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India.
| |
Collapse
|
10
|
Chen Y, Dong W, Tan L, Held MA, Kieliszewski MJ. Arabinosylation Plays a Crucial Role in Extensin Cross-linking In Vitro. BIOCHEMISTRY INSIGHTS 2015; 8:1-13. [PMID: 26568683 PMCID: PMC4629521 DOI: 10.4137/bci.s31353] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/25/2022]
Abstract
Extensins (EXTs) are hydroxyproline-rich glycoproteins (HRGPs) that are structural components of the plant primary cell wall. They are basic proteins and are highly glycosylated with carbohydrate accounting for >50% of their dry weight. Carbohydrate occurs as monogalactosyl serine and arabinosyl hydroxyproline, with arabinosides ranging in size from ~1 to 4 or 5 residues. Proposed functions of EXT arabinosylation include stabilizing the polyproline II helix structure and facilitating EXT cross-linking. Here, the involvement of arabinosylation in EXT cross-linking was investigated by assaying the initial cross-linking rate and degree of cross-linking of partially or fully de-arabinosylated EXTs using an in vitro cross-linking assay followed by gel permeation chromatography. Our results indicate that EXT arabinosylation is required for EXT cross-linking in vitro and the fourth arabinosyl residue in the tetraarabinoside chain, which is uniquely α-linked, may determine the initial cross-linking rate. Our results also confirm the conserved structure of the oligoarabinosides across species, indicating an evolutionary significance for EXT arabinosylation.
Collapse
Affiliation(s)
- Yuning Chen
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA
| | - Wen Dong
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA
| | - Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Michael A Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA
| | | |
Collapse
|
11
|
Wu Q, Chen M, Zhou H, Zhou X, Wang Y. Metabolite profiles of Populus in response to pathogen stress. Biochem Biophys Res Commun 2015; 465:421-6. [PMID: 26291267 DOI: 10.1016/j.bbrc.2015.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/06/2015] [Indexed: 11/29/2022]
Abstract
Populus canker is a widespread disease that seriously affects the growth and productivity of trees, and may even cause tree death. To assess the metabolic changes in Populus in response to pathogen stress, Populus stems infected or not with Dothiorella gregaria were analyzed by GC-MS. A total of 4, 051 features were detected and 44 metabolites were identified to be changed significantly in Populus upon infection. The identified responsive metabolites include saccharides, alcohols, organic acids, and amino acids and some secondary metabolites and most of the metabolites were detected at increased levels. Responsive metabolites were investigated about their metabolism pathway and the corresponding metabolic networks were further constructed. To our knowledge, this is the first study to identify the metabolite profiles of Populus in response to pathogen stress. The results extend our understanding of the mechanisms involved in the defense of Populus against pathogens and provide a basis for further research on plant defenses.
Collapse
Affiliation(s)
- Qiuming Wu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, PR China
| | - Min Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, PR China
| | - Hailong Zhou
- Qigou State-owned Forest Farm in Hebei Province, Pingquan, Hebei, 067509, PR China
| | - Xianqing Zhou
- Qigou State-owned Forest Farm in Hebei Province, Pingquan, Hebei, 067509, PR China
| | - Yanwei Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, PR China.
| |
Collapse
|
12
|
Wang Y, Wang H, Fan R, Yang Q, Yu D. Transcriptome analysis of soybean lines reveals transcript diversity and genes involved in the response to common cutworm (Spodoptera litura Fabricius) feeding. PLANT, CELL & ENVIRONMENT 2014; 37:2086-101. [PMID: 24506757 DOI: 10.1111/pce.12296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 05/06/2023]
Abstract
The interaction between soybeans and the destructive common cutworm insect is complicated. In this paper, the time course of induced responses to common cutworm was characterized in two soybean lines, and the results showed that the induced resistance peaked at different times in the resistant (WX) and susceptible (NN) soybean lines. Two sets of transcriptome profiles from the WX and NN lines at the peak of their induced resistance were compared using microarray analysis. In total, 827 and 349 transcripts were differentially expressed in the WX and NN lines, respectively, with 80 probes common regulated and seven regulated in the opposite direction. All common- and unique-regulated genes were grouped into 10 functional categories based on sequence similarity searches, which showed that most of the genes were related to stress and defence responses. qRT-PCR analysis of 22 genes confirmed the results of the microarray analysis. The spatiotemporal expression patterns of the six genes revealed the consistency of systemic expression levels with the timing of the resistance response observed in the bioassay experiments. In summary, we described the conceptual model of induced resistance in two soybean lines and provided the first large-scale survey of common cutworm-induced defence transcripts in soybean.
Collapse
Affiliation(s)
- Yongli Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | | | | | | | | |
Collapse
|
13
|
Ökmen B, Etalo DW, Joosten MHAJ, Bouwmeester HJ, de Vos RCH, Collemare J, de Wit PJGM. Detoxification of α-tomatine by Cladosporium fulvum is required for full virulence on tomato. THE NEW PHYTOLOGIST 2013; 198:1203-1214. [PMID: 23448507 DOI: 10.1111/nph.12208] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/31/2013] [Indexed: 05/18/2023]
Abstract
· α-Tomatine is an antifungal glycoalkaloid that provides basal defense to tomato (Solanum lycopersicum). However, tomato pathogens overcome this basal defense barrier by the secretion of tomatinases that degrade α-tomatine into the less fungitoxic compounds β-tomatine and tomatidine. Although pathogenic on tomato, it has been reported that the biotrophic fungus Cladosporium fulvum is unable to detoxify α-tomatine. · Here, we present a functional analysis of the glycosyl hydrolase (GH10), CfTom1, which is orthologous to fungal tomatinases. · We show that C. fulvum hydrolyzes α-tomatine into tomatidine in vitro and during the infection of tomato, which is fully attributed to the activity of CfTom1, as shown by the heterologous expression of this enzyme in tomato. Accordingly, ∆cftom1 mutants of C. fulvum are more sensitive to α-tomatine and are less virulent than the wild-type fungus on tomato. · Although α-tomatine is thought to be localized in the vacuole, we show that it is also present in the apoplast, where it is hydrolyzed by CfTom1 on infection. The accumulation of tomatidine during infection appears to be toxic to tomato cells and does not suppress defense responses, as suggested previously. Altogether, our results show that CfTom1 is responsible for the detoxification of α-tomatine by C. fulvum, and is required for full virulence of this fungus on tomato.
Collapse
Affiliation(s)
- Bilal Ökmen
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB Wageningen, the Netherlands
| | - Desalegn W Etalo
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708, PB Wageningen, the Netherlands
- Centre for BioSystems Genomics, PO Box 98, 6700, AB Wageningen, the Netherlands
- Netherlands Metabolomics Centre, Einsteinweg 55, 2333, CC Leiden, the Netherlands
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB Wageningen, the Netherlands
- Centre for BioSystems Genomics, PO Box 98, 6700, AB Wageningen, the Netherlands
| | - Harro J Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708, PB Wageningen, the Netherlands
- Centre for BioSystems Genomics, PO Box 98, 6700, AB Wageningen, the Netherlands
| | - Ric C H de Vos
- Centre for BioSystems Genomics, PO Box 98, 6700, AB Wageningen, the Netherlands
- Netherlands Metabolomics Centre, Einsteinweg 55, 2333, CC Leiden, the Netherlands
- Plant Research International, Bioscience, PO Box 16, 6700, AA Wageningen, the Netherlands
| | - Jérôme Collemare
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB Wageningen, the Netherlands
- Centre for BioSystems Genomics, PO Box 98, 6700, AB Wageningen, the Netherlands
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB Wageningen, the Netherlands
- Centre for BioSystems Genomics, PO Box 98, 6700, AB Wageningen, the Netherlands
| |
Collapse
|
14
|
Mall R, Naik G, Mina U, Mishra SK. PURIFICATION AND CHARACTERIZATION OF A THERMOSTABLE SOLUBLE PEROXIDASE FROMCitrus medicaLEAF. Prep Biochem Biotechnol 2013; 43:137-51. [DOI: 10.1080/10826068.2012.711793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Zhang S, Xiao Y, Zhao J, Wang F, Zheng Y. Digital gene expression analysis of early root infection resistance to Sporisorium reilianum f. sp. zeae in maize. Mol Genet Genomics 2012. [PMID: 23196693 DOI: 10.1007/s00438-012-0727-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The maize smut fungus, Sporisorium reilianum f. sp. zeae, which is an important biotrophic pathogen responsible for extensive crop losses, can infect maize by invading the root during the early seedling stage. In order to investigate disease-resistance mechanisms at this early seedling stage, digital gene expression analysis, which applies a dual-enzyme approach, was used to identify the transcriptional changes in the roots of Huangzao4 (susceptible) and Mo17 (resistant) after root inoculation with S. reilianum. During the infection in the roots, the expression pattern of pathogenesis-related genes in Huangzao4 and Mo17 were significantly differentially regulated at different infection stages. The glutathione S-transferase enzyme activity and reactive oxygen species levels also showed changes before and after inoculation. The total lignin contents and the pattern of lignin depositions in the roots differed during root colonization of Huangzao4 and Mo17. These results suggest that the interplay between S. reilianum and maize during the early infection stage involves many important transcriptional and physiological changes, which offer several novel insights to understanding the mechanisms of resistance to the infection of biotrophic fungal pathogens.
Collapse
Affiliation(s)
- Shaopeng Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | | | | | | | | |
Collapse
|
16
|
Varbanova M, Porter K, Lu F, Ralph J, Hammerschmidt R, Jones AD, Day B. Molecular and biochemical basis for stress-induced accumulation of free and bound p-coumaraldehyde in cucumber. PLANT PHYSIOLOGY 2011; 157:1056-66. [PMID: 21940999 PMCID: PMC3252134 DOI: 10.1104/pp.111.184358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/15/2011] [Indexed: 05/21/2023]
Abstract
To elucidate the genetic and biochemical regulation of elicitor-induced p-coumaraldehyde accumulation in plants, we undertook a multifaceted approach to characterize the metabolic flux through the phenylpropanoid pathway via the characterization and chemical analysis of the metabolites in the p-coumaryl, coniferyl, and sinapyl alcohol branches of this pathway. Here, we report the identification and characterization of four cinnamyl alcohol dehydrogenases (CADs) from cucumber (Cucumis sativus) with low activity toward p-coumaraldehyde yet exhibiting significant activity toward other phenylpropanoid hydroxycinnamaldehydes. As part of this analysis, we identified and characterized the activity of a hydroxycinnamoyl-coenzyme A:shikimate hydroxycinnamoyl transferase (HCT) capable of utilizing shikimate and p-coumaroyl-coenzyme A to generate p-coumaroyl shikimate. Following pectinase treatment of cucumber, we observed the rapid accumulation of p-coumaraldehyde, likely the result of low aldehyde reductase activity (i.e. alcohol dehydrogenase in the reverse reaction) of CsCAD enzymes on p-coumaraldehyde. In parallel, we noted a concomitant reduction in the activity of CsHCT. Taken together, our findings support the hypothesis that the up-regulation of the phenylpropanoid pathway upon abiotic stress greatly enhances the overall p-coumaryl alcohol branch of the pathway. The data presented here point to a role for CsHCT (as well as, presumably, p-coumarate 3-hydroxylase) as a control point in the regulation of the coniferyl and sinapyl alcohol branches of this pathway. This mechanism represents a potentially evolutionarily conserved process to efficiently and quickly respond to biotic and abiotic stresses in cucurbit plants, resulting in the rapid lignification of affected tissues.
Collapse
|
17
|
A.A.M. De Leij F, Lynch J, Brimecombe M. Rhizodeposition and Microbial Populations. THE RHIZOSPHERE 2007. [DOI: 10.1201/9781420005585.ch3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
18
|
|
19
|
Mino M, Maekawa K, Ogawa K, Yamagishi H, Inoue M. Cell death processes during expression of hybrid lethality in interspecific F1 hybrid between Nicotiana gossei Domin and Nicotiana tabacum. PLANT PHYSIOLOGY 2002; 130:1776-87. [PMID: 12481061 PMCID: PMC166689 DOI: 10.1104/pp.006023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2002] [Revised: 04/23/2002] [Accepted: 07/03/2002] [Indexed: 05/24/2023]
Abstract
Hybrid lethality, a type of reproductive isolation, is a genetically controlled event appearing at the seedling stage in interspecific hybrids. We characterized the lethality of F(1) hybrid seedlings from Nicotiana gossei Domin and Nicotiana tabacum cv Bright-Yellow 4 using a number of traits including growth rate, microscopic features of tissues and cells, ion leakage, DNA degradation, reactive oxygen intermediates including superoxide radical (O(2)(-)) and hydrogen peroxide (H(2)O(2)), and expression of stress response marker genes. Lethal symptoms appeared at 4 d after germination in the basal hypocotyl and extended toward both the hypocotyl and root of the plants grown at 26 degrees C. Microscopic analysis revealed a prompt lysis of cell components during cell death. Membrane disruption and DNA degradation were found in the advanced stage of the lethality. The death of mesophyll cells in the cotyledon was initiated by the vascular bundle, suggesting that a putative factor inducing cell death diffused into surrounding cells from the vascular tissue. In contrast, these symptoms were not observed in the plants grown at 37 degrees C. Seedlings grown at 26 degrees C generated larger amounts of reactive oxygen intermediate in the hypocotyl than those grown at 37 degrees C. A number of stress response marker genes were expressed at 26 degrees C but not at 37 degrees C. We proposed that a putative death factor moving systemically through the vascular system induced a prompt and successive lysis of the cytoplasm of cells and that massive cell death eventually led to the loss of the hybrid plant.
Collapse
Affiliation(s)
- Masanobu Mino
- Faculty of Agriculture, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8255 Japan.
| | | | | | | | | |
Collapse
|
20
|
Khashimova ZS, Mangutova YS, Leont'ev VB. A structural-functional study of cottonplant glycoproteins. Chem Nat Compd 1999. [DOI: 10.1007/bf02234859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Redman RS, Freeman S, Clifton DR, Morrel J, Brown G, Rodriguez RJ. Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of colletotrichum magna. PLANT PHYSIOLOGY 1999; 119:795-804. [PMID: 9952476 PMCID: PMC32157 DOI: 10.1104/pp.119.2.795] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/1998] [Accepted: 11/04/1998] [Indexed: 05/18/2023]
Abstract
A nonpathogenic mutant of Colletotrichum magna (path-1) was previously shown to protect watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) seedlings from anthracnose disease elicited by wild-type C. magna. Disease protection was observed in stems of path-1-colonized cucurbits but not in cotyledons, indicating that path-1 conferred tissue-specific and/or localized protection. Plant biochemical indicators of a localized and systemic (peroxidase, phenylalanine ammonia-lyase, lignin, and salicylic acid) "plant-defense" response were investigated in anthracnose-resistant and -susceptible cultivars of cucurbit seedlings exposed to four treatments: (1) water (control), (2) path-1 conidia, (3) wild-type conidia, and (4) challenge conditions (inoculation into path-1 conidia for 48 h and then exposure to wild-type conidia). Collectively, these analyses indicated that disease protection in path-1-colonized plants was correlated with the ability of these plants to mount a defense response more rapidly and to equal or greater levels than plants exposed to wild-type C. magna alone. Watermelon plants colonized with path-1 were also protected against disease caused by Colletotrichum orbiculare and Fusarium oxysporum. A model based on the kinetics of plant-defense activation is presented to explain the mechanism of path-1-conferred disease protection.
Collapse
Affiliation(s)
- RS Redman
- Western Fisheries Research Center, Biological Resources Division, United States Geological Survey, 6505 N.E. 65th Street, Seattle, Washington 98115 (R.S.R., D.R.C., J.M., G.B., R.J.R.)
| | | | | | | | | | | |
Collapse
|
22
|
Xue L, Charest PM, Jabaji-Hare SH. Systemic Induction of Peroxidases, 1,3-beta-Glucanases, Chitinases, and Resistance in Bean Plants by Binucleate Rhizoctonia Species. PHYTOPATHOLOGY 1998; 88:359-65. [PMID: 18944960 DOI: 10.1094/phyto.1998.88.4.359] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
ABSTRACT Inoculation of bean hypocotyls with a nonpathogenic binucleate Rhizoctonia (BNR) species induced systemic resistance and protection of the roots and cotyledons to later challenge with the root rot pathogen Rhizoctonia solani or the anthracnose pathogen Colletotrichum lindemuthianum. Bean seedlings that were treated with BNR 48 h prior to their challenge with R. solani or C. lindemuthianum had few necrotic lesions and reduced disease severity as compared with seedlings not treated with BNR. Treatment with BNR 48 h prior to their challenge also elicited a significant and systemic increase in all cellular fractions of peroxidases, 1,3-beta-glucanases, and chitinases compared with the diseased and control plants. Compared with control plants, total peroxidases and glucanases increased twofold and eightfold, respectively, in all protected bean tissues. BNR 232-CG could not be recovered from the challenged hypocotyls or cotyledons, indicating that there was no contact between the inducer and the pathogen. Both the 1,3-beta-glucanases and the peroxidases were positively correlated with induced resistance.
Collapse
|
23
|
DIXON RICHARDA, LAMB CHRISJ, PAIVA NANCYL, MASOUD SAMEER. Improvement of Natural Defense Responses. Ann N Y Acad Sci 1996. [DOI: 10.1111/j.1749-6632.1996.tb32499.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
|
25
|
Guardiola ML, Bettini P, Bogani P, Pellegrini MG, Storti E, Bittini P, Buiatti M. Modification of competence for in vitro response to Fusarium oxysporum in tomato cells. I. Selection from a susceptible cultivar for high and low polysaccharide content. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1994; 87:988-995. [PMID: 24190533 DOI: 10.1007/bf00225793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/1993] [Accepted: 07/23/1993] [Indexed: 06/02/2023]
Abstract
Plant cell walls play a major role in the outcome of host-parasite interactions. Wall fragments released from the plant, and/or the fungal pathogen, can act respectively as endogenous and exogenous elicitors of the defence response, and other wall components, such as callose, lignin, or hydroxyproline-rich glycoproteins, can inhibit pathogen penetration and/or spreading. We have previously demonstrated that calli from tomato cultivars resistant in vivo to Fusarium oxysporum f.sp. lycopersici show a high amount of polysaccharides in vitro. The aim of the present work was to assess the possible role of polysaccharide content and/or synthetic capacity in determining the competence of plant cells for active defence. For this purpose, tomato cell clones with increased and decreased polysaccharide (FL(+), FL(-)) and callose (A(+), A(-)) content have been selected by means of specific stains as visual markers and tested for the effect of these changes on the extent of response to Fusarium. The analysis of several parameters known to be indicative of active defence (cell browning after elicitor treatment, peroxidase and β-glucanase induction and inhibition of fungal growth in dual culture) clearly shows that FL(+) and A(+) clones have acquired an increased competence for the activation of defence response. The results are thoroughly discussed in terms of an evaluation of the relative importance of constitutive and/or inducible polysaccharide synthetic capacity for plant response to pathogens, and their possible regulation by plant physiological backgrounds.
Collapse
Affiliation(s)
- M L Guardiola
- Department of Animal Biology and Genetics, University of Florence, via Romana 17, 50125, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Svalheim Ø, Robertsen B. Elicitation of H 2 O 2 production in cucumber hypocotyl segments by oligo-1,4-α-D-galacturonides and an oligo-β-glucan preparation from cell walls of Phythophthora megasperma f. sp. glycinea. PHYSIOLOGIA PLANTARUM 1993; 88:675-681. [PMID: 28741782 DOI: 10.1111/j.1399-3054.1993.tb01388.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The production of H2 O2 by cucumber hypocotyl segments (Cucumis sativus L. cv. Wisconsin SMR 58) in response to α-1,4-linked oligomers of galacturonic acid and oligo-β-glucans from the cell walls of Phytophthora megasperma f. sp. glycinea was studied. Oligogalacturonides with degrees of polymerization of 9 to 13 elicited H2 O2 production, the most effective being the deca-, undeca- and dodecamers. A similar relationship between size and effect was previously obtained when oligogalacturonides were tested for their ability to elicit lignification in cucumber hypocotyls. The oligogalacturonide-induced increase in H2 O2 concentration was detected after 4 h, reaching a maximum after 10 h of incubation. The glucan elicitor induced lignification at a 100-fold lower concentration than the oligogalacturonides, but yielded only 10% of the maximum H2 O2 accumulation seen with oligogalacturonides. The glucan elicitor-induced H2 O2 production was detectable after 2 h, and reached a maximum after 4 to 6 h. Catalase abolished the elicitation of both phenol red oxidation and lignification in cucumber hypocotyls. At least part of the oligogalacturonide-induced H2 O2 production appeared to be dependent upon de novo protein synthesis.
Collapse
Affiliation(s)
- Øystein Svalheim
- Dept of Plant Physiology and Microbiology, Institute of Biology and Geology, Univ. of Tromsø, N-9037 Tronsø, Norway
| | - Børre Robertsen
- Dept of Plant Physiology and Microbiology, Institute of Biology and Geology, Univ. of Tromsø, N-9037 Tronsø, Norway
| |
Collapse
|
27
|
Benhamou N, Mazau D, Grenier J, Esquerré-Tugayé MT. Time-course study of the accumulation of hydroxyproline-rich glycoproteins in root cells of susceptible and resistant tomato plants infected by Fusarium oxysporum f. sp. radicis-lycopersici. PLANTA 1991; 184:196-208. [PMID: 24194071 DOI: 10.1007/bf00197948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/14/1990] [Indexed: 06/02/2023]
Abstract
The accumulation of hydroxyproline-rich glycoproteins (HRGPs) in cell walls of dicotyledonous plants is thought to be involved in the defense response to pathogens. An antiserum raised against deglycosylated HRGPs from melon was used for studying the subcellular localization of these glycoproteins in susceptible and resistant tomato (Lycopersicon esculentum Mill.) root tissues infected by Fusarium oxysporum f.sp. radicis-lycopersici. A time-course of HRGP accumulation revealed that these glycoproteins increased earlier and to a higher extent in resistant than in susceptible cultivars. In the compatible interaction, increase in HRGPs was largely correlated with pathogen invasion and appeared to occur as a result of wall damage. In the incompatible interaction, HRGPs accumulated in the walls of uninvaded cells, thus indicating a possible role in the protection against fungal penetration. The occurrence of substantial amounts of HRGPs in papillae, known to be physical barriers formed in response to infection, and in intercellular spaces provides additional support to the concept that such glycoproteins play an important role in disease resistance.
Collapse
Affiliation(s)
- N Benhamou
- Département de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, G1K 7P4, Sainte-Foy, Québec, Canada
| | | | | | | |
Collapse
|
28
|
Abstract
Protein secretion is an ubiquitous but poorly understood process in plants. Secreted proteins are synthesized on the membranes of the rough endoplasmic reticulum and transported to the cell surface by secretary vesicles formed at the Golgi apparatus. Whereas many of the structural details of this process are known the mechanisms underlying secretion are just beginning to be understood, in this article we review some of the recent developments in this field, and we compare the progress made with animal and plant cells. CONTENTS Summary 567 I. Introduction 568 II. Proteins secreted by plants 568 III. Synthesis and post-translational modification of secreted proteins 571 IV. Molecular requirements for secretion 576 V. Vehicles of secretory transport 581 VI. Regulation of secretion 585 VII. Conclusions and Perspective 587 Acknowledgements 588 References 588.
Collapse
Affiliation(s)
- Russell L Jones
- Department of Botany, University of California, Berkeley, CA 94720 USA
| | - David G Robinson
- Pflanzenphysiologisches Institut, Universität Göttingen, Göttingen, FRG
| |
Collapse
|
29
|
Stafstrom JP, Staehelin LA. Antibody localization of extensin in cell walls of carrot storage roots. PLANTA 1988; 174:321-32. [PMID: 24221513 DOI: 10.1007/bf00959517] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/1987] [Accepted: 12/09/1987] [Indexed: 05/10/2023]
Abstract
The accumulation and cross-linking of hydroxyproline-rich glycoproteins (HRGPs) in cell walls of dicotyledonous plants has been correlated with a number of wall-strengthening phenomena. Polyclonal antibodies raised against glycosylated extensin-1, the most abundant HRGP in carrot (Daucus carota L.) cell walls, recognize this antigen on gel and dot blots and on thin sections of epoxy-embedded carrot-root cell walls. Since wall labeling can be largely reduced by preincubating the antibodies with purified extensin-1, most labeling can be attributed to recognition of this antigen. The remaining label may be the result of recognition of extensin-2, a second carrot HRGP, or other wall components (cellulose, hemicellulose and pectin are not recognized). Extensin-1 label was distributed quite uniformly across the cell wall but was absent from the expanded middle lamella at the intersection of three or more cells and was reduced in the narrow middle lamella between two cells. This distribution is essentially the same as that of cellulose. Because of limitations of this labeling technique, it is not possible to construct a complete model of the structure of the cross-linked extensin matrix. Nonetheless, short, linear arrays of gold particles may represent small portions of the extensin matrix or of individual extensin molecules as they are exposed on the surface of sections. These and other results presented here indicate that: a) newly synthesized extensin is added to the wall by intussusception; b) extensin cannot cross the middle lamella separating the walls of adjacent cells; and c) incorporation of extensin is a late event in the development of phloem-parenchyma cell walls in carrot.
Collapse
Affiliation(s)
- J P Stafstrom
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 80309-0347, Boulder, CO, USA
| | | |
Collapse
|
30
|
|
31
|
Collinge DB, Slusarenko AJ. Plant gene expression in response to pathogens. PLANT MOLECULAR BIOLOGY 1987; 9:389-410. [PMID: 24277091 DOI: 10.1007/bf00014913] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/1987] [Indexed: 05/08/2023]
Affiliation(s)
- D B Collinge
- John Innes Institute, Colney Lane, NR4 7UH, Norwich, UK
| | | |
Collapse
|
32
|
Cassab GI. Arabinogalactan proteins during the development of soybean root nodules. PLANTA 1986; 168:441-6. [PMID: 24232319 DOI: 10.1007/bf00392262] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/1985] [Accepted: 05/09/1986] [Indexed: 05/09/2023]
Abstract
In soybean (Glycine max (L.) Merr.) root nodules the level of hydroxyproline-containing molecules is developmentally regulated. Hydroxyproline accumulates in both nodule cortex and medulla. In the cortex, the hydroxyproline is mainly localized in the cell wall, presumably as extensin, but in the medulla it is mainly in the soluble fraction as an arabinogalactan protein (AGP). Nodule-specific AGPs are present at early nodulation. The highest concentration of AGP is in the nodule medulla, followed by nodule cortex, uninfected roots, leaves, flowers, pods and seeds. Root nodules and all organs of the soybean plant that were tested were found to express a tissue-specific set of arabinogalactan proteins.
Collapse
Affiliation(s)
- G I Cassab
- Plant Biology Program, Department of Biology, Washington University, 63130, St. Louis, MO, USA
| |
Collapse
|
33
|
DIXON RICHARDA. THE PHYTOALEXIN RESPONSE: ELICITATION, SIGNALLING AND CONTROL OF HOST GENE EXPRESSION. Biol Rev Camb Philos Soc 1986. [DOI: 10.1111/j.1469-185x.1986.tb00719.x] [Citation(s) in RCA: 246] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
|
35
|
Heat shock induces resistance to Cladosporium cucumerinum and enhances peroxidase activity in cucumbers. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/0048-4059(84)90062-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|