1
|
The psmα locus regulates production of Staphylococcus aureus alpha-toxin during infection. Infect Immun 2014; 82:3350-8. [PMID: 24866799 DOI: 10.1128/iai.00089-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Staphylococcus aureus is a leading cause of human bacterial infection, causing a wide spectrum of disease ranging from skin and soft tissue infections to life-threatening pneumonia and sepsis. S. aureus toxins play an essential role in disease pathogenesis, contributing to both immunomodulation and host tissue injury. Prominent among these toxins are the membrane-active pore-forming cytolysin alpha-toxin (Hla) and the amphipathic α-helical phenol-soluble modulin (PSM) peptides. As deletion of either the hla or psm locus leads to a phenotypically similar virulence defect in skin and soft tissue infection, we sought to determine the relative contribution of each locus to disease pathogenesis. Here we show that production of Hla can be modulated by PSM expression. An S. aureus mutant lacking PSM expression exhibits a transcriptional delay in hla mRNA production and therefore fails to secrete normal levels of Hla at early phases of growth. This leads to attenuation of virulence in vitro and in murine skin and lung models of infection, correlating with reduced recovery of Hla from host tissues. Production of Hla and restoration of staphylococcal virulence can be achieved in the psm mutant by plasmid-driven overexpression of hla. Our study suggests the coordinated action of Hla and PSMs in host tissue during early pathogenesis, confirming a major role for Hla in epithelial injury during S. aureus infection. These findings highlight the possibility that therapeutics targeting PSM production may simultaneously prevent Hla-mediated tissue injury.
Collapse
|
2
|
Abstract
Staphylococcus aureus secretes a number of host-injurious toxins, among the most prominent of which is the small β-barrel pore-forming toxin α-hemolysin. Initially named based on its properties as a red blood cell lytic toxin, early studies suggested a far greater complexity of α-hemolysin action as nucleated cells also exhibited distinct responses to intoxication. The hemolysin, most aptly referred to as α-toxin based on its broad range of cellular specificity, has long been recognized as an important cause of injury in the context of both skin necrosis and lethal infection. The recent identification of ADAM10 as a cellular receptor for α-toxin has provided keen insight on the biology of toxin action during disease pathogenesis, demonstrating the molecular mechanisms by which the toxin causes tissue barrier disruption at host interfaces lined by epithelial or endothelial cells. This review highlights both the historical studies that laid the groundwork for nearly a century of research on α-toxin and key findings on the structural and functional biology of the toxin, in addition to discussing emerging observations that have significantly expanded our understanding of this toxin in S. aureus disease. The identification of ADAM10 as a proteinaceous receptor for the toxin not only provides a greater appreciation of truths uncovered by many historic studies, but now affords the opportunity to more extensively probe and understand the role of α-toxin in modulation of the complex interaction of S. aureus with its human host.
Collapse
Affiliation(s)
- Bryan J. Berube
- Department of Microbiology, The University of Chicago, 920 E. 58th Street Chicago, IL 60637, USA; E-Mail:
| | - Juliane Bubeck Wardenburg
- Department of Microbiology, The University of Chicago, 920 E. 58th Street Chicago, IL 60637, USA; E-Mail:
- Department of Pediatrics, The University of Chicago, 5721 S. Maryland Ave. Chicago, IL 60637, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-773-834-9763; Fax: +1-773-834-8150
| |
Collapse
|
3
|
Parimon T, Li Z, Bolz DD, McIndoo ER, Bayer CR, Stevens DL, Bryant AE. Staphylococcus aureus α-hemolysin promotes platelet-neutrophil aggregate formation. J Infect Dis 2013; 208:761-70. [PMID: 23698812 DOI: 10.1093/infdis/jit235] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) causes severe hemorrhagic necrotizing pneumonia associated with high mortality. Exotoxins have been implicated in the pathogenesis of this infection; however, the cellular mechanisms responsible remain largely undefined. Because platelet-neutrophil aggregates (PNAs) can dysregulate inflammatory responses and contribute to tissue destruction, we investigated whether exotoxins from MRSA could stimulate formation of PNAs in human whole blood. Strong PNA formation was stimulated by toxins from stationary phase but not log phase CA-MRSA, and α-hemolysin was singularly identified as the mediator of this activity. MRSA exotoxins also caused neutrophil (polymorphonuclear leukocyte) activation, as measured by increased CD11b expression, although platelet binding was not driven by this mechanism; rather, α-hemolysin-induced PNA formation was solely platelet P-selectin dependent. These findings suggest a role for S. aureus α-hemolysin-induced PNA formation in alveolar capillary destruction in hemorrhagic/necrotizing pneumonia caused by CA-MRSA and offer novel targets for intervention.
Collapse
Affiliation(s)
- Tanyalak Parimon
- Research and Development Service, Infectious Diseases Section, Veterans Affairs Medical Center, Boise, Idaho 83702, USA. (
| | | | | | | | | | | | | |
Collapse
|
4
|
Host response signature to Staphylococcus aureus alpha-hemolysin implicates pulmonary Th17 response. Infect Immun 2012; 80:3161-9. [PMID: 22733574 DOI: 10.1128/iai.00191-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus pneumonia causes significant morbidity and mortality. Alpha-hemolysin (Hla), a pore-forming cytotoxin of S. aureus, has been identified through animal models of pneumonia as a critical virulence factor that induces lung injury. In spite of considerable molecular knowledge of how this cytotoxin injures the host, the precise host response to Hla in the context of infection remains poorly understood. We employed whole-genome expression profiling of infected lungs to define the host response to wild-type S. aureus compared with the response to an Hla-deficient isogenic mutant in experimental pneumonia. These data provide a complete expression profile at 4 and at 24 h postinfection, revealing a unique response to the toxin-expressing strain. Gene ontogeny analysis revealed significant differences in the extracellular matrix and cardiomyopathy pathways, both of which govern cellular interactions in the tissue microenvironment. Evaluation of individual transcript responses to Hla-secreting staphylococci was notable for upregulation of host cytokine and chemokine genes, including the p19 subunit of interleukin-23. Consistent with this observation, the cellular immune response to infection was characterized by a prominent Th17 response to the wild-type pathogen. These findings define specific host mRNA responses to Hla-producing S. aureus, coupling the pulmonary Th17 response to the secretion of this cytotoxin. Expression profiling to define the host response to a single virulence factor proved to be a valuable tool in identifying pathways for further investigation in S. aureus pneumonia. This approach may be broadly applicable to the study of bacterial toxins, defining host pathways that can be targeted to mitigate toxin-induced disease.
Collapse
|
5
|
Schubert S, Schwertz H, Weyrich AS, Franks ZG, Lindemann S, Otto M, Behr H, Loppnow H, Schlitt A, Russ M, Presek P, Werdan K, Buerke M. Staphylococcus aureus α-toxin triggers the synthesis of B-cell lymphoma 3 by human platelets. Toxins (Basel) 2011; 3:120-33. [PMID: 22069700 PMCID: PMC3202813 DOI: 10.3390/toxins3020120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/22/2011] [Accepted: 01/25/2011] [Indexed: 01/20/2023] Open
Abstract
The frequency and severity of bacteremic infections has increased over the last decade and bacterial endovascular infections (i.e., sepsis or endocarditis) are associated with high morbidity and mortality. Bacteria or secreted bacterial products modulate platelet function and, as a result, affect platelet accumulation at sites of vascular infection and inflammation. However, whether bacterial products regulate synthetic events in platelets is not known. In the present study, we determined if prolonged contact with staphylococcal α-toxin signals platelets to synthesize B-cell lymphoma (Bcl-3), a protein that regulates clot retraction in murine and human platelets. We show that α-toxin induced α(IIb)β(3)-dependent aggregation (EC(50) 2.98 µg/mL ± 0.64 µg/mL) and, over time, significantly altered platelet morphology and stimulated de novo accumulation of Bcl-3 protein in platelets. Adherence to collagen or fibrinogen also increased the expression of Bcl-3 protein by platelets. α-toxin altered Bcl-3 protein expression patterns in platelets adherent to collagen, but not fibrinogen. Pretreatment of platelets with inhibitors of protein synthesis or the mammalian Target of Rapamycin (mTOR) decreased Bcl-3 protein expression in α-toxin stimulated platelets. In conclusion, Staphylococcusaureus-derived α-toxin, a pore forming exotoxin, exerts immediate (i.e., aggregation) and prolonged (i.e., protein synthesis) responses in platelets, which may contribute to increased thrombotic events associated with gram-positive sepsis or endocarditis.
Collapse
Affiliation(s)
- Sebastian Schubert
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Hansjörg Schwertz
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA; (H.S.); (A.S.W.); (Z.G.F.)
| | - Andrew S. Weyrich
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA; (H.S.); (A.S.W.); (Z.G.F.)
| | - Zechariah G. Franks
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA; (H.S.); (A.S.W.); (Z.G.F.)
| | - Stephan Lindemann
- Department of Medicine III, Eberhard Karls University, Tübingen, Germany;
| | - Monika Otto
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Hagen Behr
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Harald Loppnow
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Axel Schlitt
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Martin Russ
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Peter Presek
- Clinical Pharmacology, Martin Luther University, Halle, Saale, Germany;
| | - Karl Werdan
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Michael Buerke
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| |
Collapse
|
6
|
Craven RR, Gao X, Allen IC, Gris D, Wardenburg JB, McElvania-TeKippe E, Ting JP, Duncan JA. Staphylococcus aureus alpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS One 2009; 4:e7446. [PMID: 19826485 PMCID: PMC2758589 DOI: 10.1371/journal.pone.0007446] [Citation(s) in RCA: 323] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 09/24/2009] [Indexed: 11/19/2022] Open
Abstract
Community Acquired Methicillin Resistant Staphylococcus aureus (CA-MRSA) causes severe necrotizing infections of the skin, soft tissues, and lungs. Staphylococcal alpha-hemolysin is an essential virulence factor in mouse models of CA-MRSA necrotizing pneumonia. S. aureus alpha-hemolysin has long been known to induce inflammatory signaling and cell death in host organisms, however the mechanism underlying these signaling events were not well understood. Using highly purified recombinant alpha-hemolysin, we now demonstrate that alpha-hemolysin activates the Nucleotide-binding domain and leucine-rich repeat containing gene family, pyrin domain containing 3 protein (NLRP3)-inflammasome, a host inflammatory signaling complex involved in responses to pathogens and endogenous danger signals. Non-cytolytic mutant alpha-hemolysin molecules fail to elicit NLRP3-inflammasome signaling, demonstrating that the responses are not due to non-specific activation of this innate immune signaling system by bacterially derived proteins. In monocyte-derived cells from humans and mice, inflammasome assembly in response to alpha-hemolysin results in activation of the cysteine proteinase, caspase-1. We also show that inflammasome activation by alpha-hemolysin works in conjunction with signaling by other CA-MRSA-derived Pathogen Associated Molecular Patterns (PAMPs) to induce secretion of pro-inflammatory cytokines IL-1beta and IL-18. Additionally, alpha-hemolysin induces cell death in these cells through an NLRP3-dependent program of cellular necrosis, resulting in the release of endogenous pro-inflammatory molecules, like the chromatin-associated protein, High-mobility group box 1 (HMGB1). These studies link the activity of a major S. aureus virulence factor to a specific host signaling pathway. The cellular events linked to inflammasome activity have clear relevance to the disease processes associated with CA-MRSA including tissue necrosis and inflammation.
Collapse
Affiliation(s)
- Robin R. Craven
- Department of Medicine-Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Xi Gao
- Department of Medicine-Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Irving C. Allen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Denis Gris
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Juliane Bubeck Wardenburg
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, University of Chicago, Chicago, Illinois, United States of America
| | - Erin McElvania-TeKippe
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jenny P. Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Joseph A. Duncan
- Department of Medicine-Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
7
|
Antibacterial and anti-PAF activity of lipid extracts from sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata). Food Chem 2008; 111:433-8. [DOI: 10.1016/j.foodchem.2008.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 02/04/2008] [Accepted: 04/04/2008] [Indexed: 11/22/2022]
|
8
|
Abstract
Many bacterial pathogens, including Staphylococcus aureus, use a variety of pore-forming toxins as important virulence factors. Staphylococcal alpha-toxin, a prototype beta-barrel pore-forming toxin, triggers the release of proinflammatory mediators and induces primarily necrotic death in susceptible cells. However, whether host factors released in response to staphylococcal infections may increase cell resistance to alpha-toxin is not known. Here we show that prior exposure to interferons (IFNs) prevents alpha-toxin-induced membrane permeabilization, the depletion of ATP, and cell death. Moreover, pretreatment with IFN-alpha decreases alpha-toxin-induced secretion of interleukin 1beta (IL-1beta). IFN-alpha, IFN-beta, and IFN-gamma specifically protect cells from alpha-toxin, whereas tumor necrosis factor alpha (TNF-alpha), IL-6, and IL-4 have no effects. Furthermore, we show that IFN-alpha-induced protection from alpha-toxin is not dependent on caspase-1 or mitogen-activated protein kinases, but requires protein synthesis and fatty acid synthase activity. Our results demonstrate that IFNs may increase cell resistance to staphylococcal alpha-toxin via the regulation of lipid metabolism and suggest that interferons play a protective role during staphylococcal infections.
Collapse
|
9
|
Witzenrath M, Gutbier B, Owen JS, Schmeck B, Mitchell TJ, Mayer K, Thomas MJ, Ishii S, Rosseau S, Suttorp N, Schütte H. Role of platelet-activating factor in pneumolysin-induced acute lung injury. Crit Care Med 2007; 35:1756-62. [PMID: 17522574 DOI: 10.1097/01.ccm.0000269212.84709.23] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Acute respiratory failure is a major complication of severe pneumococcal pneumonia, characterized by impairment of pulmonary microvascular barrier function and pulmonary hypertension. Both features can be evoked by pneumolysin (PLY), an important virulence factor of Streptococcus pneumoniae. We hypothesized that platelet-activating factor (PAF) and associated downstream signaling pathways play a role in the PLY-induced development of acute lung injury. DESIGN Controlled, ex vivo laboratory study. SUBJECTS Female Balb/C mice, 8-12 wks old. INTERVENTIONS Ventilated and blood-free-perfused lungs of wild-type and PAF receptor-deficient mice were challenged with recombinant PLY. MEASUREMENTS AND MAIN RESULTS Intravascular PLY, but not the pneumolysoid Pd-B (PLY with a Trp-Phe substitution at position 433), caused an impressive dose-dependent increase in pulmonary vascular resistance and increased PAF in lung homogenates, as detected by reversed-phase high-performance liquid chromatography coupled to tandem mass spectrometry. The pressor response was reduced in lungs of PAF receptor-deficient mice and after PAF receptor blockade by BN 50730. PLY and exogenous PAF increased thromboxane B2 in lung effluate, and thromboxane receptor inhibition by BM 13505 diminished the pressor response to PLY. Differential inhibition of intracellular signaling steps suggested significant contribution of phosphatidylcholine-specific phospholipase C and protein kinase C and of the Rho/Rho-kinase pathway to PLY-induced pulmonary vasoconstriction. Unrelated to the pulmonary arterial pressor response, microvascular leakage of PLY was diminished in lungs of PAF receptor-deficient mice as well. CONCLUSIONS PAF significantly contributed to PLY-induced acute injury in murine lungs. The PAF-mediated pressor response to PLY depends on thromboxane and on the downstream effectors phosphatidylcholine-specific phospholipase C, protein kinase C, and Rho-kinase.
Collapse
Affiliation(s)
- Martin Witzenrath
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rosseau S, Wiechmann K, Moderer S, Selhorst J, Mayer K, Krüll M, Hocke A, Slevogt H, Seeger W, Suttorp N, Seybold J, Lohmeyer J. Moraxella catarrhalis–Infected Alveolar Epithelium Induced Monocyte Recruitment and Oxidative Burst. Am J Respir Cell Mol Biol 2005; 32:157-66. [PMID: 15557018 DOI: 10.1165/rcmb.2004-0091oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The recruitment of monocytes appears to be a crucial factor for inflammatory lung disease. Alveolar epithelial cells contribute to monocyte influx into the lung, but their impact on monocyte inflammatory capacity is not entirely clear. We thus analyzed the modulation of monocyte oxidative burst by A549 and isolated human alveolar epithelial cells. Epithelial infection with Moraxella catarrhalis induced monocyte adhesion, transepithelial migration, and superoxide generation, whereas stimulation with lipopolysaccharide, tumor necrosis factor-alpha, interleukin-1beta, or interferon-gamma induced adhesion or transmigration, but failed to initiate monocyte burst. The effect of microbial challenge was mimicked by phorbol myristate acetate and inhibited by the protein kinase C inhibitor bisindoylmaleimide. Furthermore, evidence for a role of platelet-activating factor-signaling in monocytes is presented. Monocyte burst was neither induced by supernatant nor affected by fixation of A549 cells, excluding the contribution of epithelium-derived soluble factors but emphasizing the mandatory role of intercellular contact. The employment of blocking antibodies, however, denied a role for the adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, or CD11b/CD18 and CD49d/CD29. In essence, infection of alveolar epithelial cells with M. catarrhalis might amplify the inflammatory capacity of invading monocytes eliciting their superoxide production. The epithelial response to this microbial challenge thus clearly differed from that to proinflammatory cytokines.
Collapse
Affiliation(s)
- Simone Rosseau
- Department of Internal Medicine and Infectious Diseases, Charité-Campus Mitte, Schumannstrasse 20/21, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Travers JB, Leung DYM, Johnson C, Schlievert P, Marques M, Cosgrove J, Clay KL. Augmentation of staphylococcal alpha-toxin signaling by the epidermal platelet-activating factor receptor. J Invest Dermatol 2003; 120:789-94. [PMID: 12713583 DOI: 10.1046/j.1523-1747.2003.12149.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Staphylococcal alpha-toxin is a cytolytic toxin secreted by many strains of Staphylococcus aureus that has proinflammatory and cytotoxic effects on human keratinocytes. alpha-toxin exerts its effects by forming a transmembrane pore that behaves like an ionophore for ions such as calcium. Because cellular membrane disruption with resultant intracellular calcium mobilization is a potent stimulus for the synthesis for the lipid mediator platelet-activating factor, the ability of alpha-toxin to induce platelet-activating factor production was assessed, and whether the epidermal platelet-activating factor receptor could augment toxin-induced signaling in epithelial cells examined. Treatment of the human keratinocyte-derived cell line HaCaT with alpha-toxin resulted in significant levels of platelet-activating factor, which were approximately 50% of the levels induced by calcium ionophore A23187. alpha-toxin also stimulated arachidonic acid release in HaCaT keratinocytes. Pretreatment of HaCaT cells with platelet-activating factor receptor antagonists, or overexpression of the platelet-activating factor metabolizing enzyme acetylhydrolase II blunted alpha-toxin-induced arachidonic acid release by approximately one-third, suggesting a role for toxin-produced platelet-activating factor in this process. Finally, retroviral-mediated expression of the platelet-activating factor receptor into the platelet-activating factor receptor-negative epithelial cell line KB resulted in an augmentation of alpha-toxin-mediated intracellular calcium mobilization and arachidonic acid release. These studies suggest that alpha-toxin-mediated signaling can be augmented via the epidermal platelet-activating factor receptor.
Collapse
Affiliation(s)
- Jeffrey B Travers
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Pruefer D, Makowski J, Schnell M, Buerke U, Dahm M, Oelert H, Sibelius U, Grandel U, Grimminger F, Seeger W, Meyer J, Darius H, Buerke M. Simvastatin inhibits inflammatory properties of Staphylococcus aureus alpha-toxin. Circulation 2002; 106:2104-10. [PMID: 12379581 DOI: 10.1161/01.cir.0000034048.38910.91] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Simvastatin, a 3-hydroxy-methylglutaryl coenzyme A reductase inhibitor, has been shown to lower serum cholesterol levels in clinical use. Moreover, statins exert beneficial effects in vascular diseases by inhibition of leukocyte rolling, adherence, and transmigration. The aim of this study was to determine if pretreatment with simvastatin attenuates Staphylococcus aureus alpha-toxin-induced increase in leukocyte-endothelial interactions during exotoxemia. METHODS AND RESULTS The effects of simvastatin on leukocyte-endothelial cell interactions were observed by intravital microscopy in the rat mesenteric microcirculation. Simvastatin (50 or 100 microg/kg) was administered 18 hours before the study. Activation of microcirculation was induced by bolus administration of 40 microg/kg S aureus alpha-toxin. Exotoxemia resulted in a significant and time-dependent increase in leukocyte rolling, adherence, and transmigration of leukocytes as well as P-selectin expression on the intestinal vascular endothelium. Pretreatment with simvastatin significantly inhibited exotoxin-induced leukocyte rolling from 71+/-10 to 14+/-4.7 cells/min (P<0.01) and adherence from 14+/-3.5 to 0.4+/-0.2 cells (P<0.01). In addition, simvastatin pretreatment significantly inhibited transmigration of leukocytes from 10.5+/-1.2 to 4.2+/-0.9 (P<0.05) cells. Immunohistochemical detection of endothelial cell adhesion molecule P-selectin showed a 50% decrease in endothelial cell surface expression after simvastatin treatment. Furthermore, simvastatin treatment resulted in enhanced expression of endothelial cell NO synthase III in the intestinal microcirculation. CONCLUSIONS These results demonstrate that simvastatin interferes with exotoxin-induced leukocyte-endothelial cell interactions, which may be relevant in various infectious diseases. Statin treatment may offer a new therapeutic strategy for these clinical conditions.
Collapse
Affiliation(s)
- Diethard Pruefer
- Department of Cardiothoracic and Vascular, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mayer K, Merfels M, Muhly-Reinholz M, Gokorsch S, Rosseau S, Lohmeyer J, Schwarzer N, Krüll M, Suttorp N, Grimminger F, Seeger W. Omega-3 fatty acids suppress monocyte adhesion to human endothelial cells: role of endothelial PAF generation. Am J Physiol Heart Circ Physiol 2002; 283:H811-8. [PMID: 12124231 DOI: 10.1152/ajpheart.00235.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monocyte-endothelium interaction is a fundamental process in many acute and chronic inflammatory diseases. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are fish oil-derived alternative (omega-3) precursor fatty acids implicated in the suppression of inflammatory events. We investigated their influence on rolling and adhesion of monocytes to human umbilical vein endothelial cells (HUVEC) under laminar flow conditions in vitro. Exposure of HUVEC to tumor necrosis factor (TNF-alpha) strongly increased 1) surface expression of intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), and E-selectin, 2) platelet-activating factor (PAF) synthesis as assessed by thrombin challenge, and 3) rate of rolling and adhesion of monocytes. Preincubation of HUVEC with EPA or DHA markedly suppressed PAF synthesis, monocyte rolling, and adherence, whereas expression of endothelial adhesion molecules was unchanged. Also, PAF receptor antagonists markedly suppressed the adhesion rate of monocytes, and EPA or DHA revealed no additional inhibitory capacity. In contrast, arachidonic acid partially reversed the effect of the antagonist. We conclude that omega-3 fatty acids suppress rolling and adherence of monocytes on activated endothelial cells in vitro by affecting endothelial PAF generation.
Collapse
Affiliation(s)
- Konstantin Mayer
- Medizinische Klinik II, Justus Liebig University, Klinikstrasse 36, D-35392 Giessen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Buerke M, Sibelius U, Grandel U, Buerke U, Grimminger F, Seeger W, Meyer J, Darius H. Staphylococcus aureus alpha toxin mediates polymorphonuclear leukocyte-induced vasocontraction and endothelial dysfunction. Shock 2002; 17:30-5. [PMID: 11795666 DOI: 10.1097/00024382-200201000-00006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The effect of Staphylococcus aureus alpha toxin (alpha-toxin) on selectin-mediated neutrophil adhesion was investigated in polymorphonuclear leukocyte- (PMN) induced vasocontraction and endothelial dysfunction. Adherence of human PMNs to rat aortic endothelium increased significantly following stimulation of the endothelium with alpha-toxin (0.1, 0.5, and 1 microg/mL). This effect could be significantly attenuated by monoclonal antibodies directed against P-selectin or fucoidin, a carbohydrate known to block selectins. Unstimulated human PMNs (10(6)cells/mL) were added to organ chambers containing rat aortic rings stimulated with alpha-toxin (0.5 microg/mL). PMNs elicited a significant vasocontraction in alpha-toxin-stimulated, but not in control aortic, rings (142+/-12 mg versus 12+/-4 mg, P < 0.05). This PMN-induced vasocontraction was virtually blunted by pretreatment with MAb directed against P-selectin or fucoidin (P < 0.05). Endothelial function as assessed by endothelium-dependent vasorelaxation to acetylcholine was substantially inhibited after induction of PMN-induced vasocontraction in alpha-toxin-stimulated aortic rings. This endothelial dysfunction was reduced by P-selectin MAb or fucoidin. In contrast, endothelium-independent relaxation to sodium nitrite was not altered by PMN incubation, indicating that vascular smooth muscle function was unaffected. Thus, PMN-endothelial interaction following S. aureus a-toxin activation of the vascular endothelium is at least, in part, mediated by selectins. As a consequence, PMN-induced vasocontraction and endothelial dysfunction occur. Such mechanisms may be involved in microcirculation abnormalities encountered in sepsis or septic shock due to S. aureus infection.
Collapse
Affiliation(s)
- Michael Buerke
- Department of Medicine, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Travers JB, Norris DA, Leung DY. The keratinocyte as a target for staphylococcal bacterial toxins. J Investig Dermatol Symp Proc 2001; 6:225-30. [PMID: 11924832 DOI: 10.1046/j.0022-202x.2001.00045.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Skin infections with Staphylococcus aureus are not only an important cause of morbidity and even mortality, but are thought to serve as initiation and/or persistance factors for numerous inflammatory skin diseases, including psoriasis and atopic dermatitis. One mechanism by which S. aureus can modulate the immune system is through the production of proteins such as superantigenic toxins, Protein A, as well through the cytolytic alpha-toxin. This review serves to discuss the biology of these three types of proteins, with emphasis on their ability to stimulate the production of powerful pro-inflammatory lipid- and protein-derived cytokines in keratinocytes. Characterization of interactions between these proteins and the keratinocyte can provide a better understanding of how bacterial infection modulates inflammatory skin diseases, as well as provide the basis for improved therapies involving antibacterial agents.
Collapse
Affiliation(s)
- J B Travers
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, USA.
| | | | | |
Collapse
|
16
|
Galdiero M, Folgore A, Molitierno M, Greco R. Porins and lipopolysaccharide (LPS) from Salmonella typhimurium induce leucocyte transmigration through human endothelial cells in vitro. Clin Exp Immunol 1999; 116:453-61. [PMID: 10361234 PMCID: PMC1905308 DOI: 10.1046/j.1365-2249.1999.00904.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/1999] [Indexed: 11/20/2022] Open
Abstract
Bacteria or bacterial products may constitute important inducers of surface molecule expression on endothelial cells and leucocytes. This study was undertaken to determine the effects of the Salmonella typhimurium porins, LPS-S and LPS-R on the transendothelial migration of leucocytes through human umbilical vein endothelial cells (HUVEC). Treatment of the HUVEC with either porins or LPS-S or LPS-R increased the transmigration of different leucocyte populations, in particular that of neutrophils. The maximal increase occurred using LPS-S treatment, whereas porin stimulation fell between LPS-S and LPS-R. The transmigration increase was dose-dependent and reached its maximum at about 100-1000 ng/ml of stimulus. Optimal endothelial activation occurred after 2-4 h and 4-6 h using LPS and porin, respectively. Stimulation of leucocytes with either porins or LPS slightly increased their transmigration through non-activated endothelial cells. Transmigration increased remarkably during the simultaneous stimulation of endothelial cells by IL-1ss together with either porins or LPS. To assess participation of E-selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and leucocyte adhesion complex (CD11/18) in porin- or LPS-mediated leucocyte migration, blocking MoAbs were used. Each blocking MoAb partially and selectively decreased leucocyte transmigration. The obtained results contribute to clarify some aspects of the inflammatory process at sites of infection.
Collapse
Affiliation(s)
- M Galdiero
- Dipartimento di Patologia ed Ispezione degli Alimenti, Sezione di Malattie Infettive, Facoltà di Veterinaria, Università degli Studi di Napoli Federico II, Napoli, Italy.
| | | | | | | |
Collapse
|
17
|
Tetta C, Mariano F, Buades J, Ronco C, Wratten ML, Camussi G. Relevance of platelet-activating factor in inflammation and sepsis: mechanisms and kinetics of removal in extracorporeal treatments. Am J Kidney Dis 1997; 30:S57-65. [PMID: 9372980 DOI: 10.1016/s0272-6386(97)90543-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sepsis can be considered a systemic inflammatory response syndrome (SIRS) caused by infection. When an excessive and/or persistent activation of humoral and cellular mechanisms of host defense is present, an exaggerated and generalized activation of inflammatory mechanisms can lead to a multiple organ dysfunction syndrome. Mediators thought to be involved in this syndrome include the major plasma cascade systems (complement, coagulation, and fibrinolytic systems) and soluble cell-derived mediators (cytokines, reactive oxygen species, platelet-activating factor (PAF), arachidonic acid metabolites, and nitric oxide and related compounds). Several findings indicate that among these mediators, PAF may exert an important role in the pathophysiology of septic shock. Evidence is accumulating that in human sepsis this scenario is far more complicated and that removal of inflammatory mediator excess from plasma, rather than blockade of their potentially beneficial local production, might provide a rationale for the use of continuous renal replacement therapy (CRRT). There is an emerging view that CRRT should be considered in the light of broader concept (ie, the use of blood purification for the treatment of sepsis). Recent studies, performed in an experimental model of continuous arteriovenous hemofiltration with exogenous PAF, demonstrated that polysulfone membranes can adsorb substantial amounts of biologically active PAF. These studies also showed that the removal of this mediator occurs by a two-step process involving early adsorption followed by ultrafiltration. Although the removal of cytokines, such as tumor necrosis factor-alpha (TNF-alpha), remains controversial, mainly because of differences in membrane used, operational conditions, and inter- and intra-assay variability, the crucial point is that no evidence has yet been given to show real benefit from CRRT in significantly reducing the plasma concentration of cytokines. The net advantage of CRRT, however, may not only be the removal of cytokines per se, but also the simultaneous elimination of cytokine-inducing substances. Experimental and human studies will be discussed as to whether extracorporeal treatments may remove an excess of circulating cytokines, either by increasing the turnover rate (the so-called high-volume hemofiltration), or by using sorbent systems to regenerate plasma filtrate.
Collapse
Affiliation(s)
- C Tetta
- Clinical and Laboratory Research Department, Bellco, Mirandola (Modena), Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Noel RF, Sato TT, Mendez C, Johnson MC, Pohlman TH. Activation of human endothelial cells by viable or heat-killed gram-negative bacteria requires soluble CD14. Infect Immun 1995; 63:4046-53. [PMID: 7558318 PMCID: PMC173569 DOI: 10.1128/iai.63.10.4046-4053.1995] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In response to bacterial lipopolysaccharides (LPS; endotoxin), endothelial cells are converted to an activation phenotype expressing both proinflammatory and procoagulant properties that include the induction of leukocyte adhesion molecules and tissue factor expression. LPS-induced endothelial cell activation requires a soluble form of the monocyte LPS receptor, sCD14. We evaluated the capacity of multiple strains of gram-negative and gram-positive bacteria to induce endothelial E-selectin and tissue factor expression through sCD14-dependent pathways with cultured human umbilical vein endothelial cells (HUVE). Both viable and heat-killed gram-negative bacteria (Bacteroides fragilis, Enterobacter cloacae, Haemophilus influenzae, and Klebsiella pneumoniae) but not viable or heat-killed gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis, and Streptococcus pneumoniae) induced prominent E-selectin surface expression detected by enzyme-linked immunosorbent assay. Tissue factor activity on HUVE, indicated by factor X activation, was induced in response to gram-negative bacteria but not in response to gram-positive bacteria. Gram-negative bacteria induced transcriptional activation in HUVE, indicated by the appearance of E-selectin-specific mRNA and by the demonstration of activation of NF-kappa B, a trans-activating factor necessary for E-selectin and tissue factor gene transcription. In contrast, neither E-selectin mRNA nor activation of NF-kappa B was detected in HUVE treated with gram-positive bacteria. Endothelial cell activation by gram-negative bacteria in each of these assays was inhibited with a monoclonal antibody (60bd) against CD14. Furthermore, CHO-K1 cells, transfected with human recombinant CD14, responded to all strains of gram-negative bacteria (viable or heat killed), indicated by CHO-K1 NF-kappa B activation. We conclude that gram-negative bacteria induce endothelial cell activation through a common sCD14-dependent pathway.
Collapse
Affiliation(s)
- R F Noel
- Department of Surgery, University of Washington School of Medicine, Seattle 98104, USA
| | | | | | | | | |
Collapse
|
19
|
Bussolino F, Camussi G. Platelet-Activating Factor Produced by Endothelial Cells. A Molecule with Autocrine and Paracrine Properties. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20472.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Summers JB, Albert DH. Platelet activating factor antagonists. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1995; 32:67-168. [PMID: 7748804 DOI: 10.1016/s1054-3589(08)61012-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J B Summers
- Abbott Laboratories, Abbott Park, Illinois 60064, USA
| | | |
Collapse
|
21
|
Bhakdi S, Grimminger F, Suttorp N, Walmrath D, Seeger W. Proteinaceous bacterial toxins and pathogenesis of sepsis syndrome and septic shock: the unknown connection. Med Microbiol Immunol 1994; 183:119-44. [PMID: 7527897 DOI: 10.1007/bf00196048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- S Bhakdi
- Institute of Medical Microbiology, University of Mainz, Germany
| | | | | | | | | |
Collapse
|