1
|
Lindahl PA, Moore MJ. Labile Low-Molecular-Mass Metal Complexes in Mitochondria: Trials and Tribulations of a Burgeoning Field. Biochemistry 2016; 55:4140-53. [PMID: 27433847 DOI: 10.1021/acs.biochem.6b00216] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iron, copper, zinc, manganese, cobalt, and molybdenum play important roles in mitochondrial biochemistry, serving to help catalyze reactions in numerous metalloenzymes. These metals are also found in labile "pools" within mitochondria. Although the composition and cellular function of these pools are largely unknown, they are thought to be comprised of nonproteinaceous low-molecular-mass (LMM) metal complexes. Many problems must be solved before these pools can be fully defined, especially problems stemming from the lability of such complexes. This lability arises from inherently weak coordinate bonds between ligands and metals. This is an advantage for catalysis and trafficking, but it makes characterization difficult. The most popular strategy for investigating such pools is to detect them using chelator probes with fluorescent properties that change upon metal coordination. Characterization is limited because of the inevitable destruction of the complexes during their detection. Moreover, probes likely react with more than one type of metal complex, confusing analyses. An alternative approach is to use liquid chromatography (LC) coupled with inductively coupled plasma mass spectrometry (ICP-MS). With help from a previous lab member, the authors recently developed an LC-ICP-MS approach to analyze LMM extracts from yeast and mammalian mitochondria. They detected several metal complexes, including Fe580, Fe1100, Fe1500, Cu5000, Zn1200, Zn1500, Mn1100, Mn2000, Co1200, Co1500, and Mo780 (numbers refer to approximate masses in daltons). Many of these may be used to metalate apo-metalloproteins as they fold inside the organelle. The LC-based approach also has challenges, e.g., in distinguishing artifactual metal complexes from endogenous ones, due to the fact that cells must be disrupted to form extracts before they are passed through chromatography columns prior to analysis. Ultimately, both approaches will be needed to characterize these intriguing complexes and to elucidate their roles in mitochondrial biochemistry.
Collapse
Affiliation(s)
- Paul A Lindahl
- Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States.,Department of Biochemistry and Biophysics, Texas A&M University , College Station, Texas 77843-2128, United States
| | - Michael J Moore
- Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States
| |
Collapse
|
2
|
Javadov S, Rajapurohitam V, Kilić A, Hunter JC, Zeidan A, Said Faruq N, Escobales N, Karmazyn M. Expression of mitochondrial fusion-fission proteins during post-infarction remodeling: the effect of NHE-1 inhibition. Basic Res Cardiol 2010; 106:99-109. [PMID: 20886221 DOI: 10.1007/s00395-010-0122-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 09/01/2010] [Accepted: 09/19/2010] [Indexed: 11/29/2022]
Abstract
Studies on the role of mitochondrial fission/fusion (MFF) proteins in the heart have been initiated recently due to their biological significance in cell metabolism. We hypothesized that the expression of MFF proteins is affected by post-infarction remodeling and in vitro cardiomyocyte hypertrophy, and serves as a target for the Na(+)/H(+) exchanger 1 (NHE-1) inhibition. Post-infarction remodeling was induced in Sprague-Dawley rats by coronary artery ligation (CAL) while in vitro hypertrophy was induced in cardiomyocytes by phenylephrine (PE). Mitochondrial fission (Fis1, DRP1) and fusion (Mfn2, OPA1) proteins were analyzed in heart homogenates and cell lysates by Western blotting. Our results showed that 12 and 18 weeks after CAL, Fis1 increased by 80% (P < 0.01) and 31% (P < 0.05), and Mfn2 was reduced by 17% (P < 0.05) and 22% (P < 0.05), respectively. OPA1 was not changed at 12 weeks, although its expression decreased by 18% (P < 0.05) with 18 weeks of ligation. MFF proteins were also affected by PE-induced hypertrophy that was dependent on mitochondrial permeability transition pore opening and oxidative stress. The NHE-1-specific inhibitor EMD-87580 (EMD) attenuated changes in the expression of MFF proteins in both the models of hypertrophy. The effect of EMD was likely mediated, at least in part, through its direct action on mitochondria since Percoll-purified mitochondria and mitoplasts have been shown to contain NHE-1. Our study provides the first evidence linking cardiac hypertrophy with MFF proteins expression that was affected by NHE-1 inhibition, thus suggesting that MFF proteins might be a target for pharmacotherapy with anti-hypertrophic drugs.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, USA.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Castorena KM, Stapleford KA, Miller DJ. Complementary transcriptomic, lipidomic, and targeted functional genetic analyses in cultured Drosophila cells highlight the role of glycerophospholipid metabolism in Flock House virus RNA replication. BMC Genomics 2010; 11:183. [PMID: 20236518 PMCID: PMC2847973 DOI: 10.1186/1471-2164-11-183] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 03/17/2010] [Indexed: 12/11/2022] Open
Abstract
Background Cellular membranes are crucial host components utilized by positive-strand RNA viruses for replication of their genomes. Published studies have suggested that the synthesis and distribution of membrane lipids are particularly important for the assembly and function of positive-strand RNA virus replication complexes. However, the impact of specific lipid metabolism pathways in this process have not been well defined, nor have potential changes in lipid expression associated with positive-strand RNA virus replication been examined in detail. Results In this study we used parallel and complementary global and targeted approaches to examine the impact of lipid metabolism on the replication of the well-studied model alphanodavirus Flock House virus (FHV). We found that FHV RNA replication in cultured Drosophila S2 cells stimulated the transcriptional upregulation of several lipid metabolism genes, and was also associated with increased phosphatidylcholine accumulation with preferential increases in lipid molecules with longer and unsaturated acyl chains. Furthermore, targeted RNA interference-mediated downregulation of candidate glycerophospholipid metabolism genes revealed a functional role of several genes in virus replication. In particular, we found that downregulation of Cct1 or Cct2, which encode essential enzymes for phosphatidylcholine biosynthesis, suppressed FHV RNA replication. Conclusion These results indicate that glycerophospholipid metabolism, and in particular phosphatidylcholine biosynthesis, plays an important role in FHV RNA replication. Furthermore, they provide a framework in which to further explore the impact of specific steps in lipid metabolism on FHV replication, and potentially identify novel cellular targets for the development of drugs to inhibit positive-strand RNA viruses.
Collapse
Affiliation(s)
- Kathryn M Castorena
- Departments of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
4
|
Raimondi A, Mangolini A, Rizzardini M, Tartari S, Massari S, Bendotti C, Francolini M, Borgese N, Cantoni L, Pietrini G. Cell culture models to investigate the selective vulnerability of motoneuronal mitochondria to familial ALS-linked G93ASOD1. Eur J Neurosci 2006; 24:387-99. [PMID: 16903849 DOI: 10.1111/j.1460-9568.2006.04922.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mitochondrial damage induced by superoxide dismutase (SOD1) mutants has been proposed to have a causative role in the selective degeneration of motoneurons in amyotrophic lateral sclerosis (ALS). In order to investigate the basis of the tissue specificity of mutant SOD1 we compared the effect of the continuous expression of wild-type or mutant (G93A) human SOD1 on mitochondrial morphology in the NSC-34 motoneuronal-like, the N18TG2 neuroblastoma and the non-neuronal Madin-Darby Canine Kidney (MDCK) cell lines. Morphological alterations of mitochondria were observed in NSC-34 expressing the G93A mutant (NSC-G93A) but not the wild-type SOD1, whereas a ten-fold greater level of total expression of the mutant had no effect on mitochondria of non-motoneuronal cell lines. Fragmented network, swelling and cristae remodelling but not vacuolization of mitochondria or other intracellular organelles were observed only in NSC-G93A cells. The mitochondrial alterations were not explained by a preferential localization of the mutant within NSC-G93A mitochondria, as a higher amount of the mutant SOD1 was found in mitochondria of MDCK-G93A cells. Our results suggest that mitochondrial vulnerability of motoneurons to G93ASOD1 is recapitulated in NSC-34 cells, and that peculiar features in network dynamics may account for the selective alterations of motoneuronal mitochondria.
Collapse
Affiliation(s)
- Andrea Raimondi
- Department of Pharmacology, School of Medicine, Center of Excellence on Neurodegenerative Diseases, University of Milano, Consiglio Nazionale delle Ricerche, CNR, Institute of Neuroscience, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Nair JR, McGuire JJ. Submitochondrial localization of the mitochondrial isoform of folylpolyglutamate synthetase in CCRF-CEM human T-lymphoblastic leukemia cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1746:38-44. [PMID: 16169100 DOI: 10.1016/j.bbamcr.2005.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 08/20/2005] [Accepted: 08/23/2005] [Indexed: 11/21/2022]
Abstract
Earlier studies from this laboratory showed that human folylpolyglutamate synthetase (FPGS) exists as cytosolic and mitochondrial (mFPGS) isoforms. Localization of mFPGS within mitochondria may help elucidate how the enzyme functions to maintain the mitochondrial folate pool. A human T-lymphoblastic leukemia CCRF-CEM cell lysate was fractionated by differential centrifugation into cytosolic and mitochondrial fractions. Activity assays for cytosol-and mitochondria-specific enzymes verified the purity and integrity of the fractions. Mitochondria were subfractionated with increasing concentrations of digitonin to successively extract the four submitochondrial compartments. Western analyses of the fractions using protein markers specific for each compartment suggest that mFPGS is distributed in the matrix and/or inner membrane compartments. Further support for an interaction of mFPGS with the inner mitochondrial membrane is provided by localization of about half of the mFPGS in the mitochondrial membrane fraction obtained by freeze-thaw of intact mitochondria; the remaining mFPGS is located in the soluble fraction. Resistance of about half of the mFPGS in whole mitochondria to alkaline carbonate extraction suggests that its interaction with the inner membrane is more similar to an integral, than a peripheral, membrane protein. The data suggest that human mFPGS is at least in part strongly associated with the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Jayakumar R Nair
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | |
Collapse
|
6
|
Foster MW, Stamler JS. New insights into protein S-nitrosylation. Mitochondria as a model system. J Biol Chem 2004; 279:25891-7. [PMID: 15069080 DOI: 10.1074/jbc.m313853200] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The biological effects of nitric oxide (NO) are in significant part mediated through S-nitrosylation of cysteine thiol. Work on model thiol substrates has raised the idea that molecular oxygen (O(2)) is required for S-nitrosylation by NO; however, the relevance of this mechanism at the low physiological pO(2) of tissues is unclear. Here we have used a proteomic approach to study S-nitrosylation reactions in situ. We identify endogenously S-nitrosylated proteins in subcellular organelles, including dihydrolipoamide dehydrogenase and catalase, and show that these, as well as hydroxymethylglutaryl-CoA synthase and sarcosine dehydrogenase (SarDH), are S-nitrosylated by NO under strictly anaerobic conditions. S-Nitrosylation of SarDH by NO is best rationalized by a novel mechanism involving the covalently bound flavin of the enzyme. We also identify a set of mitochondrial proteins that can be S-nitrosylated through multiple reaction channels, including anaerobic/oxidative, NO/O(2), and GSNO-mediated transnitrosation. Finally, we demonstrate that steady state levels of S-nitrosylation are higher in mitochondrial extracts than the intact organelles, suggesting the importance of denitrosylation reactions. Collectively, our results provide new insight into the determinants of S-nitrosothiol levels in subcellular compartments.
Collapse
Affiliation(s)
- Matthew W Foster
- Howard Hughes Medical Institute, Department of Medicine and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
7
|
Han D, Antunes F, Daneri F, Cadenas E. Mitochondrial superoxide anion production and release into intermembrane space. Methods Enzymol 2002; 349:271-80. [PMID: 11912916 DOI: 10.1016/s0076-6879(02)49341-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The topological distribution of ubiquinone in the mitochondrial respiratory chain suggests that both ubiquinone pools may participate in O2.- production and, hence, are vectorially released into the matrix and intermembrane space. Mitoplasts, obtained by either digitonin or hypotonic KCl treatment, are a suitable experimental model for measuring O2.- in the intermembrane space. The use of membrane-impermeable spin-broadening agents strengthens the notion that part of the O2.- generated by the respiratory chain may be released into the intermembrane space. This, together with the putative occurrence of a Cu, Zn-superoxide dismutase in this compartment may account for part of H2O2 released by mitochondria and contributing to a cytosolic steady-state level of this species in cytosol.
Collapse
Affiliation(s)
- Derick Han
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
8
|
Okado-Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J Biol Chem 2001; 276:38388-93. [PMID: 11507097 DOI: 10.1074/jbc.m105395200] [Citation(s) in RCA: 715] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rat liver was homogenized in isotonic buffer, fractionated by differential centrifugation, and then subfractionated by equilibrium sedimentation in Nycodenz gradients. Fractions were assayed for both Cu,Zn-superoxide dismutase (SOD) and Mn-SOD by exploiting the cyanide sensitivity of the former activity and by the use of specific antibodies. As expected, the cytosol and lysosomal fractions contained Cu,Zn-SOD; while the mitochondrial matrix contained Mn-SOD. In mitochondria, Cu,Zn-SOD was found in the intermembrane space and Mn-SOD in the matrix and also on the inner membrane. The Mn-SOD associated with the inner membrane was solubilized by 0.5 m NaCl. Surprisingly the intracellular membrane fraction (microsomes) contained bound Cu,Zn-SOD that could be solubilized with a detergent, and to lesser degree with 0.5 m NaCl. Both the cytosolic and mitochondrial Cu,Zn-SODs were isolated and compared. They have identical molecular mass, cyanide sensitivity, SDS sensitivity, heat stability, and chloroform + ethanol stability. Tissue from Cu,Zn-SOD knockout mice was entirely devoid of Cu,Zn-SOD; indicating that the cytosolic and the intermembrane space Cu,Zn-SODs are coded for by the same gene. The significance of this distribution of the SODs is discussed.
Collapse
Affiliation(s)
- A Okado-Matsumoto
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
9
|
Cechetto JD, Gupta RS. Immunoelectron microscopy provides evidence that tumor necrosis factor receptor-associated protein 1 (TRAP-1) is a mitochondrial protein which also localizes at specific extramitochondrial sites. Exp Cell Res 2000; 260:30-9. [PMID: 11010808 DOI: 10.1006/excr.2000.4983] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The tumor necrosis factor receptor-associated protein 1 (TRAP-1) interacts with a variety of proteins involved in diverse functions. We have used quantitative immunogold electron microscopy and biochemical analysis to evaluate the subcellular distribution of TRAP-1 in rat tissues. Immunofluorescence employing a polyclonal antibody raised to human recombinant TRAP-1 reveals specific staining of mitochondria and nuclear region in mammalian cells. Western blot analysis of purified rat liver mitochondrial subfractions with the TRAP-1 antibody reveals that the cross-reactive protein (M(r) approximately 80 kDa) is mainly present in the matrix compartment. Immunogold labeling of rat tissue sections embedded in LR Gold resin shows strong labeling of mitochondria in all the tissues examined (viz., liver, heart, pancreas, kidney, spleen, anterior pituitary gland). Additionally, specific and significant labeling with TRAP-1 antibody was also observed in certain tissues in a number of nonmitochondrial locations, including pancreatic zymogen granules, insulin secretory granules, cardiac sarcomeres, and nuclei of pancreatic and heart cells, and on the cell surface of blood vessel endothelial cells. Western blot analysis showed that a cross-reactive protein of similar molecular mass as TRAP-1 is present in purified pancreatic zymogen granules. Immunogold labeling was prevented in all tissues by preadsorption of the TRAP-1 antibody with the purified recombinant TRAP-1 protein. These observations and the fact that TRAP-1 is synthesized with a typical mitochondrial targeting presequence strongly indicate that TRAP-1 is primarily a mitochondrial matrix protein. The localization of this protein at specific extramitochondrial sites raises interesting and fundamental questions regarding the possible mechanisms by which these proteins are translocated to such sites.
Collapse
Affiliation(s)
- J D Cechetto
- Department of Biochemistry, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | | |
Collapse
|
10
|
Siendones E, Gonzalez-Reyes JA, Santos-Ocana C, Navas P. Biosynthesis of ascorbic acid in kidney bean. L-galactono-gamma-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane. PLANT PHYSIOLOGY 1999; 120:907-12. [PMID: 10398727 PMCID: PMC59330 DOI: 10.1104/pp.120.3.907] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/1998] [Accepted: 04/19/1999] [Indexed: 05/19/2023]
Abstract
Hypocotyls of kidney beans (Phaseolus vulgaris L.) accumulated ascorbate after preincubation with a number of possible precursors, mainly L-galactono-gamma-lactone (L-GL) and L-gulono-gamma-lactone. The increase in the intracellular ascorbate concentration was parallel to the high stimulation of the L-GL dehydrogenase (L-GLD) activity measured in vitro using L-GL as a substrate and cytochrome c as an electron acceptor. Cell fractionation using a continuous linear Percoll gradient demonstrated that L-GLD is associated with mitochondria; therefore, pure mitochondria were isolated and subjected to detergent treatment to separate soluble from membrane-linked proteins. L-GLD activity was mainly associated with the detergent phase, suggesting that a membrane-intrinsic protein is responsible for the ascorbic acid biosynthetic activity. Subfractionation of mitochondria demonstrated that L-GLD is located at the inner membrane.
Collapse
Affiliation(s)
- E Siendones
- Departamento de Biologia Celular, Facultad de Ciencias, Universidad de Cordoba, 14004 Cordoba, Spain (E.S., J.A.G.-R.)
| | | | | | | |
Collapse
|
11
|
Junankar PR, Dulhunty AF, Curtis SM, Pace SM, Thinnes FP. Porin-type 1 proteins in sarcoplasmic reticulum and plasmalemma of striated muscle fibres. J Muscle Res Cell Motil 1995; 16:595-610. [PMID: 8750231 DOI: 10.1007/bf00130241] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The location of porin-type 1 proteins in mammalian striated muscle has been assessed using immunogold electron microscopy with an anti-porin 31HL monoclonal antibody as the primary antibody. Gold particles were found on the mitochondrial outer membrane, the sarcoplasmic reticulum and plasmalemma in longitudinal sections of rat and rabbit skeletal muscle and rabbit and sheep cardiac muscle. The relative densities of gold particles in the mitochondrial outer membrane, sarcoplasmic reticulum and plasmalemma were 7:3:1 in white sternomastoid muscle, for example. Skeletal and cardiac sarcoplasmic reticulum vesicles, which had been fractionated by discontinuous sucrose density centrifugation, were subjected to SDS-polyacrylamide gel electrophoresis and Western blotting. The anti-porin 31HL monoclonal antibody detected a band of relative molecular mass (M(r)) 31,000 in all muscle sarcoplasmic reticulum vesicle fractions and also in liver mitochondria. The intensity of immunostaining of the sarcoplasmic reticulum fractions was 2.5-10% that of mitochondrial outer membranes per microgram of membrane protein blotted. Contamination of the sarcoplasmic reticulum fractions by mitochondrial outer membrane was < 0.75% as determined from the specific activity of monoamine oxidase. Thus, only a small part of the porin detected in sarcoplasmic reticulum vesicles can be attributed to mitochondrial contamination. These results show that porin-type1 immunoreactivity is not restricted to mitochondria but found in the sarcoplasmic reticulum and plasmalemma of both mammalian skeletal and cardiac muscle.
Collapse
Affiliation(s)
- P R Junankar
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | | | | | |
Collapse
|
12
|
McBride HM, Silvius JR, Shore GC. Insertion of an uncharged polypeptide into the mitochondrial inner membrane does not require a trans-bilayer electrochemical potential: effects of positive charges. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1237:162-8. [PMID: 7632709 DOI: 10.1016/0005-2736(95)00088-k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mitochondria with a ruptured outer membrane exhibited impaired import into this membrane of an outer membrane fusion protein containing the signal-anchor sequence of Mas70p. However, the Mas70p signal-anchor efficiently targeted and inserted the protein directly into exposed regions of the inner membrane. Import into the inner membrane was dependent on delta psi and this dependence was due to the presence of the positively-charged amino acids located at positions 2, 7, and 9 of the signal-anchor. In contrast to wild-type signal-anchor, mutants lacking the positively-charged residues mediated import into the inner membrane in both the presence and absence of delta psi. The results suggest two conclusions: (1) delta psi-dependent import of the signal-anchor sequence was due exclusively to an effect of delta psi on the positively-charged domain of the signal-anchor, rather than to an effect of delta psi on a property of the inner membrane import machinery; (2) in the absence of delta psi, the positively-charged domain of the signal-anchor prevented the otherwise import-competent signal-anchor from inserting into the membrane. This suggests that the positively-charged domain leads import across the inner membrane, and that delta psi is required to vectorially clear this domain in order to allow the distal region of the signal-anchor to enter the translocation pathway. The implications of these findings on the mechanism of import into the mitochondrial inner membrane and matrix are discussed.
Collapse
Affiliation(s)
- H M McBride
- Department of Biochemistry, McGill University, Montreal, Canada
| | | | | |
Collapse
|
13
|
Generation of the mitochondrial permeability transition does not involve inhibition of lysophospholipid acylation. Acyl-coenzyme A:1-acyllysophospholipid acyltransferase activity is not found in rat liver mitochondria. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54765-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Evidence indicating that pig renal phosphate-activated glutaminase has a functionally predominant external localization in the inner mitochondrial membrane. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98822-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Igbavboa U, Pfeiffer DR. Regulation of reverse uniport activity in mitochondria by extramitochondrial divalent cations. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)64319-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Moody AJ, West IC, Mitchell R, Mitchell P. Is there Ca2+(Sr2+)-3-hydroxybutyrate symport in rat-liver mitochondria? A reappraisal. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 157:243-9. [PMID: 3086092 DOI: 10.1111/j.1432-1033.1986.tb09662.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The observation in this laboratory that respiration and Sr2+ import were stimulated by the addition of 3-hydroxybutyrate to suspensions of N-ethylmaleimide-treated mitochondria respiring in state 6, after the addition of Sr2+, in a sucrose medium containing choline as substrate, led to the proposal by Moyle and Mitchell [(1977) FEBS Lett. 84, 135-140] that there is a Ca2+(Sr2+)-3-hydroxybutyrate symporter in rat liver mitochondria. However, experiments described in the present paper support a different interpretation. Under the conditions of the experiments by Moyle and Mitchell, the rate of respiration and the poise of Sr2+ accumulation are mainly limited, not by delta mu H+, but by lack of respiratory substrate. Even though N-ethylmaleimide is a potent inhibitor of 3-hydroxybutyrate dehydrogenase, we have found that, somewhat surprisingly, under the special conditions of these experiments, sufficient 3-hydroxybutyrate dehydrogenase activity remains available to account for the 3-hydroxybutyrate-dependent respiratory stimulation and Sr2+ import.
Collapse
|
17
|
Woldegiorgis G, Shrago E. Adenine nucleotide translocase activity and sensitivity to inhibitors in hepatomas. Comparison of the ADP/ATP carrier in mitochondria and in a purified reconstituted liposome system. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39648-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
Cheng B, Hsu DK, Kimura T. Utilization of intramitochondrial membrane cholesterol by cytochrome P-450-dependent cholesterol side-chain cleavage reaction in bovine adrenocortical mitochondria: steroidogenic and non-steroidogenic pools of cholesterol in the mitochondrial inner membranes. Mol Cell Endocrinol 1985; 40:233-43. [PMID: 4007257 DOI: 10.1016/0303-7207(85)90179-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inner and outer submitochondrial membranes were prepared after disruption of malate-treated bovine adrenocortical mitochondria. It was found that a part of the endogenous cholesterol in the inner membrane (approx. 50%) was rapidly utilized by the cholesterol side-chain cleavage reaction. The utilization of cholesterol in the outer membrane, on the other hand, was inefficient and slow in spite of the fact that cholesterol concentration is higher in the outer than in the inner membrane. When the inner membrane prepared from untreated mitochondria was incubated for 20 min in the presence of a reconstituted cytochrome P-450-reducing system, the inner membrane cholesterol was depleted by approximately 70%. The half-life of the depletion reaction was 2-3 min. In addition, when the outer membrane plus the soluble fraction from the untreated mitochondria were added as a source of cholesterol to the inner membrane fraction, a marginal increase in the production of steroids was observed. From these results it is concluded that a portion of the inner membrane cholesterol can be steroidogenic, whereas the rest of the cholesterol is non-steroidogenic.
Collapse
|
19
|
Watabe S, Kimura T. ATP-dependent protease in bovine adrenal cortex. Tissue specificity, subcellular localization, and partial characterization. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89052-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Noël C, Nicolaou V, Argan C, Rachubinski RA, Shore GC. In vitro synthesis and assembly of a 68 kDa outer mitochondrial membrane protein from rat liver. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 814:35-42. [PMID: 3884046 DOI: 10.1016/0005-2736(85)90416-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Outer mitochondrial membrane was purified from rat liver. Its constituent proteins were analyzed by SDS-polyacrylamide gel electrophoresis and by electrophoretic immunoblotting employing antibodies raised against total outer mitochondrial membrane. Anti-outer mitochondrial membrane antiserum reacted with only one polypeptide (15 kDa) in rough microsomes, whereas no immunological cross-reactivity was observed with other mitochondrial compartments (intermembrane space, inner membrane, or matrix) or with lysosomes or total cytosol. The antiserum was employed to characterize precursors of outer mitochondrial membrane proteins synthesized in vitro in a rabbit reticulocyte cell-free system. One product (a 68 kDa polypeptide designated OMM-68) bound efficiently to mitochondria in vitro but did not interact with either dog pancreas or rat liver microsomes, either co-translationally or post-translationally. OMM-68 was synthesized exclusively by the membrane-free class of polyribosomes. Attachment of precursor OMM-68 to mitochondria was not accompanied by processing of the polypeptide to a different size.
Collapse
|
21
|
|
22
|
Keegstra K, Werner-Washburne M, Cline K, Andrews J. The chloroplast envelope: is it homologous with the double membranes of mitochondria and gram-negative bacteria? J Cell Biochem 1984; 24:55-68. [PMID: 6725421 DOI: 10.1002/jcb.240240105] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Cheng B, Kimura T. The distribution of cholesterol and phospholipid composition in submitochondrial membranes from bovine adrenal cortex: fundamental studies of steroidogenic mitochondria. Lipids 1983; 18:577-84. [PMID: 6633163 DOI: 10.1007/bf02534665] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The cholesterol contents and phospholipid compositions of mitochondria, microsomes and submitochondrial membranes from bovine adrenal cortex have been analyzed quantitatively. From our results, the following cholesterol contents were obtained: mitochondria, 6.2 +/- 0.9 mol %; microsomes, 18.4 +/- 2.8 mol %; mitochondrial inner membrane, 2.8 +/- 0.6 mol %; and mitochondrial outer membrane, 8.3 +/- 1.3 mol %. In addition, the phospholipid compositions of the mitochondrial inner and outer membranes were determined for the first time. Cardiolipin was found to be enriched in the inner membrane, whereas phosphatidylinositol was richer in the outer membrane. The general features of phospholipid compositions in the submitochondrial membranes resembled that of rat liver mitochondria.
Collapse
|
24
|
Robertson DE, Rottenberg H. Membrane potential and surface potential in mitochondria. Fluorescence and binding of 1-anilinonaphthalene-8-sulfonate. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44383-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Böhni PC, Daum G, Schatz G. Import of proteins into mitochondria. Partial purification of a matrix-located protease involved in cleavage of mitochondrial precursor polypeptides. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32518-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Skrede S, Halvorsen O. Mitochondrial pantetheinephosphate adenylyltransferase and dephospho-CoA kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 131:57-63. [PMID: 6299733 DOI: 10.1111/j.1432-1033.1983.tb07231.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Scotto AW, Chang LF, Beattie DS. The characterization and submitochondrial localization of delta-aminolevulinic acid synthase and an associated amidase in rat liver mitochondria using an improved assay for both enzymes. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)33223-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Pedersen JI, Shobaki HH, Holmberg I, Bergseth S, Björkhem I. 25-Hydroxyvitamin D3-24-hydroxylase in rat kidney mitochondria. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)33110-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
29
|
|